51
|
Thiam LG, Aniweh Y, Quansah EB, Donkor JK, Gwira TM, Kusi KA, Niang M, Awandare GA. Cell trace far-red is a suitable erythrocyte dye for multi-color Plasmodium falciparum invasion phenotyping assays. Exp Biol Med (Maywood) 2020; 245:11-20. [PMID: 31903776 PMCID: PMC6987746 DOI: 10.1177/1535370219897393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum erythrocyte invasion phenotyping assays are a very useful tool for assessing parasite diversity and virulence, and for characterizing the formation of ligand–receptor interactions. However, such assays need to be highly sensitive and reproducible, and the selection of labeling dyes for differentiating donor and acceptor erythrocytes is a critical factor. We investigated the suitability of cell trace far-red (CTFR) as a dye for P. falciparum invasion phenotyping assays. Using the dyes carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and dichloro dimethyl acridin one succinimidyl ester (DDAO-SE) as comparators, we used a dye-dilution approach to assess the limitations and specific staining procedures for the applicability of CTFR in P. falciparum invasion phenotyping assays. Our data show that CTFR effectively labels acceptor erythrocytes and provides a stable fluorescent intensity at relatively low concentrations. CTFR also yielded a higher fluorescence intensity relative to DDAO-SE and with a more stable fluorescence intensity over time. Furthermore, CTFR did not affect merozoites invasion of erythrocytes and was not toxic to the parasite’s intraerythrocytic development. Additionally, CTFR offers flexibility in the choice of combinations with several other DNA dyes, which broaden its usage for P. falciparum erythrocyte invasion assays, considering a wider range of flow cytometers with various laser settings.
Collapse
Affiliation(s)
- Laty G Thiam
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Evelyn B Quansah
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Jacob K Donkor
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Theresa M Gwira
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| | - Kwadwo A Kusi
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
- Department of Immunology, Noguchi Memorial Institute for Medical
Research, University of Ghana, P. O. Box LG 581, Legon, Accra
| | - Makhtar Niang
- Unité d’Immunologie, Institut Pasteur de Dakar, Dakar 220,
Senegal
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens,
College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon,
Accra
- Department of Biochemistry, Cell and Molecular Biology, College of
Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra
| |
Collapse
|
52
|
Fu Z, Wang S, Li J, Zhang Y, Li H, Li G, Wan X, Zhang Y. Biological role of GITR/GITRL in attributes and immune responses of macrophage. J Leukoc Biol 2019; 107:309-321. [PMID: 31833599 DOI: 10.1002/jlb.3a0919-387rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoid-induced tumor necrosis factor receptor family-related protein ligand (GITRL), a member of the tumor necrosis factor superfamily, is expressed in APCs and acts as a costimulatory molecule in the immune system. Although the glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR)/GITRL system has been modulated to promote or decrease T cell-related responses in multiple diseases, studies in macrophages are limited. To address this issue, we compared the expression of GITRL in various types of macrophages and analyzed whether GITRL can affect the fundamental properties and major functions of these cells. Our results demonstrated that M1 polarized macrophages had the highest GITRL levels. Furthermore, GITRL overexpression skewed macrophage polarization toward the M1 phenotype, accelerating proliferation and migration and regulating phagocytosis and killing function. Moreover, GITRL-silenced cells showed a loss of these functions, further confirming its vital role. We also developed an acute peritonitis mouse model, in which macrophages were driven to differentiate into a proinflammatory phenotype with GITRL up-regulation, triggering a positive feedback loop. Our results provide molecular insight into how the GITR/GITRL system modulates innate immune responses, suggesting that manipulation of the GITR/GITRL system to treat diseases depends not only on T cell regulation but also on macrophage participation.
Collapse
Affiliation(s)
- Zhuo Fu
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shuang Wang
- Department of Dermatology, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, P.R. China
| | - Yunfeng Zhang
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Han Li
- Department of Infection Control, the First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Xue Wan
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yu Zhang
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
53
|
Abstract
The immune system potentially plays an important mechanistic role in the relation between shift work and adverse health effects. To better understand the immunological effects of shift work, we compared numbers and functionality of immune cells between night-shift and non-shift workers. Blood samples were collected from 254 night-shift and 57 non-shift workers employed in hospitals. Absolute numbers of monocytes, granulocytes, lymphocytes, and T cell subsets were assessed. As read out of immune function, monocyte cytokine production and proliferative capacity of CD4 and CD8 T cells in response to various stimuli were analysed. The mean number of monocytes was 1.15 (95%-CI = 1.05–1.26) times higher in night-shift than in non-shift workers. Furthermore, night-shift workers who worked night shifts in the past three days had a higher mean number of lymphocytes (B = 1.12 (95%-CI = 1.01–1.26)), T cells (B = 1.16 (95%-CI = 1.03–1.31)), and CD8 T cells (B = 1.23 (95%-CI = 1.05–1.45)) compared to non-shift workers. No differences in functional parameters of monocytes and lymphocytes were observed. The differences in numbers of monocytes and T cells suggest that chronic exposure to night-shift work as well as recent night-shift work may influence the immune status of healthcare workers. This knowledge could be relevant for preventive initiatives in night-shift workers, such as timing of vaccination.
Collapse
|
54
|
Chen X, Chen X, Gao J, Yang H, Duan Y, Feng Y, He X, Gong X, Wang H, Wu X, Chang J. Astragaloside III Enhances Anti-Tumor Response of NK Cells by Elevating NKG2D and IFN-γ. Front Pharmacol 2019; 10:898. [PMID: 31456687 PMCID: PMC6701288 DOI: 10.3389/fphar.2019.00898] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells play an irreplaceable role in the development of colon cancer, in which antitumor function of NK cells was impaired. Astragaloside III is a natural compound from Astragalus that has been shown to have immunomodulatory effects in various systems. However, few studies have evaluated the antitumor effects of Astragaloside III through stimulating systemic immunity and regulating NK cells. In this study, flow cytometry, immunohistochemical analysis, and immunofunctional assays were performed to elucidate the functions of Astragaloside III in restoring antitumor function of NK cells. We demonstrated that Astragaloside III significantly elevated the expression of natural killer group 2D (NKG2D), Fas, and interferon-γ (IFN-γ) production in NK cells, leading to increased tumor-killing ability. Experiments in cell co-culture assays and CT26-bearing mice model further confirmed that Astragaloside III could effectively impede tumor growth by increasing infiltration of NK cells into tumor and upregulating the antitumor response of NK cells. We further revealed that Astragaloside III increased IFN-γ secretion of NK cells by enhancing the expression of transcription factor T-bet. In conclusion, the effective anti-tumor function of Astragaloside III was achieved through up-regulation of the immune response of NK cells and elevation of NKG2D, Fas, and IFN-γ production.
Collapse
Affiliation(s)
- Xingmeng Chen
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junxiao Gao
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Han Yang
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Yue Duan
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Yuxin Feng
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoqun Gong
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Hanjie Wang
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoli Wu
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| | - Jin Chang
- Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
55
|
Bruger AM, Vanhaver C, Bruderek K, Amodio G, Tavukçuoğlu E, Esendagli G, Gregori S, Brandau S, van der Bruggen P. Protocol to assess the suppression of T-cell proliferation by human MDSC. Methods Enzymol 2019; 632:155-192. [PMID: 32000895 DOI: 10.1016/bs.mie.2019.05.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibition of T-cell proliferation is the most common approach to assess human myeloid-derived suppressor cell (MDSC) functions. However, diverse methodologies hinder the comparison of results obtained in different laboratories. In this chapter, we present a T-cell proliferation assay procedure based on allogeneic MDSC and T-cells that is potentially suitable to multi-center studies. The T-cells are isolated from non-cancerous donors and frozen for later use in different research groups. We observed that pure thawed T-cells showed poor proliferative capacities. To retain proliferation, T-cell-autologous mature dendritic cells are supplemented after thawing. MDSC are isolated from clinical samples and represent the sole variant between assays. Flow cytometry is used to assess T-cell proliferation by the dilution of a tracking dye.
