51
|
Fischer MA, Song Y, Arrate MP, Gbyli R, Villaume MT, Smith BN, Childress MA, Stricker TP, Halene S, Savona MR. Selective inhibition of MCL1 overcomes venetoclax resistance in a murine model of myelodysplastic syndromes. Haematologica 2023; 108:522-531. [PMID: 35979721 PMCID: PMC9890032 DOI: 10.3324/haematol.2022.280631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/11/2022] [Indexed: 02/03/2023] Open
Abstract
Treatment for myelodysplastic syndromes (MDS) remains insufficient due to clonal heterogeneity and lack of effective clinical therapies. Dysregulation of apoptosis is observed across MDS subtypes regardless of mutations and represents an attractive therapeutic opportunity. Venetoclax (VEN), a selective inhibitor of anti-apoptotic protein B-cell lymphoma- 2 (BCL2), has yielded impressive responses in older patients with acute myeloid leukemia (AML) and high risk MDS. BCL2 family anti-apoptotic proteins BCL-XL and induced myeloid cell leukemia 1 (MCL1) are implicated in leukemia survival, and upregulation of MCL1 is seen in VEN-resistant AML and MDS. We determined in vitro sensitivity of MDS patient samples to selective inhibitors of BCL2, BCL-XL and MCL1. While VEN response positively correlated with MDS with excess blasts, all MDS subtypes responded to MCL1 inhibition. Treatment with combined VEN + MCL1 inhibtion was synergistic in all MDS subtypes without significant injury to normal hematopoiesis and reduced MDS engraftment in MISTRG6 mice, supporting the pursuit of clinical trials with combined BCL2 + MCL1 inhibition in MDS.
Collapse
Affiliation(s)
- Melissa A Fischer
- Department of Medicine; Cancer Biology Program, Vanderbilt University School of Medicine
| | - Yuanbin Song
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Smilow Cancer Center, Yale University School of Medicine, New Haven
| | | | - Rana Gbyli
- Smilow Cancer Center, Yale University School of Medicine, New Haven
| | - Matthew T Villaume
- Department of Medicine; Cancer Biology Program, Vanderbilt University School of Medicine
| | - Brianna N Smith
- Department of Medicine; Cancer Biology Program, Vanderbilt University School of Medicine; Department of Pediatrics
| | - Merrida A Childress
- Department of Medicine; Cancer Biology Program, Vanderbilt University School of Medicine
| | - Thomas P Stricker
- Vanderbilt-Ingram Cancer Center; Department of Pathology, Microbiology, and Immunology
| | - Stephanie Halene
- Smilow Cancer Center, Yale University School of Medicine, New Haven
| | - Michael R Savona
- Department of Medicine; Cancer Biology Program, Vanderbilt University School of Medicine; Vanderbilt-Ingram Cancer Center; Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.
| |
Collapse
|
52
|
Panagaki T, Randi EB, Szabo C, Hölscher C. Incretin Mimetics Restore the ER-Mitochondrial Axis and Switch Cell Fate Towards Survival in LUHMES Dopaminergic-Like Neurons: Implications for Novel Therapeutic Strategies in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1149-1174. [PMID: 37718851 PMCID: PMC10657688 DOI: 10.3233/jpd-230030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that afflicts more than 10 million people worldwide. Available therapeutic interventions do not stop disease progression. The etiopathogenesis of PD includes unbalanced calcium dynamics and chronic dysfunction of the axis of the endoplasmic reticulum (ER) and mitochondria that all can gradually favor protein aggregation and dopaminergic degeneration. OBJECTIVE In Lund Human Mesencephalic (LUHMES) dopaminergic-like neurons, we tested novel incretin mimetics under conditions of persistent, calcium-dependent ER stress. METHODS We assessed the pharmacological effects of Liraglutide-a glucagon-like peptide-1 (GLP-1) analog-and the dual incretin GLP-1/GIP agonist DA3-CH in the unfolded protein response (UPR), cell bioenergetics, mitochondrial biogenesis, macroautophagy, and intracellular signaling for cell fate in terminally differentiated LUHMES cells. Cells were co-stressed with the sarcoplasmic reticulum calcium ATPase (SERCA) inhibitor, thapsigargin. RESULTS We report that Liraglutide and DA3-CH analogs rescue the arrested oxidative phosphorylation and glycolysis. They mitigate the suppressed mitochondrial biogenesis and hyper-polarization of the mitochondrial membrane, all to re-establish normalcy of mitochondrial function under conditions of chronic ER stress. These effects correlate with a resolution of the UPR and the deficiency of components for autophagosome formation to ultimately halt the excessive synaptic and neuronal death. Notably, the dual incretin displayed a superior anti-apoptotic effect, when compared to Liraglutide. CONCLUSIONS The results confirm the protective effects of incretin signaling in ER and mitochondrial stress for neuronal degeneration management and further explain the incretin-derived effects observed in PD patients.
Collapse
Affiliation(s)
- Theodora Panagaki
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Elisa B. Randi
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Csaba Szabo
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Christian Hölscher
- Research & Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
53
|
Han H, Hu S, Hu Y, Liu D, Zhou J, Liu X, Ma X, Dong Y. Mitophagy in ototoxicity. Front Cell Neurosci 2023; 17:1140916. [PMID: 36909283 PMCID: PMC9995710 DOI: 10.3389/fncel.2023.1140916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Mitochondrial dysfunction is associated with ototoxicity, which is caused by external factors. Mitophagy plays a key role in maintaining mitochondrial homeostasis and function and is regulated by a series of key mitophagy regulatory proteins and signaling pathways. The results of ototoxicity models indicate the importance of this process in the etiology of ototoxicity. A number of recent investigations of the control of cell fate by mitophagy have enhanced our understanding of the mechanisms by which mitophagy regulates ototoxicity and other hearing-related diseases, providing opportunities for targeting mitochondria to treat ototoxicity.
Collapse
Affiliation(s)
- Hezhou Han
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sainan Hu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Hu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dongliang Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junbo Zhou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Xiaofang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
54
|
The Photoperiod Regulates Granulosa Cell Apoptosis through the FSH-Nodal/ALK7 Signaling Pathway in Phodopus sungorus. Animals (Basel) 2022; 12:ani12243570. [PMID: 36552491 PMCID: PMC9774567 DOI: 10.3390/ani12243570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The photoperiod regulates the seasonal reproduction of mammals by affecting the follicle development, for which the granulosa cells provide nutrition. However, the underlying mechanism remains unclear. Here, Djungarian hamsters (Phodopus sungorus) were raised under different photoperiods to study the ovarian status and explore the potential mechanism of the follicle development mediated by the FSH-Nodal/ALK7 signaling pathway. Compared with the moderate daylight (MD) group, the short daylight (SD) group exhibited a significant decrease in the ovarian weight and increase in the atretic follicle number and granulosa cell apoptosis, whereas the long daylight (LD) group showed an increase in the ovarian weight, the growing follicle number, and the antral follicle number, but a decrease in the granulosa cell apoptosis. Based on these findings, the key genes of the Nodal/ALK7 signaling pathway controlling the granulosa cell apoptosis were studied using the quantitative real-time polymerase chain reaction and western blotting. In the SD group, the follicle-stimulating hormone (FSH) concentration significantly decreased and the Nodal/ALK7/Smad signaling pathways were activated, while the phosphatidylinositol 3-kinase (PIK3)/Akt signaling pathway was inhibited. The BAX expression was significantly increased, while the Bcl-xL expression was significantly decreased, leading to an increase in the caspase-3 activity, the granulosa cell apoptosis, and ovarian degeneration. However, in the LD group, the FSH concentration significantly increased, the Nodal/ALK7/Smad signaling pathway was inhibited, and the PIK3/Akt signaling pathway was activated. Taken together, our results indicate that the photoperiod can regulate the apoptosis of the granulosa cells by regulating the concentration of FSH, activating or inhibiting the Nodal/ALK7 signaling pathway, thereby affecting the ovarian function. Our research provides an important theoretical basis for understanding the photoperiod-regulated mechanisms of the mammalian seasonal reproduction.
Collapse
|
55
|
Deng J, Paulus A, Fang DD, Manna A, Wang G, Wang H, Zhu S, Chen J, Min P, Yin Y, Dutta N, Halder N, Ciccio G, Copland JA, Miller J, Han B, Bai L, Liu L, Wang M, McEachern D, Przybranowski S, Yang CY, Stuckey JA, Wu D, Li C, Ryan J, Letai A, Ailawadhi S, Yang D, Wang S, Chanan-Khan A, Zhai Y. Lisaftoclax (APG-2575) Is a Novel BCL-2 Inhibitor with Robust Antitumor Activity in Preclinical Models of Hematologic Malignancy. Clin Cancer Res 2022; 28:5455-5468. [PMID: 36048524 DOI: 10.1158/1078-0432.ccr-21-4037] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/01/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Development of B-cell lymphoma 2 (BCL-2)-specific inhibitors poses unique challenges in drug design because of BCL-2 homology domain 3 (BH3) shared homology between BCL-2 family members and the shallow surface of their protein-protein interactions. We report herein discovery and extensive preclinical investigation of lisaftoclax (APG-2575). EXPERIMENTAL DESIGN Computational modeling was used to design "lead" compounds. Biochemical binding, mitochondrial BH3 profiling, and cell-based viability or apoptosis assays were used to determine the selectivity and potency of BCL-2 inhibitor lisaftoclax. The antitumor effects of lisaftoclax were also evaluated in several xenograft models. RESULTS Lisaftoclax selectively binds BCL-2 (Ki < 0.1 nmol/L), disrupts BCL-2:BIM complexes, and compromises mitochondrial outer membrane potential, culminating in BAX/BAK-dependent, caspase-mediated apoptosis. Lisaftoclax exerted strong antitumor activity in hematologic cancer cell lines and tumor cells from patients with chronic lymphocytic leukemia, multiple myeloma, or Waldenström macroglobulinemia. After lisaftoclax treatment, prodeath proteins BCL-2‒like protein 11 (BIM) and Noxa increased, and BIM translocated from cytosol to mitochondria. Consistent with these apoptotic activities, lisaftoclax entered malignant cells rapidly, reached plateau in 2 hours, and significantly downregulated mitochondrial respiratory function and ATP production. Furthermore, lisaftoclax inhibited tumor growth in xenograft models, correlating with caspase activation, poly (ADP-ribose) polymerase 1 cleavage, and pharmacokinetics of the compound. Lisaftoclax combined with rituximab or bendamustine/rituximab enhanced antitumor activity in vivo. CONCLUSIONS These findings demonstrate that lisaftoclax is a novel, orally bioavailable BH3 mimetic BCL-2-selective inhibitor with considerable potential for the treatment of certain hematologic malignancies.
