51
|
Snow WM, Anderson JE, Fry M. Regional and genotypic differences in intrinsic electrophysiological properties of cerebellar Purkinje neurons from wild-type and dystrophin-deficient mdx mice. Neurobiol Learn Mem 2014; 107:19-31. [DOI: 10.1016/j.nlm.2013.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 10/10/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
|
52
|
Development and plasticity of outer retinal circuitry following genetic removal of horizontal cells. J Neurosci 2013; 33:17847-62. [PMID: 24198374 DOI: 10.1523/jneurosci.1373-13.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The present study examined the consequences of eliminating horizontal cells from the outer retina during embryogenesis upon the organization and assembly of the outer plexiform layer (OPL). Retinal horizontal cells exhibit a migration defect in Lim1-conditional knock-out (Lim1-CKO) mice and become mispositioned in the inner retina before birth, redirecting their dendrites into the inner plexiform layer. The resultant (mature) OPL, developing in the absence of horizontal cells, shows a retraction of rod spherules into the outer nuclear layer and a sprouting of rod bipolar cell dendrites to reach ectopic ribbon-protein puncta. Cone pedicles and the dendrites of type 7 cone bipolar cells retain their characteristic stratification and colocalization within the collapsed OPL, although both are atrophic and the spatial distribution of the pedicles is disrupted. Developmental analysis of Lim1-CKO retina reveals that components of the rod and cone pathways initially co-assemble within their normal strata in the OPL, indicating that horizontal cells are not required for the correct targeting of photoreceptor terminals or bipolar cell dendrites. As the rod spherules begin to retract during the second postnatal week, rod bipolar cells initially show no signs of ectopic growth, sprouting only subsequently and continuing to do so well after the eighth postnatal week. These results demonstrate the critical yet distinctive roles for horizontal cells on the rod and cone pathways and highlight a unique and as-yet-unrecognized maintenance function of an inhibitory interneuron that is not required for the initial targeting and co-stratification of other components in the circuit.
Collapse
|
53
|
Affiliation(s)
| | - Richard Hawkes
- Department of Cell Biology and Anatomy, Genes and Development Research Group and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary
| |
Collapse
|
54
|
Type 1 inositol trisphosphate receptor regulates cerebellar circuits by maintaining the spine morphology of purkinje cells in adult mice. J Neurosci 2013; 33:12186-96. [PMID: 23884927 DOI: 10.1523/jneurosci.0545-13.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structural maintenance of neural circuits is critical for higher brain functions in adulthood. Although several molecules have been identified as regulators for spine maintenance in hippocampal and cortical neurons, it is poorly understood how Purkinje cell (PC) spines are maintained in the mature cerebellum. Here we show that the calcium channel type 1 inositol trisphosphate receptor (IP3R1) in PCs plays a crucial role in controlling the maintenance of parallel fiber (PF)-PC synaptic circuits in the mature cerebellum in vivo. Significantly, adult mice lacking IP3R1 specifically in PCs (L7-Cre;Itpr1(flox/flox)) showed dramatic increase in spine density and spine length of PCs, despite having normal spines during development. In addition, the abnormally rearranged PF-PC synaptic circuits in mature cerebellum caused unexpectedly severe ataxia in adult L7-Cre;Itpr1(flox/flox) mice. Our findings reveal a specific role for IP3R1 in PCs not only as an intracellular mediator of cerebellar synaptic plasticity induction, but also as a critical regulator of PF-PC synaptic circuit maintenance in the mature cerebellum in vivo; this mechanism may underlie motor coordination and learning in adults.
Collapse
|
55
|
Precocious cerebellum development and improved motor functions in mice lacking the astrocyte cilium-, patched 1-associated Gpr37l1 receptor. Proc Natl Acad Sci U S A 2013; 110:16486-91. [PMID: 24062445 DOI: 10.1073/pnas.1314819110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the developing cerebellum, the proliferation and differentiation of glial and neuronal cell types depend on the modulation of the sonic hedgehog (Shh) signaling pathway. The vertebrate G-protein-coupled receptor 37-like 1 (GPR37L1) gene encodes a putative G-protein-coupled receptor that is expressed in newborn and adult cerebellar Bergmann glia astrocytes. This study shows that the ablation of the murine Gpr37l1 gene results in premature down-regulation of proliferation of granule neuron precursors and precocious maturation of Bergmann glia and Purkinje neurons. These alterations are accompanied by improved adult motor learning and coordination. Gpr37l1(-/-) mice also exhibit specific modifications of the Shh signaling cascade. Specific assays show that in Bergmann glia cells Gpr37l1 is associated with primary cilium membranes and it specifically interacts and colocalizes with the Shh primary receptor, patched 1. These findings indicate that the patched 1-associated Gpr37l1 receptor participates in the regulation of postnatal cerebellum development by modulating the Shh pathway.
Collapse
|
56
|
Mature Purkinje cells require the retinoic acid-related orphan receptor-α (RORα) to maintain climbing fiber mono-innervation and other adult characteristics. J Neurosci 2013; 33:9546-62. [PMID: 23719821 DOI: 10.1523/jneurosci.2977-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuronal maturation during development is a multistep process regulated by transcription factors. The transcription factor RORα (retinoic acid-related orphan receptor α) is necessary for early Purkinje cell (PC) maturation but is also expressed throughout adulthood. To identify the role of RORα in mature PCs, we used Cre-lox mouse genetic tools in vivo that delete it specifically from PCs between postnatal days 10-21. Up to 14 d of age, differences between mutant and control PCs were not detectable: both were mono-innervated by climbing fibers (CFs) extending along their well-developed dendrites with spiny branchlets. By week 4, mutant mice were ataxic, some PCs had died, and remaining PC soma and dendrites were atrophic, with almost complete disappearance of spiny branchlets. The innervation pattern of surviving RORα-deleted PCs was abnormal with several immature characteristics. Notably, multiple functional CF innervation was reestablished on these mature PCs, simultaneously with the relocation of CF contacts to the PC soma and their stem dendrite. This morphological modification of CF contacts could be induced even later, using lentivirus-mediated depletion of rora from adult PCs. These data show that the late postnatal expression of RORα cell-autonomously regulates the maintenance of PC dendritic complexity, and the CF innervation status of the PC (dendritic vs somatic contacts, and mono-innervation vs multi-innervation). Thus, the differentiation state of adult neurons is under the control of transcription factors; and in their absence, adult neurons lose their mature characteristics and acquire some characteristics of an earlier developmental stage.