Collapse
Affiliation(s)
- Annika M Bruger
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Kirsten Bruderek
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, West German Cancer Center, Essen, Germany
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Günes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, West German Cancer Center, Essen, Germany
| | - Pierre van der Bruggen
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium; WELBIO, Brussels, Belgium.
| |
Collapse
|
56
|
Guo M, Han S, Liu Y, Guo W, Zhao Y, Liu F, Shi X, Ding G, Wang Q. Inhibition of allogeneic islet graft rejection by VISTA-conjugated liposome. Biochem Biophys Res Commun 2019; 516:914-920. [PMID: 31272717 DOI: 10.1016/j.bbrc.2019.05.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 01/04/2023]
Abstract
The Ig superfamily member V-domain Ig-containing suppressor of T-cell activation (VISTA) is a negative regulator with broad-spectrum activities and has reported that blockade of VISTA or combination with other negative checkpoint receptors sufficiently break tumor tolerance. However, it remains unclear whether VISTA could induce allogeneic T-cell hyporesponsiveness and inhibit allograft rejection. Here we found VISTA treatment significantly inhibited lymphocyte proliferation and activation in allogeneic MLR assay through impairing SYK-VAV pathway. Interestingly, though neither VISTA protein nor VISTA-Fc fusion protein administration exerted satisfactory immunosuppressive effect on allograft survival due to their short half-life in circulation, this problem was solved by conjugating VISTA protein on liposome by biotin-streptavidin system, which markedly prolonged its circulating half-life to 60 h. With islet transplant model, administration of VISTA-conjugated liposome could markedly prolong allograft survival by inhibition of SYK-VAV pathway, thus maintained the normal blood glucose level of recipients during treatment period. The results indicate VISTA is a promising therapeutic target to treat allograft rejection of islet transplantation.
Collapse
Affiliation(s)
- Meng Guo
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai, China; Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shu Han
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yanfang Liu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenyuan Guo
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuanyu Zhao
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fang Liu
- Experimental Teaching Center of Basic Medicine, Second Military Medical University, Shanghai, China
| | - Xiaomin Shi
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guoshan Ding
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Quanxing Wang
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
57
|
Dunsterville C, Stephens AC, Lack G, Turcanu V. The Use of Dual-Cell-Tracker Dye Staining for the Identification and Characterization of Peanut-Specific T-Cell Subsets. Methods Mol Biol 2019; 2020:143-152. [PMID: 31177497 DOI: 10.1007/978-1-4939-9591-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell-tracker fluorescent dye labeling is widely used for investigating antigen-specific immune responses in vitro and in vivo. Here we describe a development of this technique-the use of dual-cell-tracker dye staining for the identification and characterization of the responses of different T-cell subsets to peanut proteins in vitro.
Collapse
Affiliation(s)
- Cecilia Dunsterville
- King's College London, School of Immunology and Microbial Sciences and School of Life Course Sciences, Guy's Hospital, London, UK
| | - Alick C Stephens
- King's College London, School of Immunology and Microbial Sciences and School of Life Course Sciences, Guy's Hospital, London, UK
| | - Gideon Lack
- King's College London, School of Immunology and Microbial Sciences and School of Life Course Sciences, Guy's Hospital, London, UK
| | - Victor Turcanu
- King's College London, School of Immunology and Microbial Sciences and School of Life Course Sciences, Guy's Hospital, London, UK.
| |
Collapse
|
58
|
Meli G, Weber TS, Duffy KR. Sample path properties of the average generation of a Bellman-Harris process. J Math Biol 2019; 79:673-704. [PMID: 31069504 DOI: 10.1007/s00285-019-01373-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Motivated by a recently proposed design for a DNA coded randomised algorithm that enables inference of the average generation of a collection of cells descendent from a common progenitor, here we establish strong convergence properties for the average generation of a super-critical Bellman-Harris process. We further extend those results to a two-type Bellman-Harris process where one type can give rise to the other, but not vice versa. These results further affirm the estimation method's potential utility by establishing its long run accuracy on individual sample-paths, and significantly expanding its remit to encompass cellular development that gives rise to differentiated offspring with distinct population dynamics.
Collapse
Affiliation(s)
- Gianfelice Meli
- Hamilton Institute, Maynooth University, Co. Kildare, Ireland
| | - Tom S Weber
- The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, Australia
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Co. Kildare, Ireland.
| |
Collapse
|
59
|
Good Z, Borges L, Vivanco Gonzalez N, Sahaf B, Samusik N, Tibshirani R, Nolan GP, Bendall SC. Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells. Nat Biotechnol 2019; 37:259-266. [PMID: 30742126 PMCID: PMC6521980 DOI: 10.1038/s41587-019-0033-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/21/2018] [Indexed: 01/12/2023]
Abstract
Selective differentiation of naive T cells into multipotent T cells is of great interest clinically for the generation of cell-based cancer immunotherapies. Cellular differentiation depends crucially on division state and time. Here we adapt a dye dilution assay for tracking cell proliferative history through mass cytometry and uncouple division, time and regulatory protein expression in single naive human T cells during their activation and expansion in a complex ex vivo milieu. Using 23 markers, we defined groups of proteins controlled predominantly by division state or time and found that undivided cells account for the majority of phenotypic diversity. We next built a map of cell state changes during naive T-cell expansion. By examining cell signaling on this map, we rationally selected ibrutinib, a BTK and ITK inhibitor, and administered it before T cell activation to direct differentiation toward a T stem cell memory (TSCM)-like phenotype. This method for tracing cell fate across division states and time can be broadly applied for directing cellular differentiation.
Collapse
Affiliation(s)
- Zinaida Good
- PhD Program in Immunology, Stanford University, Stanford, CA, USA
- Baxter Laboratory in Stem Cell Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Luciene Borges
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Nora Vivanco Gonzalez
- PhD Program in Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Bita Sahaf
- Cancer Institute, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nikolay Samusik
- Baxter Laboratory in Stem Cell Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Robert Tibshirani
- Department of Statistics, Stanford University, Stanford, CA, USA
- Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Baxter Laboratory in Stem Cell Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
60
|
Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat Commun 2018; 9:5099. [PMID: 30504842 PMCID: PMC6269473 DOI: 10.1038/s41467-018-07505-2] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 10/28/2018] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are a vital component of immune protection, yet in cancer they may promote tumour progression, partly by generating reactive oxygen species (ROS) that disrupts lymphocyte functions. Metabolically, neutrophils are often discounted as purely glycolytic. Here we show that immature, c-Kit+ neutrophils subsets can engage in oxidative mitochondrial metabolism. With limited glucose supply, oxidative neutrophils use mitochondrial fatty acid oxidation to support NADPH oxidase-dependent ROS production. In 4T1 tumour-bearing mice, mitochondrial fitness is enhanced in splenic neutrophils and is driven by c-Kit signalling. Concordantly, tumour-elicited oxidative neutrophils are able to maintain ROS production and T cell suppression when glucose utilisation is restricted. Consistent with these findings, peripheral blood neutrophils from patients with cancer also display increased immaturity, mitochondrial content and oxidative phosphorylation. Together, our data suggest that the glucose-restricted tumour microenvironment induces metabolically adapted, oxidative neutrophils to maintain local immune suppression. Neutrophils normally fulfil their metabolic demands by glycolysis and have limited mitochondrial activity. Here the authors show that tumours promote neutrophils adapted to oxidative mitochondria metabolism that function in the glucose-restrained tumour microenvironment to promote tumour growth by maintaining local immune suppression.
Collapse
|
61
|
Groell F, Jordan O, Borchard G. In vitro models for immunogenicity prediction of therapeutic proteins. Eur J Pharm Biopharm 2018; 130:128-142. [DOI: 10.1016/j.ejpb.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
|
62
|
Gretzinger S, Beckert N, Gleadall A, Lee-Thedieck C, Hubbuch J. 3D bioprinting – Flow cytometry as analytical strategy for 3D cell structures. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bprint.2018.e00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
63
|
Toribio-Fernandez R, Zorita V, Herrero-Fernandez B, Gonzalez-Granado JM. An In Vivo Mouse Model to Measure Naïve CD4 T Cell Activation, Proliferation and Th1 Differentiation Induced by Bone Marrow-derived Dendritic Cells. J Vis Exp 2018. [PMID: 30199029 DOI: 10.3791/58118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Quantification of naïve CD4 T cell activation, proliferation, and differentiation to T helper 1 (Th1) cells is a useful way to assess the role played by T cells in an immune response. This protocol describes the in vitro differentiation of bone marrow (BM) progenitors to obtain granulocyte macrophage colony-stimulating factor (GM-CSF) derived-dendritic cells (DCs). The protocol also describes the adoptive transfer of ovalbumin peptide (OVAp)-loaded GM-CSF-derived DCs and naïve CD4 T cells from OTII transgenic mice in order to analyze the in vivo activation, proliferation, and Th1 differentiation of the transferred CD4 T cells. This protocol circumvents the limitation of purely in vivo methods imposed by the inability to specifically manipulate or select the studied cell population. Moreover, this protocol allows studies in an in vivo environment, thus avoiding alterations to functional factors that may occur in vitro and including the influence of cell types and other factors only found in intact organs. The protocol is a useful tool for generating changes in DCs and T cells that modify adaptive immune responses, potentially providing important results to understand the origin or development of numerous immune associated diseases.
