51
|
Leitner L, Shaposhnikov D, Mengel A, Descot A, Julien S, Hoffmann R, Posern G. MAL/MRTF-A controls migration of non-invasive cells by upregulation of cytoskeleton-associated proteins. J Cell Sci 2012; 124:4318-31. [PMID: 22223881 DOI: 10.1242/jcs.092791] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Monomeric actin regulates gene expression through serum response factor (SRF) by inhibiting its transcriptional coactivator myocardin-related transcription factor (MAL/MRTF). Many affected genes encode cytoskeletal components. We have analysed the migratory effects of actin-MAL signalling and of new target genes in non-invasive highly adherent cells. Expression of active MAL impaired migration of both fibroblasts and epithelial cells, whereas dominant-negative constructs and partial knockdown of MAL/MRTF enhanced motility. Knockdown of three newly characterised G-actin-regulated MAL targets, integrin α5, plakophilin 2 (Pkp2) and FHL1, enhanced cell migration. All three were upregulated by external stimulation through actin-MAL-SRF signalling, and MAL and SRF were inducibly recruited to cis-regulatory elements of the integrin α5 and Pkp2 genes. Finally, the reduced migration of epithelial cells stably expressing MAL was partially reversed by knockdown of Pkp2 and FHL1. We conclude that the actin-MAL pathway promotes adhesive gene expression, including integrin α5, Pkp2 and FHL1, and that this is anti-motile for non-invasive cells harbouring high basal activity.
Collapse
Affiliation(s)
- Laura Leitner
- AG Regulation of Gene Expression, Department of Molecular Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
52
|
Nanda V, Miano JM. Leiomodin 1, a new serum response factor-dependent target gene expressed preferentially in differentiated smooth muscle cells. J Biol Chem 2011; 287:2459-67. [PMID: 22157009 DOI: 10.1074/jbc.m111.302224] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Smooth muscle cell (SMC) differentiation is defined largely by a number of cell-restricted genes governed directly by the serum response factor (SRF)/myocardin (MYOCD) transcriptional switch. Here, we describe a new SRF/MYOCD-dependent, SMC-restricted gene known as Leiomodin 1 (Lmod1). Conventional and quantitative RT-PCRs indicate that Lmod1 mRNA expression is enriched in SMC-containing tissues of the mouse, whereas its two paralogs, Lmod2 and Lmod3, exhibit abundant expression in skeletal and cardiac muscle with very low levels in SMC-containing tissues. Western blotting and immunostaining of various adult and embryonic mouse tissues further confirm SMC-specific expression of the LMOD1 protein. Comparative genomic analysis of the human LMOD1 and LMOD2 genes with their respective mouse and rat orthologs shows high conservation between the three exons and several noncoding sequences, including the immediate 5' promoter region. Two conserved CArG boxes are present in both the LMOD1 and LMOD2 promoter regions, although LMOD1 displays much higher promoter activity and is more responsive to SRF/MYOCD stimulation. Gel shift assays demonstrate clear binding between SRF and the two CArG boxes in human LMOD1. Although the CArG boxes in LMOD1 and LMOD2 are similar, only LMOD1 displays SRF or MYOCD-dependent activation. Transgenic mouse studies reveal wild type LMOD1 promoter activity in cardiac and vascular SMC. Such activity is abolished upon mutation of both CArG boxes. Collectively, these data demonstrate that Lmod1 is a new SMC-restricted SRF/MYOCD target gene.
Collapse
Affiliation(s)
- Vivek Nanda
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
53
|
Gullotti L, Czerwitzki J, Kirfel J, Propping P, Rahner N, Steinke V, Kahl P, Engel C, Schüle R, Buettner R, Friedrichs N. FHL2 expression in peritumoural fibroblasts correlates with lymphatic metastasis in sporadic but not in HNPCC-associated colon cancer. J Transl Med 2011; 91:1695-705. [PMID: 21826055 DOI: 10.1038/labinvest.2011.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Four and a half LIM domain protein-2 (FHL2) is a component of the focal adhesion structures and has been suggested to have an important role in cancer progression. This study analyses the role of FHL2 in peritumoural fibroblasts of sporadic and hereditary non-polyposis colorectal cancer (HNPCC). Tissue specimens of 48 sporadic and 49 hereditary colon cancers, respectively, were stained immunohistochemically for FHL2, transforming growth factor (TGF)-β1 ligand and α-SMA. Myofibroblasts at the tumour invasion front co-expressed α-SMA and FHL2. Sporadic colon cancer but not HNPCC cases showed a correlation between TGF-β1 expression of the invading tumour cells and FHL2 staining of peritumoural myofibroblasts. Overexpression of FHL2 in peritumoural myofibroblasts correlated to lymphatic metastasis in sporadic colon cancer but not in HNPCC. In cultured mouse fibroblasts, TGF-β1 treatment induced myofibroblast differentiation, stimulated FHL2 protein expression and elevated number of migratory cells in transwell motility assays, suggesting that FHL2 is regulated downstream of TGF-β. Physical contact of colon cancer cells and myofibroblasts via FHL2-positive focal adhesions was detected in human colon carcinoma tissue and in co-culture assays using sporadic as well as HNPCC-derived tumour cell lines. Our data provide strong evidence for an important role of FHL2 in the progression of colon cancers. Tumour-secreted TGF-β1 stimulates FHL2 protein expression in peritumoural fibroblasts, probably facilitating the invasion of tumour glands into the surrounding tissue by enhanced myofibroblast migration and tight connection of fibroblasts to tumour cells via focal adhesions. These findings are absent in HNPCC-associated colon cancers in vivo and may contribute to a less invasive and more protruding tumour margin of microsatellite instable carcinomas.
Collapse
Affiliation(s)
- Lucia Gullotti
- Institute of Pathology, University of Bonn Medical School, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Kurakula K, van der Wal E, Geerts D, van Tiel CM, de Vries CJM. FHL2 protein is a novel co-repressor of nuclear receptor Nur77. J Biol Chem 2011; 286:44336-43. [PMID: 22049082 DOI: 10.1074/jbc.m111.308999] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three members of the NR4A orphan nuclear receptor subfamily Nur77, Nurr1, and NOR-1, regulate a variety of biological functions including vascular disease and metabolism. In this study, we identified Four and a half LIM domains protein-2 (FHL2) as a novel interacting protein of NR4A nuclear receptors by yeast two-hybrid screen and co-immunoprecipitation studies. Each of the four LIM domains of FHL2 can bind Nur77, and both the amino-terminal domain and the DNA binding domain of Nur77 are involved in the interaction between FHL2 and Nur77. FHL2 represses Nur77 transcriptional activity in a dose-dependent manner, and short hairpin RNA-mediated knockdown of FHL2 results in increased Nur77 transcriptional activity. ChIP experiments on the enolase3 promoter revealed that FHL2 inhibits the association of Nur77 with DNA. FHL2 is highly expressed in human endothelial and smooth muscle cells, but not in monocytes or macrophages. To substantiate functional involvement of FHL2 in smooth muscle cell physiology, we demonstrated that FHL2 overexpression increases the growth of these cells, whereas FHL2 knockdown results in reduced DNA synthesis. Collectively, these studies suggest that association of FHL2 with Nur77 plays a pivotal role in vascular disease.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
55
|
Benson CC, Zhou Q, Long X, Miano JM. Identifying functional single nucleotide polymorphisms in the human CArGome. Physiol Genomics 2011; 43:1038-48. [PMID: 21771879 DOI: 10.1152/physiolgenomics.00098.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Regulatory SNPs (rSNPs) reside primarily within the nonprotein coding genome and are thought to disturb normal patterns of gene expression by altering DNA binding of transcription factors. Nevertheless, despite the explosive rise in SNP association studies, there is little information as to the function of rSNPs in human disease. Serum response factor (SRF) is a widely expressed DNA-binding transcription factor that has variable affinity to at least 1,216 permutations of a 10 bp transcription factor binding site (TFBS) known as the CArG box. We developed a robust in silico bioinformatics screening method to evaluate sequences around RefSeq genes for conserved CArG boxes. Utilizing a predetermined phastCons threshold score, we identified 8,252 strand-specific CArGs within an 8 kb window around the transcription start site of 5,213 genes, including all previously defined SRF target genes. We then interrogated this CArG dataset for the presence of previously annotated common polymorphisms. We found a total of 118 unique CArG boxes harboring a SNP within the 10 bp CArG sequence and 1,130 CArG boxes with SNPs located just outside the CArG element. Gel shift and luciferase reporter assays validated SRF binding and functional activity of several new CArG boxes. Importantly, SNPs within or just outside the CArG box often resulted in altered SRF binding and activity. Collectively, these findings demonstrate a powerful approach to computationally define rSNPs in the human CArGome and provide a foundation for similar analyses of other TFBS. Such information may find utility in genetic association studies of human disease where little insight is known regarding the functionality of rSNPs.
