51
|
Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses 2018; 10:v10030110. [PMID: 29510515 PMCID: PMC5869503 DOI: 10.3390/v10030110] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
HIV-1 has already claimed over 35 million human lives globally. No curative treatments are currently available, and the only treatment option for over 36 million people currently living with HIV/AIDS are antiretroviral drugs that disrupt the function of virus-encoded proteins. However, such virus-targeted therapeutic strategies are constrained by the ability of the virus to develop drug-resistance. Despite major advances in HIV/AIDS research over the years, substantial knowledge gaps exist in many aspects of HIV-1 replication, especially its interaction with the host. Hence, understanding the mechanistic details of virus–host interactions may lead to novel therapeutic strategies for the prevention and/or management of HIV/AIDS. Notably, unprecedented progress in deciphering host gene silencing processes mediated by several classes of cellular small non-coding RNAs (sncRNA) presents a promising and timely opportunity for developing non-traditional antiviral therapeutic strategies. Cellular microRNAs (miRNA) belong to one such important class of sncRNAs that regulate protein synthesis. Evidence is mounting that cellular miRNAs play important roles in viral replication, either usurped by the virus to promote its replication or employed by the host to control viral infection by directly targeting the viral genome or by targeting cellular proteins required for productive virus replication. In this review, we summarize the findings to date on the role of miRNAs in HIV-1 biology.
Collapse
|
52
|
Gupta S, Tycko R. Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 70:103-114. [PMID: 29464399 PMCID: PMC5832360 DOI: 10.1007/s10858-017-0162-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/28/2017] [Indexed: 05/09/2023]
Abstract
Recent studies of noncrystalline HIV-1 capsid protein (CA) assemblies by our laboratory and by Polenova and coworkers (Protein Sci 19:716-730, 2010; J Mol Biol 426:1109-1127, 2014; J Biol Chem 291:13098-13112, 2016; J Am Chem Soc 138:8538-8546, 2016; J Am Chem Soc 138:12029-12032, 2016; J Am Chem Soc 134:6455-6466, 2012; J Am Chem Soc 132:1976-1987, 2010; J Am Chem Soc 135:17793-17803, 2013; Proc Natl Acad Sci USA 112:14617-14622, 2015; J Am Chem Soc 138:14066-14075, 2016) have established the capability of solid state nuclear magnetic resonance (NMR) measurements to provide site-specific structural and dynamical information that is not available from other types of measurements. Nonetheless, the relatively high molecular weight of HIV-1 CA leads to congestion of solid state NMR spectra of fully isotopically labeled assemblies that has been an impediment to further progress. Here we describe an efficient protocol for production of segmentally labeled HIV-1 CA samples in which either the N-terminal domain (NTD) or the C-terminal domain (CTD) is uniformly 15N,13C-labeled. Segmental labeling is achieved by trans-splicing, using the DnaE split intein. Comparisons of two-dimensional solid state NMR spectra of fully labeled and segmentally labeled tubular CA assemblies show substantial improvements in spectral resolution. The molecular structure of HIV-1 assemblies is not significantly perturbed by the single Ser-to-Cys substitution that we introduce between NTD and CTD segments, as required for trans-splicing.
Collapse
Affiliation(s)
- Sebanti Gupta
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
- National Institutes of Health, Building 5, Room 409, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
53
|
Gupta R, Polenova T. Magic angle spinning NMR spectroscopy guided atomistic characterization of structure and dynamics in HIV-1 protein assemblies. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
54
|
Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane. Proc Natl Acad Sci U S A 2017; 114:E10056-E10065. [PMID: 29114055 DOI: 10.1073/pnas.1706600114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The packaging and budding of Gag polyprotein and viral RNA is a critical step in the HIV-1 life cycle. High-resolution structures of the Gag polyprotein have revealed that the capsid (CA) and spacer peptide 1 (SP1) domains contain important interfaces for Gag self-assembly. However, the molecular details of the multimerization process, especially in the presence of RNA and the cell membrane, have remained unclear. In this work, we investigate the mechanisms that work in concert between the polyproteins, RNA, and membrane to promote immature lattice growth. We develop a coarse-grained (CG) computational model that is derived from subnanometer resolution structural data. Our simulations recapitulate contiguous and hexameric lattice assembly driven only by weak anisotropic attractions at the helical CA-SP1 junction. Importantly, analysis from CG and single-particle tracking photoactivated localization (spt-PALM) trajectories indicates that viral RNA and the membrane are critical constituents that actively promote Gag multimerization through scaffolding, while overexpression of short competitor RNA can suppress assembly. We also find that the CA amino-terminal domain imparts intrinsic curvature to the Gag lattice. As a consequence, immature lattice growth appears to be coupled to the dynamics of spontaneous membrane deformation. Our findings elucidate a simple network of interactions that regulate the early stages of HIV-1 assembly and budding.
Collapse
|
55
|
Gray ER, Brookes JC, Caillat C, Turbé V, Webb BLJ, Granger LA, Miller BS, McCoy LE, El Khattabi M, Verrips CT, Weiss RA, Duffy DM, Weissenhorn W, McKendry RA. Unravelling the Molecular Basis of High Affinity Nanobodies against HIV p24: In Vitro Functional, Structural, and in Silico Insights. ACS Infect Dis 2017; 3:479-491. [PMID: 28591513 DOI: 10.1021/acsinfecdis.6b00189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Preventing the spread of infectious diseases remains an urgent priority worldwide, and this is driving the development of advanced nanotechnology to diagnose infections at the point of care. Herein, we report the creation of a library of novel nanobody capture ligands to detect p24, one of the earliest markers of HIV infection. We demonstrate that these nanobodies, one tenth the size of conventional antibodies, exhibit high sensitivity and broad specificity to global HIV-1 subtypes. Biophysical characterization indicates strong 690 pM binding constants and fast kinetic on-rates, 1 to 2 orders of magnitude better than monoclonal antibody comparators. A crystal structure of the lead nanobody and p24 was obtained and used alongside molecular dynamics simulations to elucidate the molecular basis of these enhanced performance characteristics. They indicate that binding occurs at C-terminal helices 10 and 11 of p24, a negatively charged region of p24 complemented by the positive surface of the nanobody binding interface involving CDR1, CDR2, and CDR3 loops. Our findings have broad implications on the design of novel antibodies and a wide range of advanced biomedical applications.
Collapse
Affiliation(s)
- Eleanor R. Gray
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Jennifer C. Brookes
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Christophe Caillat
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Valérian Turbé
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Benjamin L. J. Webb
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Luke A. Granger
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Benjamin S. Miller
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Laura E. McCoy
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | | | - C. Theo Verrips
- QVQ Holding B.V., Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Robin A. Weiss
- Division of Infection and Immunity, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Dorothy M. Duffy
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Rachel A. McKendry
- London Centre for Nanotechnology, Division of Medicine and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| |
Collapse
|
56
|
Disparate Contributions of Human Retrovirus Capsid Subdomains to Gag-Gag Oligomerization, Virus Morphology, and Particle Biogenesis. J Virol 2017; 91:JVI.00298-17. [PMID: 28446667 DOI: 10.1128/jvi.00298-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022] Open
Abstract
The capsid domain (CA) of the retroviral Gag protein is a primary determinant of Gag oligomerization, which is a critical step for immature Gag lattice formation and virus particle budding. Although the human immunodeficiency virus type 1 (HIV-1) CA carboxy-terminal domain (CTD) is essential for CA-CA interactions, the CA CTD has been suggested to be largely dispensable for human T-cell leukemia virus type 1 (HTLV-1) particle biogenesis. To more clearly define the roles of the HTLV-1 CA amino-terminal domain (NTD) and CA CTD in particle biogenesis, we generated and analyzed a panel of Gag proteins with chimeric HIV-1/HTLV-1 CA domains. Subcellular distribution and protein expression levels indicated that Gag proteins with a chimeric HIV-1 CA NTD/HTLV-1 CA CTD did not result in Gag oligomerization regardless of the parent Gag background. Furthermore, chimeric Gag proteins with the HTLV-1 CA NTD produced particles phenotypically similar to HTLV-1 immature particles, highlighting the importance of the HTLV-1 CA NTD in HTLV-1 immature particle morphology. Taken together, these observations support the conclusion that the HTLV-1 CA NTD can functionally replace the HIV-1 CA CTD, but the HIV-1 CA NTD cannot replace the HTLV-1 CA CTD, indicating that the HTLV-1 CA subdomains provide distinct contributions to Gag-Gag oligomerization, particle morphology, and biogenesis. Furthermore, we have shown for the first time that HIV-1 and HTLV-1 Gag domains outside the CA (e.g., matrix and nucleocapsid) impact Gag oligomerization as well as immature particle size and morphology.IMPORTANCE A key aspect in virus replication is virus particle assembly, which is a poorly understood process for most viruses. For retroviruses, the Gag structural protein is the primary driver of virus particle biogenesis, and the CA CTD is the primary determinant of Gag-Gag interactions for HIV-1. In this study, the HTLV-1 capsid amino-terminal domain was found to provide distinct contributions to Gag-Gag oligomerization, particle morphology, and biogenesis. This study provides information that will aid efforts for discovery of therapeutic targets for intervention.