Collapse
Affiliation(s)
- Jing Deng
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Aneel Paulus
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - Douglas D Fang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Alak Manna
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Guangfeng Wang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Hengbang Wang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Saijie Zhu
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Jianyong Chen
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Ping Min
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Yan Yin
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Navnita Dutta
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Nabanita Halder
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Gina Ciccio
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - James Miller
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Bing Han
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Longchuan Bai
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Liu Liu
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Mi Wang
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Donna McEachern
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Sally Przybranowski
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Chao-Yie Yang
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jeanne A Stuckey
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caixia Li
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jeremy Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Dajun Yang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Ascentage Pharma Group, Rockville, Maryland
| | - Shaomeng Wang
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Asher Chanan-Khan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
- Mayo Clinic Cancer Center at St. Vincent's Medical Center Riverside, Jacksonville, Florida
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
- Ascentage Pharma Group, Rockville, Maryland
| |
Collapse
|
56
|
Sun X, Zhou L, Wang X, Li Y, Liu X, Chen Y, Zhong Z, Chen J. FYCO1 regulates migration, invasion, and invadopodia formation in HeLa cells through CDC42/N-WASP/Arp2/3 signaling pathway. Biochem Cell Biol 2022; 100:458-472. [PMID: 36342046 DOI: 10.1139/bcb-2021-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
FYCO1, an autophagy adaptor, plays an essential role in the trafficking toward the plus-end of microtubules and the fusion of autophagosomes. Autophagic dysfunction is involved in numerous disease states, including cancers. Previous studies have implicated FYCO1 as one of the critical genes involved in the adenoma to carcinoma transition, but the biological function and mechanism of FYCO1 in carcinogenesis remain unclear. This study aims to elucidate the role and mechanism of up- and downregulation of FYCO1 in mediating tumor effects in HeLa cells. Functionally, FYCO1 promotes cellular migration, invasion, epithelial-mesenchymal transition, invadopodia formation, and matrix degradation, which are detected through wound healing, transwell, immunofluorescence, and Western blot approaches. Interestingly, the data show that although FYCO1 does not affect HeLa cell proliferation, cell cycle distribution, nor vessels' formation, FYCO1 can block the apoptotic function. FYCO1 inhibits cleavage of PARP, caspase3, and caspase9 and increases Bcl-2/Bax ratio. Then, we used CK666, an Arp2/3 specific inhibitor, to confirm that FYCO1 may promote the migration and invasion of HeLa cells through the CDC42/N-WASP/Arp2/3 signaling pathway. Taken together, these results provide a new insight that FYCO1, an autophagy adaptor, may also be a new regulator of tumor metastasis.
Collapse
Affiliation(s)
- Xuejiao Sun
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Linlin Zhou
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xinyao Wang
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yuying Li
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xiangyuan Liu
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yu Chen
- Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zilin Zhong
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jianjun Chen
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
57
|
Cserép C, Schwarcz AD, Pósfai B, László ZI, Kellermayer A, Környei Z, Kisfali M, Nyerges M, Lele Z, Katona I, Ádám Dénes. Microglial control of neuronal development via somatic purinergic junctions. Cell Rep 2022; 40:111369. [PMID: 36130488 PMCID: PMC9513806 DOI: 10.1016/j.celrep.2022.111369] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/28/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia, the resident immune cells of the brain, play important roles during development. Although bi-directional communication between microglia and neuronal progenitors or immature neurons has been demonstrated, the main sites of interaction and the underlying mechanisms remain elusive. By using advanced methods, here we provide evidence that microglial processes form specialized contacts with the cell bodies of developing neurons throughout embryonic, early postnatal, and adult neurogenesis. These early developmental contacts are highly reminiscent of somatic purinergic junctions that are instrumental for microglia-neuron communication in the adult brain. The formation and maintenance of these junctions is regulated by functional microglial P2Y12 receptors, and deletion of P2Y12Rs disturbs proliferation of neuronal precursors and leads to aberrant cortical cytoarchitecture during development and in adulthood. We propose that early developmental formation of somatic purinergic junctions represents an important interface for microglia to monitor the status of immature neurons and control neurodevelopment.
Collapse
Affiliation(s)
- Csaba Cserép
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary.
| | - Anett D Schwarcz
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Balázs Pósfai
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary; Szentágothai János Doctoral School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Zsófia I László
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary; University of Dundee, School of Medicine, Dundee DD1 9SY, UK
| | - Anna Kellermayer
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsuzsanna Környei
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Máté Kisfali
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Miklós Nyerges
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsolt Lele
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - István Katona
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary.
| |
Collapse
|
58
|
Kalkavan H, Chen MJ, Crawford JC, Quarato G, Fitzgerald P, Tait SWG, Goding CR, Green DR. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 2022; 185:3356-3374.e22. [PMID: 36055199 PMCID: PMC9450215 DOI: 10.1016/j.cell.2022.07.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
Drug-tolerant persister cells (persisters) evade apoptosis upon targeted and conventional cancer therapies and represent a major non-genetic barrier to effective cancer treatment. Here, we show that cells that survive treatment with pro-apoptotic BH3 mimetics display a persister phenotype that includes colonization and metastasis in vivo and increased sensitivity toward ferroptosis by GPX4 inhibition. We found that sublethal mitochondrial outer membrane permeabilization (MOMP) and holocytochrome c release are key requirements for the generation of the persister phenotype. The generation of persisters is independent of apoptosome formation and caspase activation, but instead, cytosolic cytochrome c induces the activation of heme-regulated inhibitor (HRI) kinase and engagement of the integrated stress response (ISR) with the consequent synthesis of ATF4, all of which are required for the persister phenotype. Our results reveal that sublethal cytochrome c release couples sublethal MOMP to caspase-independent initiation of an ATF4-dependent, drug-tolerant persister phenotype.
Collapse
Affiliation(s)
- Halime Kalkavan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mark J Chen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy C Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Patrick Fitzgerald
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
59
|
Hu B, Xiao X, Chen P, Qian J, Yuan G, Ye Y, Zeng L, Zhong S, Wang X, Qin X, Yang Y, Pan Y, Zhang Y. Enhancing anti-tumor effect of ultrasensitive bimetallic RuCu nanoparticles as radiosensitizers with dual enzyme-like activities. Biomaterials 2022; 290:121811. [DOI: 10.1016/j.biomaterials.2022.121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
|
60
|
Luo C, Yu T, Young KH, Yu L. HDAC inhibitor chidamide synergizes with venetoclax to inhibit the growth of diffuse large B-cell lymphoma via down-regulation of MYC, BCL2, and TP53 expression. J Zhejiang Univ Sci B 2022; 23:666-681. [PMID: 35953760 DOI: 10.1631/jzus.b2200016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive type of non-Hodgkin's lymphoma. A total of 10%‒15% of DLBCL cases are associated with myelocytomatosis viral oncogene homolog(MYC) and/or B-cell lymphoma-2 (BCL2) translocation or amplification. BCL2 inhibitors have potent anti-tumor effects in DLBCL; however, resistance can be acquired through up-regulation of alternative anti-apoptotic proteins. The histone deacetylase (HDAC) inhibitor chidamide can induce BIM expression, leading to apoptosis of lymphoma cells with good efficacy in refractory recurrent DLBCL. In this study, the synergistic mechanism of chidamide and venetoclax in DLBCL was determined through in vitro and in vivo models. We found that combination therapy significantly reduced the protein levels of MYC, TP53, and BCL2 in activated apoptotic-related pathways in DLBCL cells by increasing BIM levels and inducing cell apoptosis. Moreover, combination therapy regulated expression of multiple transcriptomes in DLBCL cells, involving apoptosis, cell cycle, phosphorylation, and other biological processes, and significantly inhibited tumor growth in DLBCL-bearing xenograft mice. Taken together, these findings verify the in vivo therapeutic potential of chidamide and venetoclax combination therapy in DLBCL, warranting pre-clinical trials for patients with DLBCL.
Collapse
Affiliation(s)
- Cancan Luo
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.,Jiangxi Province Key Laboratory of Hematology, Nanchang 330006, China
| | - Tiantian Yu
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.,Jiangxi Province Key Laboratory of Hematology, Nanchang 330006, China
| | - Ken H Young
- Department of Hematopathology, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Li Yu
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China. .,Jiangxi Province Key Laboratory of Hematology, Nanchang 330006, China.
| |
Collapse
|
61
|
Ma L, Huang S, Xie H, Ma P, Jia B, Yao Y, Gao Y, Li W, Song J, Zhang W. Influence of chain length on the anticancer activity of the antimicrobial peptide CAMEL with fatty acid modification. Eur J Med Chem 2022; 239:114557. [PMID: 35759906 DOI: 10.1016/j.ejmech.2022.114557] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) display promising potential in cancer therapy. Modification with fatty acids is a simple and effective approach to improve the activity of AMPs. In the present study, we investigated the effects of fatty acid chain lengths on the anticancer activity, self-assembly and mechanism of action of CAMEL (CM15, KWKLFKKIGAVLKVL-NH2), an amphipathic AMP with 15 amino acids. Conjugation of fatty acids could obviously improve the in vitro anticancer activity of CAMEL. Among the tested peptides, C12-CAMEL showed the highest anticancer activity, while C16-CAMEL killed cancer cells with the slowest kinetics. This may be related to the self-assembly of C12-CAMEL and C16-CAMEL, which could form spherical nanoparticles and tightened nanofibers, respectively. In addition, necrosis and necroptosis rather than apoptosis were the major mechanisms underlying the anticancer activity of CAMEL, C12-CAMEL and C16-CAMEL, implying that modification with fatty acids did not obviously alter the mechanism of action of CAMEL. Notably, C12-CAMEL, with high and rapid cell-killing activity, exhibited significantly stronger in vivo anticancer activity than CAMEL and C16-CAMEL. Overall, the present work suggests that the choice of a suitable fatty acid for structural modification is necessary for improving the anticancer activity of AMPs.
Collapse
Affiliation(s)
- Ling Ma
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sujie Huang
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huan Xie
- Department of Medical, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Panpan Ma
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Jia
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yufan Yao
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuxuan Gao
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenyuan Li
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jingjing Song
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Wei Zhang
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
62
|
Severe cellular stress drives apoptosis through a dual control mechanism independently of p53. Cell Death Dis 2022; 8:282. [PMID: 35680784 PMCID: PMC9184497 DOI: 10.1038/s41420-022-01078-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022]
Abstract
For past two decades, p53 has been claimed as the primary sensor initiating apoptosis. Under severe cellular stress, p53 transcriptional activity activates BH3-only proteins such as Bim, Puma, or Noxa to nullify the inhibitory effects of anti-apoptotic proteins on pro-apoptotic proteins for mitochondrial outer membrane permeabilization. Cellular stress determines the expression level of p53, and the amount of p53 corresponds to the magnitude of apoptosis. However, our studies indicated that Bim and Puma are not the target genes of p53 in three cancer models, prostate cancer, glioblastoma, and osteosarcoma. Bim counteracted with Bcl-xl to activate apoptosis independently of p53 in response to doxorubicin-induced severe DNA damage in prostate cancer. Moreover, the transcriptional activity of p53 was more related to cell cycle arrest other than apoptosis for responding to DNA damage stress generated by doxorubicin in prostate cancer and glioblastoma. A proteasome inhibitor that causes protein turnover dysfunction, bortezomib, produced apoptosis in a p53-independent manner in glioblastoma and osteosarcoma. p53 in terms of both protein level and nuclear localization in combining doxorubicin with bortezomib treatment was obviously lower than when using DOX alone, inversely correlated with the magnitude of apoptosis in glioblastoma. Using a BH3-mimetic, ABT-263, to treat doxorubicin-sensitive p53-wild type and doxorubicin-resistant p53-null osteosarcoma cells demonstrated only limited apoptotic response. The combination of doxorubicin or bortezomib with ABT-263 generated a synergistic outcome of apoptosis in both p53-wild type and p53-null osteosarcoma cells. Together, this suggested that p53 might have no role in doxorubicin-induced apoptosis in prostate cancer, glioblastoma and osteosarcoma. The effects of ABT-263 in single and combination treatment of osteosarcoma or prostate cancer indicated a dual control to regulate apoptosis in response to severe cellular stress. Whether our findings only apply in these three types of cancers or extend to other cancer types remains to be explored.