Collapse
Affiliation(s)
- Craig C Benson
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|
56
|
Ng CF, Zhou WJW, Ng PKS, Li MS, Ng YK, Lai PBS, Tsui SKW. Characterization of human FHL2 transcript variants and gene expression regulation in hepatocellular carcinoma. Gene 2011; 481:41-7. [DOI: 10.1016/j.gene.2011.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/15/2011] [Indexed: 11/25/2022]
|
57
|
Mack CP. Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 2011; 31:1495-505. [PMID: 21677292 PMCID: PMC3141215 DOI: 10.1161/atvbaha.110.221135] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/25/2011] [Indexed: 01/05/2023]
Abstract
Extensive studies over the last 30 years have demonstrated that vascular smooth muscle cell (SMC) differentiation and phenotypic modulation is controlled by a dynamic array of environmental cues. The identification of the signaling mechanisms by which these environmental cues regulate SMC phenotype has been more difficult because of our incomplete knowledge of the transcription mechanisms that regulate SMC-specific gene expression. However, recent advances in this area have provided significant insight, and the goal of this review is to summarize the signaling mechanisms by which extrinsic cues control SMC differentiation.
Collapse
Affiliation(s)
- Christopher P Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
58
|
St-Amand J, Yoshioka M, Nishida Y, Tobina T, Shono N, Tanaka H. Effects of mild-exercise training cessation in human skeletal muscle. Eur J Appl Physiol 2011; 112:853-69. [DOI: 10.1007/s00421-011-2036-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 05/30/2011] [Indexed: 01/21/2023]
|
59
|
Ding L, Niu C, Zheng Y, Xiong Z, Liu Y, Lin J, Sun H, Huang K, Yang W, Li X, Ye Q. FHL1 interacts with oestrogen receptors and regulates breast cancer cell growth. J Cell Mol Med 2011; 15:72-85. [PMID: 19840196 PMCID: PMC3822495 DOI: 10.1111/j.1582-4934.2009.00938.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Four and a half LIM protein 1 (FHL1) belongs to the Lin-1, Isl-1 and Mec-3 (LIM)-only protein family and plays important roles in muscle growth and carcinogenesis. However, the biological function of FHL1 remains largely unknown. Here, we show that FHL1 physically and functionally interacted with oestrogen receptors (ERs), which are involved in breast cancer development and progression. FHL1 bound specifically to the activation function-1 domain of ER. Physical interaction of FHL1 and ER is required for FHL1 repression of oestrogen-responsive gene transcription. FHL1 affected recruitment of ER to an oestrogen-responsive promoter and ER binding to an oestrogen-responsive element. Overexpression of FHL1 in breast cancer cells decreased expression of oestrogen-responsive proteins, whereas knockdown of endogenous FHL1 with FHL1 small interfering RNA increased the expression of these proteins. Further analysis of 46 breast cancer samples showed that FHL1 expression negatively associated with oestrogen-responsive gene expression in breast cancer cells. FHL1 inhibited anchorage-dependent and -independent breast cancer cell growth. These results suggest that FHL1 may play an important role in ER signalling as well as breast cancer cell growth regulation.
Collapse
Affiliation(s)
- Lihua Ding
- Department of Molecular Oncology, Beijing Institute of Biotechnology, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
FHL2 exhibits anti-proliferative and anti-apoptotic activities in liver cancer cells. Cancer Lett 2011; 304:97-106. [PMID: 21377781 DOI: 10.1016/j.canlet.2011.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/20/2011] [Accepted: 02/02/2011] [Indexed: 11/20/2022]
Abstract
FHL2 displays tumor promoting or tumor suppressing activities depending on the types of tumor cells. In this study, we demonstrated that FHL2 overexpression inhibits the proliferation of human HCC cells Hep3B through cell cycle regulation by decreasing cyclin D1 expression while increasing the expressions of p21 and p27. FHL2 overexpression also inhibits migration and invasion of Hep3B cells through the regulation of epithelial-mesenchymal transition. Surprisingly, we also demonstrated an antiapoptotic function for FHL2 overexpression with increased resistance to doxorubicin-induced apoptosis, which indicates the separation of anti-proliferative and anti-apoptotic role of FHL2. Taken together, our results indicate FHL2 could exert anti-apoptotic effect independent of tumor growth suppression.
Collapse
|
61
|
Shen X, Mao H, Miao S. Substitution pattern of the CArG element in human and mouse genomes. Genome 2011; 54:144-50. [PMID: 21326370 DOI: 10.1139/g10-105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cis-Elements CArG bound by serum response factor (SRF) are presently being intensively studied, but little is known about the substitution pattern of functional CArG elements. Here, we have performed the first evolutionary analysis of CArGome in the human and mouse genome through bioinformatic methods and statistical tests. We calculated the substitution rate at each site of the functional CArG elements. The results showed that the core sites of the functional CArG elements evolved faster than did the background DNA, indicating that these sites were likely to evolve under positive selection. Moreover, a strong TATA "motif" was evident in the core region within the functional CArG elements in both human and mouse promoters. This motif could probably be a major contribution to the formation of the spatial structure, which was important for CArG-SRF recognition. Thus, the study further revealed the sequence character and substitution pattern of CArG elements and provided useful information for the study of the SRF-binding efficiencies of CArG promoters in functional assays.
Collapse
Affiliation(s)
- Xia Shen
- College of Drug Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China.
| | | | | |
Collapse
|
62
|
Ylipää A, Yli-Harja O, Zhang W, Nykter M. A systems biological approach to identify key transcription factors and their genomic neighborhoods in human sarcomas. CHINESE JOURNAL OF CANCER 2011; 30:27-40. [PMID: 21192842 PMCID: PMC4012261 DOI: 10.5732/cjc.010.10541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 11/29/2010] [Accepted: 12/10/2010] [Indexed: 11/29/2022]
Abstract
Identification of genetic signatures is the main objective for many computational oncology studies. The signature usually consists of numerous genes that are differentially expressed between two clinically distinct groups of samples, such as tumor subtypes. Prospectively, many signatures have been found to generalize poorly to other datasets and, thus, have rarely been accepted into clinical use. Recognizing the limited success of traditionally generated signatures, we developed a systems biology-based framework for robust identification of key transcription factors and their genomic regulatory neighborhoods. Application of the framework to study the differences between gastrointestinal stromal tumor (GIST) and leiomyosarcoma (LMS) resulted in the identification of nine transcription factors (SRF, NKX2-5, CCDC6, LEF1, VDR, ZNF250, TRIM63, MAF, and MYC). Functional annotations of the obtained neighborhoods identified the biological processes which the key transcription factors regulate differently between the tumor types. Analyzing the differences in the expression patterns using our approach resulted in a more robust genetic signature and more biological insight into the diseases compared to a traditional genetic signature.
Collapse
Affiliation(s)
- Antti Ylipää
- Department of Signal Processing, Tampere University of Technology, Tampere 33101, Finland;
| | - Olli Yli-Harja
- Department of Signal Processing, Tampere University of Technology, Tampere 33101, Finland;
| | - Wei Zhang
- Department of Signal Processing, Tampere University of Technology, Tampere 33101, Finland;
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Matti Nykter
- Department of Signal Processing, Tampere University of Technology, Tampere 33101, Finland;
| |
Collapse
|
63
|
Vialou V, Maze I, Renthal W, LaPlant QC, Watts EL, Mouzon E, Ghose S, Tamminga CA, Nestler EJ. Serum response factor promotes resilience to chronic social stress through the induction of DeltaFosB. J Neurosci 2010; 30:14585-92. [PMID: 20980616 PMCID: PMC2977979 DOI: 10.1523/jneurosci.2496-10.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/20/2010] [Accepted: 09/14/2010] [Indexed: 01/07/2023] Open
Abstract
The molecular mechanisms underlying stress- and drug-induced neuronal adaptations are incompletely understood. One molecule implicated in such adaptations is ΔFosB, a transcription factor that accumulates in the rodent nucleus accumbens (NAc), a key brain reward region, in response to either chronic stress or repeated exposure to drugs of abuse. The upstream transcriptional mechanisms controlling ΔFosB induction by these environmental stimuli remain elusive. Here, we identify the activity-dependent transcription factor, serum response factor (SRF), as a novel upstream mediator of stress-, but not cocaine-, induced ΔFosB. SRF is downregulated in NAc of both depressed human patients and in mice chronically exposed to social defeat stress. This downregulation of SRF is absent in resilient animals. Through the use of inducible mutagenesis, we show that stress-mediated induction of ΔFosB, which occurs predominantly in resilient mice, is dependent on SRF expression in this brain region. Furthermore, NAc-specific genetic deletion of SRF promotes a variety of prodepressant- and proanxiety-like phenotypes and renders animals more sensitive to the deleterious effects of chronic stress. In contrast, we demonstrate that SRF does not play a role in ΔFosB accumulation in NAc in response to chronic cocaine exposure. Furthermore, NAc-specific knock-out of SRF has no effect on cocaine-induced behaviors, indicating that chronic social defeat stress and repeated cocaine exposure regulate ΔFosB accumulation and behavioral sensitivity through independent mechanisms.