Collapse
Affiliation(s)
| | - Virginia Zorita
- LamImSys Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)
| | | | - Jose M Gonzalez-Granado
- LamImSys Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC); LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12); CIBER de Enfermedades Cardiovasculares;
| |
Collapse
|
64
|
Osthole inhibits pancreatic cancer progression by directly exerting negative effects on cancer cells and attenuating tumor-infiltrating M2 macrophages. J Pharmacol Sci 2018; 137:290-298. [PMID: 30098910 DOI: 10.1016/j.jphs.2018.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/10/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer has remained a major cause of cancer-related deaths. A hallmark of pancreatic cancer is extensive stromal reactions, resulting in a unique tumor microenvironment, especially the involvement of macrophages. These tumor-educated cells limit the efficacy of chemotherapy. Therefore, it is necessary to identify an effective treatment strategy. In this study, we aimed to explore the anti-tumor and immunomodulatory effects of osthole on pancreatic cancer. We found that osthole suppressed Panc 02 cell migration and proliferation and induced apoptosis as shown in vitro. Osthole also attenuated the development of pancreatic cancer in mice by inhibiting tumor-infiltrating M2 macrophages in our study. Additionally, osthole inhibited the polarization of primary bone marrow cells into M2 macrophages and inhibited the expression of MRC1, CCL22 and TGF-β in the M2 polarization process in vitro. Detection of the related signaling pathways revealed that osthole exerted immunomodulatory effects on M2 macrophages by down-regulating p-STAT6 and the p-ERK1/2-C/EBP β axis. These results indicated that osthole has effective anti-tumor and immunomodulatory effects on pancreatic cancer.
Collapse
|
65
|
Gentile SD, Griebel ME, Anderson EW, Underhill GH. Click Chemistry-Based DNA Labeling of Cells for Barcoding Applications. Bioconjug Chem 2018; 29:2846-2854. [DOI: 10.1021/acs.bioconjchem.8b00435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stefan D. Gentile
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Megan E. Griebel
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Erik W. Anderson
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
66
|
Biomimetic post-capillary venule expansions for leukocyte adhesion studies. Sci Rep 2018; 8:9328. [PMID: 29921896 PMCID: PMC6008471 DOI: 10.1038/s41598-018-27566-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/05/2018] [Indexed: 02/02/2023] Open
Abstract
Leukocyte adhesion and extravasation are maximal near the transition from capillary to post-capillary venule, and are strongly influenced by a confluence of scale-dependent physical effects. Mimicking the scale of physiological vessels using in vitro microfluidic systems allows the capture of these effects on leukocyte adhesion assays, but imposes practical limits on reproducibility and reliable quantification. Here we present a microfluidic platform that provides multiple (54-512) technical replicates within a 15-minute sample collection time, coupled with an automated computer vision analysis pipeline that captures leukocyte adhesion probabilities as a function of shear and extensional stresses. We report that in post-capillary channels of physiological scale, efficient leukocyte adhesion requires erythrocytes forcing leukocytes against the wall, a phenomenon that is promoted by the transitional flow in post-capillary venule expansions and dependent on the adhesion molecule ICAM-1.
Collapse
|
67
|
Horton MB, Prevedello G, Marchingo JM, Zhou JHS, Duffy KR, Heinzel S, Hodgkin PD. Multiplexed Division Tracking Dyes for Proliferation-Based Clonal Lineage Tracing. THE JOURNAL OF IMMUNOLOGY 2018; 201:1097-1103. [PMID: 29914887 DOI: 10.4049/jimmunol.1800481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 11/19/2022]
Abstract
The generation of cellular heterogeneity is an essential feature of immune responses. Understanding the heritability and asymmetry of phenotypic changes throughout this process requires determination of clonal-level contributions to fate selection. Evaluating intraclonal and interclonal heterogeneity and the influence of distinct fate determinants in large numbers of cell lineages, however, is usually laborious, requiring familial tracing and fate mapping. In this study, we introduce a novel, accessible, high-throughput method for measuring familial fate changes with accompanying statistical tools for testing hypotheses. The method combines multiplexing of division tracking dyes with detection of phenotypic markers to reveal clonal lineage properties. We illustrate the method by studying in vitro-activated mouse CD8+ T cell cultures, reporting division and phenotypic changes at the level of families. This approach has broad utility as it is flexible and adaptable to many cell types and to modifications of in vitro, and potentially in vivo, fate monitoring systems.
Collapse
Affiliation(s)
- Miles B Horton
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Giulio Prevedello
- Hamilton Institute, Maynooth University, Maynooth, County Kildare, Ireland
| | - Julia M Marchingo
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Jie H S Zhou
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, County Kildare, Ireland
| | - Susanne Heinzel
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Philip D Hodgkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; .,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| |
Collapse
|
68
|
Grinenko T, Eugster A, Thielecke L, Ramasz B, Krüger A, Dietz S, Glauche I, Gerbaulet A, von Bonin M, Basak O, Clevers H, Chavakis T, Wielockx B. Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice. Nat Commun 2018; 9:1898. [PMID: 29765026 PMCID: PMC5954009 DOI: 10.1038/s41467-018-04188-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps and repeated cell divisions that involve the generation of lineage-committed progenitors. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67RFP knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid, megakaryocyte-erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with the expression of lineage-specific genes and loss of multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells. Dependence of hematopoietic stem cell (HSC) fate on the phase of the cell cycle has not been demonstrated in vivo. Here, the authors find that HSCs can differentiate into a downstream progenitor without physical division, even before progressing into the S phase of the cell cycle.
Collapse
Affiliation(s)
- Tatyana Grinenko
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Anne Eugster
- DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Lars Thielecke
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Beáta Ramasz
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Anja Krüger
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Sevina Dietz
- DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands.,Princess Máxima Centre, Lundlaan 6, 3584, EA Utrecht, Netherlands
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany. .,DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
69
|
Oliver-Vila I, Ramírez-Moncayo C, Grau-Vorster M, Marín-Gallén S, Caminal M, Vives J. Optimisation of a potency assay for the assessment of immunomodulative potential of clinical grade multipotent mesenchymal stromal cells. Cytotechnology 2018; 70:31-44. [PMID: 29322348 DOI: 10.1007/s10616-017-0186-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022] Open
Abstract
Clinical use of multipotent Mesenchymal Stromal Cell (MSC)-based medicinal products requires their production in compliance with Good Manufacturing Practices, thus ensuring that the final drug product meets specifications consistently from batch to batch in terms of cell viability, identity, purity and potency. Potency relates to the efficacy of the medicine in its target clinical indication, so adequate release tests need to be defined and validated as quality controls. Herein we report the design and optimisation of parameters affecting the performance of an in vitro cell-based assay for assessing immunomodulatory potential of clinical grade MSC for human use, based on their capacity to inhibit proliferation of T lymphocytes under strong polyclonal stimuli. The resulting method was demonstrated to be reproducible and relatively simple to execute. Two case studies using clinical grade MSC are presented as examples to illustrate the applicability of the methodology described in this work.
Collapse
Affiliation(s)
- Irene Oliver-Vila
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat 116, 08005, Barcelona, Spain.
| | - Carmen Ramírez-Moncayo
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat 116, 08005, Barcelona, Spain
| | - Marta Grau-Vorster
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat 116, 08005, Barcelona, Spain
| | - Sílvia Marín-Gallén
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat 116, 08005, Barcelona, Spain
| | - Marta Caminal
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat 116, 08005, Barcelona, Spain
| | - Joaquim Vives
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat 116, 08005, Barcelona, Spain. .,Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain. .,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain.
| |
Collapse
|
70
|
Matatall KA, Kadmon CS, King KY. Detecting Hematopoietic Stem Cell Proliferation Using BrdU Incorporation. Methods Mol Biol 2018; 1686:91-103. [PMID: 29030815 PMCID: PMC6020038 DOI: 10.1007/978-1-4939-7371-2_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cellular quiescence is a key component of hematopoietic stem cell (HSC) homeostasis; therefore, a reliable method to measure HSC cell division is critical in many studies. However, measuring the proliferation rate of largely quiescent and rare populations of cells can be challenging. Bromo-deoxyuridine (BrdU) incorporation into replicating DNA is a commonly used and highly reproducible method to detect cell division history. Here, we describe a protocol for BrdU incorporation analysis in hematopoietic stem and progenitor cells that can provide a sensitive measure of cell division even in rare cell populations. In combination with flow cytometry, this method can be generalized to analyze other cell populations and other tissues as identified by cell surface markers.