Collapse
|
57
|
Wang J, Wen S, Zhao R, Qi J, Liu Z, Li W, An J, Wood C, Wang Y. Covalent conjugation of the equine infectious anemia virus Gag with SUMO. Biochem Biophys Res Commun 2017; 486:712-719. [PMID: 28342872 DOI: 10.1016/j.bbrc.2017.03.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 02/02/2023]
Abstract
The conjugation of small ubiquitin-like modifier (SUMO) to the target protein, namely, SUMOylation, is involved in the regulation of many important biological events including host-pathogen interaction. Some viruses have evolved to exploit the host SUMOylation machinery to modify their own protein. Retroviral Gag protein plays critical roles in the viral life cycle. The HIV-1 p6 and the Moloney murine leukemia virus CA have been reported to be conjugated with SUMO. In this study, we report for the first time, to our knowledge, the covalent conjugation of equine infectious anemia virus (EIAV) Gag with SUMO. The C-terminal p9 domain of Gag is a main target for SUMOylation and SUMO is attached to multiple sites of p9, including K30 whose mutation abolished p9 SUMOylation completely. The SUMOylation of p9, but not the p9-K30 mutant, was also detected in equine fibroblastic cells ATCC® CCL-57™. Ubc9 and its C93 residue are indispensable for the SUMOylation of p9. Using confocal microscopy, it is found that EIAV Gag localizes primarily, if not exclusively, in the cytoplasm of the cell and the co-localization of EIAV Gag with Ubc9 was observed. Our findings that EIAV Gag is SUMOylated at p9-K30, together with previous findings on the defects of p9-K30 mutant in viral DNA translocation from cytoplasm to the nucleus, suggests that SUMOylation of Gag may be involved in such functions.
Collapse
Affiliation(s)
- Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Shuping Wen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Rui Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Jing Qi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Zhao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Weiwei Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Jing An
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Charles Wood
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | - Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China.
| |
Collapse
|
58
|
Quinn CM, Polenova T. Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 2017; 50:e1. [PMID: 28093096 PMCID: PMC5483179 DOI: 10.1017/s0033583516000159] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by other methods. With the advent of fast MAS, proton detection, and novel pulse sequences, large supramolecular assemblies, such as cytoskeletal proteins and intact viruses, are now accessible for detailed analysis. In this review, we will discuss the current MAS NMR methodologies that enable characterization of complex biomolecular systems and will present examples of applications to several classes of assemblies comprising bacterial and mammalian cytoskeleton as well as human immunodeficiency virus 1 and bacteriophage viruses. The body of work reviewed herein is representative of the recent advancements in the field, with respect to the complexity of the systems studied, the quality of the data, and the significance to the biology.
Collapse
Affiliation(s)
- Caitlin M. Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| |
Collapse
|
59
|
Ning J, Erdemci-Tandogan G, Yufenyuy EL, Wagner J, Himes BA, Zhao G, Aiken C, Zandi R, Zhang P. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway. Nat Commun 2016; 7:13689. [PMID: 27958264 PMCID: PMC5159922 DOI: 10.1038/ncomms13689] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation. Two competing models—disassembly/reassembly and displacive—have been proposed for how immature spherical HIV virions transform into mature particles with conical cores. Here the authors provide evidence that both disassembly/reassembly and displacive processes occur sequentially during the maturation process.
Collapse
Affiliation(s)
- Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Ernest L Yufenyuy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Jef Wagner
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Christopher Aiken
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK.,Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
60
|
Saxena P, He L, Malyutin A, Datta SAK, Rein A, Bond KM, Jarrold MF, Spilotros A, Svergun D, Douglas T, Dragnea B. Virus Matryoshka: A Bacteriophage Particle-Guided Molecular Assembly Approach to a Monodisperse Model of the Immature Human Immunodeficiency Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5862-5872. [PMID: 27634413 PMCID: PMC6810630 DOI: 10.1002/smll.201601712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/05/2016] [Indexed: 05/27/2023]
Abstract
Immature human immunodeficiency virus type 1 (HIV-1) is approximately spherical, but is constructed from a hexagonal lattice of the Gag protein. As a hexagonal lattice is necessarily flat, the local symmetry cannot be maintained throughout the structure. This geometrical frustration presumably results in bending stress. In natural particles, the stress is relieved by incorporation of packing defects, but the magnitude of this stress and its significance for the particles is not known. In order to control this stress, we have now assembled the Gag protein on a quasi-spherical template derived from bacteriophage P22. This template is monodisperse in size and electron-transparent, enabling the use of cryo-electron microscopy in structural studies. These templated assemblies are far less polydisperse than any previously described virus-like particles (and, while constructed according to the same lattice as natural particles, contain almost no packing defects). This system gives us the ability to study the relationship between packing defects, curvature and elastic energy, and thermodynamic stability. As Gag is bound to the P22 template by single-stranded DNA, treatment of the particles with DNase enabled us to determine the intrinsic radius of curvature of a Gag lattice, unconstrained by DNA or a template. We found that this intrinsic radius is far larger than that of a virion or P22-templated particle. We conclude that Gag is under elastic strain in a particle; this has important implications for the kinetics of shell growth, the stability of the shell, and the type of defects it will assume as it grows.
Collapse
Affiliation(s)
- Pooja Saxena
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Li He
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Andrey Malyutin
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Siddhartha A K Datta
- National Cancer Institute, P.O. Box B, Building 535, Frederick, MD, 21702-1201, USA
| | - Alan Rein
- National Cancer Institute, P.O. Box B, Building 535, Frederick, MD, 21702-1201, USA
| | - Kevin M Bond
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Alessandro Spilotros
- European Molecular Biology Laboratory-DESY, Notkestrasse 85, Geb. 25a, 22603, Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory-DESY, Notkestrasse 85, Geb. 25a, 22603, Hamburg, Germany
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| |
Collapse
|
61
|
Hanne J, Göttfert F, Schimer J, Anders-Össwein M, Konvalinka J, Engelhardt J, Müller B, Hell SW, Kräusslich HG. Stimulated Emission Depletion Nanoscopy Reveals Time-Course of Human Immunodeficiency Virus Proteolytic Maturation. ACS NANO 2016; 10:8215-8222. [PMID: 27517329 DOI: 10.1021/acsnano.6b03850] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Concomitant with human immunodeficiency virus type 1 (HIV-1) budding from a host cell, cleavage of the structural Gag polyproteins by the viral protease (PR) triggers complete remodeling of virion architecture. This maturation process is essential for virus infectivity. Electron tomography provided structures of immature and mature HIV-1 with a diameter of 120-140 nm, but information about the sequence and dynamics of structural rearrangements is lacking. Here, we employed super-resolution STED (stimulated emission depletion) fluorescence nanoscopy of HIV-1 carrying labeled Gag to visualize the virion architecture. The incomplete Gag lattice of immature virions was clearly distinguishable from the condensed distribution of mature protein subunits. Synchronized activation of PR within purified particles by photocleavage of a caged PR inhibitor enabled time-resolved in situ observation of the induction of proteolysis and maturation by super-resolution microscopy. This study shows the rearrangement of subviral structures in a super-resolution light microscope over time, outwitting phototoxicity and fluorophore bleaching through synchronization of a biological process by an optical switch.
Collapse
Affiliation(s)
- Janina Hanne
- Department of Infectious Diseases, Virology, Heidelberg University , Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Optical Nanoscopy Division, German Cancer Research Center (DKFZ) , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Fabian Göttfert
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Jiří Schimer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center , Flemingovo n.2, 166 10 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 12843 Prague 2, Czech Republic
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, Heidelberg University , Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center , Flemingovo n.2, 166 10 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 12843 Prague 2, Czech Republic
| | - Johann Engelhardt
- Optical Nanoscopy Division, German Cancer Research Center (DKFZ) , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University , Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stefan W Hell
- Optical Nanoscopy Division, German Cancer Research Center (DKFZ) , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University , Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
62
|
O'Neil L, Andenoro K, Pagano I, Carroll L, Langer L, Dell Z, Perera D, Treece BW, Heinrich F, Lösche M, Nagle JF, Tristram-Nagle S. HIV-1 matrix-31 membrane binding peptide interacts differently with membranes containing PS vs. PI(4,5)P 2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3071-3081. [PMID: 27641491 DOI: 10.1016/j.bbamem.2016.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/27/2022]
Abstract
Efficient assembly of HIV-1 at the plasma membrane (PM) of the T-cell specifically requires PI(4,5)P2. It was previously shown that a highly basic region (HBR) of the matrix protein (MA) on the Gag precursor polyprotein Pr55Gag is required for membrane association. MA is N-terminally myristoylated, which enhances its affinity to membranes. In this work we used X-ray scattering and neutron reflectivity to determine how the physical properties and structure of lipid bilayers respond to the addition of binding domain peptides, either in the myristoylated form (MA31myr) or without the myristoyl group (MA31). Neutron reflectivity measurements showed the peptides predominantly located in the hydrocarbon interior. Diffuse X-ray scattering showed differences in membrane properties upon addition of peptides and the direction of the changes depended on lipid composition. The PI(4,5)P2-containing bilayers softened, thinned and became less ordered as peptide concentration increased. In contrast, POPS-containing bilayers with equivalent net charge first stiffened, thickened and became more ordered with increasing peptide concentration. As softening the host cell's PM upon contact with the protein lowers the free energy for membrane restructuring, thereby potentially facilitating budding of viral particles, our results suggest that the role of PI(4,5)P2 in viral assembly goes beyond specific stereochemical membrane binding. These studies reinforce the importance of lipids in virology.