Collapse
|
57
|
Li J, Yu L, Gu X, Ma Y, Pasqualini R, Arap W, Snyder EY, Sidman RL. Tissue plasminogen activator regulates Purkinje neuron development and survival. Proc Natl Acad Sci U S A 2013; 110:E2410-9. [PMID: 23674688 PMCID: PMC3696779 DOI: 10.1073/pnas.1305010110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cerebellar cortex is centrally involved in motor coordination and learning, and its sole output is provided by Purkinje neurons (PNs). Growth of PN dendrites and their major synaptic input from granule cell parallel fiber axons takes place almost entirely in the first several postnatal weeks. PNs are more vulnerable to cell death than most other neurons, but the mechanisms remain unclear. We find that the homozygous nervous (nr) mutant mouse's 10-fold-increased cerebellar tissue plasminogen activator (tPA), a part of the tPA/plasmin proteolytic system, influences several different molecular mechanisms, each regulating a key aspect of postnatal PN development, followed by selective PN necrosis, as follows. (i) Excess endogenous or exogenous tPA inhibits dendritic growth in vivo and in vitro by activating protein kinase Cγ and phosphorylation of microtubule-associated protein 2. (ii) tPA/plasmin proteolysis impairs parallel fiber-PN synaptogenesis by blocking brain-derived neurotrophic factor/tyrosine kinase receptor B signaling. (iii) Voltage-dependent anion channel 1 (a mitochondrial and plasma membrane protein) bound with kringle 5 (a peptide derived from the excess plasminogen) promotes pathological enlargement and rounding of PN mitochondria, reduces mitochondrial membrane potential, and damages plasma membranes. These abnormalities culminate in young nr PN necrosis that can be mimicked in wild-type PNs by exogenous tPA injection into cerebellum or prevented by endogenous tPA deletion in nr:tPA-knockout double mutants. In sum, excess tPA/plasmin, through separate downstream molecular mechanisms, regulates postnatal PN dendritogenesis, synaptogenesis, mitochondrial structure and function, and selective PN viability.
Collapse
Affiliation(s)
| | - Lili Yu
- Department of Anatomy and Neurobiology, Boston University Medical School, Boston, MA 02118
| | - Xuesong Gu
- Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Yinghua Ma
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065
| | - Renata Pasqualini
- David H. Koch Center, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Wadih Arap
- David H. Koch Center, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Evan Y. Snyder
- Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
58
|
Role of reactive oxygen species and NADPH-oxidase in the development of rat cerebellum. Neurochem Int 2013; 62:998-1011. [PMID: 23535068 DOI: 10.1016/j.neuint.2013.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 03/10/2013] [Accepted: 03/15/2013] [Indexed: 12/18/2022]
Abstract
Experimental evidence suggests that reactive oxygen species (ROS) could participate in the regulation of some physiological conditions. In the nervous system, ROS have been suggested to act as signaling molecules involved in several developmental processes including cell differentiation, proliferation and programmed of cell death. Although ROS can be generated by several sources, it has been suggested that NADPH oxidase (NOX) could be critical in the production of ROS acting as a signal in some of these events. It has been reported that ROS production by NOX enzymes participate in neuronal maturation and differentiation during brain development. In the present study, we found that during rat cerebellar development there was a differential ROS generation at different ages and areas of the cerebellum. We also found a differential expression of NOX homologues during rat cerebellar development. When we treated developing rats with an antioxidant or with apocynin, an inhibitor of NOX, we found a marked decrease of the ROS levels in all the cerebellar layers at all the ages tested. Both treatments also induced a significant change in the cerebellar foliation as well as an alteration in motor behavior. These results suggest that both ROS and NOX have a critical role during cerebellar development.
Collapse
|
59
|
Basille-Dugay M, Hamza MM, Tassery C, Parent B, Raoult E, Bénard M, Raisman-Vozari R, Vaudry D, Burel DC. Spatio-temporal characterization of the pleiotrophinergic system in mouse cerebellum: evidence for its key role during ontogenesis. Exp Neurol 2013; 247:537-51. [PMID: 23454176 DOI: 10.1016/j.expneurol.2013.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/20/2012] [Accepted: 02/08/2013] [Indexed: 12/29/2022]
Abstract
The development of the central nervous system requires an appropriate micro-environment that is conditioned by a combination of various extracellular components. Most of the known signaling factors, such as neurotransmitters or neuropeptides, are soluble and diffuse into the extracellular matrix. However, other secreted molecules like proteoglycans or glycosaminoglycans anchor in the extracellular matrix to influence cerebral ontogenesis. As such, pleiotrophin (PTN), which binds the proteoglycans syndecan-3 (SDC3) and protein tyrosine phosphatase zeta (PTPζ), has been described as a pro-migratory and a pro-differentiating secreted cytokine on cortical neurons. In rat cerebellum, PTN is highly expressed during the first postnatal week, suggesting that this cytokine could participate to the development of the cerebellar cortex. According to this hypothesis, our spatio-temporal cartography of PTN, PTPζ and SDC3 indicated that, in mouse, the PTNergic system was present in the cerebellum at least from the first postnatal day (P0). Until P12, PTN was mainly expressed by granule cell precursors and located in the extracellular matrix, while SDC3 was expressed by Purkinje cells, Golgi cells and granule cell precursors, and PTPζ was present on Purkinje cells and Bergmann fibers. In vitro studies confirmed the presence of SDC3 on immature granule cells and demonstrated that PTN could stimulate directly their velocity in culture. In contrast, subarachnoidal injection of PTN in the cerebellum significantly reduced the rate of migration of granule cells, exacerbated their apoptosis and induced an atrophy of the Purkinje cell dendritic tree. Since differentiated granule cells did not express SDC3 or PTPζ, the PTN effect observed on migration and apoptosis may be indirectly mediated by Purkinje and/or Bergmann cells. From P21 to adulthood, the distribution of PTN, SDC3 and PTPζ changed and their expression dramatically decreased even if they were still detectable. PTN and SDC3 immunolabeling was restricted around Purkinje cell bodies and Golgi cells, whereas PTPζ was located around interneurons. These data suggested that, in the cerebellum of adult mice, PTN participates to the perineuronal nets that control neuronal plasticity. To conclude, the present work represents the first spatio-temporal characterization of the PTNergic system in the mouse cerebellum and indicates that PTN may contribute to cerebellum ontogenesis during the postnatal development as well as to neuronal plasticity at adulthood.