Collapse
|
63
|
Bodaar K, Yamagata N, Barthe A, Landrigan J, Chonghaile TN, Burns M, Stevenson KE, Devidas M, Loh ML, Hunger SP, Wood B, Silverman LB, Teachey DT, Meijerink JP, Letai A, Gutierrez A. JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia 2022; 36:1499-1507. [PMID: 35411095 PMCID: PMC9177679 DOI: 10.1038/s41375-022-01558-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
Resistance to mitochondrial apoptosis predicts inferior treatment outcomes in patients with diverse tumor types, including T-cell acute lymphoblastic leukemia (T-ALL). However, the genetic basis for variability in this mitochondrial apoptotic phenotype is poorly understood, preventing its rational therapeutic targeting. Using BH3 profiling and exon sequencing analysis of childhood T-ALL clinical specimens, we found that mitochondrial apoptosis resistance was most strongly associated with activating mutations of JAK3. Mutant JAK3 directly repressed apoptosis in leukemia cells, because its inhibition with mechanistically distinct pharmacologic inhibitors resulted in reversal of mitochondrial apoptotic blockade. Inhibition of JAK3 led to loss of MEK, ERK and BCL2 phosphorylation, and BH3 profiling revealed that JAK3-mutant primary T-ALL patient samples were characterized by a dependence on BCL2. Treatment of JAK3-mutant T-ALL cells with the JAK3 inhibitor tofacitinib in combination with a spectrum of conventional chemotherapeutics revealed synergy with glucocorticoids, in vitro and in vivo. These findings thus provide key insights into the molecular genetics of mitochondrial apoptosis resistance in childhood T-ALL, and a compelling rationale for a clinical trial of JAK3 inhibitors in combination with glucocorticoids for patients with JAK3-mutant T-ALL.
Collapse
Affiliation(s)
- Kimberly Bodaar
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Natsuko Yamagata
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anais Barthe
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jack Landrigan
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Triona Ni Chonghaile
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,Deparment of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Melissa Burns
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kristen E. Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mignon L. Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, and the Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, 98105, USA
| | - Stephen P. Hunger
- Division of Oncology and the Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Brent Wood
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Lewis B. Silverman
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - David T. Teachey
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
64
|
Yuan HC, Xu LX, Wang NH, Leng HB, Que SW. (S)-(–)-N-[2-(3-hydroxy-2-oxo-2,3-dihydro-1H-indol-3-yl)-ethyl]-acetamide Inhibits Neuroglioma Cell Growth Through Inducing Apoptosis. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
65
|
SERTAD1 Sensitizes Breast Cancer Cells to Doxorubicin and Promotes Lysosomal Protein Biosynthesis. Biomedicines 2022; 10:biomedicines10051148. [PMID: 35625886 PMCID: PMC9139069 DOI: 10.3390/biomedicines10051148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/30/2022] Open
Abstract
Acquired chemoresistance of tumor cells is an unwanted consequence of cancer treatment. Overcoming chemoresistance is particularly important for efficiently improving cancer therapies. Here, using multiple lines of evidence, we report the suppressive role of SERTAD1 in apoptosis/anoikis. Among various breast cancer cell lines, higher SERTAD1 expression was found in MCF7 and MDA-MB-231 in suspension than in adherent cell culture. We revealed an unexpected phenomenon that different types of cell deaths were induced in response to different doses of doxorubicin (Dox) in breast cancer cells, presumably via lysosomal membrane permeabilization. A low dose of Dox highly activated autophagy, while a high dose of the chemotherapy induced apoptosis. Inhibition of SERTAD1 promoted the sensitivity of breast cancer cells to Dox and paclitaxel, leading to a significant reduction in tumor volumes of xenograft mice. Simultaneously targeting cancer cells with Dox and autophagy inhibition successfully induced higher apoptosis/anoikis. The novel role of SERTAD1 in maintaining cellular homeostasis has also been suggested in which lysosomal contents, including LAMP1, LAMP2, CTSB, and CTSD, were reduced in SERTAD1-deficient cells.
Collapse
|
66
|
Tan Y, Bie YL, Chen L, Zhao YH, Song L, Miao LN, Yu YQ, Chai H, Ma XJ, Shi DZ. Lingbao Huxin Pill Alleviates Apoptosis and Inflammation at Infarct Border Zone through SIRT1-Mediated FOXO1 and NF- κ B Pathways in Rat Model of Acute Myocardial Infarction. Chin J Integr Med 2022; 28:330-338. [PMID: 34826042 DOI: 10.1007/s11655-021-2881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate whether Lingbao Huxin Pill (LBHX) protects against acute myocardial infarction (AMI) at the infarct border zone (IBZ) of myocardial tissue by regulating apoptosis and inflammation through the sirtuin 1 (SIRT1)-mediated forkhead box protein O1 (FOXO1) and nuclear factor-κ B (NF-κ B) signaling pathways. METHODS Six-week-old Wistar rats with normal diet were randomized into the sham, the model, Betaloc (0.9 mg/kg daily), LBHX-L (0.45 mg/kg daily), LBHX-M (0.9 mg/kg daily), LBHX-H (1.8 mg/kg daily), and LBHX+EX527 (0.9 mg/kg daily) groups according to the method of random number table, 13 in each group. In this study, left anterior descending coronary artery (LADCA) ligation was performed to induce an AMI model in rats. The myocardial infarction area was examined using a 2,3,5-triphenyltetrazolium chloride solution staining assay. A TdT-mediated dUTP nick-end labeling (TUNEL) assay was conducted to assess cardiomyocyte apoptosis in the IBZ. The histopathology of myocardial tissue at the IBZ was assessed with Heidenhain, Masson and hematoxylineosin (HE) staining assays. The expression levels of tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-1 β, and intercellular adhesion molecule-1 were measured using enzyme-linked immunosorbent assays (ELISAs). The mRNA expressions of SIRT1 and FOXO1 were detected by real-time qPCR (RT-qPCR). The protein expressions of SIRT1, FOXO1, SOD2, BAX and NF- κ B p65 were detected by Western blot analysis. RESULTS The ligation of the LADCA successfully induced an AMI model. The LBHX pretreatment reduced the infarct size in the AMI rats (P<0.01). The TUNEL assay revealed that LBHX inhibited cardiomyocyte apoptosis at the IBZ. Further, the histological examination showed that the LBHX pretreatment decreased the ischemic area of myocardial tissue (P<0.05), myocardial interstitial collagen deposition (P<0.05) and inflammation at the IBZ. The ELISA results indicated that LBHX decreased the serum levels of inflammatory cytokines in the AMI rats (P<0.05 or P<0.01). Furthermore, Western blot analysis revealed that the LBHX pretreatment upregulated the protein levels of SIRT1, FOXO1 and SOD2 (P<0.05) and downregulated NF- κ B p65 and BAX expressions (P<0.05). The RT-qPCR results showed that LBHX increased the SIRT1 mRNA and FOXO1 mRNA levels (P<0.05). These protective effects, including inhibiting apoptosis and alleviating inflammation in the IBZ, were partially abolished by EX527, an inhibitor of SIRT1. CONCLUSION LBHX could protect against AMI by suppressing apoptosis and inflammation in AMI rats and the SIRT1-mediated FOXO1 and NF- κ B signaling pathways were involved in the cardioprotection effect of LBHX.
Collapse
Affiliation(s)
- Yu Tan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yu-Long Bie
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Li Chen
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan Hospital), Beijing, 100191, China
| | - Yi-Han Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lei Song
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Li-Na Miao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Qiao Yu
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hua Chai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiao-Juan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Da-Zhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| |
Collapse
|
67
|
Zhou W, Zhao Z, Yu Z, Hou Y, Keerthiga R, Fu A. Mitochondrial transplantation therapy inhibits the proliferation of malignant hepatocellular carcinoma and its mechanism. Mitochondrion 2022; 65:11-22. [DOI: 10.1016/j.mito.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023]
|
68
|
Tong J, Tan X, Song X, Gao M, Risnik D, Hao S, Ermine K, Wang P, Li H, Huang Y, Yu J, Zhang L. CDK4/6 Inhibition Suppresses p73 Phosphorylation and Activates DR5 to Potentiate Chemotherapy and Immune Checkpoint Blockade. Cancer Res 2022; 82:1340-1352. [PMID: 35149588 PMCID: PMC8983601 DOI: 10.1158/0008-5472.can-21-3062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
Targeting cyclin-dependent kinases 4 and 6 (CDK4/6) is a successful therapeutic approach against breast and other solid tumors. Inhibition of CDK4/6 halts cell cycle progression and promotes antitumor immunity. However, the mechanisms underlying the antitumor activity of CDK4/6 inhibitors are not fully understood. We found that CDK4/6 bind and phosphorylate the p53 family member p73 at threonine 86, which sequesters p73 in the cytoplasm. Inhibition of CDK4/6 led to dephosphorylation and nuclear translocation of p73, which transcriptionally activated death receptor 5 (DR5), a cytokine receptor and key component of the extrinsic apoptotic pathway. p73-mediated induction of DR5 by CDK4/6 inhibitors promoted immunogenic cell death of cancer cells. Deletion of DR5 in cancer cells in vitro and in vivo abrogated the potentiating effects of CDK4/6 inhibitors on immune cytokine TRAIL, 5-fluorouracil chemotherapy, and anti-PD-1 immunotherapy. Together, these results reveal a previously unrecognized consequence of CDK4/6 inhibition, which may be critical for potentiating the killing and immunogenic effects on cancer cells. SIGNIFICANCE This work demonstrates how inhibition of CDK4/6 sensitizes cancer cells to chemotherapy and immune checkpoint blockade and may provide a new molecular marker for improving CDK4/6-targeted cancer therapies. See related commentary by Frank, p. 1170.