Collapse
Affiliation(s)
- Lauren O'Neil
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kathryn Andenoro
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Isabella Pagano
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Laura Carroll
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Leah Langer
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Zachary Dell
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Davina Perera
- Biomedical Engineering, Douglass College, Rutgers University, New Brunswick, NJ 08901, United States
| | - Bradley W Treece
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Frank Heinrich
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States; National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899, United States
| | - Mathias Lösche
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States; National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899, United States; Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - John F Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
63
|
Jones DM, Padilla-Parra S. The β-Lactamase Assay: Harnessing a FRET Biosensor to Analyse Viral Fusion Mechanisms. SENSORS 2016; 16:s16070950. [PMID: 27347948 PMCID: PMC4970004 DOI: 10.3390/s16070950] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The β-lactamase (BlaM) assay was first revealed in 1998 and was demonstrated to be a robust Förster resonance energy transfer (FRET)-based reporter system that was compatible with a range of commonly-used cell lines. Today, the BlaM assay is available commercially as a kit and can be utilised readily and inexpensively for an array of experimental procedures that require a fluorescence-based readout. One frequent application of the BlaM assay is the measurement of viral fusion—the moment at which the genetic material harboured within virus particles is released into the cytosol following successful entry. The flexibility of the system permits evaluation of not only total fusion levels, but also the kinetics of fusion. However, significant variation exists in the scientific literature regarding the methodology by which the assay is applied to viral fusion analysis, making comparison between results difficult. In this review we draw attention to the disparity of these methodologies and examine the advantages and disadvantages of each approach. Successful strategies shown to render viruses compatible with BlaM-based analyses are also discussed.
Collapse
Affiliation(s)
- Daniel M Jones
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK.
| | - Sergi Padilla-Parra
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK.
| |
Collapse
|
64
|
Sakin V, Paci G, Lemke EA, Müller B. Labeling of virus components for advanced, quantitative imaging analyses. FEBS Lett 2016; 590:1896-914. [PMID: 26987299 DOI: 10.1002/1873-3468.12131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/31/2022]
Abstract
In recent years, investigation of virus-cell interactions has moved from ensemble measurements to imaging analyses at the single-particle level. Advanced fluorescence microscopy techniques provide single-molecule sensitivity and subdiffraction spatial resolution, allowing observation of subviral details and individual replication events to obtain detailed quantitative information. To exploit the full potential of these techniques, virologists need to employ novel labeling strategies, taking into account specific constraints imposed by viruses, as well as unique requirements of microscopic methods. Here, we compare strengths and limitations of various labeling methods, exemplify virological questions that were successfully addressed, and discuss challenges and future potential of novel approaches in virus imaging.
Collapse
Affiliation(s)
- Volkan Sakin
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| | - Giulia Paci
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| |
Collapse
|
65
|
Grime JMA, Dama JF, Ganser-Pornillos BK, Woodward CL, Jensen GJ, Yeager M, Voth GA. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat Commun 2016; 7:11568. [PMID: 27174390 PMCID: PMC4869257 DOI: 10.1038/ncomms11568] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 04/07/2016] [Indexed: 12/23/2022] Open
Abstract
The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies. Significant morphological changes occur during the conversion of the immature HIV virion into a mature infectious form. Here the authors use coarse-grained molecular dynamics simulations to model HIV-1 capsid self-assembly and disassembly events that suggests several metastable capsid intermediates sensitive to local conditions.
Collapse
Affiliation(s)
- John M A Grime
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - James F Dama
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Cora L Woodward
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Grant J Jensen
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.,Center for Membrane Biology, Cardiovascular Research Center, and Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
66
|
Abstract
Long terminal repeat (LTR) retrotransposons constitute significant fractions of many eukaryotic genomes. Two ancient families are Ty1/Copia (Pseudoviridae) and Ty3/Gypsy (Metaviridae). The Ty3/Gypsy family probably gave rise to retroviruses based on the domain order, similarity of sequences, and the envelopes encoded by some members. The Ty3 element of Saccharomyces cerevisiae is one of the most completely characterized elements at the molecular level. Ty3 is induced in mating cells by pheromone stimulation of the mitogen-activated protein kinase pathway as cells accumulate in G1. The two Ty3 open reading frames are translated into Gag3 and Gag3-Pol3 polyprotein precursors. In haploid mating cells Gag3 and Gag3-Pol3 are assembled together with Ty3 genomic RNA into immature virus-like particles in cellular foci containing RNA processing body proteins. Virus-like particle Gag3 is then processed by Ty3 protease into capsid, spacer, and nucleocapsid, and Gag3-Pol3 into those proteins and additionally, protease, reverse transcriptase, and integrase. After haploid cells mate and become diploid, genomic RNA is reverse transcribed into cDNA. Ty3 integration complexes interact with components of the RNA polymerase III transcription complex resulting in Ty3 integration precisely at the transcription start site. Ty3 activation during mating enables proliferation of Ty3 between genomes and has intriguing parallels with metazoan retrotransposon activation in germ cell lineages. Identification of nuclear pore, DNA replication, transcription, and repair host factors that affect retrotransposition has provided insights into how hosts and retrotransposons interact to balance genome stability and plasticity.
Collapse
|
67
|
Machara A, Lux V, Kožíšek M, Grantz Šašková K, Štěpánek O, Kotora M, Parkan K, Pávová M, Glass B, Sehr P, Lewis J, Müller B, Kräusslich HG, Konvalinka J. Specific Inhibitors of HIV Capsid Assembly Binding to the C-Terminal Domain of the Capsid Protein: Evaluation of 2-Arylquinazolines as Potential Antiviral Compounds. J Med Chem 2016; 59:545-58. [PMID: 26685880 DOI: 10.1021/acs.jmedchem.5b01089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Assembly of human immunodeficiency virus (HIV-1) represents an attractive target for antiretroviral therapy which is not exploited by currently available drugs. We established high-throughput screening for assembly inhibitors based on competition of small molecules for the binding of a known dodecapeptide assembly inhibitor to the C-terminal domain of HIV-1 CA (capsid). Screening of >70000 compounds from different libraries identified 2-arylquinazolines as low micromolecular inhibitors of HIV-1 capsid assembly. We prepared focused libraries of modified 2-arylquinazolines and tested their capacity to bind HIV-1 CA to compete with the known peptide inhibitor and to prevent the replication of HIV-1 in tissue culture. Some of the compounds showed potent binding to the C-terminal domain of CA and were found to block viral replication at low micromolar concentrations.
Collapse
Affiliation(s)
- Aleš Machara
- Department of Organic Chemistry, Faculty of Science, Charles University , 128 43 Prague 2, Czech Republic
| | - Vanda Lux
- Department of Infectious Diseases, Virology, University Hospital Heidelberg , Im Neuenheimer Feld 324, 691 20 Heidelberg, Germany
| | - Milan Kožíšek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center , Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Klára Grantz Šašková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center , Flemingovo n. 2, 166 10 Prague 6, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University , 128 43 Prague 2, Czech Republic
| | - Ondřej Štěpánek
- Department of Organic Chemistry, Faculty of Science, Charles University , 128 43 Prague 2, Czech Republic
| | - Martin Kotora
- Department of Organic Chemistry, Faculty of Science, Charles University , 128 43 Prague 2, Czech Republic
| | - Kamil Parkan
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center , Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Marcela Pávová
- Department of Infectious Diseases, Virology, University Hospital Heidelberg , Im Neuenheimer Feld 324, 691 20 Heidelberg, Germany.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center , Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Bärbel Glass
- Department of Infectious Diseases, Virology, University Hospital Heidelberg , Im Neuenheimer Feld 324, 691 20 Heidelberg, Germany
| | - Peter Sehr
- Chemical Biology Core Facility, European Molecular Biology Laboratory , 691 17 Heidelberg, Germany
| | - Joe Lewis
- Chemical Biology Core Facility, European Molecular Biology Laboratory , 691 17 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg , Im Neuenheimer Feld 324, 691 20 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg , Im Neuenheimer Feld 324, 691 20 Heidelberg, Germany
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center , Flemingovo n. 2, 166 10 Prague 6, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University , 128 43 Prague 2, Czech Republic
| |
Collapse
|
68
|
Hendrix J, Baumgärtel V, Schrimpf W, Ivanchenko S, Digman MA, Gratton E, Kräusslich HG, Müller B, Lamb DC. Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers. J Cell Biol 2015; 210:629-46. [PMID: 26283800 PMCID: PMC4539982 DOI: 10.1083/jcb.201504006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Analysis of the cytosolic HIV-1 Gag fraction in live cells via advanced fluctuation imaging methods reveals potential nucleation steps before membrane-assisted Gag assembly. Assembly of the Gag polyprotein into new viral particles in infected cells is a crucial step in the retroviral replication cycle. Currently, little is known about the onset of assembly in the cytosol. In this paper, we analyzed the cytosolic HIV-1 Gag fraction in real time in live cells using advanced fluctuation imaging methods and thereby provide detailed insights into the complex relationship between cytosolic Gag mobility, stoichiometry, and interactions. We show that Gag diffuses as a monomer on the subsecond timescale with severely reduced mobility. Reduction of mobility is associated with basic residues in its nucleocapsid (NC) domain, whereas capsid (CA) and matrix (MA) domains do not contribute significantly. Strikingly, another diffusive Gag species was observed on the seconds timescale that oligomerized in a concentration-dependent manner. Both NC- and CA-mediated interactions strongly assist this process. Our results reveal potential nucleation steps of cytosolic Gag fractions before membrane-assisted Gag assembly.