Collapse
Affiliation(s)
- Magali Basille-Dugay
- Institut National de Santé et de Recherche Médicale (Inserm), U982, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Sato T, Muroyama Y, Saito T. Inducible gene expression in postmitotic neurons by an in vivo electroporation-based tetracycline system. J Neurosci Methods 2013; 214:170-6. [PMID: 23357027 DOI: 10.1016/j.jneumeth.2013.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 01/05/2023]
Abstract
In vivo electroporation has been widely used to transfect foreign genes into neural progenitors and analyze the function of genes of interest in the developing nervous system. However, it has not been thoroughly examined in the conditional regulation of exogenous genes in postmitotic neurons. Here we show that the combination of in vivo electroporation and the newest version of the tetracycline (Tet)-controlled gene regulatory (Tet-On) system efficiently induced gene expression in various types of neurons in mouse embryonic and postnatal tissues. In pyramidal neurons of the cerebral cortex, tetracycline-responsive element (TRE)-driven gene expression was induced in the presence of doxycycline (Dox). The induction occurred in a dose-dependent manner. The Dox-dependent induction was also observed in cerebellar Purkinje cells and spinal cord neurons. Moreover, the TRE-driven inducible expression of mammalian Barh1 (Mbh1) mimicked the phenotype of the ubiquitous expression of Mbh1 in the spinal cord. These results indicate that the combination of the Tet-On system and in vivo electroporation is useful for analyzing gene function specifically in postmitotic neurons.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan
| | | | | |
Collapse
|
61
|
Qiao S, Kim SH, Heck D, Goldowitz D, LeDoux MS, Homayouni R. Dab2IP GTPase activating protein regulates dendrite development and synapse number in cerebellum. PLoS One 2013; 8:e53635. [PMID: 23326475 PMCID: PMC3541190 DOI: 10.1371/journal.pone.0053635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023] Open
Abstract
DOC-2/DAB-2 interacting protein (Dab2IP) is a GTPase activating protein that binds to Disabled-1, a cytosolic adapter protein involved in Reelin signaling and brain development. Dab2IP regulates PI3K-AKT signaling and is associated with metastatic prostate cancer, abdominal aortic aneurysms and coronary heart disease. To date, the physiological function of Dab2IP in the nervous system, where it is highly expressed, is relatively unknown. In this study, we generated a mouse model with a targeted disruption of Dab2IP using a retrovirus gene trap strategy. Unlike reeler mice, Dab2IP knock-down mice did not exhibit severe ataxia or cerebellar hypoplasia. However, Dab2IP deficiency produced a number of cerebellar abnormalities such as a delay in the development of Purkinje cell (PC) dendrites, a decrease in the parallel fiber synaptic marker VGluT1, and an increase in the climbing fiber synaptic marker VGluT2. These findings demonstrate for the first time that Dab2IP plays an important role in dendrite development and regulates the number of synapses in the cerebellum.
Collapse
Affiliation(s)
- Shuhong Qiao
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Sun-Hong Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Detlef Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Daniel Goldowitz
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Mark S. LeDoux
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ramin Homayouni
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
62
|
Digital morphometry of rat cerebellar climbing fibers reveals distinct branch and bouton types. J Neurosci 2013; 32:14670-84. [PMID: 23077053 DOI: 10.1523/jneurosci.2018-12.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cerebellar climbing fibers (CFs) provide powerful excitatory input to Purkinje cells (PCs), which represent the sole output of the cerebellar cortex. Recent discoveries suggest that CFs have information-rich signaling properties important for cerebellar function, beyond eliciting the well known all-or-none PC complex spike. CF morphology has not been quantitatively analyzed at the same level of detail as its biophysical properties. Because morphology can greatly influence function, including the capacity for information processing, it is important to understand CF branching structure in detail, as well as its variability across and within arbors. We have digitally reconstructed 68 rat CFs labeled using biotinylated dextran amine injected into the inferior olive and comprehensively quantified their morphology. CF structure was considerably diverse even within the same anatomical regions. Distinctly identifiable primary, tendril, and distal branches could be operationally differentiated by the relative size of the subtrees at their initial bifurcations. Additionally, primary branches were more directed toward the cortical surface and had fewer and less pronounced synaptic boutons, suggesting they prioritize efficient and reliable signal propagation. Tendril and distal branches were spatially segregated and bouton dense, indicating specialization in signal transmission. Furthermore, CFs systematically targeted molecular layer interneuron cell bodies, especially at terminal boutons, potentially instantiating feedforward inhibition on PCs. This study offers the most detailed and comprehensive characterization of CF morphology to date. The reconstruction files and metadata are publicly distributed at NeuroMorpho.org.
Collapse
|
63
|
|
64
|
Fujishima K, Horie R, Mochizuki A, Kengaku M. Principles of branch dynamics governing shape characteristics of cerebellar Purkinje cell dendrites. Development 2012; 139:3442-55. [PMID: 22912417 PMCID: PMC3491647 DOI: 10.1242/dev.081315] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons develop dendritic arbors in cell type-specific patterns. Using growing Purkinje cells in culture as a model, we performed a long-term time-lapse observation of dendrite branch dynamics to understand the rules that govern the characteristic space-filling dendrites. We found that dendrite architecture was sculpted by a combination of reproducible dynamic processes, including constant tip elongation, stochastic terminal branching, and retraction triggered by contacts between growing dendrites. Inhibition of protein kinase C/protein kinase D signaling prevented branch retraction and significantly altered the characteristic morphology of long proximal segments. A computer simulation of dendrite branch dynamics using simple parameters from experimental measurements reproduced the time-dependent changes in the dendrite configuration in live Purkinje cells. Furthermore, perturbation analysis to parameters in silico validated the important contribution of dendritic retraction in the formation of the characteristic morphology. We present an approach using live imaging and computer simulations to clarify the fundamental mechanisms of dendrite patterning in the developing brain.
Collapse
Affiliation(s)
- Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Honmachi, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|
65
|
Nishiyama J, Hayashi Y, Nomura T, Miura E, Kakegawa W, Yuzaki M. Selective and regulated gene expression in murine Purkinje cells by in utero electroporation. Eur J Neurosci 2012; 36:2867-76. [PMID: 22775058 DOI: 10.1111/j.1460-9568.2012.08203.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cerebellar Purkinje cells, which convey the only output from the cerebellar cortex, play an essential role in cerebellar functions, such as motor coordination and motor learning. To understand how Purkinje cells develop and function in the mature cerebellum, an efficient method for molecularly perturbing them is needed. Here we demonstrate that Purkinje cell progenitors at embryonic day (E)11.5 could be efficiently and preferentially transfected by spatially directed in utero electroporation (IUE) with an optimized arrangement of electrodes. Electrophysiological analyses indicated that the electroporated Purkinje cells maintained normal membrane properties, synaptic responses and synaptic plasticity at postnatal days 25-28. By combining the L7 promoter and inducible Cre/loxP system with IUE, transgenes were expressed even more specifically in Purkinje cells and in a temporally controlled manner. We also show that three different fluorescent proteins could be simultaneously expressed, and that Bassoon, a large synaptic protein, could be expressed in the electroporated Purkinje cells. Moreover, phenotypes of staggerer mutant mice, which have a deletion in the gene encoding retinoid-related orphan receptor α (RORα1), were recapitulated by electroporating a dominant-negative form of RORα1 into Purkinje cells at E11.5. Together, these results indicate that this new IUE protocol, which allows the selective, effective and temporally regulated expression of multiple foreign genes transfected into Purkinje cell progenitors in vivo, without changing the cells' physiological characteristics, is a powerful tool for elucidating the molecular mechanisms underlying early Purkinje cell developmental events, such as dendritogenesis and migration, and synaptic plasticity in mature Purkinje cells.