Collapse
Affiliation(s)
- Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiao Tan
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiangping Song
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Man Gao
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Denise Risnik
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Suisui Hao
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kaylee Ermine
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Peng Wang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hua Li
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yi Huang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
69
|
Garciaz S, Guirguis AA, Müller S, Brown FC, Chan YC, Motazedian A, Rowe CL, Kuzich JA, Chan KL, Tran K, Smith L, MacPherson L, Liddicoat B, Lam EY, Cañeque T, Burr ML, Litalien V, Pomilio G, Poplineau M, Duprez E, Dawson SJ, Ramm G, Cox AG, Brown KK, Huang DC, Wei AH, McArthur K, Rodriguez R, Dawson MA. Pharmacologic Reduction of Mitochondrial Iron Triggers a Noncanonical BAX/BAK-Dependent Cell Death. Cancer Discov 2022; 12:774-791. [PMID: 34862195 PMCID: PMC9390741 DOI: 10.1158/2159-8290.cd-21-0522] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
Cancer cell metabolism is increasingly recognized as providing an exciting therapeutic opportunity. However, a drug that directly couples targeting of a metabolic dependency with the induction of cell death in cancer cells has largely remained elusive. Here we report that the drug-like small-molecule ironomycin reduces the mitochondrial iron load, resulting in the potent disruption of mitochondrial metabolism. Ironomycin promotes the recruitment and activation of BAX/BAK, but the resulting mitochondrial outer membrane permeabilization (MOMP) does not lead to potent activation of the apoptotic caspases, nor is the ensuing cell death prevented by inhibiting the previously established pathways of programmed cell death. Consistent with the fact that ironomycin and BH3 mimetics induce MOMP through independent nonredundant pathways, we find that ironomycin exhibits marked in vitro and in vivo synergy with venetoclax and overcomes venetoclax resistance in primary patient samples. SIGNIFICANCE Ironomycin couples targeting of cellular metabolism with cell death by reducing mitochondrial iron, resulting in the alteration of mitochondrial metabolism and the activation of BAX/BAK. Ironomycin induces MOMP through a different mechanism to BH3 mimetics, and consequently combination therapy has marked synergy in cancers such as acute myeloid leukemia. This article is highlighted in the In This Issue feature, p. 587.
Collapse
Affiliation(s)
- Sylvain Garciaz
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Aix-Marseille University, INSERM U1068, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Andrew A. Guirguis
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Sebastian Müller
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, Chemical Biology of Cancer, Paris, France
| | - Fiona C. Brown
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Ali Motazedian
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Caitlin L. Rowe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - James A. Kuzich
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Kah Lok Chan
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Kevin Tran
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Lorey Smith
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Laura MacPherson
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Brian Liddicoat
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Enid Y.N. Lam
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Tatiana Cañeque
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, Chemical Biology of Cancer, Paris, France
| | - Marian L. Burr
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Véronique Litalien
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Giovanna Pomilio
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Mathilde Poplineau
- Aix-Marseille University, INSERM U1068, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Estelle Duprez
- Aix-Marseille University, INSERM U1068, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria, Australia
| | - Andrew G. Cox
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kristin K. Brown
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, Australia
| | - Andrew H. Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Kate McArthur
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Raphaël Rodriguez
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, Chemical Biology of Cancer, Paris, France
| | - Mark A. Dawson
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
70
|
Sudakov NP, Klimenkov IV, Bedoshvili YD, Arsent'ev KY, Gorshkov AG, Izosimova ON, Yakhnenko VM, Kupchinskii AB, Didorenko SI, Likhoshway YV. Early structural and functional changes in Baikal Sculpin gills exposed to suspended soot microparticles in experiment. CHEMOSPHERE 2022; 290:133241. [PMID: 34896428 DOI: 10.1016/j.chemosphere.2021.133241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The toxic influence of soot microparticles on terrestrial organisms has been well studied, although there is scarce data on how microparticles could affect hydrobionts. We performed a first-ever study of the short-term (5 days) impact of furnace soot (0.005 g/L) on the structural and functional features of gill cells in the Baikal Sculpin species Paracottus knerii, Dybowski, 1874. The soot samples used in the experiment were composed of small (10-100 nm) particles and larger (up to 20 μm) aggregates. The dominant fractions of the polycyclic aromatic hydrocarbons of these microparticles were phenanthrene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzofluoranthenes, benzopyrenes, indeno[1,2,3-c,d]pyrenes, and benzo[ghi]perylene. Trace element analysis of the soot detected the presence of C, S, Si, Al, Ca, K, Mg, P, and Fe. The gill condition was assessed with electron scanning, transmission, and laser confocal microscopy. Soot induces degenerative changes in the macrostructure and surface of secondary lamellae and increases mucus production in fish gills. A decrease in mitochondrial activity, an increase in reactive oxygen species production, and an increase in the frequency of programmed cell death in gill epithelium were observed under the influence of soot. In chloride cells, an induction of macroautophagy was detected. In general, the changes in fish gills after the short-term influence of soot microparticles indicate the stress of respiratory and osmotic regulation systems in fish. The data obtained are important for forming a coherent picture of the impact of soot on hydrobionts and for developing bioindication methods for evaluating the risks of their influence on aquatic ecosystems.
Collapse
Affiliation(s)
- Nikolay P Sudakov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia.
| | - Igor V Klimenkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Yekaterina D Bedoshvili
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Kirill Yu Arsent'ev
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Alexander G Gorshkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Oksana N Izosimova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Vera M Yakhnenko
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Alexandr B Kupchinskii
- Baikal Museum, Siberian Branch, Russian Academy of Sciences, 1 Akademicheskaya St., Listvyanka, 664520, Russia
| | - Sergei I Didorenko
- Baikal Museum, Siberian Branch, Russian Academy of Sciences, 1 Akademicheskaya St., Listvyanka, 664520, Russia
| | - Yelena V Likhoshway
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| |
Collapse
|
71
|
Chen L, Wang F, Qu S, He X, Zhu Y, Zhou Y, Yang K, Li YX, Liu M, Peng X, Tian J. Therapeutic Potential of Perillaldehyde in Ameliorating Vulvovaginal Candidiasis by Reducing Vaginal Oxidative Stress and Apoptosis. Antioxidants (Basel) 2022; 11:antiox11020178. [PMID: 35204061 PMCID: PMC8868166 DOI: 10.3390/antiox11020178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is one of the most frequent diseases induced by Candida albicans (C. albicans) during pregnancy, which results in enormous pain to women and their partners in daily life. Perillaldehyde (PAE), a natural monoterpenoid, has significant anti-microbial, anti-inflammatory and anti-oxidation effects. Reactive oxygen species (ROS) are key factors for the host to resist the invasion of fungi. However, excess ROS can cause additional damage independent of the pathogen itself, and the mechanism of ROS in VVC has not been investigated. In this murine study, we revealed that C. albicans infection increased the expression of NADPH oxidase 2 (NOX2) and the content of malonaldehyde (MDA). C. albicans inhibited the activity of antioxidant enzymes in the vagina, including superoxide dismutase (SOD), Catalase (CAT), glutathione peroxidase (GSH-PX) and heme oxygenase (HO-1), which were returned to normal levels after treatment with PAE. Furthermore, PAE inhibited the activities of Keap1 and promoted Nrf2 transfer from cytoplasm to nucleus, which were mediated by excessive accumulation of ROS in the VVC mice. In this study, we also indicated that PAE inhibited the apoptosis of vagina cells via Caspase 9- Caspase 7-PARP pathway and prevented the release of IL-1ꞵ in VVC mice. In summary, this study revealed that the treatment of VVC in mice with PAE might be mediated by inhibition of ROS, and established the therapeutic potential of PAE as an antifungal agent for the treatment of VVC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jun Tian
- Correspondence: ; Tel.: +86-516-83403172; Fax: +86-516-83403173
| |
Collapse
|
72
|
Downregulation of CPT2 promotes proliferation and inhibits apoptosis through p53 pathway in colorectal cancer. Cell Signal 2022; 92:110267. [DOI: 10.1016/j.cellsig.2022.110267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
|
73
|
Wang H, Li C, Ye W, Pan Z, Sun J, Deng M, Zhan W, Chu J. Toxoplasma gondii Induces Apoptosis via Endoplasmic Reticulum Stress-Derived Mitochondrial Pathway in Human Small Intestinal Epithelial Cell-Line. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:573-583. [PMID: 34974664 PMCID: PMC8721304 DOI: 10.3347/kjp.2021.59.6.573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/18/2021] [Indexed: 01/16/2023]
Abstract
Toxoplasma gondii, an intracellular protozoan parasite that infects one-third of the world’s population, has been reported to hijack host cell apoptotic machinery and promote either an anti- or proapoptotic program depending on the parasite virulence and load and the host cell type. However, little is known about the regulation of human FHs 74 small intestinal epithelial cell viability in response to T. gondii infection. Here we show that T. gondii RH strain tachyzoite infection or ESP treatment of FHs 74 Int cells induced apoptosis, mitochondrial dysfunction and ER stress in host cells. Pretreatment with 4-PBA inhibited the expression or activation of key molecules involved in ER stress. In addition, both T. gondii and ESP challenge-induced mitochondrial dysfunction and cell death were dramatically suppressed in 4-PBA pretreated cells. Our study indicates that T. gondii infection induced ER stress in FHs 74 Int cells, which induced mitochondrial dysfunction followed by apoptosis. This may constitute a potential molecular mechanism responsible for the foodborne parasitic disease caused by T. gondii.
Collapse
Affiliation(s)
- Hao Wang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001,
China
| | - Chunchao Li
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001,
China
| | - Wei Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001,
China
| | - Zhaobin Pan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001,
China
| | - Jinhui Sun
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001,
China
| | - Mingzhu Deng
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001,
China
| | - Weiqiang Zhan
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001,
China
| | - Jiaqi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001,
China
- Corresponding author ()
| |
Collapse
|
74
|
Simvastatin potentiates the cell-killing activity of imatinib in imatinib-resistant chronic myeloid leukemia cells mainly through PI3K/AKT pathway attenuation and Myc downregulation. Eur J Pharmacol 2021; 913:174633. [PMID: 34843676 DOI: 10.1016/j.ejphar.2021.174633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Constitutively activated BCR-ABL kinase is considered the driver event responsible in the initiation and development of chronic myeloid leukemia (CML). The advent of the first BCR-ABL inhibitor imatinib has significantly improved the clinical outcome of CML cases. However, resistance to imatinib occurs in 25-30% of CML patients. Due to the lack of effective therapeutic strategies, novel treatment approaches are urgently required for imatinib-resistant CML. Simvastatin, a well-known HMG-CoA reductase inhibitor that confers tremendous clinical benefits in cardiovascular diseases, has attracted mounting attentions for its potent antitumor effects on multiple tumor types. In this study, we demonstrated that simvastatin monotherapy was effective in diminishing cell viability in both imatinib-sensitive and imatinib-resistant CML cells, including T351I mutated cells, with the latter being less vulnerable to the simvastatin than the former. Notably, we found that simvastatin acted as a robust cytotoxic sensitizer of imatinib to kill imatinib-resistant and T315I mutated CML cells in vitro and in vivo. Mechanistically, the cooperative interaction of simvastatin and imatinib was associated with the inactivation of the PI3K/Akt signaling pathway, which was a classical downstream pro-survival cascade of the BCR-ABL kinase. In addition, this drug combination obviously decreased Myc expression through attenuation of canonical Wnt/β-catenin signaling and increased H3K27 trimethylation. Taken together, we provide attractive preclinical results for the combinatorial regimen of simvastatin and imatinib against imatinib-resistant and T315I mutated CML cells. This combined regimens warrants further clinical investigations in patients with imatinib-resistant CML.