Collapse
Affiliation(s)
- Jelle Hendrix
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Viola Baumgärtel
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Waldemar Schrimpf
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Sergey Ivanchenko
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Michelle A Digman
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697 Development Biology Center Optical Biology Core Facility, University of California, Irvine, Irvine, CA 92697
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697 Development Biology Center Optical Biology Core Facility, University of California, Irvine, Irvine, CA 92697
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| |
Collapse
|
69
|
Sadre-Marandi F, Liu Y, Liu J, Tavener S, Zou X. Modeling HIV-1 viral capsid nucleation by dynamical systems. Math Biosci 2015; 270:95-105. [PMID: 26596714 DOI: 10.1016/j.mbs.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 11/15/2022]
Abstract
There are two stages generally recognized in the viral capsid assembly: nucleation and elongation. This paper focuses on the nucleation stage and develops mathematical models for HIV-1 viral capsid nucleation based on six-species dynamical systems. The Particle Swarm Optimization (PSO) algorithm is used for parameter fitting to estimate the association and dissociation rates from biological experiment data. Numerical simulations of capsid protein (CA) multimer concentrations demonstrate a good agreement with experimental data. Sensitivity and elasticity analysis of CA multimer concentrations with respect to the association and dissociation rates further reveals the importance of CA trimer-of- dimers in the nucleation stage of viral capsid self- assembly.
Collapse
Affiliation(s)
- Farrah Sadre-Marandi
- Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874, USA.
| | - Yuewu Liu
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, China.
| | - Jiangguo Liu
- Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874, USA.
| | - Simon Tavener
- Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874, USA.
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, China.
| |
Collapse
|
70
|
Bocanegra R, Fuertes MÁ, Rodríguez-Huete A, Neira JL, Mateu MG. Biophysical analysis of the MHR motif in folding and domain swapping of the HIV capsid protein C-terminal domain. Biophys J 2015; 108:338-49. [PMID: 25606682 DOI: 10.1016/j.bpj.2014.11.3472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023] Open
Abstract
Infection by human immunodeficiency virus (HIV) depends on the function, in virion morphogenesis and other stages of the viral cycle, of a highly conserved structural element, the major homology region (MHR), within the carboxyterminal domain (CTD) of the capsid protein. In a modified CTD dimer, MHR is swapped between monomers. While no evidence for MHR swapping has been provided by structural models of retroviral capsids, it is unknown whether it may occur transiently along the virus assembly pathway. Whatever the case, the MHR-swapped dimer does provide a novel target for the development of anti-HIV drugs based on the concept of trapping a nonnative capsid protein conformation. We have carried out a thermodynamic and kinetic characterization of the domain-swapped CTD dimer in solution. The analysis includes a dissection of the role of conserved MHR residues and other amino acids at the dimerization interface in CTD folding, stability, and dimerization by domain swapping. The results revealed some energetic hotspots at the domain-swapped interface. In addition, many MHR residues that are not in the protein hydrophobic core were nevertheless found to be critical for folding and stability of the CTD monomer, which may dramatically slow down the swapping reaction. Conservation of MHR residues in retroviruses did not correlate with their contribution to domain swapping, but it did correlate with their importance for stable CTD folding. Because folding is required for capsid protein function, this remarkable MHR-mediated conformational stabilization of CTD may help to explain the functional roles of MHR not only during immature capsid assembly but in other processes associated with retrovirus infection. This energetic dissection of the dimerization interface in MHR-swapped CTD may also facilitate the design of anti-HIV compounds that inhibit capsid assembly by conformational trapping of swapped CTD dimers.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Miguel Ángel Fuertes
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - José Luis Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, and Instituto de Biocomputación y Física de los Sistemas Complejos, Zaragoza, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
71
|
Schur FKM, Dick RA, Hagen WJH, Vogt VM, Briggs JAG. The Structure of Immature Virus-Like Rous Sarcoma Virus Gag Particles Reveals a Structural Role for the p10 Domain in Assembly. J Virol 2015; 89:10294-302. [PMID: 26223638 PMCID: PMC4580193 DOI: 10.1128/jvi.01502-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The polyprotein Gag is the primary structural component of retroviruses. Gag consists of independently folded domains connected by flexible linkers. Interactions between the conserved capsid (CA) domains of Gag mediate formation of hexameric protein lattices that drive assembly of immature virus particles. Proteolytic cleavage of Gag by the viral protease (PR) is required for maturation of retroviruses from an immature form into an infectious form. Within the assembled Gag lattices of HIV-1 and Mason-Pfizer monkey virus (M-PMV), the C-terminal domain of CA adopts similar quaternary arrangements, while the N-terminal domain of CA is packed in very different manners. Here, we have used cryo-electron tomography and subtomogram averaging to study in vitro-assembled, immature virus-like Rous sarcoma virus (RSV) Gag particles and have determined the structure of CA and the surrounding regions to a resolution of ∼8 Å. We found that the C-terminal domain of RSV CA is arranged similarly to HIV-1 and M-PMV, whereas the N-terminal domain of CA adopts a novel arrangement in which the upstream p10 domain folds back into the CA lattice. In this position the cleavage site between CA and p10 appears to be inaccessible to PR. Below CA, an extended density is consistent with the presence of a six-helix bundle formed by the spacer-peptide region. We have also assessed the affect of lattice assembly on proteolytic processing by exogenous PR. The cleavage between p10 and CA is indeed inhibited in the assembled lattice, a finding consistent with structural regulation of proteolytic maturation. IMPORTANCE Retroviruses first assemble into immature virus particles, requiring interactions between Gag proteins that form a protein layer under the viral membrane. Subsequently, Gag is cleaved by the viral protease enzyme into separate domains, leading to rearrangement of the virus into its infectious form. It is important to understand how Gag is arranged within immature retroviruses, in order to understand how virus assembly occurs, and how maturation takes place. We used the techniques cryo-electron tomography and subtomogram averaging to obtain a detailed structural picture of the CA domains in immature assembled Rous sarcoma virus Gag particles. We found that part of Gag next to CA, called p10, folds back and interacts with CA when Gag assembles. This arrangement is different from that seen in HIV-1 and Mason-Pfizer monkey virus, illustrating further structural diversity of retroviral structures. The structure provides new information on how the virus assembles and undergoes maturation.
Collapse
Affiliation(s)
- Florian K M Schur
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Volker M Vogt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Molecular Medicine Partnership Unit, Heidelberg, Germany
| |
Collapse
|
72
|
RNA and Nucleocapsid Are Dispensable for Mature HIV-1 Capsid Assembly. J Virol 2015; 89:9739-47. [PMID: 26178992 DOI: 10.1128/jvi.00750-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/09/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) is released from infected cells in an immature, noninfectious form in which the structural polyprotein Gag is arranged in a hexameric lattice, forming an incomplete spherical shell. Maturation to the infectious form is mediated by the viral protease, which cleaves Gag at five sites, releasing the CA (capsid) protein, which forms a conical capsid encasing the condensed RNA genome. The pathway of this structural rearrangement is currently not understood, and it is unclear how cone assembly is initiated. RNA represents an integral structural component of retroviruses, and the viral nucleoprotein core has previously been proposed to nucleate mature capsid assembly. We addressed this hypothesis by replacing the RNA-binding NC (nucleocapsid) domain of HIV-1 Gag and the adjacent spacer peptide 2 (SP2) by a leucine zipper (LZ) protein-protein interaction domain [Gag(LZ)] in the viral context. We found that Gag(LZ)-carrying virus [HIV(LZ)] was efficiently released and viral polyproteins were proteolytically processed, though with reduced efficiency. Cryo-electron tomography revealed that the particles lacked a condensed nucleoprotein and contained an increased proportion of aberrant core morphologies caused either by the absence of RNA or by altered Gag processing. Nevertheless, a significant proportion of HIV(LZ) particles contained mature capsids with the wild-type morphology. These results clearly demonstrate that the nucleoprotein complex is dispensable as a nucleator for mature HIV-1 capsid assembly in the viral context. IMPORTANCE Formation of a closed conical capsid encasing the viral RNA genome is essential for HIV-1 infectivity. It is currently unclear what viral components initiate and regulate the formation of the capsid during virus morphogenesis, but it has been proposed that the ribonucleoprotein complex plays a role. To test this, we prepared virus-like particles lacking the viral nucleocapsid protein and RNA and analyzed their three-dimensional structure by cryo-electron tomography. While most virions displayed an abnormal morphology under these conditions, some particles showed a normal mature morphology with closed conical capsids. These data demonstrate that the presence of RNA and the nucleocapsid protein is not required for the formation of a mature, cone-shaped HIV-1 capsid.
Collapse
|
73
|
Bernaud J, Castelnovo M, Muriaux D, Faivre-Moskalenko C. [Atomic force microscopy: a tool to analyze the viral cycle]. Med Sci (Paris) 2015; 31:522-8. [PMID: 26059303 DOI: 10.1051/medsci/20153105014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level.