Collapse
Affiliation(s)
- Jun Nishiyama
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
66
|
Peng C, Yan S, Ye J, Shen L, Xu T, Tao W. Vps18 deficiency inhibits dendritogenesis in Purkinje cells by blocking the lysosomal degradation of Lysyl Oxidase. Biochem Biophys Res Commun 2012; 423:715-20. [PMID: 22699122 DOI: 10.1016/j.bbrc.2012.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/05/2012] [Indexed: 11/15/2022]
Abstract
Dendrite development occupies a central position in the formation of nervous system. However, whether lysosomal degradative function is required for dendritogenesis of neurons remains unknown. We have recently demonstrated the critical role of Vps18 in the lysosomal degradation pathway in mice. Here, we report that Vps18 deficiency severely blocks the dendrite development of Pukinje cells but not cerebral cortical neurons. Furthermore, we also demonstrate that the lysyl oxidase (Lox) protein is degraded through lysosome and accumulated in the Vps18 deficient cerebellum but not in cerebral cortices. Our results suggest that lysosome regulates dendritogenesis of Purkinje cells though degrading Lox.
Collapse
Affiliation(s)
- Chao Peng
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
67
|
Chatonnet F, Guyot R, Picou F, Bondesson M, Flamant F. Genome-wide search reveals the existence of a limited number of thyroid hormone receptor alpha target genes in cerebellar neurons. PLoS One 2012; 7:e30703. [PMID: 22586439 PMCID: PMC3346809 DOI: 10.1371/journal.pone.0030703] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/28/2011] [Indexed: 01/21/2023] Open
Abstract
Thyroid hormone (T3) has a major influence on cerebellum post-natal development. The major phenotypic landmark of exposure to low levels of T3 during development (hypothyroidism) in the cerebellum is the retarded inward migration of the most numerous cell type, granular neurons. In order to identify the direct genetic regulation exerted by T3 on cerebellar neurons and their precursors, we used microarray RNA hybridization to perform a time course analysis of T3 induced gene expression in primary cultures of cerebellar neuronal cell. These experiments suggest that we identified a small set of genes which are directly regulated, both in vivo and in vitro, during cerebellum post-natal development. These modest changes suggest that T3 does not acts directly on granular neurons and mainly indirectly influences the cellular interactions taking place during development.
Collapse
Affiliation(s)
- Fabrice Chatonnet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
| | - Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
| | - Frédéric Picou
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
| | | | - Frederic Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
68
|
Savignon T, Costa E, Tenorio F, Manhães AC, Barradas PC. Prenatal hypoxic-ischemic insult changes the distribution and number of NADPH-diaphorase cells in the cerebellum. PLoS One 2012; 7:e35786. [PMID: 22540005 PMCID: PMC3335161 DOI: 10.1371/journal.pone.0035786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/22/2012] [Indexed: 12/03/2022] Open
Abstract
Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18th gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model.
Collapse
Affiliation(s)
- Tiago Savignon
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Everton Costa
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Tenorio
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C. Barradas
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
69
|
Dusart I, Flamant F. Profound morphological and functional changes of rodent Purkinje cells between the first and the second postnatal weeks: a metamorphosis? Front Neuroanat 2012; 6:11. [PMID: 22514522 PMCID: PMC3324107 DOI: 10.3389/fnana.2012.00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/23/2012] [Indexed: 01/19/2023] Open
Abstract
Between the first and the second postnatal week, the development of rodent Purkinje cells is characterized by several profound transitions. Purkinje cells acquire their typical dendritic "espalier" tree morphology and form distal spines. During the first postnatal week, they are multi-innervated by climbing fibers and numerous collateral branches sprout from their axons, whereas from the second postnatal week, the regression of climbing fiber multi-innervation begins, and Purkinje cells become innervated by parallel fibers and inhibitory molecular layer interneurons. Furthermore, their periods of developmental cell death and ability to regenerate their axon stop and their axons become myelinated. Thus a Purkinje cell during the first postnatal week looks and functions differently from a Purkinje cell during the second postnatal week. These fundamental changes occur in parallel with a peak of circulating thyroid hormone in the mouse. All these features suggest to some extent an interesting analogy with amphibian metamorphosis.
Collapse
Affiliation(s)
- Isabelle Dusart
- Equipe Différenciation Neuronale et Gliale, Université Pierre et Marie CurieParis, France
- Centre National de la Recherche Scientifique, Neurobiologie des Processus AdaptatifsParis, France
| | - Frederic Flamant
- École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Institut de Génomique Fonctionnelle de LyonLyon, France
| |
Collapse
|
70
|
β-III spectrin is critical for development of purkinje cell dendritic tree and spine morphogenesis. J Neurosci 2012; 31:16581-90. [PMID: 22090485 DOI: 10.1523/jneurosci.3332-11.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in the gene encoding β-III spectrin give rise to spinocerebellar ataxia type 5, a neurodegenerative disease characterized by progressive thinning of the molecular layer, loss of Purkinje cells and increasing motor deficits. A mouse lacking full-length β-III spectrin (β-III⁻/⁻) displays a similar phenotype. In vitro and in vivo analyses of Purkinje cells lacking β-III spectrin, reveal a critical role for β-III spectrin in Purkinje cell morphological development. Disruption of the normally well ordered dendritic arborization occurs in Purkinje cells from β-III⁻/⁻ mice, specifically showing a loss of monoplanar organization, smaller average dendritic diameter and reduced densities of Purkinje cell spines and synapses. Early morphological defects appear to affect distribution of dendritic, but not axonal, proteins. This study confirms that thinning of the molecular layer associated with disease pathogenesis is a consequence of Purkinje cell dendritic degeneration, as Purkinje cells from 8-month-old β-III⁻/⁻ mice have drastically reduced dendritic volumes, surface areas and total dendritic lengths compared with 5- to 6-week-old β-III⁻/⁻ mice. These findings highlight a critical role of β-III spectrin in dendritic biology and are consistent with an early developmental defect in β-III⁻/⁻ mice, with abnormal Purkinje cell dendritic morphology potentially underlying disease pathogenesis.