Collapse
|
75
|
Quercetin Reduces Oxidative Stress and Apoptosis by Inhibiting HMGB1 and Its Translocation, Thereby Alleviating Liver Injury in ACLF Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2898995. [PMID: 34904016 PMCID: PMC8665894 DOI: 10.1155/2021/2898995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Background Acute on chronic liver failure (ACLF) is a syndrome of acute liver failure that occurs on the basis of chronic liver disease, which is characterized by a rapid deterioration in a short period and high mortality. High mobility group box 1 (HMGB1) may be involved in the pathological process of ACLF; its specific role remains to be further elucidated. Our previous studies have shown that quercetin (Que) exerts anti-oxidant and anti-apoptotic effects by inhibiting HMGB1 in vitro. The present study aimed to investigate the effect of Que on liver injury in ACLF rats. Methods The contents of ALT, AST, TBiL, and PT time of rats in each group were observed. HE staining was used to detect liver pathology. The levels of oxidative stress indicators such as MDA, GSH, and 4-HNE in the rat liver were detected. TUNEL assay was used to detect apoptosis in rat hepatocytes. Immunofluorescence and western blot analysis were performed to explore the protective effect of Que on ACLF rats and the underlying mechanism. Results The results showed that Que could reduce the increase of serum biochemical indices, improve liver pathology, and reduce liver damage in ACLF rats. Further results confirmed that Que reduced the occurrence of oxidative stress and apoptosis of hepatocytes, and these reactions may aggravate the progress of ACLF. Meanwhile, the results of immunofluorescence and western blotting also confirmed that the expression of HMGB1 and extranuclear translocation in ACLF rat hepatocytes were significantly increased, which was alleviated by the treatment of Que. In addition, when cotreated with glycyrrhizin (Gly), an inhibitor of HMGB1, the inhibition of Que on HMGB1 and its translocation, apoptosis and oxidative stress, and the related proteins of HMGB1-mediated cellular pathway have been significantly enhanced. Conclusion Thus, Que alleviates liver injury in ACLF rats, and its mechanism may be related to oxidative stress and apoptosis caused by HMGB1 and its translocation.
Collapse
|
76
|
Gao FF, Quan JH, Lee MA, Ye W, Yuk JM, Cha GH, Choi IW, Lee YH. Trichomonas vaginalis induces apoptosis via ROS and ER stress response through ER-mitochondria crosstalk in SiHa cells. Parasit Vectors 2021; 14:603. [PMID: 34895315 PMCID: PMC8665556 DOI: 10.1186/s13071-021-05098-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background Trichomonas vaginalis causes lesions on the cervicovaginal mucosa in women; however, its pathogenesis remains unclear. We have investigated the involvement of the endoplasmic reticulum (ER) in the induction of apoptosis by T. vaginalis and its molecular mechanisms in human cervical cancer SiHa cells. Methods Apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), ER stress response and Bcl-2 family protein expression were evaluated using immunocytochemistry, flow cytometry, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide dye staining and western blotting. Results Trichomonas vaginalis induced mitochondrial ROS production, apoptosis, the ER stress response and mitochondrial dysfunction, such as MMP depolarization and an imbalance in Bcl-2 family proteins, in SiHa cells in a parasite burden- and infection time-dependent manner. Pretreatment with N-acetyl cysteine (ROS scavenger) or 4-phenylbutyric acid (4-PBA; ER stress inhibitor) significantly alleviated apoptosis, mitochondrial ROS production, mitochondrial dysfunction and ER stress response in a dose-dependent manner. In addition, T. vaginalis induced the phosphorylation of apoptosis signal regulating kinase 1 (ASK1) and c-Jun N-terminal kinases (JNK) in SiHa cells, whereas 4-PBA or SP600125 (JNK inhibitor) pretreatment significantly attenuated ASK1/JNK phosphorylation, mitochondrial dysfunction, apoptosis and ER stress response in SiHa cells, in a dose-dependent manner. Furthermore, T. vaginalis excretory/secretory products also induced mitochondrial ROS production, apoptosis and the ER stress response in SiHa cells, in a time-dependent manner. Conclusions Trichomonas vaginalis induces apoptosis through mitochondrial ROS and ER stress responses, and also promotes ER stress-mediated mitochondrial apoptosis via the IRE1/ASK1/JNK/Bcl-2 family protein pathways in SiHa cells. These data suggest that T. vaginalis-induced apoptosis is affected by ROS and ER stress response via ER–mitochondria crosstalk. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05098-2.
Collapse
Affiliation(s)
- Fei Fei Gao
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, 6 Munhwa-dong, Jung-gu, Daejeon, 35015, Korea
| | - Juan-Hua Quan
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Min A Lee
- Department of Obstetrics and Gynecology, Chungnam National University, DeaJeon, 35015, Korea
| | - Wei Ye
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jae-Min Yuk
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, 6 Munhwa-dong, Jung-gu, Daejeon, 35015, Korea
| | - Guang-Ho Cha
- Department of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, 6 Munhwa-dong, Jung-gu, Daejeon, 35015, Korea
| | - In-Wook Choi
- Department of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, 6 Munhwa-dong, Jung-gu, Daejeon, 35015, Korea
| | - Young-Ha Lee
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, 6 Munhwa-dong, Jung-gu, Daejeon, 35015, Korea.
| |
Collapse
|
77
|
Synthesis, biological evaluation and cellular localization study of fluorescent derivatives of Jiyuan Oridonin A. Eur J Med Chem 2021; 229:114048. [PMID: 34954589 DOI: 10.1016/j.ejmech.2021.114048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
Jiyuan Oridonin A (JOA) is a naturally occurring ent-kaurane diterpenoid that exhibits significant potential in the field of anti-tumor drug development. However, its detailed anti-cancer mechanism of action has not been fully understood. In order to investigate its anticancer mode of action, two series of novel fluorescent derivatives of JOA conjugated with naphthalimide dyes were synthesized, and their antitumor activity against five selected cancer cell lines (MGC-803, SW1990, PC-3, TE-1 and HGC-27) was evaluated. Compared with JOA, the anti-tumor activity of the vast majority of compounds were improved. Among them, B12 exhibited promising anti-proliferative activity against HGC-27 cells with IC50 value of 0.39 ± 0.09 μM. Fluorescence imaging studies demonstrated that probe B12 could enter HGC-27 cells in a dose-dependent and time-dependent manner and was mainly accumulated in mitochondria. Preliminary biological mechanism studies indicated that B12 was able to inhibit cell cloning and migration. Further studies suggested that B12-induced apoptosis was related to the mitochondrial pathway. Overall, our results provide new approaches to explore the molecular mechanism of the natural product JOA, which would contribute to its further development as an antitumor agent.
Collapse
|
78
|
Wen Y, Jing N, Huo F, Yin C. Recent progress of organic small molecule-based fluorescent probes for intracellular pH sensing. Analyst 2021; 146:7450-7463. [PMID: 34788777 DOI: 10.1039/d1an01621k] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorescent probes along with fluorescence microscopy are essential tools for biomedical research. Various cellular ubiquitous chemical factors such as pH, H2O2, and Ca2+ are labeled and traced using specific fluorescent probes, therefore helping us to explore their physiological function and pathological change. Among them, intracellular pH value is an important factor that governs biological processes, generally ∼7.2. Furthermore, specific organelles within cells possess unique acid-base homeostasis, involving the acidic lysosomes, alkalescent mitochondria, and neutral endoplasmic reticulum and Golgi apparatus, which undergo various physiological processes such as intracellular digestion, ATP production, and protein folding and processing. In this review, recently reported fluorescent probes targeted toward the lysosomes, mitochondria, endoplasmic reticulum, Golgi apparatus, and cytoplasm for sensing pH change are discussed, which involves molecular structures, fluorescence behavior, and biological applications.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Ning Jing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
79
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
80
|
Tong J, Tan X, Risnik D, Gao M, Song X, Ermine K, Shen L, Wang S, Yu J, Zhang L. BET protein degradation triggers DR5-mediated immunogenic cell death to suppress colorectal cancer and potentiate immune checkpoint blockade. Oncogene 2021; 40:6566-6578. [PMID: 34615996 PMCID: PMC8642302 DOI: 10.1038/s41388-021-02041-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Bromodomain and extra-terminal domain (BET) family proteins are epigenetic readers that play a critical role in oncogenesis by controlling the expression of oncogenes such as c-Myc. Targeting BET family proteins has recently emerged as a promising anticancer strategy. However, the molecular mechanisms by which cancer cells respond to BET inhibition are not well understood. In this study, we found that inducing the degradation of BET proteins by the proteolysis targeting chimeras (PROTAC) approach potently suppressed the growth of colorectal cancer (CRC) including patient-derived tumors. Mechanistically, BET degradation transcriptionally activates Death Receptor 5 (DR5) to trigger immunogenic cell death (ICD) in CRC cells. Enhanced DR5 induction further sensitizes CRC cells with a mutation in Speckle-type POZ protein (SPOP). Furthermore, DR5 is indispensable for a striking antitumor effect of combining BET degradation and anti-PD-1 antibody, which was well tolerated in mice and almost eradicated syngeneic tumors. Our results demonstrate that BET degradation triggers DR5-mediated ICD to potently suppress CRC and potentiate immune checkpoint blockade. These results provide a rationale, mechanistic insights, and potential biomarkers for developing a precision CRC therapy by inducing BET protein degradation.
Collapse
Affiliation(s)
- Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Xiao Tan
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
| | - Denise Risnik
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Man Gao
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Xiangping Song
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
| | - Kaylee Ermine
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, P.R. China
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
81
|
Zhao L, Li H, Huang X, Liu T, Xin Y, Xiao Z, Zhao W, Miao S, Chen J, Li Z, Mi Y. The endocytic pathway of Pt nanoclusters and their induced apoptosis of A549 and A549/Cis cells through c-Myc/p53 and Bcl-2/caspase-3 signaling pathways. Biomed Pharmacother 2021; 144:112360. [PMID: 34794242 DOI: 10.1016/j.biopha.2021.112360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, multifunctional platinum nanoclusters (Pt-NCs) as new Pt-based anti-cancer drugs exhibit a promising therapeutic efficiency for several cancer diseases, especially for human pulmonary carcinoma. However, the endocytosis behaviors (like uptake pathway, etc.) and induced apoptosis mechanism of Pt-NCs for drug-resistant non-small cell lung cancer (NSCLC), are still inconclusive. In this research, we explored the endocytic pathway of Pt-NCs in both typical NSCLC A549 cells and cisplatin-resistant A549/Cis cells through qualitative confocal laser scanning microscope (CLSM) measurement and quantitative flow cytometry (FCM) and inductive coupled plasma-optical emission spectroscopy (ICP-OES) analysis, by the means of introducing the specific inhibitors which impede the classical ways of endocytosis. It was found that Pt-NCs dominatingly entered A549 cells via caveolin-mediated endocytosis as well as A549/Cis cells through micropinocytosis approach. Pt-NCs possessed an excellent inhibitory effect on the cell proliferation, migration and invasion, which the cell activity of A549 cells reduced to 14% and that of A549/Cis cells went down about four fifths. Moreover, Pt-NCs treatment increased caspase-3 protein levels and downregulated the expression of c-Myc and Bcl-2, proving the Pt-NCs-induced apoptosis of NSCLC cells was related to c-Myc/p53 and Bcl-2/caspase-3 signal pathways. These results demonstrate the explicit uptake pathway and apoptotic signaling pathway of Pt-NCs for NSCLC, which provides an in-depth and reasonable theoretical basis for the development of new Pt-NCs-based chemotherapeutics in future clinical practice.