Collapse
Affiliation(s)
- Vincent Vialou
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, and
| | - Ian Maze
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, and
| | - William Renthal
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Quincey C. LaPlant
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, and
| | - Emily L. Watts
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, and
| | - Ezekiell Mouzon
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, and
| | - Subroto Ghose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Carol A. Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Eric J. Nestler
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, and
| |
Collapse
|
64
|
Abstract
Serum response factor (SRF) is a ubiquitously expressed transcription factor that binds to a DNA cis element known as the CArG box, which is found in the proximal regulatory regions of over 200 experimentally validated target genes. Genetic deletion of SRF is incompatible with life in a variety of animals from different phyla. In mice, loss of SRF throughout the early embryo results in gastrulation defects precluding analyses in individual organ systems. Genetic inactivation studies using conditional or inducible promoters directing the expression of the bacteriophage Cre recombinase have shown a vital role for SRF in such cellular processes as contractility, cell migration, synaptic activity, inflammation, and cell survival. A growing number of experimental and human diseases are associated with changes in SRF expression, suggesting that SRF has a role in the pathogenesis of disease. This review summarizes data from experimental model systems and human pathology where SRF expression is either deliberately or naturally altered.
Collapse
|
65
|
Wu W, Huang X, Cheng J, Li Z, de Folter S, Huang Z, Jiang X, Pang H, Tao S. Conservation and evolution in and among SRF- and MEF2-type MADS domains and their binding sites. Mol Biol Evol 2010; 28:501-11. [PMID: 20724380 DOI: 10.1093/molbev/msq214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Serum response factor (SRF) and myocyte enhancer factor 2 (MEF2) represent two types of members of the MCM1, AGAMOUS, DEFICIENS, and SRF (MADS)-box transcription factor family present in animals and fungi. Each type has distinct biological functions, which are reflected by the distinct specificities of the proteins bound to their cognate DNA-binding sites and activated by their respective cofactors. However, little is known about the evolution of MADS domains and their DNA-binding sites. Here, we report on the conservation and evolution of the two types of MADS domains with their cognate DNA-binding sites by using phylogenetic analyses. First, there are great similarities between the two types of proteins with amino acid positions highly conserved, which are critical for binding to the DNA sequence and for the maintenance of the 3D structure. Second, in contrast to MEF2-type MADS domains, distinct conserved residues are present at some positions in SRF-type MADS domains, determining specificity and the configuration of the MADS domain bound to DNA sequences. Furthermore, the ancestor sequence of SRF- and MEF2-type MADS domains is more similar to MEF2-type MADS domains than to SRF-type MADS domains. In the case of DNA-binding sites, the MEF2 site has a T-rich core in one DNA sequence and an A-rich core in the reverse sequence as compared with the SRF site, no matter whether where either A or T is present in the two complementary sequences. In addition, comparing SRF sites in the human and the mouse genomes reveals that the evolution rate of CArG-boxes is faster in mouse than in human. Moreover, interestingly, a CArG-like sequence, which is probably functionless, could potentially mutate to a functional CArG-box that can be bound by SRF and vice versa. Together, these results significantly improve our knowledge on the conservation and evolution of the MADS domains and their binding sites to date and provide new insights to investigate the MADS family, which is not only on evolution of MADS factors but also on evolution of their binding sites and even on coevolution of MADS factors with their binding sites.
Collapse
Affiliation(s)
- Wenwu Wu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA, DiMaio JM, Sadek H, Kuwahara K, Olson EN. Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res 2010; 107:294-304. [PMID: 20558820 PMCID: PMC2921870 DOI: 10.1161/circresaha.110.223172] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RATIONALE Myocardial infarction (MI) results in loss of cardiac myocytes in the ischemic zone of the heart, followed by fibrosis and scar formation, which diminish cardiac contractility and impede angiogenesis and repair. Myofibroblasts, a specialized cell type that switches from a fibroblast-like state to a contractile, smooth muscle-like state, are believed to be primarily responsible for fibrosis of the injured heart and other tissues, although the transcriptional mediators of fibrosis and myofibroblast activation remain poorly defined. Myocardin-related transcription factors (MRTFs) are serum response factor (SRF) cofactors that promote a smooth muscle phenotype and are emerging as components of stress-responsive signaling. OBJECTIVE We aimed to examine the effect of MRTF-A on cardiac remodeling and fibrosis. METHODS AND RESULTS Here, we show that MRTF-A controls the expression of a fibrotic gene program that includes genes involved in extracellular matrix production and smooth muscle cell differentiation in the heart. In MRTF-A-null mice, fibrosis and scar formation following MI or angiotensin II treatment are dramatically diminished compared with wild-type littermates. This protective effect of MRTF-A deletion is associated with a reduction in expression of fibrosis-associated genes, including collagen 1a2, a direct transcriptional target of SRF/MRTF-A. CONCLUSIONS We conclude that MRTF-A regulates myofibroblast activation and fibrosis in response to the renin-angiotensin system and post-MI remodeling.
Collapse
Affiliation(s)
- Eric M. Small
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey E. Thatcher
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lillian B. Sutherland
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hideyuki Kinoshita
- Department of Medicine and Clinical Science Kyoto Graduate School of Medicine, Kyoto, Japan
| | - Robert D. Gerard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James A. Richardson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - J. Michael DiMaio
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hesham Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Koichiro Kuwahara
- Department of Medicine and Clinical Science Kyoto Graduate School of Medicine, Kyoto, Japan
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
67
|
Sp1 upregulates the four and half lim 2 (FHL2) expression in gastrointestinal cancers through transcription regulation. Mol Carcinog 2010; 49:826-36. [PMID: 20607723 DOI: 10.1002/mc.20659] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
68
|
König K, Diehl L, Rommerscheidt-Fuss U, Golletz C, Quast T, Kahl P, Kolanus W, Knolle P, Buettner R, Heukamp LC. Four-and-a-Half LIM Domain Protein 2 Is a Novel Regulator of Sphingosine 1-Phosphate Receptor 1 in CCL19-Induced Dendritic Cell Migration. THE JOURNAL OF IMMUNOLOGY 2010; 185:1466-75. [DOI: 10.4049/jimmunol.0903449] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
69
|
Castano E, Philimonenko VV, Kahle M, Fukalová J, Kalendová A, Yildirim S, Dzijak R, Dingová-Krásna H, Hozák P. Actin complexes in the cell nucleus: new stones in an old field. Histochem Cell Biol 2010; 133:607-26. [PMID: 20443021 DOI: 10.1007/s00418-010-0701-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2010] [Indexed: 01/13/2023]
Abstract
Actin is a well-known protein that has shown a myriad of activities in the cytoplasm. However, recent findings of actin involvement in nuclear processes are overwhelming. Actin complexes in the nucleus range from very dynamic chromatin-remodeling complexes to structural elements of the matrix with single partners known as actin-binding proteins (ABPs). This review summarizes the recent findings of actin-containing complexes in the nucleus. Particular attention is given to key processes like chromatin remodeling, transcription, DNA replication, nucleocytoplasmic transport and to actin roles in nuclear architecture. Understanding the mechanisms involving ABPs will definitely lead us to the principles of the regulation of gene expression performed via concerting nuclear and cytoplasmic processes.
Collapse
Affiliation(s)
- E Castano
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Olson EN, Nordheim A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 2010; 11:353-65. [PMID: 20414257 PMCID: PMC3073350 DOI: 10.1038/nrm2890] [Citation(s) in RCA: 785] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous physiological and pathological stimuli promote the rearrangement of the actin cytoskeleton, thereby modulating cellular motile functions. Although it seems intuitively obvious that cell motility requires coordinated protein biosynthesis, until recently the linkage between cytoskeletal actin dynamics and correlated gene activities remained unknown. This knowledge gap was filled in part by the discovery that globular actin polymerization liberates myocardin-related transcription factor (MRTF) cofactors, thereby inducing the nuclear transcription factor serum response factor (SRF) to modulate the expression of genes encoding structural and regulatory effectors of actin dynamics. This insight stimulated research to better understand the actin-MRTF-SRF circuit and to identify alternative mechanisms that link cytoskeletal dynamics and genome activity.