Collapse
Affiliation(s)
- Katie A Matatall
- Pediatric Infectious Diseases, Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Claudine S Kadmon
- Pediatric Infectious Diseases, Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Y King
- Pediatric Infectious Diseases, Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, 1102 Bates Street, Suite 1150, Houston, TX, 77030, USA.
| |
Collapse
|
71
|
Tario JD, Conway AN, Muirhead KA, Wallace PK. Monitoring Cell Proliferation by Dye Dilution: Considerations for Probe Selection. Methods Mol Biol 2018; 1678:249-299. [PMID: 29071683 DOI: 10.1007/978-1-4939-7346-0_12] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In the third edition of this series, we described protocols for labeling cell populations with tracking dyes, and addressed issues to be considered when combining two different tracking dyes with other phenotypic and viability probes for the assessment of cytotoxic effector activity and regulatory T cell functions. We summarized key characteristics of and differences between general protein and membrane labeling dyes, discussed determination of optimal staining concentrations, and provided detailed labeling protocols for both dye types. Examples of the advantages of two-color cell tracking were provided in the form of protocols for: (a) independent enumeration of viable effector and target cells in a direct cytotoxicity assay; and (b) an in vitro suppression assay for simultaneous proliferation monitoring of effector and regulatory T cells.The number of commercially available fluorescent cell tracking dyes has expanded significantly since the last edition, with new suppliers and/or new spectral properties being added at least annually. In this fourth edition, we describe evaluations to be performed by the supplier and/or user when characterizing a new cell tracking dye and by the user when selecting one for use in multicolor proliferation monitoring. These include methods for: (a) Assessment of the dye's spectral profile on the laboratory's flow cytometer(s) to optimize compatibility with other employed fluorochromes and minimize compensation problems; (b) Evaluating the effect of labeling on cell growth rate;
Collapse
Affiliation(s)
- Joseph D Tario
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | | | | | - Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
72
|
Place DE, Williamson DR, Yuzefpolskiy Y, Katkere B, Sarkar S, Kalia V, Kirimanjeswara GS. Development of a novel Francisella tularensis Live Vaccine Strain expressing ovalbumin provides insight into antigen-specific CD8+ T cell responses. PLoS One 2017; 12:e0190384. [PMID: 29284034 PMCID: PMC5746256 DOI: 10.1371/journal.pone.0190384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023] Open
Abstract
Progress towards a safe and effective vaccine for the prevention of tularemia has been hindered by a lack of knowledge regarding the correlates of protective adaptive immunity and a lack of tools to generate this knowledge. CD8+ T cells are essential for protective immunity against virulent strains of Francisella tularensis, but to-date, it has not been possible to study these cells in an antigen-specific manner. Here, we report the development of a tool for expression of the model antigen ovalbumin (OVA) in F. tularensis, which allows for the study of CD8+ T cell responses to the bacterium. We demonstrate that in response to intranasal infection with the F. tularensis Live Vaccine Strain, adoptively transferred OVA-specific CD8+ T cells expand after the first week and produce IFN-γ but not IL-17. Effector and central memory subsets develop with disparate kinetics in the lungs, draining lymph node and spleen. Notably, OVA-specific cells are poorly retained in the lungs after clearance of infection. We also show that intranasal vaccination leads to more antigen-specific CD8+ T cells in the lung-draining lymph node compared to scarification vaccination, but that an intranasal booster overcomes this difference. Together, our data show that this novel tool can be used to study multiple aspects of the CD8+ T cell response to F. tularensis. Use of this tool will enhance our understanding of immunity to this deadly pathogen.
Collapse
Affiliation(s)
- David E. Place
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David R. Williamson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yevgeniy Yuzefpolskiy
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bhuvana Katkere
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Surojit Sarkar
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Vandana Kalia
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Girish S. Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
73
|
Ten Brinke A, Marek-Trzonkowska N, Mansilla MJ, Turksma AW, Piekarska K, Iwaszkiewicz-Grześ D, Passerini L, Locafaro G, Puñet-Ortiz J, van Ham SM, Hernandez-Fuentes MP, Martínez-Cáceres EM, Gregori S. Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses. Front Immunol 2017; 8:1870. [PMID: 29312346 PMCID: PMC5742609 DOI: 10.3389/fimmu.2017.01870] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/08/2017] [Indexed: 01/05/2023] Open
Abstract
Adoptive therapy with regulatory T cells or tolerance-inducing antigen (Ag)-presenting cells is innovative and promising therapeutic approach to control undesired and harmful activation of the immune system, as observed in autoimmune diseases, solid organ and bone marrow transplantation. One of the critical issues to elucidate the mechanisms responsible for success or failure of these therapies and define the specificity of the therapy is the evaluation of the Ag-specific T-cell responses. Several efforts have been made to develop suitable and reproducible assays. Here, we focus on dye-based proliferation assays. We highlight with practical examples the fundamental issues to take into consideration for implementation of an effective and sensitive dye-based proliferation assay to monitor Ag-specific responses in patients. The most critical points were used to design a road map to set up and analyze the optimal assay to assess Ag-specific T-cell responses in patients undergoing different treatments. This is the first step to optimize monitoring of tolerance induction, allowing comparison of outcomes of different clinical studies. The road map can also be applied to other therapeutic interventions, not limited to tolerance induction therapies, in which Ag-specific T-cell responses are relevant such as vaccination approaches and cancer immunotherapy.
Collapse
Affiliation(s)
- Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Natalia Marek-Trzonkowska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Maria J. Mansilla
- Immunology Division, Department of Cellular Biology, Germans Trias i Pujol University Hospital and Research Institute, Physiology, and Immunology, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Annelies W. Turksma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Karolina Piekarska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Grazia Locafaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Joan Puñet-Ortiz
- Immunology Division, Department of Cellular Biology, Germans Trias i Pujol University Hospital and Research Institute, Physiology, and Immunology, Universitat Autònoma Barcelona, Barcelona, Spain
| | - S. Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Eva M. Martínez-Cáceres
- Immunology Division, Department of Cellular Biology, Germans Trias i Pujol University Hospital and Research Institute, Physiology, and Immunology, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
74
|
Tempany JC, Zhou JH, Hodgkin PD, Bryant VL. Superior properties of CellTrace Yellow™ as a division tracking dye for human and murine lymphocytes. Immunol Cell Biol 2017; 96:149-159. [PMID: 29363164 PMCID: PMC6446909 DOI: 10.1111/imcb.1020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/08/2023]
Abstract
The discovery of cell division tracking properties of 5‐(and‐6)‐carboxyfluorescein diacetate succinimidyl ester (CFSE) by Lyons and Parish in 1994 led to a broad range of new methods and numerous important biological discoveries. After labeling, CFSE is attached to free amine groups and intracellular proteins in the cytoplasm and nucleus of a cell, and halves in fluorescence intensity with each round of cell division, enabling enumeration of the number of divisions a cell has undergone. A range of popular division tracking dyes were subsequently developed, including CellTrace Violet (CTV), making available the green fluorescent channel previously occupied by CFSE. More recently, CellTrace Yellow (CTY) and CellTrace Far Red (CTFR), each with unique fluorescence properties, were introduced. In a comparison, we found that the fluorescence values of both dyes were well separated from autofluorescence, and enabled a greater number of divisions to be identified than CTV, before this limit was reached. These new dyes provided clear and well‐separated peaks for both murine and human B lymphocytes, and should find wide application. The range of excitation/emission spectra available for division tracking dyes now also facilitates multiplexing, that is, the labeling of cells with different combinations of dyes to give a unique fluorescence signature, allowing single cell in vitro and in vivo tracking. The combinatorial possibilities are significantly increased with these additional dyes.
Collapse
Affiliation(s)
- Jessica C Tempany
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jie Hs Zhou
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip D Hodgkin
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Vanessa L Bryant
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
75
|
Adams WC, Chen YH, Kratchmarov R, Yen B, Nish SA, Lin WHW, Rothman NJ, Luchsinger LL, Klein U, Busslinger M, Rathmell JC, Snoeck HW, Reiner SL. Anabolism-Associated Mitochondrial Stasis Driving Lymphocyte Differentiation over Self-Renewal. Cell Rep 2017; 17:3142-3152. [PMID: 28009285 DOI: 10.1016/j.celrep.2016.11.065] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/24/2016] [Accepted: 11/21/2016] [Indexed: 01/15/2023] Open
Abstract
Regeneration requires related cells to diverge in fate. We show that activated lymphocytes yield sibling cells with unequal elimination of aged mitochondria. Disparate mitochondrial clearance impacts cell fate and reflects larger constellations of opposing metabolic states. Differentiation driven by an anabolic constellation of PI3K/mTOR activation, aerobic glycolysis, inhibited autophagy, mitochondrial stasis, and ROS production is balanced with self-renewal maintained by a catabolic constellation of AMPK activation, mitochondrial elimination, oxidative metabolism, and maintenance of FoxO1 activity. Perturbations up and down the metabolic pathways shift the balance of nutritive constellations and cell fate owing to self-reinforcement and reciprocal inhibition between anabolism and catabolism. Cell fate and metabolic state are linked by transcriptional regulators, such as IRF4 and FoxO1, with dual roles in lineage and metabolic choice. Instructing some cells to utilize nutrients for anabolism and differentiation while other cells catabolically self-digest and self-renew may enable growth and repair in metazoa.