Collapse
|
71
|
Tanabe Y, Fujiwara Y, Matsuzaki A, Fujita E, Kasahara T, Yuasa S, Momoi T. Temporal expression and mitochondrial localization of a Foxp2 isoform lacking the forkhead domain in developing Purkinje cells. J Neurochem 2011; 122:72-80. [PMID: 21985339 DOI: 10.1111/j.1471-4159.2011.07524.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
FOXP2, a forkhead box-containing transcription factor, forms homo- or hetero-dimers with FOXP family members and localizes to the nucleus, while FOXP2(R553H), which contains a mutation related to speech/language disorders, features reduced DNA binding activity and both cytoplasmic and nuclear localization. In addition to being a loss-of-function mutation, it is possible that FOXP2(R553H) also may act as a gain-of-function mutation to inhibit the functions of FOXP2 isoforms including FOXP2Ex10+ lacking forkhead domain. Foxp2(R552H) knock-in mouse pups exhibit impaired ultrasonic vocalization and poor dendritic development in Purkinje cells. However, expressions of Foxp2 isoforms in the developing Purkinje are unclear. The appearance of 'apical cytoplasmic swelling' (mitochondria-rich regions that are the source of budding processes) correlates with dendritic development of Purkinje cells. In the present study, we focused on Foxp2 isoforms localizing to the apical cytoplasmic swelling and identified two isoforms lacking forkhead domain: Foxp2Ex12+ and Foxp2Ex15. They partly localized to the membrane fraction that includes mitochondria. Foxp2Ex12+ mainly localized to the apical cytoplasmic swelling in early developing Purkinje cells at the stellate stage (P2-P4). Mitochondrial localization of Foxp2Ex12+ in Purkinje cells was confirmed by immune-electron microscopic analysis. Foxp2Ex12+ may play a role in dendritic development in Purkinje cells.
Collapse
Affiliation(s)
- Yuko Tanabe
- Center for Medical Science, International University of Health and Welfare, Otawara, Tochigi, Japan
| | | | | | | | | | | | | |
Collapse
|
72
|
Hayn-Leichsenring G, Liebig C, Miething A, Schulz A, Kumar S, Schwalbe M, Eiberger B, Baader S. Cellular distribution of metastasis suppressor 1 and the shape of cell bodies are temporarily altered in Engrailed-2 overexpressing cerebellar Purkinje cells. Neuroscience 2011; 189:68-78. [DOI: 10.1016/j.neuroscience.2011.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/05/2011] [Accepted: 05/16/2011] [Indexed: 02/07/2023]
|
73
|
Kaneko M, Yamaguchi K, Eiraku M, Sato M, Takata N, Kiyohara Y, Mishina M, Hirase H, Hashikawa T, Kengaku M. Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation. PLoS One 2011; 6:e20108. [PMID: 21655286 PMCID: PMC3105010 DOI: 10.1371/journal.pone.0020108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/02/2011] [Indexed: 11/18/2022] Open
Abstract
Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.
Collapse
Affiliation(s)
- Megumi Kaneko
- Laboratory for Neural Cell Polarity, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Kazuhiko Yamaguchi
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Mototsugu Eiraku
- Laboratory for Neural Cell Polarity, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Motohiko Sato
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Norio Takata
- Hirase Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Yoshimoto Kiyohara
- Laboratory for Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Masayoshi Mishina
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hajime Hirase
- Hirase Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Tsutomu Hashikawa
- Laboratory for Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Mineko Kengaku
- Laboratory for Neural Cell Polarity, RIKEN Brain Science Institute, Wako, Saitama, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
74
|
Guo W, Crossey EL, Zhang L, Zucca S, George OL, Valenzuela CF, Zhao X. Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum. PLoS One 2011; 6:e19351. [PMID: 21655322 PMCID: PMC3104983 DOI: 10.1371/journal.pone.0019351] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 04/03/2011] [Indexed: 11/18/2022] Open
Abstract
Background Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear. Methodology/Principal Findings We demonstrate that CREB binding protein (CBP) is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3rd trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol- treated rats. Conclusions/Significance These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Weixiang Guo
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Erin L. Crossey
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Li Zhang
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Stefano Zucca
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Olivia L. George
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - C. Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail: (CV); (XZ)
| | - Xinyu Zhao
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail: (CV); (XZ)
| |
Collapse
|
75
|
Mitsumura K, Hosoi N, Furuya N, Hirai H. Disruption of metabotropic glutamate receptor signalling is a major defect at cerebellar parallel fibre-Purkinje cell synapses in staggerer mutant mice. J Physiol 2011; 589:3191-209. [PMID: 21558162 DOI: 10.1113/jphysiol.2011.207563] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Staggerer mutant mice have functional loss of a transcription factor, retinoid-related orphan receptor α (RORα), which is abundantly expressed in Purkinje cells (PCs) of the cerebellum.Homozygous staggerer (sg/sg)mice show cerebellar hypoplasia and congenital ataxia. Sg/sg mice serve as an important extreme mouse model of the hereditary spinocerebellar ataxia type 1 (SCA1), since it has been shown that RORα dysfunction is strongly correlated with SCA1 pathogenesis. However, synaptic abnormalities, especially at parallel fibre (PF)-PC synapses, in SCA1-related sg/sg mice have not been examined in detail electrophysiologically. In this study, we report that PFs can still establish functional synapses onto PCs in sg/sg mice in spite of reduction in the number of PF-PC synapses. Compared with PF-evoked EPSCs in the wild-type or heterozygotes, the success rate of the EPSC recordings in sg/sg was quite low (∼40%) and the EPSCs showed faster kinetics and slightly decreased paired pulse facilitation at short intervals. The prominent synaptic dysfunction is that sg/sg mice lack metabotropic glutamate receptor (mGluR)-mediated slow EPSCs completely. Neither intense PF stimulation nor an exogenously applied mGluR agonist, DHPG, could elicit mGluR-mediated responses.Western blot analysis in the sg/sg cerebellum revealed low-level expression of mGluR1 and TRPC3, both of which underlie mGluR-mediated slow currents in PCs. Immunohistochemical data demonstrated marked mislocalization of mGluR1 on sg/sg PCs.We found that mGluR-mediated retrograde suppression of PF-PC EPSCs by endocannabinoid is also impaired completely in sg/sg mice. These results suggest that disruption of mGluR signalling at PF-PC synapses is one of the major synaptic defects in sg/sg mice and may manifest itself in SCA1 pathology.