Collapse
Affiliation(s)
- Lingyun Zhao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Hongyun Li
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China.
| | - Xin Huang
- School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhongyuan District, Zhengzhou 450007, China.
| | - Ting Liu
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Yi Xin
- Intensive Care Unit, Zhengzhou Orthopedics Hospital, No. 56 Longhai Road, Erqi District, Zhengzhou 450052, China
| | - Zhongqing Xiao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Wenfei Zhao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Shaoyi Miao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Jing Chen
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Zengbei Li
- School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhongyuan District, Zhengzhou 450007, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
82
|
Fontana F, Limonta P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic Biol Med 2021; 176:203-221. [PMID: 34597798 DOI: 10.1016/j.freeradbiomed.2021.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are the cytoplasmic organelles mostly known as the "electric engine" of the cells; however, they also play pivotal roles in different biological processes, such as cell growth/apoptosis, Ca2+ and redox homeostasis, and cell stemness. In cancer cells, mitochondria undergo peculiar functional and structural dynamics involved in the survival/death fate of the cell. Cancer cells use glycolysis to support macromolecular biosynthesis and energy production ("Warburg effect"); however, mitochondrial OXPHOS has been shown to be still active during carcinogenesis and even exacerbated in drug-resistant and stem cancer cells. This metabolic rewiring is associated with mutations in genes encoding mitochondrial metabolic enzymes ("oncometabolites"), alterations of ROS production and redox biology, and a fine-tuned balance between anti-/proapoptotic proteins. In cancer cells, mitochondria also experience dynamic alterations from the structural point of view undergoing coordinated cycles of biogenesis, fusion/fission and mitophagy, and physically communicating with the endoplasmic reticulum (ER), through the Ca2+ flux, at the MAM (mitochondria-associated membranes) levels. This review addresses the peculiar mitochondrial metabolic and structural dynamics occurring in cancer cells and their role in coordinating the balance between cell survival and death. The role of mitochondrial dynamics as effective biomarkers of tumor progression and promising targets for anticancer strategies is also discussed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
83
|
Luo Y, Wu Y, Huang H, Yi N, Chen Y. Emerging role of BAD and DAD1 as potential targets and biomarkers in cancer. Oncol Lett 2021; 22:811. [PMID: 34671425 PMCID: PMC8503815 DOI: 10.3892/ol.2021.13072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
As key regulators of apoptosis, BAD and defender against apoptotic cell death 1 (DAD1) are associated with cancer initiation and progression. Multiple studies have demonstrated that BAD and DAD1 serve critical roles in several types of cancer and perform various functions, such as participating in cellular apoptosis, invasion and chemosensitivity, as well as their role in diagnostic/prognostic judgement, etc. Investigating the detailed mechanisms of the cancerous effects of the two proteins will contribute to enriching the options for targeted therapy, and may improve clinical treatment of cancer. The present review summarizes research advances regarding the associations of BAD and DAD1 with cancer, and a hypothesis on the feasible relationship and interaction mechanism between the two proteins is proposed. Furthermore, the present review highlights the potential of the two proteins as therapeutic targets and valuable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Yulou Luo
- First Clinical Medical College, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - You Wu
- Nursing College, Binzhou Medical University, Binzhou, Shandong 264003, P.R. China
| | - Hai Huang
- First Clinical Medical College, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Na Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830017, P.R. China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830017, P.R. China
| |
Collapse
|
84
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
85
|
Duan Y, Chen L, Shao J, Jiang C, Zhao Y, Li Y, Ke H, Zhang R, Zhu J, Yu M. Lanatoside C inhibits human cervical cancer cell proliferation and induces cell apoptosis by a reduction of the JAK2/STAT6/SOCS2 signaling pathway. Oncol Lett 2021; 22:740. [PMID: 34466152 DOI: 10.3892/ol.2021.13001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer-associated mortality in gynecological diseases and ranks third among female cancers worldwide. Although early detection and vaccination have reduced incidence rates, cancer recurrence and metastasis lead to high mortality due to the lack of effective medicines. The present study aimed to identify novel drug candidates to treat cervical cancer. In the present study, lanatoside C, an FDA-approved cardiac glycoside used for the treatment of heart failure, was demonstrated to have anti-proliferative and cytotoxic effects on cervical cancer cells, with abrogation of cell migration in a dose-dependent manner. Lanatoside C also triggered cell apoptosis by enhancing reactive oxygen species production and reducing the mitochondrial membrane potential, which induced cell cycle arrest at the S and G2/M phases. Furthermore, lanatoside C inhibited the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 6 (STAT6), while inducing the expression of suppressor of cytokine signaling 2, a negative regulator of JAK2-STAT6 signaling. Taken together, the results of the present study suggest that lanatoside C suppresses cell proliferation and induces cell apoptosis by inhibiting JAK2-STAT6 signaling, indicating that lanatoside C is a promising agent for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yingchun Duan
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Li Chen
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Juan Shao
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Cui Jiang
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Yingmei Zhao
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Yanyi Li
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Huihui Ke
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Rui Zhang
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Jianlong Zhu
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Minghua Yu
- Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| |
Collapse
|
86
|
Patel RP, Thomas JR, Curt KM, Fitzsimmons CM, Batista PJ, Bates SE, Gottesman MM, Robey RW. Dual Inhibition of Histone Deacetylases and the Mechanistic Target of Rapamycin Promotes Apoptosis in Cell Line Models of Uveal Melanoma. Invest Ophthalmol Vis Sci 2021; 62:16. [PMID: 34533562 PMCID: PMC8458781 DOI: 10.1167/iovs.62.12.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose Over 90% of uveal melanomas harbor pathogenic variants of the GNAQ or GNA11 genes that activate survival pathways. As previous studies found that Ras-mutated cell lines were vulnerable to a combination of survival pathway inhibitors and the histone-deacetylase inhibitor romidepsin, we investigated whether this combination would be effective in models of uveal melanoma. Methods A small-scale screen of inhibitors of bromodomain-containing protein 4 (BRD4; OTX-015), extracellular signal-related kinase (ERK; ulixertinib), mechanistic target of rapamycin (mTOR; AZD-8055), or phosphoinositide 3-kinase (PI3K; GDC-0941) combined with a clinically relevant administration of romidepsin was performed on a panel of uveal melanoma cell lines (92.1, Mel202, MP38, and MP41) and apoptosis was quantified by flow cytometry after 48 hours. RNA sequencing analysis was performed on Mel202 cells treated with romidepsin alone, AZD-8055 alone, or the combination, and protein changes were validated by immunoblot. Results AZD-8055 with romidepsin was the most effective combination in inducing apoptosis in the cell lines. Increased caspase-3 and PARP cleavage were noted in the cell lines when they were treated with romidepsin and mTOR inhibitors. RNA sequencing analysis of Mel202 cells revealed that apoptosis was the most affected pathway in the romidepsin/AZD-8055-treated cells. Increases in pro-apoptotic BCL2L11 and decreases in anti-apoptotic BIRC5 and BCL2L1 transcripts noted in the sequencing analysis were confirmed at the protein level in Mel202 cells. Conclusions Our data suggest that romidepsin in combination with mTOR inhibition could be an effective treatment strategy against uveal melanoma due in part to changes in apoptotic proteins.
Collapse
Affiliation(s)
- Ruchi P Patel
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Joanna R Thomas
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Katherine M Curt
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Christina M Fitzsimmons
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Susan E Bates
- Columbia University Medical Center, Division of Hematology/Oncology, New York, New York, United States
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
87
|
Xu L, Qian F, Sun L. [Dibenzyl trisulfide inhibits proliferation and induces apoptosis of HN30 cells via Akt/ p53 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:847-853. [PMID: 34238736 DOI: 10.12122/j.issn.1673-4254.2021.06.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the effect of dibenzyl trisulfide (DTS) on cell proliferation and apoptosis in human head and neck squamous cell carcinoma (HNSCC) HN30 cells. OBJECTIVE The effects of DTS on proliferation of HNSCC cell lines HN30, HN12, and SCC25 were examined by assessing colony formation ability of the treated cells. The effect of different concentrations of DTS on viability of HN30 cells was assessed using MTT assay. HN30 cells were treated with 3, 10, or 30 μmol/L DTS for 24 h, and the cell apoptosis and mitochondrial membrane potential (MMP) were detected using flow cytometry with annexin Ⅴ-FITC/PI double staining and JC-1 fluorescent probe staining. Western blotting was performed to determine the protein expressions of caspase-3, cleaved caspase-3 and Bcl-2 in the treated cells. The phosphorylation levels of Akt and p53 in HN30 cells were detected using Western blotting after treatment with 10 μmol/L DTS for 0.5, 1, 2, 4, 8, or 16 h. OBJECTIVE DTS at 1 μmol/L significantly inhibited the proliferation of HN30, HN12 and SCC25 cells as shown by colony formation assay. MTT assay showed that DTS dose-dependently decreased HN30 cell viability as compared with the solvent control group, and 100 μmol/L DTS produced the strongest inhibitory effect (P < 0.0001). Treatment with DTS below 30 μmol/L concentrationdependently promoted apoptosis (P < 0.01) and lowered the MMP (P < 0.01) of HN30 cells, and after treatment for 24 h, the cells showed significantly increased cleaved caspase-3 (P < 0.01) and decreased Bcl-2 expression (P < 0.01). Treatment with 10 μmol/L DTS for 16 h significantly inhibited Akt phosphorylation (P < 0.001) and enhanced p53 phosphorylation (P < 0.01) in HN30 cells. OBJECTIVE DTS inhibits proliferation and induces apoptosis of HN30 cells possibly through mechanisms involving the inhibition of Akt and the activation of p53.
Collapse
Affiliation(s)
- L Xu
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - F Qian
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - L Sun
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
88
|
Daniels VW, Zoeller JJ, van Gastel N, McQueeney KE, Parvin S, Potter DS, Fell GG, Ferreira VG, Yilma B, Gupta R, Spetz J, Bhola PD, Endress JE, Harris IS, Carrilho E, Sarosiek KA, Scadden DT, Brugge JS, Letai A. Metabolic perturbations sensitize triple-negative breast cancers to apoptosis induced by BH3 mimetics. Sci Signal 2021; 14:14/686/eabc7405. [PMID: 34103421 DOI: 10.1126/scisignal.abc7405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer cells have differential metabolic dependencies compared to their nonmalignant counterparts. However, few metabolism-targeting compounds have been successful in clinical trials. Here, we investigated the metabolic vulnerabilities of triple-negative breast cancer (TNBC), particularly those metabolic perturbations that increased mitochondrial apoptotic priming and sensitivity to BH3 mimetics (drugs that antagonize antiapoptotic proteins). We used high-throughput dynamic BH3 profiling (HT-DBP) to screen a library of metabolism-perturbing small molecules, which revealed inhibitors of the enzyme nicotinamide phosphoribosyltransferase (NAMPT) as top candidates. In some TNBC cells but not in nonmalignant cells, NAMPT inhibitors increased overall apoptotic priming and induced dependencies on specific antiapoptotic BCL-2 family members. Treatment of TNBC cells with NAMPT inhibitors sensitized them to subsequent treatment with BH3 mimetics. The combination of a NAMPT inhibitor (FK866) and an MCL-1 antagonist (S63845) reduced tumor growth in a TNBC patient-derived xenograft model in vivo. We found that NAMPT inhibition reduced NAD+ concentrations below a critical threshold that resulted in depletion of adenine, which was the metabolic trigger that primed TNBC cells for apoptosis. These findings demonstrate a close interaction between metabolic and mitochondrial apoptotic signaling pathways and reveal that exploitation of a tumor-specific metabolic vulnerability can sensitize some TNBC to BH3 mimetics.