Collapse
Affiliation(s)
- Julien Bernaud
- Laboratoire de physique, CNRS UMR 5672, Ecole normale supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Martin Castelnovo
- Laboratoire de physique, CNRS UMR 5672, Ecole normale supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Delphine Muriaux
- Centre d'étude d'agents pathogènes et biotechnologie pour la santé, CNRS UMR 5236, 1919, route de Mende, 34 293 Montpellier Cedex 5, France
| | - Cendrine Faivre-Moskalenko
- Laboratoire de physique, CNRS UMR 5672, Ecole normale supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
74
|
Obal G, Trajtenberg F, Carrión F, Tomé L, Larrieux N, Zhang X, Pritsch O, Buschiazzo A. Conformational plasticity of a native retroviral capsid revealed by x-ray crystallography. Science 2015; 349:95-8. [DOI: 10.1126/science.aaa5182] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Retroviruses depend on self-assembly of their capsid proteins (core particle) to yield infectious mature virions. Despite the essential role of the retroviral core, its high polymorphism has hindered high-resolution structural analyses. Here, we report the x-ray structure of the native capsid (CA) protein from bovine leukemia virus. CA is organized as hexamers that deviate substantially from sixfold symmetry, yet adjust to make two-dimensional pseudohexagonal arrays that mimic mature retroviral cores. Intra- and interhexameric quasi-equivalent contacts are uncovered, with flexible trimeric lateral contacts among hexamers, yet preserving very similar dimeric interfaces making the lattice. The conformation of each capsid subunit in the hexamer is therefore dictated by long-range interactions, revealing how the hexamers can also assemble into closed core particles, a relevant feature of retrovirus biology.
Collapse
|
75
|
Crépin T, Swale C, Monod A, Garzoni F, Chaillet M, Berger I. Polyproteins in structural biology. Curr Opin Struct Biol 2015; 32:139-46. [PMID: 25996897 PMCID: PMC7125721 DOI: 10.1016/j.sbi.2015.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
Structures have been determined for natural and recombinant polyproteins. Native HIV Gag polyprotein architecture was revealed by cryo-EM of immature capsids. Recombinant polyprotein technology has resolved sample preparation bottlenecks. The high-resolution structure of influenza polymerase has been solved. Single-molecule analysis of polyproteins revealed their folding characteristics.
Polyproteins are chains of covalently conjoined smaller proteins that occur in nature as versatile means to organize the proteome of viruses including HIV. During maturation, viral polyproteins are typically cleaved into the constituent proteins with different biological functions by highly specific proteases, and structural analyses at defined stages of this maturation process can provide clues for antiviral intervention strategies. Recombinant polyproteins that use similar mechanisms are emerging as powerful tools for producing hitherto inaccessible protein targets such as the influenza polymerase, for high-resolution structure determination by X-ray crystallography. Conversely, covalent linking of individual protein subunits into single polypeptide chains are exploited to overcome sample preparation bottlenecks. Moreover, synthetic polyproteins provide a promising tool to dissect dynamic folding of polypeptide chains into three-dimensional architectures in single-molecule structure analysis by atomic force microscopy (AFM). The recent use of natural and synthetic polyproteins in structural biology and major achievements are highlighted in this contribution.
Collapse
Affiliation(s)
- Thibaut Crépin
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
| | - Christopher Swale
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Alexandre Monod
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Frederic Garzoni
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France; The European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France
| | - Maxime Chaillet
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France; The European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France
| | - Imre Berger
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France; The European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France; The School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
76
|
Quinn CM, Lu M, Suiter CL, Hou G, Zhang H, Polenova T. Magic angle spinning NMR of viruses. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:21-40. [PMID: 25919197 PMCID: PMC4413014 DOI: 10.1016/j.pnmrs.2015.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 05/02/2023]
Abstract
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| |
Collapse
|
77
|
Konvalinka J, Kräusslich HG, Müller B. Retroviral proteases and their roles in virion maturation. Virology 2015; 479-480:403-17. [PMID: 25816761 DOI: 10.1016/j.virol.2015.03.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Proteolytic processing of viral polyproteins is essential for retrovirus infectivity. Retroviral proteases (PR) become activated during or after assembly of the immature, non-infectious virion. They cleave viral polyproteins at specific sites, inducing major structural rearrangements termed maturation. Maturation converts retroviral enzymes into their functional form, transforms the immature shell into a metastable state primed for early replication events, and enhances viral entry competence. Not only cleavage at all PR recognition sites, but also an ordered sequence of cleavages is crucial. Proteolysis is tightly regulated, but the triggering mechanisms and kinetics and pathway of morphological transitions remain enigmatic. Here, we outline PR structures and substrate specificities focusing on HIV PR as a therapeutic target. We discuss design and clinical success of HIV PR inhibitors, as well as resistance development towards these drugs. Finally, we summarize data elucidating the role of proteolysis in maturation and highlight unsolved questions regarding retroviral maturation.
Collapse
Affiliation(s)
- Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany.
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| |
Collapse
|
78
|
Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. PLoS Pathog 2015; 11:e1004677. [PMID: 25710462 PMCID: PMC4339578 DOI: 10.1371/journal.ppat.1004677] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
Abstract
The cellular endosomal sorting complex required for transport (ESCRT) machinery is involved in membrane budding processes, such as multivesicular biogenesis and cytokinesis. In HIV-infected cells, HIV-1 hijacks the ESCRT machinery to drive HIV release. Early in the HIV-1 assembly process, the ESCRT-I protein Tsg101 and the ESCRT-related protein ALIX are recruited to the assembly site. Further downstream, components such as the ESCRT-III proteins CHMP4 and CHMP2 form transient membrane associated lattices, which are involved in virus-host membrane fission. Although various geometries of ESCRT-III assemblies could be observed, the actual membrane constriction and fission mechanism is not fully understood. Fission might be driven from inside the HIV-1 budding neck by narrowing the membranes from the outside by larger lattices surrounding the neck, or from within the bud. Here, we use super-resolution fluorescence microscopy to elucidate the size and structure of the ESCRT components Tsg101, ALIX, CHMP4B and CHMP2A during HIV-1 budding below the diffraction limit. To avoid the deleterious effects of using fusion proteins attached to ESCRT components, we performed measurements on the endogenous protein or, in the case of CHMP4B, constructs modified with the small HA tag. Due to the transient nature of the ESCRT interactions, the fraction of HIV-1 assembly sites with colocalizing ESCRT complexes was low (1.5%-3.4%). All colocalizing ESCRT clusters exhibited closed, circular structures with an average size (full-width at half-maximum) between 45 and 60 nm or a diameter (determined using a Ripley's L-function analysis) of roughly 60 to 100 nm. The size distributions for colocalizing clusters were narrower than for non-colocalizing clusters, and significantly smaller than the HIV-1 bud. Hence, our results support a membrane scission process driven by ESCRT protein assemblies inside a confined structure, such as the bud neck, rather than by large lattices around the neck or in the bud lumen. In the case of ALIX, a cloud of individual molecules surrounding the central clusters was often observed, which we attribute to ALIX molecules incorporated into the nascent HIV-1 Gag shell. Experiments performed using YFP-tagged Tsg101 led to an over 10-fold increase in ESCRT structures colocalizing with HIV-1 budding sites indicating an influence of the fusion protein tag on the function of the ESCRT protein.
Collapse
|
79
|
Role of the nucleocapsid domain in HIV-1 Gag oligomerization and trafficking to the plasma membrane: a fluorescence lifetime imaging microscopy investigation. J Mol Biol 2015; 427:1480-1494. [PMID: 25644662 DOI: 10.1016/j.jmb.2015.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 11/20/2022]
Abstract
The Pr55 Gag of human immunodeficiency virus type 1 orchestrates viral particle assembly in producer cells, which requires the genomic RNA and a lipid membrane as scaffolding platforms. The nucleocapsid (NC) domain with its two invariant CCHC zinc fingers flanked by unfolded basic sequences is thought to direct genomic RNA selection, dimerization and packaging during virus assembly. To further investigate the role of NC domain, we analyzed the assembly of Gag with deletions in the NC domain in parallel with that of wild-type Gag using fluorescence lifetime imaging microscopy combined with Förster resonance energy transfer in HeLa cells. We found that, upon binding to nucleic acids, the NC domain promotes the formation of compact Gag oligomers in the cytoplasm. Moreover, the intracellular distribution of the population of oligomers further suggests that oligomers progressively assemble during their trafficking toward the plasma membrane (PM), but with no dramatic changes in their compact arrangement. This ultimately results in the accumulation at the PM of closely packed Gag oligomers that likely arrange in hexameric lattices, as revealed by the perfect match between the experimental Förster resonance energy transfer value and the one calculated from the structural model of Gag in immature viruses. The distal finger and flanking basic sequences, but not the proximal finger, appear to be essential for Gag oligomer compaction and membrane binding. Moreover, the full NC domain was found to be instrumental in the kinetics of Gag oligomerization and intracellular trafficking. These findings further highlight the key roles played by the NC domain in virus assembly.
Collapse
|
80
|
Abstract
Illustrations of the HIV Life Cycle. The illustrations include proteins, nucleic acids and membranes; small molecules and water are omitted for clarity. Host cell molecules are shown in shades of blue and green and blood plasma proteins are shown in shades of tan and brown. HIV proteins are shown in red and magenta, HIV RNA is in yellow and HIV DNA is in yellow-green. The 3D model of the mature virion was generated using CellPACK by Graham Johnson Illustrations of the major steps of HIV life cycle are presented that integrate information from structural and biophysical studies. The illustrations depict HIV and its interaction with its cellular host at a magnification that reveals all macromolecules. This report describes the sources of scientific support for the structures and processes shown in the illustrations.