Collapse
Affiliation(s)
- Kazuhiro Mitsumura
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | | | | |
Collapse
|
76
|
Cesa R, Premoselli F, Renna A, Ethell IM, Pasquale EB, Strata P. Eph receptors are involved in the activity-dependent synaptic wiring in the mouse cerebellar cortex. PLoS One 2011; 6:e19160. [PMID: 21559471 PMCID: PMC3084771 DOI: 10.1371/journal.pone.0019160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/25/2011] [Indexed: 11/19/2022] Open
Abstract
Eph receptor tyrosine kinases are involved in many cellular processes. In the developing brain, they act as migratory and cell adhesive cues while in the adult brain they regulate dendritic spine plasticity. Here we show a new role for Eph receptor signalling in the cerebellar cortex. Cerebellar Purkinje cells are innervated by two different excitatory inputs. The climbing fibres contact the proximal dendritic domain of Purkinje cells, where synapse and spine density is low; the parallel fibres contact the distal dendritic domain, where synapse and spine density is high. Interestingly, Purkinje cells have the intrinsic ability to generate a high number of spines over their entire dendritic arborisations, which can be innervated by the parallel fibres. However, the climbing fibre input continuously exerts an activity-dependent repression on parallel fibre synapses, thus confining them to the distal Purkinje cell dendritic domain. Such repression persists after Eph receptor activation, but is overridden by Eph receptor inhibition with EphA4/Fc in neonatal cultured cerebellar slices as well as mature acute cerebellar slices, following in vivo infusion of the EphA4/Fc inhibitor and in EphB receptor-deficient mice. When electrical activity is blocked in vivo by tetrodotoxin leading to a high spine density in Purkinje cell proximal dendrites, stimulation of Eph receptor activation recapitulates the spine repressive effects of climbing fibres. These results suggest that Eph receptor signalling mediates the repression of spine proliferation induced by climbing fibre activity in Purkinje cell proximal dendrites. Such repression is necessary to maintain the correct architecture of the cerebellar cortex.
Collapse
Affiliation(s)
- Roberta Cesa
- Department of Neuroscience, University of Turin, Turin, Italy
- National Neuroscience Institute-Italy at Turin University, Turin, Italy
| | | | - Annamaria Renna
- Department of Neuroscience, University of Turin, Turin, Italy
- National Neuroscience Institute-Italy at Turin University, Turin, Italy
| | - Iryna M. Ethell
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, United States of America
| | - Elena B. Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Piergiorgio Strata
- National Neuroscience Institute-Italy at Turin University, Turin, Italy
- * E-mail:
| |
Collapse
|
77
|
Velázquez‐Zamora D, Martínez‐Degollado M, González‐Burgos I. Morphological development of dendritic spines on rat cerebellar Purkinje cells. Int J Dev Neurosci 2011; 29:515-20. [DOI: 10.1016/j.ijdevneu.2011.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/30/2011] [Accepted: 04/15/2011] [Indexed: 11/24/2022] Open
Affiliation(s)
- D.A. Velázquez‐Zamora
- Laboratorio de PsicobiologíaDivisión de NeurocienciasCIBO, IMSSGuadalajaraJal.Mexico
- Depto. de Biol. Cel. y Mol.CUCBA, Universidad de GuadalajaraGuadalajaraJal.Mexico
| | - M. Martínez‐Degollado
- Laboratorio de PsicobiologíaDivisión de NeurocienciasCIBO, IMSSGuadalajaraJal.Mexico
- Depto. de Biol. Cel. y Mol.CUCBA, Universidad de GuadalajaraGuadalajaraJal.Mexico
| | - I. González‐Burgos
- Laboratorio de PsicobiologíaDivisión de NeurocienciasCIBO, IMSSGuadalajaraJal.Mexico
- Depto. de Biol. Cel. y Mol.CUCBA, Universidad de GuadalajaraGuadalajaraJal.Mexico
| |
Collapse
|
78
|
Arce ME, Sánchez SI, Aguilera FL, Seguin LR, Seltzer AM, Ciuffo GM. Purkinje cells express Angiotensin II AT(2) receptors at different developmental stages. Neuropeptides 2011; 45:69-76. [PMID: 21146214 DOI: 10.1016/j.npep.2010.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 11/09/2010] [Accepted: 11/15/2010] [Indexed: 01/21/2023]
Abstract
Angiotensin II (Ang II) binds and activates two major receptors subtypes, namely AT(1) and AT(2). In the fetus, AT(2) receptors predominate in all tissues and decline shortly after birth, being restricted to a few organs including brain. Interpretation of the function of Ang II in the cerebellum requires a thorough understanding of the localization of Ang II receptors. The aim of the present paper is to evaluate the localization of Ang II AT(2) receptors in the Purkinje cell (PC) layer during development. By binding autoradiography, a clear complementary pattern of AT(1) and AT(2) binding labeled by [(125)I] Ang II was observed in young rats within the cerebellar cortex. This pattern was present at the stages P8 and P15, but not at P30 and P60, where AT(2) binding appears low and superimposed with AT(1) binding. We demonstrate that AT(2) antibodies recognized postmitotic Purkinje cells, labeling the somata of these cells at all the stages studied, from P8 to P60, suggesting that PCs express these receptors from early stages of development until adulthood. In P8 and P15 animals, we observed a clear correspondence between immunolabeling and the well-defined layer observed by binding autoradiography. Confocal analysis allowed us to discard the co-localization of AT(2) receptors with glial fibrillary acidic protein (GFAP), a glial marker. Double immunolabeling allowed us to demonstrate the co-localization of Ang II AT(2) receptors with zebrin II, a specific PC marker. Since PCs are the sole output signal from the cerebellar cortex and considering the role of cerebellum in movement control, the specific receptor localization suggests a potential role for Ang II AT(2) receptors in the cerebellar function.
Collapse
Affiliation(s)
- María E Arce
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, Argentina
| | | | | | | | | | | |
Collapse
|
79
|
Li J, Gu X, Ma Y, Calicchio ML, Kong D, Teng YD, Yu L, Crain AM, Vartanian TK, Pasqualini R, Arap W, Libermann TA, Snyder EY, Sidman RL. Nna1 mediates Purkinje cell dendritic development via lysyl oxidase propeptide and NF-κB signaling. Neuron 2010; 68:45-60. [PMID: 20920790 DOI: 10.1016/j.neuron.2010.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2010] [Indexed: 01/19/2023]
Abstract
The molecular pathways controlling cerebellar Purkinje cell dendrite formation and maturation are poorly understood. The Purkinje cell degeneration (pcd) mutant mouse is characterized by mutations in Nna1, a gene discovered in an axonal regenerative context, but whose actual function in development and disease is unknown. We found abnormal development of Purkinje cell dendrites in postnatal pcd(Sid) mice and linked this deficit to a deletion mutation in exon 7 of Nna1. With single cell gene profiling and virus-based gene transfer, we analyzed a molecular pathway downstream to Nna1 underlying abnormal Purkinje cell dendritogenesis in pcd(Sid) mice. We discovered that mutant Nna1 dramatically increases intranuclear localization of lysyl oxidase propeptide, which interferes with NF-κB RelA signaling and microtubule-associated protein regulation of microtubule stability, leading to underdevelopment of Purkinje cell dendrites. These findings provide insight into Nna1's role in neuronal development and why its absence renders Purkinje cells more vulnerable.