Collapse
Affiliation(s)
- Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | |
Collapse
|
71
|
Labalette C, Nouët Y, Levillayer F, Colnot S, Chen J, Claude V, Huerre M, Perret C, Buendia MA, Wei Y. Deficiency of the LIM-only protein FHL2 reduces intestinal tumorigenesis in Apc mutant mice. PLoS One 2010; 5:e10371. [PMID: 20442768 PMCID: PMC2860980 DOI: 10.1371/journal.pone.0010371] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/17/2010] [Indexed: 11/18/2022] Open
Abstract
Background The four and a half LIM-only protein 2 (FHL2) is capable of shuttling between focal adhesion and nucleus where it signals through direct interaction with a number of proteins including β-catenin. Although FHL2 activation has been found in various human cancers, evidence of its functional contribution to carcinogenesis has been lacking. Methodology/Principal Findings Here we have investigated the role of FHL2 in intestinal tumorigenesis in which activation of the Wnt pathway by mutations in the adenomatous polyposis coli gene (Apc) or in β-catenin constitutes the primary transforming event. In this murine model, introduction of a biallelic deletion of FHL2 into mutant ApcΔ14/+ mice substantially reduces the number of intestinal adenomas but not tumor growth, suggesting a role of FHL2 in the initial steps of tumorigenesis. In the lesions, Wnt signalling is not affected by FHL2 deficiency, remaining constitutively active. Nevertheless, loss of FHL2 activity is associated with increased epithelial cell migration in intestinal epithelium, which might allow to eliminate more efficiently deleterious cells and reduce the risk of tumorigenesis. This finding may provide a mechanistic basis for tumor suppression by FHL2 deficiency. In human colorectal carcinoma but not in low-grade dysplasia, we detected up-regulation and enhanced nuclear localization of FHL2, indicating the activation of FHL2 during the development of malignancy. Conclusions/Significance Our data demonstrate that FHL2 represents a critical factor in intestinal tumorigenesis.
Collapse
Affiliation(s)
- Charlotte Labalette
- Département de Virologie, Institut Pasteur, Paris, France
- Inserm U579, Paris, France
| | - Yann Nouët
- Département de Virologie, Institut Pasteur, Paris, France
- Inserm U579, Paris, France
| | - Florence Levillayer
- Département de Virologie, Institut Pasteur, Paris, France
- Inserm U579, Paris, France
| | - Sabine Colnot
- Département d'Endocrinologie Métabolisme et Cancer, Institut Cochin, Paris, France
- Inserm U567, Paris, France
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Valere Claude
- Département d'Anapathologie, Hôpital Bégin, Saint Mandé, France
| | - Michel Huerre
- Département d'Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Christine Perret
- Département d'Endocrinologie Métabolisme et Cancer, Institut Cochin, Paris, France
- Inserm U567, Paris, France
| | - Marie-Annick Buendia
- Département de Virologie, Institut Pasteur, Paris, France
- Inserm U579, Paris, France
| | - Yu Wei
- Département de Virologie, Institut Pasteur, Paris, France
- Inserm U579, Paris, France
- * E-mail:
| |
Collapse
|
72
|
Zheng B, Han M, Wen JK. Role of Krüppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells. IUBMB Life 2010; 62:132-9. [PMID: 20073036 DOI: 10.1002/iub.298] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phenotypic switching and proliferation of vascular smooth muscle cells (VSMCs) are critical components in the development of many vascular proliferation diseases such as atherosclerosis and restenosis after percutaneous coronary interventions. Krüppel-like factor 4 (KLF4) has been shown to play a key role in VSMC proliferation and differentiation. The focus of this review is to provide an overview for understanding the physiological and pathobiological roles of KLF4 in phenotypic switching and proliferation of VSMCs.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | | | | |
Collapse
|
73
|
Abstract
Regulatory and other networks in the cell change in a highly dynamic way over time and in response to internal and external stimuli. While several different types of high-throughput experimental procedures are available to study systems in the cell, most only measure static properties of such networks. Information derived from sequence data is inherently static, and most interaction data sets are measured in a static way as well. In this chapter we discuss one of the few abundant sources for temporal information, time series expression data. We provide an overview of the methods suggested for clustering this type of data to identify functionally related genes. We also discuss methods for inferring causality and interactions using lagged correlations and regression analysis. Finally, we present methods for combining time series expression data with static data to reconstruct dynamic regulatory networks. We point to software tools implementing the methods discussed in this chapter. As more temporal measurements become available, the importance of analyzing such data and of combining it with other types of data will greatly increase.
Collapse
Affiliation(s)
- Anthony Gitter
- Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
74
|
Blaker AL, Taylor JM, Mack CP. PKA-dependent phosphorylation of serum response factor inhibits smooth muscle-specific gene expression. Arterioscler Thromb Vasc Biol 2009; 29:2153-60. [PMID: 19778940 DOI: 10.1161/atvbaha.109.197285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our goal was to identify phosphorylation sites that regulate serum response factor (SRF) activity to gain a better understanding of the signaling mechanisms that regulate SRF's involvement in smooth muscle cell (SMC)-specific and early response gene expression. METHODS AND RESULTS By screening phosphorylation-deficient and mimetic mutations in SRF(-/-) embryonic stem cells, we identified T159 as a phosphorylation site that significantly inhibits SMC-specific gene expression in an embryonic stem cell model of SMC differentiation. This residue conforms to a highly conserved consensus cAMP-dependent protein kinase (PKA) site, and in vitro and in vivo labeling studies demonstrated that it was phosphorylated by PKA. Results from gel shift and chromatin immunoprecipitation assays demonstrated that T159 phosphorylation inhibited SRF binding to SMC-specific CArG elements. Interestingly, the myocardin factors could at least partially rescue the effects of the T159D mutation under some conditions, but this response was promoter specific. Finally, PKA signaling had much less of an effect on c-fos promoter activity and SRF binding to the c-fos CArG. CONCLUSIONS Our results indicate that phosphorylation of SRF by PKA inhibits SMC-specific transcription suggesting a novel signaling mechanism for the control of SMC phenotype.
Collapse
Affiliation(s)
- Alicia L Blaker
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | | | | |
Collapse
|
75
|
Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery. Genome Res 2009; 19:1963-73. [PMID: 19687146 DOI: 10.1101/gr.093047.109] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transcription factors play an important role in orchestrating the activation of specific networks of genes through targeting their proximal promoter and distal enhancer regions. However, it is unclear how the specificity of downstream responses is maintained by individual members of transcription-factor families and, in most cases, what their target repertoire is. We have used ChIP-chip analysis to identify the target genes of the ETS-domain transcription factor ELK1. Two distinct modes of ELK1 target gene selection are identified; the first involves redundant promoter binding with other ETS-domain family members; the second occurs through combinatorial binding with a second transcription factor SRF, which specifies a unique group of target genes. One of the most prominent groups of genes forming the ELK1 target network includes classes involved in core gene expression control, namely, components of the basal transcriptional machinery, the spliceosome and the ribosome. Amongst the set of genes encoding the basal transcription machinery components, are a functionally linked subset of GTFs and TAFs. Our study, therefore, reveals an unsuspected level of coordinate regulation of components of the core gene expression control machinery and also identifies two different modes of promoter targeting through binding with a second transcription factor or redundant binding with other ETS-domain family members.
Collapse
|
76
|
Descot A, Hoffmann R, Shaposhnikov D, Reschke M, Ullrich A, Posern G. Negative Regulation of the EGFR-MAPK Cascade by Actin-MAL-Mediated Mig6/Errfi-1 Induction. Mol Cell 2009; 35:291-304. [DOI: 10.1016/j.molcel.2009.07.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 05/18/2009] [Accepted: 07/25/2009] [Indexed: 01/17/2023]
|
77
|
Knöll B, Nordheim A. Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends Neurosci 2009; 32:432-42. [PMID: 19643506 DOI: 10.1016/j.tins.2009.05.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/18/2009] [Accepted: 05/18/2009] [Indexed: 12/23/2022]
Abstract
Individual transcription factors in the brain frequently display broad functional versatility, thereby controlling multiple cellular outputs. In accordance, neuron-restricted mutagenesis of the murine Srf gene, encoding the transcription factor serum response factor (SRF), revealed numerous SRF functions in the nervous system. First, SRF controls immediate early gene (IEG) activation associated with perception of synaptic activity, learning and memory. Second, processes linked to actin cytoskeletal dynamics are mediated by SRF, such as developmental neuronal migration, outgrowth and pathfinding of neurites, as well as synaptic targeting. Therefore, SRF seems to be instrumental in converting synaptic activity into plasticity-associated structural changes in neuronal connectivities. This highlights the decisive role of SRF in integrating cytoskeletal actin dynamics and nuclear gene expression. Finally, we relate SRF to the multi-functional transcription factor CREB and point out overlapping, distinct and concerted functions of these two transcriptional regulators in the brain.