Collapse
Affiliation(s)
- David S Goodsell
- Department of Integrative Structural and Computational Biology and RCSB Protein Data Bank, The Scripps Research Institute, La Jolla, 92037, CA, USA,
| |
Collapse
|
81
|
Abstract
The self-assembly of virus-like particles may lead to materials which combine the unique characteristics of viruses, such as precise size control and responsivity to environmental cues, with the properties of abiotic cargo. For a few different viruses, shell proteins are amenable to the in vitro encapsulation of non-genomic cargo in a regular protein cage. In this chapter we describe protocols of high-efficiency in vitro self-assembly around functionalized gold nanoparticles for three examples of icosahedral and non-icosahedral viral protein cages derived from a plant virus, an animal virus, and a human retrovirus. These protocols can be readily adapted with small modifications to work for a broad variety of inorganic and organic nanoparticles.
Collapse
Affiliation(s)
- Irina B Tsvetkova
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | | |
Collapse
|
82
|
Tedbury PR, Freed EO. HIV-1 gag: an emerging target for antiretroviral therapy. Curr Top Microbiol Immunol 2015; 389:171-201. [PMID: 25731773 DOI: 10.1007/82_2015_436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The advances made in the treatment of HIV-1 infection represent a major success of modern biomedical research, prolonging healthy life and reducing virus transmission. There remain, however, many challenges relating primarily to side effects of long-term therapy and the ever-present danger of the emergence of drug-resistant strains. To counter these threats, there is a continuing need for new and better drugs, ideally targeting multiple independent steps in the HIV-1 replication cycle. The most successful current drugs target the viral enzymes: protease (PR), reverse transcriptase (RT), and integrase (IN). In this review, we outline the advances made in targeting the Gag protein and its mature products, particularly capsid and nucleocapsid, and highlight possible targets for future pharmacological intervention.
Collapse
Affiliation(s)
- Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Center for Cancer Research, Frederick, MD, 21702-1201, USA
| | | |
Collapse
|
83
|
Gui D, Gupta S, Xu J, Zandi R, Gill S, Huang IC, Rao ALN, Mohideen U. A novel minimal in vitro system for analyzing HIV-1 Gag-mediated budding. J Biol Phys 2014; 41:135-49. [PMID: 25515930 DOI: 10.1007/s10867-014-9370-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022] Open
Abstract
A biomimetic minimalist model membrane was used to study the mechanism and kinetics of cell-free in vitro HIV-1 Gag budding from a giant unilamellar vesicle (GUV). Real-time interaction of Gag, RNA, and lipid, leading to the formation of mini-vesicles, was measured using confocal microscopy. Gag forms resolution-limited punctae on the GUV lipid membrane. Introduction of the Gag and urea to a GUV solution containing RNA led to the budding of mini-vesicles on the inside surface of the GUV. The GUV diameter showed a linear decrease in time due to bud formation. Both bud formation and decrease in GUV size were proportional to Gag concentration. In the absence of RNA, addition of urea to GUVs incubated with Gag also resulted in subvesicle formation. These observations suggest the possibility that clustering of GAG proteins leads to membrane invagination even in the absence of host cell proteins. The method presented here is promising, and allows for systematic study of the dynamics of assembly of immature HIV and help classify the hierarchy of factors that impact the Gag protein initiated assembly of retroviruses such as HIV.
Collapse
Affiliation(s)
- Dong Gui
- Department of Physics & Astronomy, University of California, Riverside, CA, 92521, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Fricke T, Buffone C, Opp S, Valle-Casuso J, Diaz-Griffero F. BI-2 destabilizes HIV-1 cores during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid. Retrovirology 2014; 11:120. [PMID: 25496772 PMCID: PMC4271331 DOI: 10.1186/s12977-014-0120-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023] Open
Abstract
Background The recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74. Although both drugs bind to the same pocket, it has been proposed that BI-2 uses a different mechanism to block HIV-1 infection when compared to PF74. Findings This work demonstrates that BI-2 destabilizes the HIV-1 core during infection, and prevents the binding of the cellular factor CPSF6 to the HIV-1 core. Conclusions Overall this short-form paper suggests that BI-2 is using a similar mechanism to the one used by PF74 to block HIV-1 infection.
Collapse
Affiliation(s)
- Thomas Fricke
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, Bronx, NY, 10461, USA.
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, Bronx, NY, 10461, USA.
| | - Silvana Opp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, Bronx, NY, 10461, USA.
| | - Jose Valle-Casuso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, Bronx, NY, 10461, USA.
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, Bronx, NY, 10461, USA. .,Albert Einstein College of Medicine, 1301 Morris Park - Price Center 501, New York, NY, 10461, USA.
| |
Collapse
|
85
|
Esteva MJ, Affranchino JL, González SA. Lentiviral Gag assembly analyzed through the functional characterization of chimeric simian immunodeficiency viruses expressing different domains of the feline immunodeficiency virus capsid protein. PLoS One 2014; 9:e114299. [PMID: 25462889 PMCID: PMC4252113 DOI: 10.1371/journal.pone.0114299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/07/2014] [Indexed: 12/18/2022] Open
Abstract
To gain insight into the functional relationship between the capsid (CA) domains of the Gag polyproteins of simian and feline immunodeficiency viruses (SIV and FIV, respectively), we constructed chimeric SIVs in which the CA-coding region was partially or totally replaced by the equivalent region of the FIV CA. The phenotypic characterization of the chimeras allowed us to group them into three categories: the chimeric viruses that, while being assembly-competent, exhibit a virion-associated unstable FIV CA; a second group represented only by the chimeric SIV carrying the N-terminal domain (NTD) of the FIV CA which proved to be assembly-defective; and a third group constituted by the chimeric viruses that produce virions exhibiting a mature and stable FIV CA protein, and which incorporate the envelope glycoprotein and contain wild-type levels of viral genome RNA and reverse transcriptase. Further analysis of the latter group of chimeric SIVs demonstrated that they are non-infectious due to a post-entry impairment, such as uncoating of the viral core, reverse transcription or nuclear import of the preintegration complex. Furthermore, we show here that the carboxyl-terminus domain (CTD) of the FIV CA has an intrinsic ability to dimerize in vitro and form high-molecular-weight oligomers, which, together with our finding that the FIV CA-CTD is sufficient to confer assembly competence to the resulting chimeric SIV Gag polyprotein, provides evidence that the CA-CTD exhibits more functional plasticity than the CA-NTD. Taken together, our results provide relevant information on the biological relationship between the CA proteins of primate and nonprimate lentiviruses.
Collapse
Affiliation(s)
- María J. Esteva
- Laboratorio de Virología, Universidad de Belgrano (UB) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José L. Affranchino
- Laboratorio de Virología, Universidad de Belgrano (UB) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia A. González
- Laboratorio de Virología, Universidad de Belgrano (UB) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
86
|
Tedbury PR, Freed EO. The cytoplasmic tail of retroviral envelope glycoproteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:253-84. [PMID: 25595807 DOI: 10.1016/bs.pmbts.2014.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Retroviruses comprise a large, diverse group that infects a broad range of host organisms. Pathogenicity varies widely; the human immunodeficiency virus is the causative agent of acquired immunodeficiency syndrome, one of the world's leading infectious causes of death, while many nonhuman retroviruses cause cancer in the host. Retroviruses have been studied intensively, and great strides have been made in understanding aspects of retroviral biology. While the principal functions of the viral structural proteins are well understood, there remain many incompletely characterized domains. One of these is the cytoplasmic tail (CT) of the envelope glycoprotein. Several functions of the CT are highly conserved, whereas other properties are unique to a specific retrovirus. For example, the lentiviruses encode envelope glycoproteins with particularly large cytoplasmic domains. The functions of the long lentiviral envelope CT are still being deciphered. The reported functions of retroviral envelope CTs are discussed in this chapter.
Collapse
Affiliation(s)
- Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
87
|
Klasse PJ. Molecular determinants of the ratio of inert to infectious virus particles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:285-326. [PMID: 25595808 DOI: 10.1016/bs.pmbts.2014.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ratio of virus particles to infectious units is a classic measurement in virology and ranges widely from several million to below 10 for different viruses. Much evidence suggests a distinction be made between infectious and infecting particles or virions: out of many potentially infectious virions, few infect under regular experimental conditions, largely because of diffusion barriers. Still, some virions are inert from the start; others become defective through decay. And with increasing cell- and molecular-biological knowledge of each step in the replicative cycle for different viruses, it emerges that many processes entail considerable losses of potential viral infectivity. Furthermore, all-or-nothing assumptions about virion infectivity are flawed and should be replaced by descriptions that allow for spectra of infectious propensities. A more realistic understanding of the infectivity of individual virions has both practical and theoretical implications for virus neutralization, vaccine research, antiviral therapy, and the use of viral vectors.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA.
| |
Collapse
|
88
|
Wu T, Gorelick RJ, Levin JG. Selection of fully processed HIV-1 nucleocapsid protein is required for optimal nucleic acid chaperone activity in reverse transcription. Virus Res 2014; 193:52-64. [PMID: 24954787 PMCID: PMC4252486 DOI: 10.1016/j.virusres.2014.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/14/2022]
Abstract
The mature HIV-1 nucleocapsid protein (NCp7) is generated by sequential proteolytic cleavage of precursor proteins containing additional C-terminal peptides: NCp15 (NCp7-spacer peptide 2 (SP2)-p6); and NCp9 (NCp7-SP2). Here, we compare the nucleic acid chaperone activities of the three proteins, using reconstituted systems that model the annealing and elongation steps in tRNA(Lys3)-primed (-) strong-stop DNA synthesis and subsequent minus-strand transfer. The maximum levels of annealing are similar for all of the proteins, but there are important differences in their ability to facilitate reverse transcriptase (RT)-catalyzed DNA extension. Thus, at low concentrations, NCp9 has the greatest activity, but with increasing concentrations, DNA synthesis is significantly reduced. This finding reflects NCp9's strong nucleic acid binding affinity (associated with the highly basic SP2 domain) as well as its slow dissociation kinetics, which together limit the ability of RT to traverse the nucleic acid template. NCp15 has the poorest activity of the three proteins due to its acidic p6 domain. Indeed, mutants with alanine substitutions for the acidic residues in p6 have improved chaperone function. Collectively, these data can be correlated with the known biological properties of NCp9 and NCp15 mutant virions and help to explain why mature NC has evolved as the critical cofactor for efficient virus replication and long-term viral fitness.