Collapse
Affiliation(s)
- William C Adams
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Yen-Hua Chen
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Radomir Kratchmarov
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Bonnie Yen
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Simone A Nish
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Wen-Hsuan W Lin
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Nyanza J Rothman
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Larry L Luchsinger
- Department of Medicine and Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ulf Klein
- Department of Pathology and Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Jeffrey C Rathmell
- Vanderbilt Centre for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hans-Willem Snoeck
- Department of Medicine and Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Steven L Reiner
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
76
|
McCrea Z, Arnanthigo Y, Cryan SA, O’Dea S. A Novel Methodology for Bio-electrospraying Mesenchymal Stem Cells that Maintains Differentiation, Immunomodulatory and Pro-reparative Functions. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0331-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
77
|
Exit from quiescence displays a memory of cell growth and division. Nat Commun 2017; 8:321. [PMID: 28831039 PMCID: PMC5567331 DOI: 10.1038/s41467-017-00367-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/24/2017] [Indexed: 02/07/2023] Open
Abstract
Reactivating quiescent cells to proliferate is critical to tissue repair and homoeostasis. Quiescence exit is highly noisy even for genetically identical cells under the same environmental conditions. Deregulation of quiescence exit is associated with many diseases, but cellular mechanisms underlying the noisy process of exiting quiescence are poorly understood. Here we show that the heterogeneity of quiescence exit reflects a memory of preceding cell growth at quiescence induction and immediate division history before quiescence entry, and that such a memory is reflected in cell size at a coarse scale. The deterministic memory effects of preceding cell cycle, coupled with the stochastic dynamics of an Rb-E2F bistable switch, jointly and quantitatively explain quiescence-exit heterogeneity. As such, quiescence can be defined as a distinct state outside of the cell cycle while displaying a sequential cell order reflecting preceding cell growth and division variations. The quiescence-exit process is noisy even in genetically identical cells under the same environmental conditions. Here the authors show that the heterogeneity of quiescence exit reflects a memory of preceding cell growth at quiescence induction and immediate division history prior to quiescence entry.
Collapse
|
78
|
Huang BT, Lai WY, Chang YC, Wang JW, Yeh SD, Lin EPY, Yang PC. A CTLA-4 Antagonizing DNA Aptamer with Antitumor Effect. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:520-528. [PMID: 28918052 PMCID: PMC5573796 DOI: 10.1016/j.omtn.2017.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 01/07/2023]
Abstract
The successful translation of cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade has revolutionized the concept of cancer immunotherapy. Although monoclonal antibody therapeutics remain the mainstream in clinical practice, aptamers are synthetic oligonucleotides that encompass antibody-mimicking functions. Here, we report a novel high-affinity CTLA-4-antagonizing DNA aptamer (dissociation constant, 11.84 nM), aptCTLA-4, which was identified by cell-based SELEX and high-throughput sequencing. aptCTLA-4 is relatively stable in serum, promotes lymphocyte proliferation, and inhibits tumor growth in cell and animal models. Our study demonstrates the developmental pipeline of a functional CTLA-4-targeting aptamer and suggests a translational potential for aptCTLA-4.
Collapse
Affiliation(s)
- Bo-Tsang Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Yun Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Chung Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jen-Wei Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shauh-Der Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Emily Pei-Ying Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; National Center of Excellence for Clinical Trials and Research Center, Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
79
|
Thelin MA, Kissler S, Vigneault F, Watters AL, White D, Koshy ST, Vermillion SA, Mooney DJ, Serwold T, Ali OA. In Vivo Enrichment of Diabetogenic T Cells. Diabetes 2017; 66:2220-2229. [PMID: 28396510 PMCID: PMC5521861 DOI: 10.2337/db16-0946] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/07/2017] [Indexed: 01/13/2023]
Abstract
Dysfunctional T cells can mediate autoimmunity, but the inaccessibility of autoimmune tissues and the rarity of autoimmune T cells in the blood hinder their study. We describe a method to enrich and harvest autoimmune T cells in vivo by using a biomaterial scaffold loaded with protein antigens. In model antigen systems, we found that antigen-specific T cells become enriched within scaffolds containing their cognate antigens. When scaffolds containing lysates from an insulin-producing β-cell line were implanted subcutaneously in autoimmune diabetes-prone NOD mice, β-cell-reactive T cells homed to these scaffolds and became enriched. These T cells induced diabetes after adoptive transfer, indicating their pathogenicity. Furthermore, T-cell receptor (TCR) sequencing identified many expanded TCRs within the β-cell scaffolds that were also expanded within the pancreata of NOD mice. These data demonstrate the utility of biomaterial scaffolds loaded with disease-specific antigens to identify and study rare, therapeutically important T cells.
Collapse
Affiliation(s)
| | | | - Frederic Vigneault
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Alexander L Watters
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - Des White
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Sandeep T Koshy
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Sarah A Vermillion
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Thomas Serwold
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Omar A Ali
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| |
Collapse
|
80
|
Jiang H, Rivera-Molina Y, Gomez-Manzano C, Clise-Dwyer K, Bover L, Vence LM, Yuan Y, Lang FF, Toniatti C, Hossain MB, Fueyo J. Oncolytic Adenovirus and Tumor-Targeting Immune Modulatory Therapy Improve Autologous Cancer Vaccination. Cancer Res 2017; 77:3894-3907. [PMID: 28566332 PMCID: PMC5549681 DOI: 10.1158/0008-5472.can-17-0468] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 01/10/2023]
Abstract
Oncolytic viruses selectively lyse tumor cells, disrupt immunosuppression within the tumor, and reactivate antitumor immunity, but they have yet to live up to their therapeutic potential. Immune checkpoint modulation has been efficacious in a variety of cancer with an immunogenic microenvironment, but is associated with toxicity due to nonspecific T-cell activation. Therefore, combining these two strategies would likely result in both effective and specific cancer therapy. To test the hypothesis, we first constructed oncolytic adenovirus Delta-24-RGDOX expressing the immune costimulator OX40 ligand (OX40L). Like its predecessor Delta-24-RGD, Delta-24-RGDOX induced immunogenic cell death and recruit lymphocytes to the tumor site. Compared with Delta-24-RGD, Delta-24-RGDOX exhibited superior tumor-specific activation of lymphocytes and proliferation of CD8+ T cells specific to tumor-associated antigens, resulting in cancer-specific immunity. Delta-24-RGDOX mediated more potent antiglioma activity in immunocompetent C57BL/6 but not immunodeficient athymic mice, leading to specific immune memory against the tumor. To further overcome the immune suppression mediated by programmed death-ligand 1 (PD-L1) expression on cancer cells accompanied with virotherapy, intratumoral injection of Delta-24-RGDOX and an anti-PD-L1 antibody showed synergistic inhibition of gliomas and significantly increased survival in mice. Our data demonstrate that combining an oncolytic virus with tumor-targeting immune checkpoint modulators elicits potent in situ autologous cancer vaccination, resulting in an efficacious, tumor-specific, and long-lasting therapeutic effect. Cancer Res; 77(14); 3894-907. ©2017 AACR.
Collapse
Affiliation(s)
- Hong Jiang
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Yisel Rivera-Molina
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Bover
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis M Vence
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick F Lang
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlo Toniatti
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mohammad B Hossain
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juan Fueyo
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
81
|
Reeves DB, Duke ER, Hughes SM, Prlic M, Hladik F, Schiffer JT. Anti-proliferative therapy for HIV cure: a compound interest approach. Sci Rep 2017. [PMID: 28638104 PMCID: PMC5479830 DOI: 10.1038/s41598-017-04160-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the era of antiretroviral therapy (ART), HIV-1 infection is no longer tantamount to early death. Yet the benefits of treatment are available only to those who can access, afford, and tolerate taking daily pills. True cure is challenged by HIV latency, the ability of chromosomally integrated virus to persist within memory CD4+ T cells in a non-replicative state and activate when ART is discontinued. Using a mathematical model of HIV dynamics, we demonstrate that treatment strategies offering modest but continual enhancement of reservoir clearance rates result in faster cure than abrupt, one-time reductions in reservoir size. We frame this concept in terms of compounding interest: small changes in interest rate drastically improve returns over time. On ART, latent cell proliferation rates are orders of magnitude larger than activation and new infection rates. Contingent on subtypes of cells that may make up the reservoir and their respective proliferation rates, our model predicts that coupling clinically available, anti-proliferative therapies with ART could result in functional cure within 2–10 years rather than several decades on ART alone.