Collapse
Affiliation(s)
- Veerle W Daniels
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Ludwig Center at Harvard, Boston, MA 02215, USA
| | - Jason J Zoeller
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Nick van Gastel
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kelley E McQueeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Salma Parvin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Danielle S Potter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Geoffrey G Fell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Vinícius G Ferreira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13568-250, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP 13083-970, Brazil
| | - Binyam Yilma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rajat Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johan Spetz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Patrick D Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jennifer E Endress
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Isaac S Harris
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.,Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13568-250, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP 13083-970, Brazil
| | - Kristopher A Sarosiek
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joan S Brugge
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Ludwig Center at Harvard, Boston, MA 02215, USA
| |
Collapse
|
89
|
Taniguchi S, Yamauchi T, Choi I, Fukuhara N, Potluri J, Salem AH, Hong WJ, Honda H, Nishimura Y, Okubo S, Usuki K. Venetoclax in combination with azacitidine in Japanese patients with acute myeloid leukaemia: phase 1 trial findings. Jpn J Clin Oncol 2021; 51:857-864. [PMID: 33712849 DOI: 10.1093/jjco/hyab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Venetoclax plus azacitidine is indicated in the USA for the treatment of newly diagnosed acute myeloid leukaemia in older patients (≥75 years) or those ineligible for induction chemotherapy due to co-morbidities. METHODS In this phase 1/2 study (NCT02265731), Japanese patients (≥60 years) with untreated (ineligible for induction chemotherapy) or relapsed/refractory acute myeloid leukaemia received oral venetoclax 400 mg/day (3-day ramp up in cycle 1) plus subcutaneous or intravenous azacitidine 75 mg/m2 on days 1-7 per 28-day cycle until disease progression or unacceptable toxicity. RESULTS As of 10 December 2019, six patients were enrolled (median age: 75 years; untreated: n = 5; relapsed/refractory: n = 1); median treatment duration: 10.3 months (range, 0.7-29.4). Most common grade ≥ 3 adverse events were lymphopaenia and febrile neutropaenia (n = 4 each). Four patients reported serious adverse events; only an event of grade 3 fungal pneumonia was considered possibly related to both study drugs, requiring dose interruption of venetoclax and delay of azacitidine. Five (83%) patients had responses (complete remission: n = 3). Median time to first response of complete remission/complete remission with incomplete count recovery was 1.0 month (range, 0.8-5.5); median overall survival: 15.7 months (95% confidence interval: 6.2, not reached). CONCLUSIONS Venetoclax plus azacitidine was well tolerated and showed high response rates in Japanese patients with acute myeloid leukaemia.
Collapse
Affiliation(s)
- Shuichi Taniguchi
- Department of Hematology, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, University of Fukui Hospital, Fukui, Japan
| | - Ilseung Choi
- Department of Hematology, National Hospital Organization, Kyushu Cancer Centerk, Fukuoka, Japan
| | - Noriko Fukuhara
- Department of Hematology and Rheumatology, Tohoku University Hospital, Sendai, Japan
| | | | - Ahmed Hamed Salem
- AbbVie Inc., North Chicago, IL, USA.,Department of Clinical Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | | | | | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| |
Collapse
|
90
|
Ferroptosis in Different Pathological Contexts Seen through the Eyes of Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5537330. [PMID: 34211625 PMCID: PMC8205588 DOI: 10.1155/2021/5537330] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a recently described form of regulated cell death characterized by intracellular iron accumulation and severe lipid peroxidation due to an impaired cysteine-glutathione-glutathione peroxidase 4 antioxidant defence axis. One of the hallmarks of ferroptosis is a specific morphological phenotype characterized by extensive ultrastructural changes of mitochondria. Increasing evidence suggests that mitochondria play a significant role in the induction and execution of ferroptosis. The present review summarizes existing knowledge about the mitochondrial impact on ferroptosis in different pathological states, primarily cancer, cardiovascular diseases, and neurodegenerative diseases. Additionally, we highlight pathologies in which the ferroptosis/mitochondria relation remains to be investigated, where the process of ferroptosis has been confirmed (such as liver- and kidney-related pathologies) and those in which ferroptosis has not been studied yet, such as diabetes. We will bring attention to avenues that could be followed in future research, based on the use of mitochondria-targeted approaches as anti- and proferroptotic strategies and directed to the improvement of existing and the development of novel therapeutic strategies.
Collapse
|
91
|
Zhao H, Liu S, Zhao H, Liu Y, Xue M, Zhang H, Qiu X, Sun Z, Liang H. Protective effects of fucoidan against ethanol-induced liver injury through maintaining mitochondrial function and mitophagy balance in rats. Food Funct 2021; 12:3842-3854. [PMID: 33977968 DOI: 10.1039/d0fo03220d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For alcoholic liver disease (ALD), mitophagy has been reported as a promising therapeutic strategy to alleviate the hepatic lesion elicited by ethanol. This study was conducted to investigate the regulatory effects of fucoidan on mitophagy induced by chronic ethanol administration in rats. Here, 20 male rats in each group were treated with fucoidan (150 and 300 mg per kg body weight) by gavage once daily. Up to 56% liquor (7 to 9 mL per kg body weight) was orally administered 1 h after the fucoidan treatment for 20 weeks. The results showed that chronic ethanol consumption elevated the levels of hepatic enzymes (ALT, AST, and GGT) and triglyceride (TG) contents, with liver antioxidant enzymes being decreased and lipid peroxidation products increased and thus initiating the mitochondria-induced endogenous apoptotic pathway. Furthermore, ethanol-induced excessive oxidative stress inhibited the function of mitochondria and promoted damaged mitochondria accumulation which stimulated the PTEN-induced putative kinase 1 (PINK1) and Parkin associated mitophagic pathway in the liver. In contrast, the fucoidan pretreatment alleviated ethanol-induced histopathological changes, disorders of lipid metabolism, and oxidative damage with mitophagy related proteins and mitochondrial dynamics-related proteins namely mitochondrial E3 ubiquitin ligase 1 (Mul1), mitofusin2 (Mfn2) and dynamin-related protein 1 (Drp1) being restored to a normal level. In summary, our findings suggest that fucoidan pretreatment protects against ethanol-induced damaged mitochondria accumulation and over-activated mitophagy, which plays a pivotal role in maintaining mitochondrial homeostasis and ensuring mitochondrial quality.
Collapse
Affiliation(s)
- Huichao Zhao
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| | - Shuang Liu
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| | - Hui Zhao
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| | - Ying Liu
- Basic Medical College, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Meilan Xue
- Basic Medical College, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Huaqi Zhang
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| | - Xia Qiu
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd, Qingdao 266400, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd, Qingdao 266400, China
| | - Hui Liang
- The Institute of Human Nutrition, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| |
Collapse
|
92
|
Tetrastigma hemsleyanum leaf flavones have anti-NSCLC ability by triggering apoptosis using the Akt-mTOR pathway. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
93
|
Othman TA, Azenkot T, Moskoff BN, Tenold ME, Jonas BA. Venetoclax-based combinations for the treatment of newly diagnosed acute myeloid leukemia. Future Oncol 2021; 17:2989-3005. [PMID: 34024158 DOI: 10.2217/fon-2021-0262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Elderly and/or unfit patients with acute myeloid leukemia have historically been challenging to manage as they were ineligible for what was considered standard of care treatment with induction chemotherapy. The emergence of venetoclax with hypomethylating agents or low-dose cytarabine has substantially improved outcomes in the frontline setting with manageable toxicity. However, this regimen can be challenging to deliver given its differences from standard intensive chemotherapy. In this review, we summarize the landmark trials that established venetoclax-based combinations as a new standard of care for patients with acute myeloid leukemia not suitable for intense chemotherapy, provide practical clinical pearls for managing patients on these therapies, and offer a brief overview of modifications to these regimens under development to improve their efficacy and/or applicability.
Collapse
Affiliation(s)
- Tamer A Othman
- Department of Internal Medicine, Division of Hematology & Oncology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Tali Azenkot
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Benjamin N Moskoff
- Pharmacy Department, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Matthew E Tenold
- Department of Internal Medicine, Division of Hematology & Oncology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Brian A Jonas
- Department of Internal Medicine, Division of Hematology & Oncology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
94
|
Quan JH, Gao FF, Chu JQ, Cha GH, Yuk JM, Wu W, Lee YH. Silver nanoparticles induce apoptosis via NOX4-derived mitochondrial reactive oxygen species and endoplasmic reticulum stress in colorectal cancer cells. Nanomedicine (Lond) 2021; 16:1357-1375. [PMID: 34008419 DOI: 10.2217/nnm-2021-0098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate the anticancer mechanisms of silver nanoparticles (AgNPs) in colorectal cancer. Methods: Anticancer effects of AgNPs were determined in colorectal cancer HCT116 cells and xenograft mice using cellular and molecular methods. Results: AgNPs induced mitochondrial reactive oxygen species production, mitochondrial dysfunction and endoplasmic reticulum (ER) stress responses through NOX4 and led to HCT116 cell apoptosis. Pretreatment with DPI or 4-PBA significantly inhibited mitochondrial reactive oxygen species production, apoptosis, ER stress response, NOX4 expression and mitochondrial dysfunction in AgNP-treated HCT116 cells. AgNPs also significantly suppressed HCT116 cell-based xenograft tumor growth in nude mice by inducing apoptosis and ER stress responses. Conclusion: AgNPs exert anticancer effects against colorectal cancer via ROS- and ER stress-related mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Juan-Hua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524-001, People's Republic of China
| | - Fei Fei Gao
- Brain Korea 21 Four Project for Medical Science, Chungnam National University, Daejeon 35015, Korea.,Departments of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Jia-Qi Chu
- Stem Cell Research & Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524-001, People's Republic of China
| | - Guang-Ho Cha
- Departments of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Jae-Min Yuk
- Brain Korea 21 Four Project for Medical Science, Chungnam National University, Daejeon 35015, Korea.,Departments of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Weiyun Wu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524-001, People's Republic of China
| | - Young-Ha Lee
- Brain Korea 21 Four Project for Medical Science, Chungnam National University, Daejeon 35015, Korea.,Departments of Medical Science and Department of Infection Biology, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
95
|
Berthenet K, Castillo Ferrer C, Fanfone D, Popgeorgiev N, Neves D, Bertolino P, Gibert B, Hernandez-Vargas H, Ichim G. Failed Apoptosis Enhances Melanoma Cancer Cell Aggressiveness. Cell Rep 2021; 31:107731. [PMID: 32521256 DOI: 10.1016/j.celrep.2020.107731] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
Triggering apoptosis remains an efficient strategy to treat cancer. However, apoptosis is no longer a final destination since cancer cells can undergo partial apoptosis without dying. Recent evidence shows that partial mitochondrial permeabilization and non-lethal caspase activation occur under certain circumstances, although it remains unclear how failed apoptosis affects cancer cells. Using a cancer cell model to trigger non-lethal caspase activation, we find that melanoma cancer cells undergoing failed apoptosis have a particular transcriptomic signature associated with focal adhesions, transendothelial migration, and modifications of the actin cytoskeleton. In line with this, cancer cells surviving apoptosis gain migration and invasion properties in vitro and in vivo. We further demonstrate that failed apoptosis-associated gain in invasiveness is regulated by the c-Jun N-terminal kinase (JNK) pathway, whereas its RNA sequencing signature is found in metastatic melanoma. These findings advance our understanding of how cell death can both cure and promote cancer.