Collapse
Affiliation(s)
- Tiyun Wu
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Judith G Levin
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA.
| |
Collapse
|
89
|
Cytoplasmic dynein promotes HIV-1 uncoating. Viruses 2014; 6:4195-211. [PMID: 25375884 PMCID: PMC4246216 DOI: 10.3390/v6114195] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
Retroviral capsid (CA) cores undergo uncoating during their retrograde transport (toward the nucleus), and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC) using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable) CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating.
Collapse
|
90
|
Schur FKM, Hagen WJH, Rumlová M, Ruml T, Müller B, Kräusslich HG, Briggs JAG. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature 2014; 517:505-8. [PMID: 25363765 DOI: 10.1038/nature13838] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.
Collapse
Affiliation(s)
- Florian K M Schur
- 1] Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany [2] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Michaela Rumlová
- 1] Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, v.v.i., IOCB &Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic [2] Department of Biotechnology, Institute of Chemical Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Barbara Müller
- 1] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany [2] Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- 1] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany [2] Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - John A G Briggs
- 1] Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany [2] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
91
|
Johnson GT, Goodsell DS, Autin L, Forli S, Sanner MF, Olson AJ. 3D molecular models of whole HIV-1 virions generated with cellPACK. Faraday Discuss 2014; 169:23-44. [PMID: 25253262 PMCID: PMC4569901 DOI: 10.1039/c4fd00017j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/19/2014] [Indexed: 12/31/2022]
Abstract
As knowledge of individual biological processes grows, it becomes increasingly useful to frame new findings within their larger biological contexts in order to generate new systems-scale hypotheses. This report highlights two major iterations of a whole virus model of HIV-1, generated with the cellPACK software. cellPACK integrates structural and systems biology data with packing algorithms to assemble comprehensive 3D models of cell-scale structures in molecular detail. This report describes the biological data, modeling parameters and cellPACK methods used to specify and construct editable models for HIV-1. Anticipating that cellPACK interfaces under development will enable researchers from diverse backgrounds to critique and improve the biological models, we discuss how cellPACK can be used as a framework to unify different types of data across all scales of biology.
Collapse
|
92
|
Abstract
UNLABELLED HIV-1 assembles at the plasma membrane of virus-producing cells as an immature, noninfectious particle. Processing of the Gag and Gag-Pol polyproteins by the viral protease (PR) activates the viral enzymes and results in dramatic structural rearrangements within the virion--termed maturation--that are a prerequisite for infectivity. Despite its fundamental importance for viral replication, little is currently known about the regulation of proteolysis and about the dynamics and structural intermediates of maturation. This is due mainly to the fact that HIV-1 release and maturation occur asynchronously both at the level of individual cells and at the level of particle release from a single cell. Here, we report a method to synchronize HIV-1 proteolysis in vitro based on protease inhibitor (PI) washout from purified immature virions, thereby temporally uncoupling virus assembly and maturation. Drug washout resulted in the induction of proteolysis with cleavage efficiencies correlating with the off-rate of the respective PR-PI complex. Proteolysis of Gag was nearly complete and yielded the correct products with an optimal half-life (t(1/2)) of ~5 h, but viral infectivity was not recovered. Failure to gain infectivity following PI washout may be explained by the observed formation of aberrant viral capsids and/or by pronounced defects in processing of the reverse transcriptase (RT) heterodimer associated with a lack of RT activity. Based on our results, we hypothesize that both the polyprotein processing dynamics and the tight temporal coupling of immature particle assembly and PR activation are essential for correct polyprotein processing and morphological maturation and thus for HIV-1 infectivity. IMPORTANCE Cleavage of the Gag and Gag-Pol HIV-1 polyproteins into their functional subunits by the viral protease activates the viral enzymes and causes major structural rearrangements essential for HIV-1 infectivity. This proteolytic maturation occurs concomitant with virus release, and investigation of its dynamics is hampered by the fact that virus populations in tissue culture contain particles at all stages of assembly and maturation. Here, we developed an inhibitor washout strategy to synchronize activation of protease in wild-type virus. We demonstrated that nearly complete Gag processing and resolution of the immature virus architecture are accomplished under optimized conditions. Nevertheless, most of the resulting particles displayed irregular morphologies, Gag-Pol processing was not faithfully reconstituted, and infectivity was not recovered. These data show that HIV-1 maturation is sensitive to the dynamics of processing and also that a tight temporal link between virus assembly and PR activation is required for correct polyprotein processing.
Collapse
|
93
|
Ku PI, Miller AK, Ballew J, Sandrin V, Adler FR, Saffarian S. Identification of pauses during formation of HIV-1 virus like particles. Biophys J 2014; 105:2262-72. [PMID: 24268138 DOI: 10.1016/j.bpj.2013.09.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 09/10/2013] [Accepted: 09/24/2013] [Indexed: 12/11/2022] Open
Abstract
HIV Gag polymerizes on the plasma membrane to form virus like particles (VLPs) that have similar diameters to wild-type viruses. We use multicolor, dual-penetration depth, total internal reflection fluorescence microscopy, which corrects for azimuthal movement, to image the assembly of individual VLPs from the time of nucleation to the recruitment of VPS4 (a component of the endosomal sorting complexes required for transport, and which marks the final stage of VLP assembly). Using a mathematical model for assembly and maximum-likelihood comparison of fits both with and without pauses, we detect pauses during Gag polymerization in 60% of VLPs. Pauses range from 2 to 20 min, with an exponentially distributed duration that is independent of cytosolic Gag concentration. VLPs assembled with late domain mutants of Gag (which do not recruit the key endosomal sorting complexes required for transport proteins Alix or TSG101) exhibit similar pause distributions. These pauses indicate that a single rate-limiting event is required for continuation of assembly. We suggest that pauses are either related to incorporation of defects in the hexagonal Gag lattice during VLP assembly or are caused by shortcomings in interactions of Gag with essential and still undefined cellular components during formation of curvature on the plasma membrane.
Collapse
Affiliation(s)
- Pei-I Ku
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah; Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah
| | | | | | | | | | | |
Collapse
|
94
|
Risco C, de Castro IF, Sanz-Sánchez L, Narayan K, Grandinetti G, Subramaniam S. Three-Dimensional Imaging of Viral Infections. Annu Rev Virol 2014; 1:453-73. [PMID: 26958730 DOI: 10.1146/annurev-virology-031413-085351] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three-dimensional (3D) imaging technologies are beginning to have significant impact in the field of virology, as they are helping us understand how viruses take control of cells. In this article we review several methodologies for 3D imaging of cells and show how these technologies are contributing to the study of viral infections and the characterization of specialized structures formed in virus-infected cells. We include 3D reconstruction by transmission electron microscopy (TEM) using serial sections, electron tomography, and focused ion beam scanning electron microscopy (FIB-SEM). We summarize from these methods selected contributions to our understanding of viral entry, replication, morphogenesis, egress and propagation, and changes in the spatial architecture of virus-infected cells. In combination with live-cell imaging, correlative microscopy, and new techniques for molecular mapping in situ, the availability of these methods for 3D imaging is expected to provide deeper insights into understanding the structural and dynamic aspects of viral infection.
Collapse
Affiliation(s)
- Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain;
| | | | - Laura Sanz-Sánchez
- Cell Structure Laboratory, National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain;
| | - Kedar Narayan
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| | - Giovanna Grandinetti
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| | - Sriram Subramaniam
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| |
Collapse
|
95
|
Role of the nucleocapsid region in HIV-1 Gag assembly as investigated by quantitative fluorescence-based microscopy. Virus Res 2014; 193:78-88. [PMID: 25016037 DOI: 10.1016/j.virusres.2014.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022]
Abstract
The Gag precursor of HIV-1, formed of the four proteic regions matrix (MA), capsid (CA), nucleocapsid (NC) and p6, orchestrates virus morphogenesis. This complex process relies on three major interactions, NC-RNA acting as a scaffold, CA-CA and MA-membrane that targets assembly to the plasma membrane (PM). The characterization of the molecular mechanism of retroviral assembly has extensively benefited from biochemical studies and more recently an important step forward was achieved with the use of fluorescence-based techniques and fluorescently labeled viral proteins. In this review, we summarize the findings obtained with such techniques, notably quantitative-based approaches, which highlight the role of the NC region in Gag assembly.