Collapse
Affiliation(s)
- Daniel B Reeves
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, 98109, USA
| | - Elizabeth R Duke
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, 98109, USA.,University of Washington, Department of Medicine, Seattle, WA, 98195, USA
| | - Sean M Hughes
- University of Washington, Departments of Obstetrics and Gynecology, Seattle, WA, 98195, USA
| | - Martin Prlic
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, 98109, USA.,University of Washington, Department of Global Health, Seattle, WA, 98105, USA
| | - Florian Hladik
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, 98109, USA. .,University of Washington, Departments of Obstetrics and Gynecology, Seattle, WA, 98195, USA.
| | - Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, 98109, USA. .,University of Washington, Department of Medicine, Seattle, WA, 98195, USA. .,Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, 98109, USA.
| |
Collapse
|
82
|
Systems-guided forward genetic screen reveals a critical role of the replication stress response protein ETAA1 in T cell clonal expansion. Proc Natl Acad Sci U S A 2017; 114:E5216-E5225. [PMID: 28607084 DOI: 10.1073/pnas.1705795114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
T-cell immunity requires extremely rapid clonal proliferation of rare, antigen-specific T lymphocytes to form effector cells. Here we identify a critical role for ETAA1 in this process by surveying random germ line mutations in mice using exome sequencing and bioinformatic annotation to prioritize mutations in genes of unknown function with potential effects on the immune system, followed by breeding to homozygosity and testing for immune system phenotypes. Effector CD8+ and CD4+ T-cell formation following immunization, lymphocytic choriomeningitis virus (LCMV) infection, or herpes simplex virus 1 (HSV1) infection was profoundly decreased despite normal immune cell development in adult mice homozygous for two different Etaa1 mutations: an exon 2 skipping allele that deletes Gly78-Leu119, and a Cys166Stop truncating allele that eliminates most of the 877-aa protein. ETAA1 deficiency decreased clonal expansion cell autonomously within the responding T cells, causing no decrease in their division rate but increasing TP53-induced mRNAs and phosphorylation of H2AX, a marker of DNA replication stress induced by the ATM and ATR kinases. Homozygous ETAA1-deficient adult mice were otherwise normal, healthy, and fertile, although slightly smaller, and homozygotes were born at lower frequency than expected, consistent with partial lethality after embryonic day 12. Taken together with recently reported evidence in human cancer cell lines that ETAA1 activates ATR kinase through an exon 2-encoded domain, these findings reveal a surprisingly specific requirement for this ATR activator in adult mice restricted to rapidly dividing effector T cells. This specific requirement may provide new ways to suppress pathological T-cell responses in transplantation or autoimmunity.
Collapse
|
83
|
Chung S, Kim SH, Seo Y, Kim SK, Lee JY. Quantitative analysis of cell proliferation by a dye dilution assay: Application to cell lines and cocultures. Cytometry A 2017; 91:704-712. [PMID: 28375566 DOI: 10.1002/cyto.a.23105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 03/05/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Cell proliferation represents one of the most fundamental processes in biological systems, thus the quantitative analysis of cell proliferation is important in many biological applications such as drug screening, production of biologics, and assessment of cytotoxicity. Conventional proliferation assays mainly quantify cell number based on a calibration curve of a homogeneous cell population, and therefore are not applicable for the analysis of cocultured cells. Moreover, these assays measure cell proliferation indirectly, based on cellular metabolic activity or DNA content. To overcome these shortcomings, a dye dilution assay employing fluorescent cell tracking dyes that are retained within cells was applied and was diluted proportionally by subsequent cell divisions. Here, it was demonstrated that this assay could be implemented to quantitatively analyze the cell proliferation of different types of cell lines, and to concurrently analyze the proliferation of two types of cell lines in coculture by utilizing cell tracking dyes with different spectral characteristics. The mean division time estimated by the dye dilution assay is compared with the population doubling time obtained from conventional methods and values from literature. Additionally, dye transfer between cocultured cells was investigated and it was found that it is a characteristic of the cells rather than a characteristic of the dye. It was suggested that this method can be easily combined with other flow cytometric analyses of cellular properties, providing valuable information on cell status under diverse conditions. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Soobin Chung
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Youseong-gu, Daejeon, 34113, Republic of Korea
| | - Seol-Hee Kim
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Yuri Seo
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Sook-Kyung Kim
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Youseong-gu, Daejeon, 34113, Republic of Korea
| | - Ji Youn Lee
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
84
|
Marchingo JM, Prevedello G, Kan A, Heinzel S, Hodgkin PD, Duffy KR. T-cell stimuli independently sum to regulate an inherited clonal division fate. Nat Commun 2016; 7:13540. [PMID: 27869196 PMCID: PMC5121331 DOI: 10.1038/ncomms13540] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
In the presence of antigen and costimulation, T cells undergo a characteristic response of expansion, cessation and contraction. Previous studies have revealed that population-level reproducibility is a consequence of multiple clones exhibiting considerable disparity in burst size, highlighting the requirement for single-cell information in understanding T-cell fate regulation. Here we show that individual T-cell clones resulting from controlled stimulation in vitro are strongly lineage imprinted with highly correlated expansion fates. Progeny from clonal families cease dividing in the same or adjacent generations, with inter-clonal variation producing burst-size diversity. The effects of costimulatory signals on individual clones sum together with stochastic independence; therefore, the net effect across multiple clones produces consistent, but heterogeneous population responses. These data demonstrate that substantial clonal heterogeneity arises through differences in experience of clonal progenitors, either through stochastic antigen interaction or by differences in initial receptor sensitivities. Why do populations of highly similar T cells have heterogeneous division destinies in response to antigenic stimulus? Here the authors develop a multiplex-dye assay and a mathematical framework to test clonal heterogeneity and show distinction in division destiny is a result of inter-clonal variability as lineage imprinting ensures clones share similar proliferation fates.
Collapse
Affiliation(s)
- J M Marchingo
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - G Prevedello
- Hamilton Institute, Maynooth University, Maynooth, Co Kildare W23 WK26, Ireland
| | - A Kan
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S Heinzel
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - P D Hodgkin
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Co Kildare W23 WK26, Ireland
| |
Collapse
|
85
|
Abstract
B and T cells, with their extremely diverse antigen-receptor repertoires, have the ability to mount specific immune responses against almost any invading pathogen1,2. Understandably, such intricate abilities are controlled by a large number of molecules involved in various cellular processes to ensure timely and spatially regulated immune responses3. Here, we describe experimental procedures that allow rapid isolation of highly purified murine lymphocytes using magnetic cell sorting technology. The resulting purified lymphocytes can then be subjected to various in vitro or in vivo functional assays, such as the determination of lymphocyte signaling capacity upon stimulation by immunoblotting4 and the investigation of proliferative abilities by 3H-thymidine incorporation or carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling5-7. In addition to comparing the functional capacities of control and genetically modified lymphocytes, we can also determine the T cell stimulatory capacity of antigen-presenting cells (APCs) in vivo, as shown in our representative results using transplanted CFSE-labeled OT-I T cells.
Collapse
Affiliation(s)
- Jun Feng Lim
- School of Biological Sciences, College of Science, Nanyang Technological University
| | - Heidi Berger
- School of Biological Sciences, College of Science, Nanyang Technological University
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University;
| |
Collapse
|
86
|
A simple non-perturbing cell migration assay insensitive to proliferation effects. Sci Rep 2016; 6:31694. [PMID: 27535324 PMCID: PMC4989229 DOI: 10.1038/srep31694] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells.
Collapse
|
87
|
Kim HK, Waickman AT, Castro E, Flomerfelt FA, Hawk NV, Kapoor V, Telford WG, Gress RE. Distinct IL-7 signaling in recent thymic emigrants versus mature naïve T cells controls T-cell homeostasis. Eur J Immunol 2016; 46:1669-80. [PMID: 27129922 DOI: 10.1002/eji.201546214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/22/2016] [Accepted: 04/25/2016] [Indexed: 01/23/2023]
Abstract
IL-7 is essential for T-cell survival but its availability is limited in vivo. Consequently, all peripheral T cells, including recent thymic emigrants (RTEs) are constantly competing for IL-7 to survive. RTEs are required to replenish TCR diversity and rejuvenate the peripheral T-cell pool. However, it remains unknown how RTEs successfully compete with resident mature T cells for IL-7. Moreover, RTEs express low levels of IL-7 receptors, presumably rendering them even less competitive. Here, we show that, surprisingly, RTEs are more responsive to IL-7 than mature naïve T cells as demonstrated by markedly increased STAT5 phosphorylation upon IL-7 stimulation. Nonetheless, adoptive transfer of RTE cells into lymphopenic host mice resulted in slower IL-7-induced homeostatic proliferation and diminished expansion compared to naïve donor T cells. Mechanistically, we found that IL-7 signaling in RTEs preferentially upregulated expression of Bcl-2, which is anti-apoptotic but also anti-proliferative. In contrast, naïve T cells showed diminished Bcl-2 induction but greater proliferative response to IL-7. Collectively, these data indicate that IL-7 responsiveness in RTE is designed to maximize survival at the expense of reduced proliferation, consistent with RTE serving as a subpopulation of T cells rich in diversity but not in frequency.