Collapse
Affiliation(s)
- Jianxue Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
D'Antoni S, Zambusi L, Codazzi F, Zacchetti D, Grohovaz F, Provini L, Catania MV, Morara S. Calcitonin gene-related peptide (CGRP) stimulates purkinje cell dendrite growth in culture. Neurochem Res 2010; 35:2135-43. [PMID: 20960054 DOI: 10.1007/s11064-010-0294-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2010] [Indexed: 11/24/2022]
Abstract
Previous reports described the transient expression during development of Calcitonin Gene-Related Peptide (CGRP) in rodent cerebellar climbing fibers and CGRP receptor in astrocytes. Here, mixed cerebellar cultures were used to analyze the effects of CGRP on Purkinje cells growth. Our results show that CGRP stimulated Purkinje cell dendrite growth under cell culture conditions mimicking Purkinje cell development in vivo. The stimulation was not blocked by CGRP8-37, a specific antagonist, suggesting the activation of other related receptors. CGRP did not affect survival of Purkinje cells, granule cells or astrocytes. The selective expression of Receptor Component Protein (RCP) (a component of CGRP receptor family) in astrocytes points to a role of these cells as mediators of CGRP effect. Finally, in pure cerebellar astrocyte cultures CGRP induced a transient morphological differentiation from flat, polygonal to stellate form. It is concluded that CGRP influences Purkinje cell dendrite growth in vitro, most likely through the involvement of astrocytes.
Collapse
|
81
|
Foxp4 is essential in maintenance of Purkinje cell dendritic arborization in the mouse cerebellum. Neuroscience 2010; 172:562-71. [PMID: 20951773 DOI: 10.1016/j.neuroscience.2010.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 10/09/2010] [Accepted: 10/11/2010] [Indexed: 12/31/2022]
Abstract
Purkinje cells (PCs) are one of the principal neurons in the cerebellar cortex that play a central role in the coordination of fine-tuning body movement and balance. To acquire normal cerebellum function, PCs develop extensive dendritic arbors that establish synaptic connections with the parallel fibers of granule cells to form the proper neuronal circuitry. Therefore, dendritic arborization of PCs is an important developmental step to construct the mature neural network in the cerebellum. However, the genetic control of this process is not fully understood. In this study, Foxp4, a forkhead transcription factor that is expressed specifically in migrating and mature PCs of cerebellum from embryonic stages to adulthood, was knocked down by small interfering RNA (siRNA) in organotypic cerebellar slice culture. When Foxp4 expression was knocked down at postnatal day 5 (P5), no abnormalities for early dendritic remodeling of PCs were observed. However, when Foxp4 was knocked down in P10 cerebellar slices, the organization of PC dendritic arbors was highly impaired, leaving hypoplastic but non-apoptotic cell bodies. The radial alignment of Bergmann glial fibers that associated with PC dendrites was also lost. These results suggest that Foxp4 is dispensable for the early PC dendrite outgrowth, but is essential for the maintenance of PC dendritic arborization and subsequent association with Bergmann glial fibers.
Collapse
|
82
|
Cheng A, Hou Y, Mattson MP. Mitochondria and neuroplasticity. ASN Neuro 2010; 2:e00045. [PMID: 20957078 PMCID: PMC2949087 DOI: 10.1042/an20100019] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/06/2010] [Accepted: 08/13/2010] [Indexed: 12/22/2022] Open
Abstract
The production of neurons from neural progenitor cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. These processes are regulated by cell-autonomous and intercellular (paracrine and endocrine) programs that mediate responses of neural cells to environmental input. Mitochondria are highly mobile and move within and between subcellular compartments involved in neuroplasticity (synaptic terminals, dendrites, cell body and the axon). By generating energy (ATP and NAD(+)), and regulating subcellular Ca(2+) and redox homoeostasis, mitochondria may play important roles in controlling fundamental processes in neuroplasticity, including neural differentiation, neurite outgrowth, neurotransmitter release and dendritic remodelling. Particularly intriguing is emerging data suggesting that mitochondria emit molecular signals (e.g. reactive oxygen species, proteins and lipid mediators) that can act locally or travel to distant targets including the nucleus. Disturbances in mitochondrial functions and signalling may play roles in impaired neuroplasticity and neuronal degeneration in Alzheimer's disease, Parkinson's disease, psychiatric disorders and stroke.
Collapse
Key Words
- AD, Alzheimer's disease
- AP, adaptor protein
- APP, amyloid precursor protein
- Aβ, amyloid β-peptide
- BDNF, brain-derived neurotrophic factor
- CR, caloric restriction
- CREB, cAMP-response-element-binding protein
- CaMK, Ca2+/calmodulin-dependent protein kinase
- ES, embryonic stem
- ETC, electron transport chain
- HD, Huntington's disease
- LRRK2, leucine-rich repeat kinase 2
- LTP, long-term potentiation
- MAPK, mitogen-activated protein kinase
- Mn-SOD, manganese superoxide dismutase
- NGF, nerve growth factor
- NMDA, N-methyl-d-aspartate
- Nrf1, nuclear respiratory factor 1
- OPA1, Optic Atrophy-1
- PD, Parkinson's disease
- PGC1α, peroxisome-proliferator-activated receptor γ co-activator 1α
- PINK1, PTEN (phosphatase and tensin homologue deleted on chromosome 10)-induced kinase 1
- PPAR, peroxisome-proliferator-activated receptor
- UCP, uncoupling protein
- mitochondria biogenesis
- mitochondria fission and fusion
- neural progenitor cell
Collapse
Affiliation(s)
- Aiwu Cheng
- *Laboratory of Neurosciences, National Institute of Aging Intramural Research Program, Baltimore, MD 21224, U.S.A
| | - Yan Hou
- *Laboratory of Neurosciences, National Institute of Aging Intramural Research Program, Baltimore, MD 21224, U.S.A
| | - Mark P Mattson
- *Laboratory of Neurosciences, National Institute of Aging Intramural Research Program, Baltimore, MD 21224, U.S.A
- †Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| |
Collapse
|
83
|
Abstract
The neurofibromatosis type 2 gene product merlin is known to provoke gliogenic tumors as a result of its mutagenic loss. Merlin's physiological anti-mitogenic function makes it unique among its ezrin-radixin-moesin (ERM) family members. Although ERM proteins and merlin are known to be expressed in glial cells of the peripheral nervous system and CNS, the neuronal expression pattern and function of merlin have been less well investigated. We report here expression of merlin in developing and mature neurons of the murine CNS. Within cerebellar Purkinje cells (PCs), merlin was localized in the soma, sprouting dendrites and axons. Merlin expression in PCs was high during the period of initial dendrite regression and declined during later phases of dendrite elongation. Consistently, merlin expression in vivo was increased in Engrailed-2-overexpressing PCs, which are characterized by a reduced dendritic extension. Furthermore, overexpression of merlin in dissociated cerebellar cultures and in neurogenic P19 cells caused a significant decline in neurite outgrowth, while, conversely, inhibition of merlin expression increased process formation. This effect was dependent on phosphorylation of serine 518 and involved the inactivation of the growth-promoting GTPase Rac. We thus provide evidence that merlin plays a pivotal role in controlling the neuronal wiring in the developing CNS.