Collapse
Affiliation(s)
- Bernd Knöll
- Neuronal Gene Expression Laboratory, Eberhard-Karls-University Tübingen, Interfaculty Institute for Cell Biology, Department of Molecular Biology, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| | | |
Collapse
|
78
|
Shen X, Walsh B, Li JJ, Pang HX, Wang WJ, Tao SH. The correlations of the function and positional distribution of the cis-elements CArG around the TSS in the genes of Mus musculus. Genome 2009; 52:217-21. [PMID: 19234549 DOI: 10.1139/g08-117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While many studies of cis-elements CArG bound by serum response factor (SRF) are in progress, little is known about the positional distribution of the functional CArG elements around the transcription start site (TSS) of genes that they influence. We use a validated CArG data set to calculate the distance distribution of functional CArG elements around the TSS. Distances between adjacent CArGs were also analyzed. We compare these distributions with those derived using a control set of randomly selected CArGs (that were not experimentally validated for function). Our results show that most functional CArG elements (108 of 152, 71%) exist upstream of the annotated TSS, with copy number increasing as one moves closer to the TSS. Moreover, the average number of the CArG elements in the CArG-containing genes is significantly more than that in the control genes. Our study extends earlier bioinformatic analyses of functional CArG elements and provides an application of comparative sequence data to the identification of transcription factor binding sites.
Collapse
Affiliation(s)
- Xia Shen
- Bioinformatics Center, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
79
|
Neuman NA, Ma S, Schnitzler GR, Zhu Y, Lagna G, Hata A. The four-and-a-half LIM domain protein 2 regulates vascular smooth muscle phenotype and vascular tone. J Biol Chem 2009; 284:13202-12. [PMID: 19265191 PMCID: PMC2676052 DOI: 10.1074/jbc.m900282200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/23/2009] [Indexed: 01/14/2023] Open
Abstract
In response to vascular injury, differentiated vascular smooth muscle cells (vSMCs) undergo a unique process known as "phenotype modulation," transitioning from a quiescent, "contractile" phenotype to a proliferative, "synthetic" state. We have demonstrated previously that the signaling pathway of bone morphogenetic proteins, members of the transforming growth factor beta family, play a role in the induction and maintenance of a contractile phenotype in human primary pulmonary artery smooth muscle cells. In this study, we show that a four-and-a-half LIM domain protein 2 (FHL2) inhibits transcriptional activation of vSMC-specific genes mediated by the bone morphogenetic protein signaling pathway through the CArG box-binding proteins, such as serum response factor and members of the myocardin (Myocd) family. Interestingly, FHL2 does not affect recruitment of serum response factor or Myocd, however, it inhibits recruitment of a component of the SWI/SNF chromatin remodeling complex, Brg1, and RNA polymerase II, which are essential for the transcriptional activation. This is a novel mechanism of regulation of SMC-specific contractile genes by FHL2. Finally, aortic rings from homozygous FHL2-null mice display abnormalities in both endothelial-dependent and -independent relaxation, suggesting that FHL2 is essential for the regulation of vasomotor tone.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/metabolism
- Blotting, Western
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- COS Cells
- Cells, Cultured
- Chlorocebus aethiops
- Chromatin Assembly and Disassembly
- Chromatin Immunoprecipitation
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Fluorescent Antibody Technique
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/physiology
- Humans
- LIM-Homeodomain Proteins
- Mice
- Mice, Knockout
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle Proteins/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Promoter Regions, Genetic
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcriptional Activation
Collapse
Affiliation(s)
- Nicole A Neuman
- Department of Biochemistry, Tufts University School of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
80
|
Hayashi H, Nakagami H, Takami Y, Koriyama H, Mori M, Tamai K, Sun J, Nagao K, Morishita R, Kaneda Y. FHL-2 suppresses VEGF-induced phosphatidylinositol 3-kinase/Akt activation via interaction with sphingosine kinase-1. Arterioscler Thromb Vasc Biol 2009; 29:909-14. [PMID: 19325137 DOI: 10.1161/atvbaha.108.178541] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE In the functional screening of a human heart cDNA library to identify a novel antiangiogenic factor, the prime candidate gene was "four-and-a-half LIM only protein-2" (FHL-2). The goal of this study is to clear the mechanism of antiangiogenic signaling of FHL-2 in endothelial cells (ECs). METHODS AND RESULTS Overexpressed FHL-2 strongly inhibited vascular endothelial growth factor (VEGF)-induced EC migration. In the angiogenic signaling, we focused on sphingosine kinase-1 (SK1), which produces sphingosine-1-phosphate (S1P), a bioactive sphingolipid, as a potent angiogenic mediator in ECs. Immunoprecipitation and immunostaining analysis showed that FHL-2 might bind to SK1. Importantly, overexpression of FHL-2 in ECs inhibited VEGF-induced SK1 activity, phosphatidylinositol 3-kinase activity, and phosphorylation of Akt and eNOS. In contrast, overexpression of FHL-2 had no effect on S1P-induced Akt phosphorylation. Interestingly, VEGF stimulation decreased the binding of FHL-2 and SK1. Depletion of FHL-2 by siRNA increased EC migration accompanied with SK1 and Akt activation, and increased the expression of VEGF receptor-2 which further enhanced VEGF signaling. Furthermore, injection of FHL-2 mRNA into Xenopus embryos resulted in inhibition of vascular network development, assessed by in situ hybridization with endothelial markers. CONCLUSIONS FHL-2 may regulate phosphatidylinositol 3-kinase/Akt via direct suppression of the SK1-S1P pathway in ECs.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Division of Gene Therapy Science, Department of Geriatric Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Koegel H, von Tobel L, Schäfer M, Alberti S, Kremmer E, Mauch C, Hohl D, Wang XJ, Beer HD, Bloch W, Nordheim A, Werner S. Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice. J Clin Invest 2009; 119:899-910. [PMID: 19307725 DOI: 10.1172/jci37771] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 01/21/2009] [Indexed: 11/17/2022] Open
Abstract
The transcription factor serum response factor (SRF) plays a crucial role in the development of several organs. However, its role in the skin has not been explored. Here, we show that keratinocytes in normal human and mouse skin expressed high levels of SRF but that SRF expression was strongly downregulated in the hyperproliferative epidermis of wounded and psoriatic skin. Keratinocyte-specific deletion within the mouse SRF locus during embryonic development caused edema and skin blistering, and all animals died in utero. Postnatal loss of mouse SRF in keratinocytes resulted in the development of psoriasis-like skin lesions. These lesions were characterized by inflammation, hyperproliferation, and abnormal differentiation of keratinocytes as well as by disruption of the actin cytoskeleton. Ultrastructural analysis revealed markedly reduced cell-cell and cell-matrix contacts and loss of cell compaction in all epidermal layers. siRNA-mediated knockdown of SRF in primary human keratinocytes revealed that the cytoskeletal abnormalities and adhesion defects were a direct consequence of the loss of SRF. In contrast, the hyperproliferation observed in vivo was an indirect effect that was most likely a consequence of the inflammation. These results reveal that loss of SRF disrupts epidermal homeostasis and strongly suggest its involvement in the pathogenesis of hyperproliferative skin diseases, including psoriasis.
Collapse
Affiliation(s)
- Heidi Koegel
- Institute of Cell Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression. Nat Neurosci 2009; 12:418-27. [DOI: 10.1038/nn.2280] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/20/2009] [Indexed: 02/07/2023]
|
83
|
Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol 2009; 11:257-68. [PMID: 19198601 PMCID: PMC6089348 DOI: 10.1038/ncb1833] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 11/26/2008] [Indexed: 01/13/2023]
Abstract
Rho GTPases control cytoskeletal dynamics through cytoplasmic effectors, and regulate transcriptional activation by the Myocardin Related Transcription Factors (MRTFs), coactivators for Serum Response Factor (SRF). We used RNAi to investigate the contribution of the MRTF-SRF pathway to cytoskeletal dynamics in MDA-MB-231 breast carcinoma and B16F2 melanoma cells, where basal MRTF-SRF activity is Rho-dependent. Depletion of MRTFs or SRF reduces cell adhesion, spreading, invasion and motility in culture, without affecting proliferation or inducing apoptosis; MRTF-depleted tumor cell xenografts exhibit reduced cell motility but proliferate normally. MRTF- and SRF-depleted tumor cells fail to colonise the lung from the bloodstream, being unable to persist following their initial arrival at the lung. Only a few genes exhibit MRTF-dependent expression in both cell lines. Two of these, MYH9 (MLC2) and MYL9 (NMHCIIa), are also required for invasion and lung colonisation. Conversely, expression of an activated MRTF increases lung colonisation by poorly metastatic B16F0 cells. Actin-based cell behaviour and experimental metastasis thus requires Rho-dependent nuclear signalling through the MRTF-SRF network.