Collapse
Affiliation(s)
- Hye Kyung Kim
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| | - Adam T Waickman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ehydel Castro
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| | | | - Nga V Hawk
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| | - William G Telford
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| |
Collapse
|
88
|
Price KM, Muirhead KA, Wallace PK. Proliferation by many other names: Monitoring cell cycle progression and cell division by flow cytometry. Cytometry A 2016; 89:233-5. [PMID: 26841355 DOI: 10.1002/cyto.a.22815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/16/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Kylie M Price
- Hugh Green Cytometry Core Facility, Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
89
|
Kan A, Pavlyshyn D, Markham JF, Dowling MR, Heinzel S, Zhou JHS, Marchingo JM, Hodgkin PD. Stochastic Measurement Models for Quantifying Lymphocyte Responses Using Flow Cytometry. PLoS One 2016; 11:e0146227. [PMID: 26742110 PMCID: PMC4704825 DOI: 10.1371/journal.pone.0146227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/09/2015] [Indexed: 01/22/2023] Open
Abstract
Adaptive immune responses are complex dynamic processes whereby B and T cells undergo division and differentiation triggered by pathogenic stimuli. Deregulation of the response can lead to severe consequences for the host organism ranging from immune deficiencies to autoimmunity. Tracking cell division and differentiation by flow cytometry using fluorescent probes is a major method for measuring progression of lymphocyte responses, both in vitro and in vivo. In turn, mathematical modeling of cell numbers derived from such measurements has led to significant biological discoveries, and plays an increasingly important role in lymphocyte research. Fitting an appropriate parameterized model to such data is the goal of these studies but significant challenges are presented by the variability in measurements. This variation results from the sum of experimental noise and intrinsic probabilistic differences in cells and is difficult to characterize analytically. Current model fitting methods adopt different simplifying assumptions to describe the distribution of such measurements and these assumptions have not been tested directly. To help inform the choice and application of appropriate methods of model fitting to such data we studied the errors associated with flow cytometry measurements from a wide variety of experiments. We found that the mean and variance of the noise were related by a power law with an exponent between 1.3 and 1.8 for different datasets. This violated the assumptions inherent to commonly used least squares, linear variance scaling and log-transformation based methods. As a result of these findings we propose a new measurement model that we justify both theoretically, from the maximum entropy standpoint, and empirically using collected data. Our evaluation suggests that the new model can be reliably used for model fitting across a variety of conditions. Our work provides a foundation for modeling measurements in flow cytometry experiments thus facilitating progress in quantitative studies of lymphocyte responses.
Collapse
Affiliation(s)
- Andrey Kan
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Damian Pavlyshyn
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - John F. Markham
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Mark R. Dowling
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Susanne Heinzel
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jie H. S. Zhou
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Julia M. Marchingo
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip D. Hodgkin
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- * E-mail:
| |
Collapse
|
90
|
Weber TS, Perié L, Duffy KR. Inferring average generation via division-linked labeling. J Math Biol 2016; 73:491-523. [PMID: 26733310 DOI: 10.1007/s00285-015-0963-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/01/2015] [Indexed: 12/30/2022]
Abstract
For proliferating cells subject to both division and death, how can one estimate the average generation number of the living population without continuous observation or a division-diluting dye? In this paper we provide a method for cell systems such that at each division there is an unlikely, heritable one-way label change that has no impact other than to serve as a distinguishing marker. If the probability of label change per cell generation can be determined and the proportion of labeled cells at a given time point can be measured, we establish that the average generation number of living cells can be estimated. Crucially, the estimator does not depend on knowledge of the statistics of cell cycle, death rates or total cell numbers. We explore the estimator's features through comparison with physiologically parameterized stochastic simulations and extrapolations from published data, using it to suggest new experimental designs.
Collapse
Affiliation(s)
- Tom S Weber
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Leïla Perié
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland.
| |
Collapse
|
91
|
Filby A, Day W, Purewal S, Martinez-Martin N. The Analysis of Cell Cycle, Proliferation, and Asymmetric Cell Division by Imaging Flow Cytometry. Methods Mol Biol 2016; 1389:71-95. [PMID: 27460238 DOI: 10.1007/978-1-4939-3302-0_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Measuring cellular DNA content by conventional flow cytometry (CFC) and fluorescent DNA-binding dyes is a highly robust method for analysing cell cycle distributions within heterogeneous populations. However, any conclusions drawn from single-parameter DNA analysis alone can often be confounded by the asynchronous nature of cell proliferation. We have shown that by combining fluorescent DNA stains with proliferation tracking dyes and antigenic staining for mitotic cells one can elucidate the division history and cell cycle position of any cell within an asynchronously dividing population. Furthermore if one applies this panel to an imaging flow cytometry (IFC) system then the spatial information allows resolution of the four main mitotic phases and the ability to study molecular distributions within these populations. We have employed such an approach to study the prevalence of asymmetric cell division (ACD) within activated immune cells by measuring the distribution of key fate determining molecules across the plane of cytokinesis in a high-throughput, objective, and internally controlled manner. Moreover the ability to perform high-resolution, temporal dissection of the cell division process lends itself perfectly to investigating the influence chemotherapeutic agents exert on the proliferative capacity of transformed cell lines. Here we describe the method in detail and its application to both ACD and general cell cycle analysis.
Collapse
Affiliation(s)
- Andrew Filby
- Flow Cytometry Core Facility, Newcastle Biomedicine, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| | - William Day
- FACS Laboratory, London Research Institute, Sir Francis Crick Institute, 44 Lincoln's Inn Fields, Holborn, UK
| | - Sukhveer Purewal
- FACS Laboratory, London Research Institute, Sir Francis Crick Institute, 44 Lincoln's Inn Fields, Holborn, UK
| | - Nuria Martinez-Martin
- Lymphocyte Interaction Laboratory, London Research Institute, Sir Francis Crick Institute, 44 Lincoln's Inn Fields, Holborn, London, WC2A 3LY, UK
| |
Collapse
|
92
|
Lozano-Ojalvo D, Molina E, López-Fandiño R. Hydrolysates of egg white proteins modulate T- and B-cell responses in mitogen-stimulated murine cells. Food Funct 2016; 7:1048-56. [DOI: 10.1039/c5fo00614g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Egg white proteins hydrolysed with different enzymes exert immunomodulating effects and can be used as Th1- or Th2-skewing mediators.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL
- CSIC-UAM)
- 28049 Madrid
- Spain
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL
- CSIC-UAM)
- 28049 Madrid
- Spain
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL
- CSIC-UAM)
- 28049 Madrid
- Spain
| |
Collapse
|
93
|
Romar GA, Kupper TS, Divito SJ. Research Techniques Made Simple: Techniques to Assess Cell Proliferation. J Invest Dermatol 2016; 136:e1-e7. [DOI: 10.1016/j.jid.2015.11.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
94
|
Baumjohann D, Ansel KM. Tracking early T follicular helper cell differentiation in vivo. Methods Mol Biol 2015; 1291:27-38. [PMID: 25836299 DOI: 10.1007/978-1-4939-2498-1_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
T follicular helper (Tfh) cells provide essential help to B cells for the generation of high-affinity antibodies. These mechanisms provide the basis for the success of modern vaccines, but dysregulated Tfh cell responses are also linked to autoimmune diseases. In addition to their established role in driving humoral immunity, Tfh cells are gaining attention for their role in other processes of the adaptive immune system. For example, Tfh cells may serve as transitional differentiation intermediates during effector and memory T-helper cell differentiation and as a reservoir of HIV-infected cells. While B cells are required for the full maturation and maintenance of Tfh cell responses, they are dispensable for the initial induction of the Tfh cell phenotype, which occurs at the priming stage through interaction with dendritic cells. Nevertheless, the precise mechanisms of these early events during Tfh cell differentiation remain relatively unknown. Here, we describe a method for tracking early Tfh cell differentiation by following cell division kinetics and phenotypic changes of recently activated antigen-specific CD4(+) T cells in vivo. As an example, we use this method to visualize the requirements for T cell-expressed CD28 for the differentiation of CXCR5(+)Bcl6(+) Tfh cells.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, 94143, USA,
| | | |
Collapse
|
95
|
Myhrvold C, Kotula JW, Hicks WM, Conway NJ, Silver PA. A distributed cell division counter reveals growth dynamics in the gut microbiota. Nat Commun 2015; 6:10039. [PMID: 26615910 PMCID: PMC4674677 DOI: 10.1038/ncomms10039] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023] Open
Abstract
Microbial population growth is typically measured when cells can be directly observed, or when death is rare. However, neither of these conditions hold for the mammalian gut microbiota, and, therefore, standard approaches cannot accurately measure the growth dynamics of this community. Here we introduce a new method (distributed cell division counting, DCDC) that uses the accurate segregation at cell division of genetically encoded fluorescent particles to measure microbial growth rates. Using DCDC, we can measure the growth rate of Escherichia coli for >10 consecutive generations. We demonstrate experimentally and theoretically that DCDC is robust to error across a wide range of temperatures and conditions, including in the mammalian gut. Furthermore, our experimental observations inform a mathematical model of the population dynamics of the gut microbiota. DCDC can enable the study of microbial growth during infection, gut dysbiosis, antibiotic therapy or other situations relevant to human health.