Collapse
|
84
|
Boukhtouche F, Brugg B, Wehrlé R, Bois-Joyeux B, Danan JL, Dusart I, Mariani J. Induction of early Purkinje cell dendritic differentiation by thyroid hormone requires RORα. Neural Dev 2010; 5:18. [PMID: 20663205 PMCID: PMC2918593 DOI: 10.1186/1749-8104-5-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 07/27/2010] [Indexed: 11/10/2022] Open
Abstract
Background The active form (T3) of thyroid hormone (TH) controls critical aspects of cerebellar development, such as migration of postmitotic neurons and terminal dendritic differentiation of Purkinje cells. The effects of T3 on early dendritic differentiation are poorly understood. Results In this study, we have analyzed the influence of T3 on the progression of the early steps of Purkinje cell dendritic differentiation in postnatal day 0 organotypic cerebellar cultures. These steps include, successively, regression of immature neuritic processes, a stellate cell stage, and the extension of several long and mature perisomatic protrusions before the growth of the ultimate dendritic tree. We also studied the involvement of RORα, a nuclear receptor controlling early Purkinje cell dendritic differentiation. We show that T3 treatment leads to an accelerated progression of the early steps of dendritic differentiation in culture, together with an increased expression of RORα (mRNA and protein) in both Purkinje cells and interneurons. Finally, we show that T3 failed to promote early dendritic differentiation in staggerer RORα-deficient Purkinje cells. Conclusions Our results demonstrate that T3 action on the early Purkinje cell dendritic differentiation process is mediated by RORα.
Collapse
|
85
|
Buard I, Steinmetz CC, Claudepierre T, Pfrieger FW. Glial cells promote dendrite formation and the reception of synaptic input in Purkinje cells from postnatal mice. Glia 2010; 58:538-45. [PMID: 19908290 DOI: 10.1002/glia.20943] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies suggest that glial cells contribute to synaptogenesis in specific neurons from the postnatal CNS. Here, we studied whether this is true for Purkinje cells (PCs), which represent a unique neuronal cell type due to their large size, massive synaptic input, and high vulnerability. Using new glia-free cultures enriched in PCs from postnatal mice we show that these neurons survived and grew, but displayed only low levels of excitatory and inhibitory synaptic activity. Coculture with glial cells strongly enhanced the frequency and size of spontaneous and miniature excitatory synaptic currents as well as neurite growth and branching. Immunocytochemical staining for microtubule-associated protein 2- (MAP2-) positive neurites revealed impaired dendrite formation in PCs under glia-free conditions, which can explain the absence of synaptic activity. Glial signals strongly enhanced dendritogenesis in PCs and thus their ability to receive excitatory synaptic input from granule cells (GCs). The enhancement of dendrite formation was mimicked by glia-conditioned medium (GCM), whereas the increase in synaptic activity required physical presence of glia. This indicated that dendrite development is necessary but not sufficient for PCs to receive excitatory synaptic input and that synaptogenesis requires additional signals. The level of inhibitory synaptic activity was low even in cocultures due to a low incidence of inhibitory interneurons. Taken together, our results reinforce the idea that glial cells promote synaptogenesis in specific neuronal cell types.
Collapse
Affiliation(s)
- Isabelle Buard
- CNRS UPR 3212, University of Strasbourg, Institute for Cellular and Integrative Neurosciences (INCI), 5, rue Blaise Pascal, F-67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
86
|
Valenzuela CF, Lindquist B, Zamudio-Bulcock PA. A Review of Synaptic Plasticity at Purkinje Neurons with a Focus on Ethanol-Induced Cerebellar Dysfunction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:339-72. [DOI: 10.1016/s0074-7742(10)91011-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
87
|
de Luca A, Vassallo S, Benitez-Temino B, Menichetti G, Rossi F, Buffo A. Distinct modes of neuritic growth in purkinje neurons at different developmental stages: axonal morphogenesis and cellular regulatory mechanisms. PLoS One 2009; 4:e6848. [PMID: 19718257 PMCID: PMC2729392 DOI: 10.1371/journal.pone.0006848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022] Open
Abstract
Background During development, neurons modify their axon growth mode switching from an elongating phase, in which the main axon stem reaches the target territory through growth cone-driven extension, to an arborising phase, when the terminal arbour is formed to establish synaptic connections. To investigate the relative contribution of cell-autonomous factors and environmental signals in the control of these distinct axon growth patterns, we examined the neuritogenesis of Purkinje neurons in cerebellar cultures prepared at elongating (embryonic day 17) or arborising (postnatal day zero) stages of Purkinje axon maturation. Methodology/Principal Findings When placed in vitro, Purkinje cells of both ages undergo an initial phase of neurite elongation followed by the development of terminal ramifications. Nevertheless, elongation of the main axon stem prevails in embryonic Purkinje axons, and many of these neurons are totally unable to form terminal branches. On the contrary, all postnatal neurites switch to arbour growth within a few days in culture and spread extensive terminal trees. Regardless of their elongating or arborising pattern, defined growth features (e.g. growth rate and tree extension) of embryonic Purkinje axons remain distinct from those of postnatal neurites. Thus, Purkinje neurons of different ages are endowed with intrinsic stage-specific competence for neuritic growth. Such competence, however, can be modified by environmental cues. Indeed, while exposure to the postnatal environment stimulates the growth of embryonic axons without modifying their phenotype, contact-mediated signals derived from granule cells specifically induce arborising growth and modulate the dynamics of neuritic elongation. Conclusions/Significance Cultured Purkinje cells recapitulate an intrinsically coded neuritogenic program, involving initial navigation of the axon towards the target field and subsequent expansion of the terminal arborisation. The execution of this program is regulated by environmental signals that modify the growth competence of Purkinje cells, so to adapt their endogenous properties to the different phases of neuritic morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ferdinando Rossi
- Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
- Rita Levi-Montalcini Center for Brain Repair, National Institute of Neuroscience, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
- * E-mail:
| |
Collapse
|
88
|
Affiliation(s)
- P Strata
- EBRI-Santa Lucia Foundation (IRCCS), Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| | | | | |
Collapse
|