Collapse
Affiliation(s)
- Kevin Berthenet
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France; Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Camila Castillo Ferrer
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France; EPHE, PSL Research University, Paris, France
| | - Deborah Fanfone
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France; Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France
| | | | | | - Philippe Bertolino
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France
| | - Benjamin Gibert
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France; Apoptosis, Cancer and Development Laboratory, Labeled by "La Ligue Contre le Cancer," Part of LabEx DEVweCAN and Convergence PLAsCAN Institute, Lyon, France
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France; Université Claude Bernard Lyon 1, Lyon, France
| | - Gabriel Ichim
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS 5286, Lyon, France; Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France.
| |
Collapse
|
96
|
Li Y, Feng X, Zhang Y, Wang Y, Yu X, Jia R, Yu T, Zheng X, Chu Q. Dietary flavone from the Tetrastigma hemsleyanum vine triggers human lung adenocarcinoma apoptosis via autophagy. Food Funct 2021; 11:9776-9788. [PMID: 33078819 DOI: 10.1039/d0fo01997f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Among all types of cancers, lung cancer ranks first in morbidity and mortality, and non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer cases. Chemotherapy has shown promising results, but the accompanying side-effects cannot be neglected. Herein, we introduce novel flavones (TVF), which were characterized as 3-caffeoylquinic acid, 5-caffeoylquinic acid, quercetin-3-O-rutinoside, and kaempferol-3-O-rutinoside by UPLC-MS/MS, derived from the vine of Tetrastigma hemsleyanum (TV), a traditional Chinese herb and food. TVF exhibited outstanding anti-cancer abilities at the in vitro and in vivo level, and markedly triggered apoptosis via the Bax/Bcl-2/caspase-9/caspase-3 pathway. The intrinsic mechanism study illustrated that TVF might induce apoptosis by activating autophagy by inhibiting the Akt-mTOR pathway, and the main component of TVF, quercetin-3-O-rutinoside, enabled THR308 site binding to block the phosphorylation of Akt, which was further evidenced by molecular docking computation. Our study reveals the excellent anti-cancer ability and inner mechanism of TVF, suggesting TVF as a potential candidate for clinical drug exploitation or dietary supplementation in cancer medication and prevention, providing a promising strategy for cancer chemotherapy.
Collapse
Affiliation(s)
- Yonglu Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Venetoclax response is enhanced by selective inhibitor of nuclear export compounds in hematologic malignancies. Blood Adv 2021; 4:586-598. [PMID: 32045477 DOI: 10.1182/bloodadvances.2019000359] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
The selective inhibitor of nuclear export (SINE) compounds selinexor (KPT-330) and eltanexor (KPT-8602) are from a novel class of small molecules that target exportin-1 (XPO1 [CRM1]), an essential nucleo-cytoplasmic transport protein responsible for the nuclear export of major tumor suppressor proteins and growth regulators such as p53, p21, and p27. XPO1 also affects the translation of messenger RNAs for critical oncogenes, including MYC, BCL2, MCL1, and BCL6, by blocking the export of the translation initiation factor eIF4E. Early trials with venetoclax (ABT-199), a potent, selective inhibitor of BCL2, have revealed responses across a variety of hematologic malignancies. However, many tumors are not responsive to venetoclax. We used models of acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL) to determine in vitro and in vivo responses to treatment with venetoclax and SINE compounds combined. Cotreatment with venetoclax and SINE compounds demonstrated loss of viability in multiple cell lines. Further in vitro analyses showed that this enhanced cell death was the result of an increase in apoptosis that led to a loss of clonogenicity in methylcellulose assays, coinciding with activation of p53 and loss of MCL1. Treatment with SINE compounds and venetoclax combined led to a reduction in tumor growth in both AML and DLBCL xenografts. Immunohistochemical analysis of tissue sections revealed that the reduction in tumor cells was partly the result of an induction of apoptosis. The enhanced effects of this combination were validated in primary AML and DLBCL patient cells. Our studies reveal synergy with SINE compounds and venetoclax in aggressive hematologic malignancies and provide a rationale for pursuing this approach in a clinical trial.
Collapse
|
98
|
Jiao Y, Xiong Y, He L, Yang Z, Yuan H, Liu D, Li R, Song R, Yin Y. Dioscorea deltoidea Leaf Extract (DDLE) Targets PI3K/AKT/mTOR Pathway and Inhibits Ovarian Cancer Cell Growth. DOKL BIOCHEM BIOPHYS 2021; 497:144-150. [PMID: 33895931 DOI: 10.1134/s1607672921020058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is the malignant tumour of the female reproductive organ with highest mortality rate among all the types of gynaecological tumours. This study investigated the effect of Dioscorea deltoidea leaf extract (DDLE) on OV-90 and CAOV4 ovarian cancer cells. The results demonstrated that DDLE suppresses OV-90 and CAOV3 cell viability significantly in dose dependent manner. The OV-90 and CAOV3 cell viability were reduced to 24 and 27% respectively with 20 mg/mL DDLE treatment. Five mg/mL DDLE treatment of OV-90 and CAOV4 cells raised percentage of cells in G2-phase to 55.9 and 51.2%, respectively. In 5 mg/mL DDLE -treated OV-90 and CAOV4 cells a prominent suppression in cyclin-D1 and cyclin B1 proteins was observed in 48 h. The DDLE treatment promoted OV-90 and CAOV3 cell apoptosis to 34.65 and 29.89%, respectively. The Fas, FasL, cleaved caspase-3, and Bax levels were up-regulated markedly in the cells after DDLE treatment. Moreover, DDLE treatment suppressed p-mTOR, p-AKT and p-PI3K expression in OV-90 and CAOV3 cells. Thus, DDLE suppressed ovary cancer cell viability and elevated cell apoptosis. Inhibitory effect of DDLE on ovarian cancer cells is associated with targeting PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Ying Jiao
- Department of Gynecology, The No. 2 Hospital of Baoding, 071000, Baoding, Hebei, China
| | - Ying Xiong
- Department of Gynecology, The General Hospital of Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Lin He
- Department of Gynecology, The No. 2 Hospital of Baoding, 071000, Baoding, Hebei, China
| | - Zhifeng Yang
- Department of Gynecology, The No. 2 Hospital of Baoding, 071000, Baoding, Hebei, China
| | - Hong Yuan
- Department of Gynecology, The No. 2 Hospital of Baoding, 071000, Baoding, Hebei, China
| | - Dan Liu
- Department of Gynecology, The No. 2 Hospital of Baoding, 071000, Baoding, Hebei, China
| | - Runting Li
- Department of Gynecology, The No. 2 Hospital of Baoding, 071000, Baoding, Hebei, China
| | - Ran Song
- Department of Gynecology, The No. 2 Hospital of Baoding, 071000, Baoding, Hebei, China
| | - Yanru Yin
- Department of Gynecology, Traditional Chinese Medical Hospital of HuZhou, 313000, HuZhou, Zhejiang, China.
| |
Collapse
|
99
|
Dong F, Xiao P, Li X, Chang P, Zhang W, Wang L. Cadmium triggers oxidative stress and mitochondrial injury mediated apoptosis in human extravillous trophoblast HTR-8/SVneo cells. Reprod Toxicol 2021; 101:18-27. [PMID: 33588013 DOI: 10.1016/j.reprotox.2021.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/16/2021] [Accepted: 02/09/2021] [Indexed: 12/25/2022]
Abstract
Cadmium (Cd) is a bioaccumulative heavy metal element with potential placental toxicity during pregnancy. Up to now, however, the precise toxic effects of Cd on human placentae, particularly as they pertain to trophoblast cells remain obscure. We therefore sought to investigate the cytotoxic effects of Cd on human extravillous trophoblast HTR-8/SVneo cells and the mechanisms involved in the processes. Results in this present study showed that CdCl2 treatment significantly suppressed cell viability and induced noticeable oxidative stress in HTR-8/SVneo cells. Further studies showed that CdCl2 treatment caused distortion of mitochondrial structure, reduction of mitochondrial membrane potential (Δψm), DNA damage and G0/G1 phase arrest. Under the same condition, CdCl2 treatment increased Bax/Bcl-2 ratios by up-regulating Bax expression and down-regulating Bcl-2 expression, and activated apoptotic executive molecule caspase-3, which irreversibly induced HTR-8/SVneo cell apoptosis. N-acetyl-l-cysteine (NAC), ROS scavenger, significantly attenuated CdCl2-caused mitochondrial injury, DNA damage, G0/G1 phase arrest and apoptosis. In addition, in vivo assay suggested that CdCl2 induced trophoblast cells apoptosis but not other cells in mice placental tissue. Taken together, these data suggest that Cd selectively triggers oxidative stress and mitochondrial injury mediated apoptosis in trophoblast cells, which might contribute to placentae impairment and placental-related disorders after Cd exposure. These findings may provide new insights to understand adverse effects of Cd on placentae during pregnancy.
Collapse
Affiliation(s)
- Feng Dong
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Pan Xiao
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiangyang Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | | | - Wenyi Zhang
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Lan Wang
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
100
|
Tan YQ, Zhang X, Zhang S, Zhu T, Garg M, Lobie PE, Pandey V. Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochim Biophys Acta Rev Cancer 2021; 1876:188534. [PMID: 33794332 DOI: 10.1016/j.bbcan.2021.188534] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria, well recognized as the "powerhouse" of cells, are maternally inherited organelles with bacterial ancestry that play essential roles in a myriad of cellular functions. It has become profoundly evident that mitochondria regulate a wide array of cellular and metabolic functions, including biosynthetic metabolism, cell signaling, redox homeostasis, and cell survival. Correspondingly, defects in normal mitochondrial functioning have been implicated in various human malignancies. Cancer development involves the activation of oncogenes, inactivation of tumor suppressor genes, and impairment of apoptotic programs in cells. Mitochondria have been recognized as the site of key metabolic switches for normal cells to acquire a malignant phenotype. This review outlines the role of mitochondria in human malignancies and highlights potential aspects of mitochondrial metabolism that could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|