Collapse
Affiliation(s)
- Souhila Medjkane
- Transcription Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | |
Collapse
|
84
|
Li M, Wang J, Ng SSM, Chan CY, Chen AC, Xia HP, Yew DT, Wong BCY, Chen Z, Kung HF, Lin MCM. The four-and-a-half-LIM protein 2 (FHL2) is overexpressed in gliomas and associated with oncogenic activities. Glia 2008; 56:1328-38. [PMID: 18615633 DOI: 10.1002/glia.20701] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Four-and-a-half-LIM protein 2 (FHL2) is a member of FHL protein family, which plays a crucial role in regulating gene expression, cell survival, and migration. Although its function in oncogenesis appears to be tumor type-specific, its roles in glioma formation and development are yet to be elucidated. In the present study, we demonstrated that the mRNA level of FHL2 was elevated in both low- and high-grade glioma samples. Overexpression of FHL2 stimulated the proliferation, anchorage-independent growth, and migration of human glioblastoma cells. Conversely, FHL2 knockdown by short hairpin RNA (shRNA-FHL2) inhibited glioblastoma cell proliferation and migration. Overexpression of FHL2 increased the tumorigenicity of glioblastoma cells in nude mice and decreased the mRNA levels of p53 and its downstream proapoptotic genes, including p21, Bcl2-associated protein X (Bax), and p53-upregulated modulator of apoptosis. It also enhanced the promoter activities of activator protein-1 (AP-1), human telomerase reverse transcriptase, and survivin genes. Together, these results provide the first evidence that FHL2 contributes to glioma carcinogenesis.
Collapse
Affiliation(s)
- Ming Li
- Department of Chemistry, Open laboratory of Chemical Biology, University of Hong Kong, Hong Kong, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
The LIM-only protein FHL2 mediates ras-induced transformation through cyclin D1 and p53 pathways. PLoS One 2008; 3:e3761. [PMID: 19018287 PMCID: PMC2583050 DOI: 10.1371/journal.pone.0003761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 11/03/2008] [Indexed: 01/26/2023] Open
Abstract
Background Four and a half LIM-only protein 2 (FHL2) has been implicated in multiple signaling pathways that regulate cell growth and tissue homeostasis. We reported previously that FHL2 regulates cyclin D1 expression and that immortalized FHL2-null mouse embryo fibroblasts (MEFs) display reduced levels of cyclin D1 and low proliferative activity. Methodology/Principal Findings Here we address the contribution of FHL2 in cell transformation by investigating the effects of oncogenic Ras in FHL2-null context. We show that H-RasV12 provokes cell cycle arrest accompanied by accumulation of p53 and p16INK4a in immortalized FHL2−/− MEFs. These features contrast sharply with Ras transforming activity in wild type cell lines. We further show that establishment of FHL2-null cell lines differs from conventional immortalization scheme by retaining functional p19ARF/p53 checkpoint that is required for cell cycle arrest imposed by Ras. However, after serial passages of Ras-expressing FHL2−/− cells, dramatic increase in the levels of D-type cyclins and Rb phosphorylation correlates with the onset of cell proliferation and transformation without disrupting the p19ARF/p53 pathway. Interestingly, primary FHL2-null cells overexpressing cyclin D1 undergo a classical immortalization process leading to loss of the p19ARF/p53 checkpoint and susceptibility to Ras transformation. Conclusions/Significance Our findings uncover a novel aspect of cellular responses to mitogenic stimulation and illustrate a critical role of FHL2 in the signalling network that implicates Ras, cyclin D1 and p53.
Collapse
|
86
|
Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 2008; 5:829-34. [PMID: 19160518 PMCID: PMC2917543 DOI: 10.1038/nmeth.1246] [Citation(s) in RCA: 526] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular interactions between protein complexes and DNA mediate essential gene-regulatory functions. Uncovering such interactions by chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-Seq) has recently become the focus of intense interest. We here introduce quantitative enrichment of sequence tags (QuEST), a powerful statistical framework based on the kernel density estimation approach, which uses ChIP-Seq data to determine positions where protein complexes contact DNA. Using QuEST, we discovered several thousand binding sites for the human transcription factors SRF, GABP and NRSF at an average resolution of about 20 base pairs. MEME motif-discovery tool-based analyses of the QuEST-identified sequences revealed DNA binding by cofactors of SRF, providing evidence that cofactor binding specificity can be obtained from ChIP-Seq data. By combining QuEST analyses with Gene Ontology (GO) annotations and expression data, we illustrate how general functions of transcription factors can be inferred.
Collapse
Affiliation(s)
- Anton Valouev
- Department of Pathology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Jeffares DC, Penkett CJ, Bähler J. Rapidly regulated genes are intron poor. Trends Genet 2008; 24:375-8. [PMID: 18586348 DOI: 10.1016/j.tig.2008.05.006] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
We show that genes with rapidly changing expression levels in response to stress contain significantly lower intron densities in yeasts, thale cress and mice. Therefore, we propose that introns can delay regulatory responses and are selected against in genes whose transcripts require rapid adjustment for survival of environmental challenges. These findings could provide an explanation for the apparent extensive intron loss during the evolution of some eukaryotic lineages.
Collapse
|
88
|
Petit MM, Lindskog H, Larsson E, Wasteson P, Athley E, Breuer S, Angstenberger M, Hertfelder D, Mattsson E, Nordheim A, Nelander S, Lindahl P. Smooth Muscle Expression of Lipoma Preferred Partner Is Mediated by an Alternative Intronic Promoter That Is Regulated by Serum Response Factor/Myocardin. Circ Res 2008; 103:61-9. [DOI: 10.1161/circresaha.108.177436] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipoma preferred partner (LPP) was recently recognized as a smooth muscle marker that plays a role in smooth muscle cell migration. In this report, we focus on the transcriptional regulation of the LPP gene. In particular, we investigate whether LPP is directly regulated by serum response factor (SRF). We show that the LPP gene contains 3 evolutionarily conserved CArG boxes and that 1 of these is part of an alternative promoter in intron 2. Quantitative RT-PCR shows that this alternative promoter directs transcription specifically to smooth muscle containing tissues in vivo. By using chromatin immunoprecipitation, we demonstrate that 2 of the CArG boxes, including the promoter-associated CArG box, bind to endogenous SRF in cultured aortic smooth muscle cells. Electrophoretic mobility-shift assays show that the conserved CArG boxes bind SRF in vitro. In reporter experiments, we show that the alternative promoter has transcriptional capacity that is dependent on SRF/myocardin and that the promoter associated CArG box is required for that activity. Finally, we show by quantitative RT-PCR that the alternative promoter is strongly downregulated in SRF-deficient embryonic stem cells and in smooth muscle tissues derived from conditional SRF knockout mice. Collectively, our data demonstrate that expression of LPP in smooth muscle is mediated by an alternative promoter that is regulated by SRF/myocardin.
Collapse
Affiliation(s)
- Marleen M.R. Petit
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Henrik Lindskog
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Erik Larsson
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Per Wasteson
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Elisabeth Athley
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Silke Breuer
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Meike Angstenberger
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - David Hertfelder
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Erney Mattsson
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Alfred Nordheim
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Sven Nelander
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Per Lindahl
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| |
Collapse
|
89
|
|
90
|
Hinson JS, Medlin MD, Taylor JM, Mack CP. Regulation of myocardin factor protein stability by the LIM-only protein FHL2. Am J Physiol Heart Circ Physiol 2008; 295:H1067-H1075. [PMID: 18586895 DOI: 10.1152/ajpheart.91421.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extensive evidence indicates that serum response factor (SRF) regulates muscle-specific gene expression and that myocardin family SRF cofactors are critical for smooth muscle cell differentiation. In a yeast two hybrid screen for novel SRF binding partners expressed in aortic SMC, we identified four and a half LIM domain protein 2 (FHL2) and confirmed this interaction by GST pull-down and coimmunoprecipitation assays. FHL2 also interacted with all three myocardin factors and enhanced myocardin and myocardin-related transcription factor (MRTF)-A-dependent transactivation of smooth muscle alpha-actin, SM22, and cardiac atrial natriuretic factor promoters in 10T1/2 cells. The expression of FHL2 increased myocardin and MRTF-A protein levels, and, importantly, this effect was due to an increase in protein stability not due to an increase in myocardin factor mRNA expression. Treatment of cells with proteasome inhibitors MG-132 and lactacystin strongly upregulated endogenous MRTF-A protein levels and resulted in a substantial increase in ubiquitin immunoreactivity in MRTF-A immunoprecipitants. Interestingly, the expression of FHL2 attenuated the effects of RhoA and MRTF-B on promoter activity, perhaps through decreased MRTF-B nuclear localization or decreased SRF-CArG binding. Taken together, these data indicate that myocardin factors are regulated by proteasome-mediated degradation and that FHL2 regulates SRF-dependent transcription by multiple mechanisms, including stabilization of myocardin and MRTF-A.