Collapse
|
96
|
Stauffer S, Rahman SA, de Marco A, Carlson LA, Glass B, Oberwinkler H, Herold N, Briggs JAG, Müller B, Grünewald K, Kräusslich HG. The nucleocapsid domain of Gag is dispensable for actin incorporation into HIV-1 and for association of viral budding sites with cortical F-actin. J Virol 2014; 88:7893-903. [PMID: 24789788 PMCID: PMC4097806 DOI: 10.1128/jvi.00428-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/24/2014] [Indexed: 12/24/2022] Open
Abstract
Actin and actin-binding proteins are incorporated into HIV-1 particles, and F-actin has been suggested to bind the NC domain in HIV-1 Gag. Furthermore, F-actin has been frequently observed in the vicinity of HIV-1 budding sites by cryo-electron tomography (cET). Filamentous structures emanating from viral buds and suggested to correspond to actin filaments have been observed by atomic force microscopy. To determine whether the NC domain of Gag is required for actin association with viral buds and for actin incorporation into HIV-1, we performed comparative analyses of virus-like particles (VLPs) obtained by expression of wild-type HIV-1 Gag or a Gag variant where the entire NC domain had been replaced by a dimerizing leucine zipper [Gag(LZ)]. The latter protein yielded efficient production of VLPs with near-wild-type assembly kinetics and size and exhibited a regular immature Gag lattice. Typical HIV-1 budding sites were detected by using cET in cells expressing either Gag or Gag(LZ), and no difference was observed regarding the association of buds with the F-actin network. Furthermore, actin was equally incorporated into wild-type HIV-1 and Gag- or Gag(LZ)-derived VLPs, with less actin per particle observed than had been reported previously. Incorporation appeared to correlate with the relative intracellular actin concentration, suggesting an uptake of cytosol rather than a specific recruitment of actin. Thus, the NC domain in HIV-1 Gag does not appear to have a role in actin recruitment or actin incorporation into HIV-1 particles. Importance: HIV-1 particles bud from the plasma membrane, which is lined by a network of actin filaments. Actin was found to interact with the nucleocapsid domain of the viral structural protein Gag and is incorporated in significant amounts into HIV-1 particles, suggesting that it may play an active role in virus release. Using electron microscopy techniques, we previously observed bundles of actin filaments near HIV-1 buds, often seemingly in contact with the Gag layer. Here, we show that this spatial association is observed independently of the proposed actin-binding domain of HIV-1. The absence of this domain also did not affect actin incorporation and had a minor effect on the viral assembly rate. Furthermore, actin was not enriched in the virus compared to the average levels in the respective producing cell. Our data argue against a specific recruitment of actin to HIV-1 budding sites by the nucleocapsid domain of Gag.
Collapse
Affiliation(s)
- Sarah Stauffer
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sheikh Abdul Rahman
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Alex de Marco
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Lars-Anders Carlson
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Bärbel Glass
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Heike Oberwinkler
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nikolas Herold
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kay Grünewald
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany Molecular Medicine Partnership Unit, Heidelberg, Germany
| |
Collapse
|
97
|
Murine leukemia virus Gag localizes to the uropod of migrating primary lymphocytes. J Virol 2014; 88:10541-55. [PMID: 24965475 DOI: 10.1128/jvi.01104-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED B and CD4(+) T lymphocytes are natural targets of murine leukemia virus (MLV). Migrating lymphocytes adopt a polarized morphology with a trailing edge designated the uropod. Here, we demonstrate that MLV Gag localizes to the uropod in polarized B cells and CD4(+) T cells. The uropod localization of MLV Gag was dependent on plasma membrane (PM) association and multimerization of Gag but independent of the viral glycoprotein Env. Basic residues in MA that are required for MLV Gag recruitment to virological synapses between HEK293 and XC cells were dispensable for uropod localization in migrating B cells. Ultrastructural studies indicated that both wild-type and basic-residue mutant Gag localized to the outer surface of the PM at the uropod. Late-domain mutant virus particles were seen at the uropod in form of budding-arrested intermediates. Finally, uropods mediated contact between MLV-infected B cells and uninfected T cells to form virological synapses. Our results suggest that MLV, not unlike HIV, accumulates at the uropod of primary lymphocytes to facilitate viral spreading through the formation of uropod-mediated cell-cell contacts. IMPORTANCE Viruses have evolved mechanisms to coordinate their assembly and budding with cell polarity to facilitate their spreading. In this study, we demonstrated that the viral determinants for MLV Gag to localize to the uropod in polarized B cells are distinct from the requirements to localize to virological synapses in transformed cell lines. Basic residues in MA that are required for the Gag localization to virological synapses between HEK293 and XC cells are dispensable for Gag localization to the uropod in primary B cells. Rather, plasma membrane association and capsid-driven multimerization of Gag are sufficient to drive MLV Gag to the uropod. MLV-laden uropods also mediate contacts between MLV-infected B cells and uninfected T cells to form virological synapses. Our results indicate that MLV accumulates at the uropod of primary lymphocytes to facilitate viral spreading through the formation of uropod-mediated cell-cell contacts.
Collapse
|
98
|
Maldonado JO, Martin JL, Mueller JD, Zhang W, Mansky LM. New insights into retroviral Gag-Gag and Gag-membrane interactions. Front Microbiol 2014; 5:302. [PMID: 25009535 PMCID: PMC4068372 DOI: 10.3389/fmicb.2014.00302] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022] Open
Abstract
A critical aspect of viral replication is the assembly of virus particles, which are subsequently released as progeny virus. While a great deal of attention has been focused on better understanding this phase of the viral life cycle, many aspects of the molecular details remain poorly understood. This is certainly true for retroviruses, including that of the human immunodeficiency virus type 1 (HIV-1; a lentivirus) as well as for human T-cell leukemia virus type 1 (HTLV-1; a deltaretrovirus). This review discusses the retroviral Gag protein and its interactions with itself, the plasma membrane and the role of lipids in targeting Gag to virus assembly sites. Recent progress using sophisticated biophysical approaches to investigate – in a comparative manner – retroviral Gag–Gag and Gag–membrane interactions are discussed. Differences among retroviruses in Gag–Gag and Gag–membrane interactions imply dissimilar molecular aspects of the viral assembly pathway, including the interactions of Gag with lipids at the membrane.
Collapse
Affiliation(s)
- José O Maldonado
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 2Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota , Minneapolis, MN, USA
| | - Jessica L Martin
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 3Pharmacology Graduate Program, University of Minnesota Minneapolis, MN, USA
| | - Joachim D Mueller
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 4School of Physics and Astronomy, University of Minnesota Minneapolis, MN, USA
| | - Wei Zhang
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 2Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota , Minneapolis, MN, USA ; 5Characterization Facility, University of Minnesota Minneapolis, MN, USA
| | - Louis M Mansky
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 2Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota , Minneapolis, MN, USA ; 3Pharmacology Graduate Program, University of Minnesota Minneapolis, MN, USA ; 6Department of Microbiology, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
99
|
Müller B, Anders M, Reinstein J. In vitro analysis of human immunodeficiency virus particle dissociation: gag proteolytic processing influences dissociation kinetics. PLoS One 2014; 9:e99504. [PMID: 24915417 PMCID: PMC4051761 DOI: 10.1371/journal.pone.0099504] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/15/2014] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus particles undergo a step of proteolytic maturation, in which the main structural polyprotein Gag is cleaved into its mature subunits matrix (MA), capsid (CA), nucleocapsid (NC) and p6. Gag proteolytic processing is accompanied by a dramatic structural rearrangement within the virion, which is necessary for virus infectivity and has been proposed to proceed through a sequence of dissociation and reformation of the capsid lattice. Morphological maturation appears to be tightly regulated, with sequential cleavage events and two small spacer peptides within Gag playing important roles by regulating the disassembly of the immature capsid layer and formation of the mature capsid lattice. In order to measure the influence of individual Gag domains on lattice stability, we established Förster's resonance energy transfer (FRET) reporter virions and employed rapid kinetic FRET and light scatter measurements. This approach allowed us to measure dissociation properties of HIV-1 particles assembled in eukaryotic cells containing Gag proteins in different states of proteolytic processing. While the complex dissociation behavior of the particles prevented an assignment of kinetic rate constants to individual dissociation steps, our analyses revealed characteristic differences in the dissociation properties of the MA layer dependent on the presence of additional domains. The most striking effect observed here was a pronounced stabilization of the MA-CA layer mediated by the presence of the 14 amino acid long spacer peptide SP1 at the CA C-terminus, underlining the crucial role of this peptide for the resolution of the immature particle architecture.
Collapse
Affiliation(s)
- Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Maria Anders
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jochen Reinstein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
100
|
Tedbury PR, Freed EO. The role of matrix in HIV-1 envelope glycoprotein incorporation. Trends Microbiol 2014; 22:372-8. [PMID: 24933691 DOI: 10.1016/j.tim.2014.04.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022]
Abstract
Incorporation of the viral envelope (Env) glycoprotein is a critical requirement for the production of infectious HIV-1 particles. It has long been appreciated that the matrix (MA) domain of the Gag polyprotein and the cytoplasmic tail of Env are central players in the process of Env incorporation, but the precise mechanisms have been elusive. Several recent developments have thrown light on the contributions of both proteins, prompting a re-evaluation of the role of MA during Env incorporation. The two domains appear to play distinct but complementary roles, with the cytoplasmic tail of Env responsible for directing Env to the site of assembly and the matrix domain accommodating the cytoplasmic tail of Env in the Gag lattice.
Collapse
Affiliation(s)
- Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|