Collapse
Affiliation(s)
- Cameron Myhrvold
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Jonathan W. Kotula
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Wade M. Hicks
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Nicholas J. Conway
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
96
|
La Muraglia GM, O'Neil MJ, Madariaga ML, Michel SG, Mordecai KS, Allan JS, Madsen JC, Hanekamp IM, Preffer FI. A novel approach to measuring cell-mediated lympholysis using quantitative flow and imaging cytometry. J Immunol Methods 2015; 427:85-93. [PMID: 26516062 DOI: 10.1016/j.jim.2015.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/05/2015] [Accepted: 10/21/2015] [Indexed: 11/30/2022]
Abstract
In this study, we established a novel isotope-free approach for the detection of cell-mediated lympholysis (CML) in MHC defined peripheral blood mononuclear cells (PBMCs) using multiparameter flow and imaging cytometry. CML is an established in vitro assay to detect the presence of cytotoxic effector T-lymphocytes precursors (CTLp). Current methods employed in the identification of CTLp in the context of transplantation are based upon the quantification of chromium ((51)Cr) released from target cells. In order to adapt the assay to flow cytometry, primary porcine PBMC targets were labeled with eFluor670 and incubated with major histocompatibility complex (MHC) mismatched effector cytotoxic lymphocytes (CTLs). With this method, we were able to detect target-specific lysis that was comparable to that observed with the (51)Cr-based assay. In addition, the use of quantitative cell imaging demonstrates the presence of accessory cells involved in the cytotoxic pathway. This innovative technique improves upon the standard (51)Cr release assay by eliminating the need for radioisotopes and provides enhanced characterization of the interactions between effector and target cells. This technique has wide applicability to numerous experimental and clinical models involved with effector-cell interactions.
Collapse
Affiliation(s)
- G M La Muraglia
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - M J O'Neil
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - M L Madariaga
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - S G Michel
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - K S Mordecai
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - J S Allan
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - J C Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - I M Hanekamp
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - F I Preffer
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
97
|
Wang W, Fang K, Wang X, Li M, Wu Y, Chen F, Shahzad KA, Gu N, Shen C. Antigen-Specific Killer Polylactic-Co-Glycolic Acid (PLGA) Microspheres Can Prolong Alloskin Graft Survival in a Murine Model. Immunol Invest 2015; 44:385-99. [DOI: 10.3109/08820139.2015.1014098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
98
|
Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M, Coppola A, Bertera S, Rudert WA, Banerjee I, Bottino R, Trucco M. Bioengineering Thymus Organoids to Restore Thymic Function and Induce Donor-Specific Immune Tolerance to Allografts. Mol Ther 2015; 23:1262-1277. [PMID: 25903472 DOI: 10.1038/mt.2015.77] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/05/2015] [Indexed: 02/07/2023] Open
Abstract
One of the major obstacles in organ transplantation is to establish immune tolerance of allografts. Although immunosuppressive drugs can prevent graft rejection to a certain degree, their efficacies are limited, transient, and associated with severe side effects. Induction of thymic central tolerance to allografts remains challenging, largely because of the difficulty of maintaining donor thymic epithelial cells in vitro to allow successful bioengineering. Here, the authors show that three-dimensional scaffolds generated from decellularized mouse thymus can support thymic epithelial cell survival in culture and maintain their unique molecular properties. When transplanted into athymic nude mice, the bioengineered thymus organoids effectively promoted homing of lymphocyte progenitors and supported thymopoiesis. Nude mice transplanted with thymus organoids promptly rejected skin allografts and were able to mount antigen-specific humoral responses against ovalbumin on immunization. Notably, tolerance to skin allografts was achieved by transplanting thymus organoids constructed with either thymic epithelial cells coexpressing both syngeneic and allogenic major histocompatibility complexes, or mixtures of donor and recipient thymic epithelial cells. Our results demonstrate the technical feasibility of restoring thymic function with bioengineered thymus organoids and highlight the clinical implications of this thymus reconstruction technique in organ transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Asako Tajima
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Saik Kia Goh
- Department of Chemical and Petroleum Engineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Xuehui Geng
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Giulio Gualtierotti
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Maria Grupillo
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Antonina Coppola
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Current address: Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - William A Rudert
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
99
|
Filby A, Begum J, Jalal M, Day W. Appraising the suitability of succinimidyl and lipophilic fluorescent dyes to track proliferation in non-quiescent cells by dye dilution. Methods 2015; 82:29-37. [PMID: 25802116 DOI: 10.1016/j.ymeth.2015.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 01/21/2015] [Accepted: 02/25/2015] [Indexed: 01/05/2023] Open
Abstract
Successful completion of the cell cycle usually results in two identical daughter progeny. This process of generational doubling is termed proliferation and when it occurs in a regulated fashion the benefits range from driving embryonic development to mounting a successful immune response. However when it occurs in a dis-regulated fashion, it is one of the hallmarks of cancer and autoimmunity. These very reasons make proliferation a highly informative parameter in many different biological systems. Conventional flow cytometry (CFC) is a high-throughput, fluorescence-based method for measuring the phenotype and function of cells. The application of CFC to measuring proliferation requires a fluorescent dye able to mark live cells so that when they divide, the daughter progeny receives approximately half the fluorescence of the parent. In measurement space, this translates into peaks of fluorescence decreasing by approximately half, each corresponding to a round of division. It is essential that these peaks can be resolved from one another otherwise it is nearly impossible to obtain accurate quantitative proliferation data. Peak resolution is affected by many things, including instrument performance, the choice of fluorescent dye and the inherent properties of the cells under investigation. There are now many fluorescent dyes available for tracking proliferation by dye dilution differing in their chemistry and spectral properties. Here we provide a method for assessing the performance of various candidate dyes with particular emphasis on situations where the cell type is non-quiescent. We have shown previously that even under optimised instrument and labelling conditions, the heterogeneity of non-quiescent cells makes it impossible to obtain an input width below the threshold for peak resolution without reducing the fluorescence distribution using a cell sorter. Moreover, our method also measures how the dye performs post-labelling in terms of loss/transfer to other cells and how the dye is inherited across the cytokinetic plane. All of these factors will affect peak resolution both in non-quiescent and primary cell types.
Collapse
Affiliation(s)
- Andrew Filby
- Flow Cytometry Core Facility, Newcastle Biomedicine, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; FACS Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, Holborn, WC2A 3LY London, UK.
| | - Julfa Begum
- FACS Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, Holborn, WC2A 3LY London, UK
| | - Marwa Jalal
- FACS Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, Holborn, WC2A 3LY London, UK
| | - William Day
- FACS Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, Holborn, WC2A 3LY London, UK
| |
Collapse
|
100
|
Spoerri I, Scherer K, Michel S, Link S, Bircher AJ, Heijnen IAFM. Detection of nickel and palladium contact hypersensitivity by a flow cytometric lymphocyte proliferation test. Allergy 2015; 70:323-7. [PMID: 25443647 DOI: 10.1111/all.12553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Abstract
We established a flow cytometric lymphocyte proliferation test (LPT) for the detection of nickel (Ni) and palladium (Pd) sensitization. Eighty-one consecutive patients with an indication for patch test (PT) were tested by LPT with Ni (NiSO4 ) and Pd (Na2 PdCl4 and PdCl2 ) salts. The imprecision of the LPT was low (coefficient of variation 7.2%). Using PT as a diagnostic reference, the sensitivity and specificity of LPT were 74.4% and 80% for NiSO4 , 74.4% and 78.3% for Na2 PdCl4 , and 57.2% and 85.4% for PdCl2 , respectively. For both Ni and Pd, the likelihood ratio for a positive PT markedly increased with increasing LPT value. With medical history as a reference, the sensitivity and specificity were 40.6% and 82.1% for LPT and 59.4% and 89.7% for PT, respectively. Combination of LPT and PT resulted in a higher specificity of 95%, albeit lower sensitivity of 34.4%. In conclusion, flow cytometric LPT represents a reliable and useful method for the detection of Ni and Pd sensitization. LPT values correlate with PT results and, when used in combination with PT, increase test specificity.
Collapse
Affiliation(s)
- I. Spoerri
- Research Group of Dermatology; Department of Biomedicine; University Hospital Basel; University of Basel; Basel Switzerland
| | - K. Scherer
- Allergy Unit; Department of Dermatology; University Hospital Basel; Basel Switzerland
| | - S. Michel
- Allergy Unit; Department of Dermatology; University Hospital Basel; Basel Switzerland
| | - S. Link
- Medical Immunology, Laboratory Medicine; University Hospital Basel; Basel Switzerland
| | - A. J. Bircher
- Allergy Unit; Department of Dermatology; University Hospital Basel; Basel Switzerland
| | - I. A. F. M. Heijnen
- Medical Immunology, Laboratory Medicine; University Hospital Basel; Basel Switzerland
| |
Collapse
|