Collapse
Affiliation(s)
- Jeremiah S Hinson
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | | | | | | |
Collapse
|
91
|
Sundberg-Smith LJ, DiMichele LA, Thompson RL, Mack CP, Taylor JM. The LIM protein leupaxin is enriched in smooth muscle and functions as an serum response factor cofactor to induce smooth muscle cell gene transcription. Circ Res 2008; 102:1502-11. [PMID: 18497331 PMCID: PMC2785029 DOI: 10.1161/circresaha.107.170357] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leupaxin is a LIM domain-containing adapter protein belonging to the paxillin family that has been previously reported to be preferentially expressed in hematopoietic cells. Herein, we identified leupaxin in a screen for focal adhesion kinase binding partners in aortic smooth muscle, and we show that leupaxin is enriched in human and mouse vascular smooth muscle and that leupaxin expression is dynamically regulated during development. In addition, our studies reveal that leupaxin can undergo cytoplasmic/nuclear shuttling and functions as an serum response factor cofactor in the nucleus. We found that leupaxin forms a complex with serum response factor and associates with CArG-containing regions of smooth muscle promoters and that ectopic expression of leupaxin induces smooth muscle marker gene expression in both 10T1/2 cells and rat aortic smooth muscle cells. Subsequent studies indicated that enhanced focal adhesion kinase activity (induced by fibronectin or expression of constitutively active focal adhesion kinase) attenuates the nuclear accumulation of leupaxin and limits the ability of leupaxin to enhance serum response factor-dependent gene transcription. Thus, these studies indicate that modulation of the subcellular localization of serum response factor cofactors is 1 mechanism by which extracellular matrix-dependent signals may regulate phenotypic switching of smooth muscle cells.
Collapse
Affiliation(s)
| | - Laura A. DiMichele
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599
| | - Rebecca L Thompson
- Department of Physiology, University of North Carolina, Chapel Hill, NC 27599
| | - Christopher P. Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599
- The Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599
| | - Joan M. Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599
- The Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
92
|
Abstract
Remodeling of the actin cytoskeleton through actin dynamics (assembly and disassembly of filamentous actin) is known to be essential for numerous basic biological processes. In addition, recent studies have provided evidence that actin dynamics participate in the control of gene expression. A spontaneous mouse mutant, corneal disease 1 (corn1), is deficient for a regulator of actin dynamics, destrin (DSTN, also known as ADF), which causes epithelial hyperproliferation and neovascularization in the cornea. Dstn(corn1) mice exhibit an actin dynamics defect in the corneal epithelial cells, offering an in vivo model to investigate cellular mechanisms affected by the Dstn mutation and resultant actin dynamics abnormalities. To examine the effect of the Dstn(corn1) mutation on the gene expression profile, we performed a microarray analysis using the cornea from Dstn(corn1) and wild-type mice. A dramatic alteration of the gene expression profile was observed in the Dstn(corn1) cornea, with 1,226 annotated genes differentially expressed. Functional annotation of these genes revealed that the most significantly enriched functional categories are associated with actin and/or cytoskeleton. Among genes that belong to these categories, a considerable number of serum response factor target genes were found, indicating the possible existence of an actin-SRF pathway of transcriptional regulation in vivo. A comparative study using an allelic mutant strain with milder corneal phenotypes suggested that the level of filamentous actin may correlate with the level of gene expression changes. Our study shows that Dstn mutations and resultant actin dynamics abnormalities have a strong impact on the gene expression profile in vivo.
Collapse
Affiliation(s)
| | | | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, U.S.A
| |
Collapse
|
93
|
Labalette C, Nouët Y, Sobczak-Thepot J, Armengol C, Levillayer F, Gendron MC, Renard CA, Regnault B, Chen J, Buendia MA, Wei Y. The LIM-only protein FHL2 regulates cyclin D1 expression and cell proliferation. J Biol Chem 2008; 283:15201-8. [PMID: 18378678 DOI: 10.1074/jbc.m800708200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The LIM-only protein FHL2 acts as a transcriptional modulator that positively or negatively regulates multiple signaling pathways. We recently reported that FHL2 cooperates with CREB-binding protein/p300 in the activation of beta-catenin/T cell factor target gene cyclin D1. In this paper, we demonstrate that FHL2 is associated with the cyclin D1 promoter at the T cell factor/CRE site, providing evidence that cyclin D1 is a direct target of FHL2. We show that deficiency of FHL2 greatly reduces the proliferative capacity of spontaneously immortalized mouse fibroblasts, which is associated with decreased expression of cyclin D1 and p16(INK4a), and hypophosphorylation of Rb. Reexpression of FHL2 in FHL2-null fibroblasts efficiently restores cyclin D1 levels and cell proliferative capacity, indicating that FHL2 is critical for cyclin D1 activation and cell growth. Moreover, ectopic cyclin D1 expression is sufficient to override growth inhibition of immortalized FHL2-null fibroblasts. Gene expression profiling revealed that FHL2 deficiency triggers a broad change of the cell cycle program that is associated with down-regulation of several G(1)/S and G(2)/M cyclins, E2F transcription factors, and DNA replication machinery, thus correlating with reduced cell proliferation. This change also involves down-regulation of the negative cell cycle regulators, particularly INK4 inhibitors, which could counteract the decreased expression of cyclins, allowing cells to grow. Our study illustrates that FHL2 can act on different aspects of the cell cycle program to finely regulate cell proliferation.
Collapse
Affiliation(s)
- Charlotte Labalette
- Unité d'Oncogenèse et Virologie Moléculaire and PT Puce à ADN, Institut Pasteur, 28 Rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Park J, Will C, Martin B, Gullotti L, Friedrichs N, Buettner R, Schneider H, Ludwig S, Wixler V. Deficiency in the LIM-only protein FHL2 impairs assembly of extracellular matrix proteins. FASEB J 2008; 22:2508-20. [PMID: 18356303 DOI: 10.1096/fj.07-095521] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have described the scaffolding protein FHL2 as a component of focal adhesion structures, to which it is recruited via binding to both alpha- or beta-integrin subunits. Using mesenchymal stem cells from wild-type and FHL2-knockout mice, we show here that inactivation of FHL2 leads to impaired assembly of extracellular matrix proteins on the cell surface and to impaired bundling of focal adhesions. Both altered properties can be restored by reexpression of recombinant FHL2 protein in FHL2-null cells. Molecular analysis of integrin-mediated signaling revealed a higher phosphorylation of FAK at tyrosine 925 in FHL2-knockout cells compared to their wild-type counterpart. Consequently, the activation of the mitogenic kinase ERK was more pronounced in knockout cells on cell adhesion. The growth factor-induced activation of ERK, however, was not altered. The perturbed organization of extracellular matrix on FHL2-null cells was improved when the increased activation of MAPK was inhibited. Our findings point to a role of FHL2 in bundling of focal adhesion structures, in integrin-mediated ERK activation, and subsequently in proper allocation of matrix proteins on the cell surface.
Collapse
Affiliation(s)
- Jung Park
- Institute of Molecular Virology, Münster University Hospital Medical School, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Heemers HV, Regan KM, Dehm SM, Tindall DJ. Androgen induction of the androgen receptor coactivator four and a half LIM domain protein-2: evidence for a role for serum response factor in prostate cancer. Cancer Res 2007; 67:10592-9. [PMID: 17975004 DOI: 10.1158/0008-5472.can-07-1917] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) activity is critical for prostate cancer progression. Overexpression of several AR-associated coactivators has been shown to be essential for AR activation during disease progression. The stimuli and signaling pathways leading to overexpression of these coregulators, however, remain largely elusive. Here, we investigated whether androgen signaling, which demarcates critical transitions during prostate cancer disease progression, can affect coregulator expression. We found that expression of four and a half LIM domain protein-2 (FHL2), a key AR coactivator that is overexpressed in prostate cancer and associates with a poor prognosis, is induced strongly by androgens. Androgen induction of this coactivator established a feed-forward mechanism that robustly activated the AR. Stimulation of FHL2 after androgen exposure was time- and dose-dependent and relied on the presence of a functional AR. Androgen induction of FHL2 depended on active transcription of the FHL2 gene, mediated by action of serum response factor (SRF) on its proximal promoter. Loss of SRF, a transcription factor that preferentially regulates the expression of genes involved in mitogenic response and cytoskeletal organization, hampered prostate cancer cell proliferation. These results suggest a novel indirect mechanism of androgen action on FHL2 expression and provide evidence that SRF is an important determinant of AR action in prostate cancer cells.
Collapse
Affiliation(s)
- Hannelore V Heemers
- Department of Urology Research/Biochemistry, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
96
|
Runx2 represses myocardin-mediated differentiation and facilitates osteogenic conversion of vascular smooth muscle cells. Mol Cell Biol 2007; 28:1147-60. [PMID: 18039851 DOI: 10.1128/mcb.01771-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenotypic plasticity and the switching of vascular smooth muscle cells (SMCs) play a critical role in atherosclerosis. Although Runx2, a key osteogenic transcription factor, is expressed in atherosclerotic plaques, the molecular mechanisms by which Runx2 regulates SMC differentiation remain unclear. Here we demonstrated that Runx2 repressed SMC differentiation induced by myocardin, which acts as a coactivator for serum response factor (SRF). Myocardin-mediated induction of SMC gene expression was enhanced in mouse embryonic fibroblasts derived from Runx2 null mice compared to wild-type mice. Forced expression of Runx2 decreased the expression of SMC genes and promoted osteogenic gene expression, whereas the reduction of Runx2 expression by small interfering RNA enhanced SMC differentiation in human aortic SMCs. Runx2 interacted with SRF and interfered with the formation of the SRF/myocardin ternary complex. Thus, this study provides the first evidence that Runx2 inhibits SRF-dependent transcription, as a corepressor independent of its DNA binding. We propose that Runx2 plays a pivotal role in osteogenic conversion tightly coupled with repression of the SMC phenotype in atherosclerotic lesions.
Collapse
|
97
|
Lagna G, Ku MM, Nguyen PH, Neuman NA, Davis BN, Hata A. Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors. J Biol Chem 2007; 282:37244-55. [PMID: 17947237 DOI: 10.1074/jbc.m708137200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs), unlike other muscle cells, do not terminally differentiate. In response to injury, VSMCs change phenotype, proliferate, and migrate as part of the repair process. Dysregulation of this plasticity program contributes to the pathogenesis of several vascular disorders, such as atherosclerosis, restenosis, and hypertension. The discovery of mutations in the gene encoding BMPRII, the type II subunit of the receptor for bone morphogenetic proteins (BMPs), in patients with pulmonary arterial hypertension (PAH) provided an indication that BMP signaling may affect the homeostasis of VSMCs and their phenotype modulation. Here we report that BMP signaling potently induces SMC-specific genes in pluripotent cells and prevents dedifferentiation of arterial SMCs. The BMP-induced phenotype switch requires intact RhoA/ROCK signaling but is not blocked by inhibitors of the TGFbeta and PI3K/Akt pathways. Furthermore, nuclear localization and recruitment of the myocardin-related transcription factors (MRTF-A and MRTF-B) to a smooth muscle alpha-actin promoter is observed in response to BMP treatment. Thus, BMP signaling modulates VSMC phenotype via cross-talk with the RhoA/MRTFs pathway, and may contribute to the development of the pathological characteristics observed in patients with PAH and other obliterative vascular diseases.
Collapse
Affiliation(s)
- Giorgio Lagna
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Asanoma K, Kato H, Yamaguchi S, Shin CH, Liu ZP, Kato K, Inoue T, Miyanari Y, Yoshikawa K, Sonoda K, Fukushima K, Wake N. HOP/NECC1, A Novel Regulator of Mouse Trophoblast Differentiation. J Biol Chem 2007; 282:24065-74. [PMID: 17576768 DOI: 10.1074/jbc.m701380200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homeodomain-only protein/not expressed in choriocarcinoma clone 1 (HOP/NECC1) is a newly identified gene that modifies the expression of cardiac-specific genes and thereby regulates heart development. More recently, HOP/NECC1 was reported to be a suppressor of choriocarcinogenesis. Here, we examined the temporal expression profile of HOP/NECC1 in wild-type mouse placenta. We found that E8.5-E9.5 wild-type placenta expressed HOP/NECC1 in the giant cell and spongiotrophoblast layers. HOP/NECC1 (-/-) placenta exhibited marked propagation of giant cell layers and, in turn reduction of spongiotrophoblast formation. We demonstrated SRF transcriptional activity increased in the differentiating trophoblasts and forced expression of SRF in a trophoblast stem (TS) cell line induces the differentiation into giant cells. Negative regulation of SRF (serum response factor) by the binding of HOP/NECC1 protein contributed at least in part to the generation of these placental defects. Gradual induction of HOP/NECC1 in response to differentiation stimuli may result in the decision to differentiate into a particular type of trophoblastic cell lineage and result in non-lethal defects shown by the HOP/NECC1 (-/-) placentas.
Collapse
Affiliation(s)
- Kazuo Asanoma
- Division of Molecular and Cell Therapeutics, Kyushu University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Freddie CT, Ji Z, Marais A, Sharrocks AD. Functional interactions between the Forkhead transcription factor FOXK1 and the MADS-box protein SRF. Nucleic Acids Res 2007; 35:5203-12. [PMID: 17670796 PMCID: PMC1976435 DOI: 10.1093/nar/gkm528] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The combinatorial control of gene expression by the association of members of different families of transcription factors is a common theme in eukaryotic transcriptional control. The MADS-box transcription factors SRF and Mcm1 represent paradigms for such regulation through their interaction with numerous partner proteins. For example, in Saccharomyces cerevisiae, Mcm1 interacts with the forkhead transcription factor Fkh2. Here, we identify a novel interaction between SRF and the Forkhead transcription factor FOXK1 in human cells. The importance of this interaction is shown for the regulation of the SRF target genes SM alpha-actin and PPGB. The binding of FOXK1 to the SM alpha-actin and PPGB promoters requires the presence of SRF on the promoter. FOXK1 acts as a transcriptional repressor and it represses SM alpha-actin and PPGB expression. Thus FOXK1 represents an additional member of the growing repertoire of transcription factors that can interact with SRF and modulate the transcriptional output from SRF-regulated promoters.
Collapse
Affiliation(s)
- Cecilie T. Freddie
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK and Medizinische Klinik II, Max-Burger-Forschungszentrum, Universitat Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | - Zongling Ji
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK and Medizinische Klinik II, Max-Burger-Forschungszentrum, Universitat Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | - Anett Marais
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK and Medizinische Klinik II, Max-Burger-Forschungszentrum, Universitat Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | - Andrew D. Sharrocks
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK and Medizinische Klinik II, Max-Burger-Forschungszentrum, Universitat Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
- *To whom correspondence should be addressed.+0044 161 275 5979+0044 161 275 5082
| |
Collapse
|
100
|
Fleige A, Alberti S, Gröbe L, Frischmann U, Geffers R, Müller W, Nordheim A, Schippers A. Serum response factor contributes selectively to lymphocyte development. J Biol Chem 2007; 282:24320-8. [PMID: 17591768 DOI: 10.1074/jbc.m703119200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum response factor (SRF), is a crucial transcription factor for murine embryonic development and for the function of muscle cells and neurons. Gene expression data show that SRF and its transcriptional cofactors are also expressed in lymphocyte precursors and mature lymphocytes. However, the role of SRF in lymphocyte development has not been addressed in vivo so far, attributed in part to early embryonic lethality of conventional Srf-null mice. To determine the in vivo role of SRF in developing lymphocytes, we specifically inactivated the murine Srf gene during T or B cell development using lymphocyte-specific Cre transgenic mouse lines. T cell-specific Srf deletion led to a severe block in thymocyte development at the transition from CD4/CD8 double to single positive stage. The few residual T cells detectable in the periphery retained at least one functional Srf allele, thereby demonstrating the importance of SRF in T cell development. In contrast, deletion of Srf in developing B cells did not interfere with the growth and survival of B cells in general, yet led to a complete loss of marginal zone B cells and a marked reduction of the CD5+ B cell subset. Our study also revealed a contribution of SRF to the expression of the surface molecules IgM, CD19, and the chemokine receptor 4 in B lymphocytes. We conclude that SRF fulfills essential and distinct functions in the differentiation of different types of lymphocytes.
Collapse
Affiliation(s)
- Anne Fleige
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|