51
|
Ong ZY, Liu JJ, Pang ZP, Grill HJ. Paraventricular Thalamic Control of Food Intake and Reward: Role of Glucagon-Like Peptide-1 Receptor Signaling. Neuropsychopharmacology 2017; 42:2387-2397. [PMID: 28811669 PMCID: PMC5645740 DOI: 10.1038/npp.2017.150] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 01/18/2023]
Abstract
Paraventricular thalamic nucleus (PVT) neurons receive hindbrain and hypothalamic inputs, and project to forebrain sites involved in reward and motivation function. The role of PVT in energy balance and reward control is however understudied. Given that PVT neurons express glucagon-like peptide-1 receptors (GLP-1R), which are critical to feeding and body weight control, we tested the hypothesis that PVT GLP-1R signaling contributes to food intake and reward inhibition. To assess the hypothesis, behavioral tests including chow and high-fat diet intake, meal patterns, conditioned place preference for high-fat food, cue-induced reinstatement of sucrose-seeking, and motivation to work for sucrose were employed following intra-PVT delivery of either GLP-1R agonist, exendin-4 (Ex4), or GLP-1R antagonist, exendin-9-39 (Ex9). Anatomical and electrophysiological experiments were conducted to examine the neural connections and cellular mechanisms of GLP-1R signaling on PVT-to-nucleus accumbens (NAc) projecting neurons. PVT GLP-1R agonism reduced food intake, food-motivation, and food-seeking, while blocking endogenous PVT GLP-1R signaling increased meal size and food intake. PVT neurons receive GLP-1 innervation from nucleus tractus solitarius preproglucagon neurons that were activated by food intake; these GLP-1 fibers formed close appositions to putative GLP-1R-expressing PVT cells that project to the NAc. Electrophysiological recordings of PVT-to-NAc neurons revealed that GLP-1R activation reduced their excitability, mediated in part via suppression of excitatory synaptic drive. Collectively, these behavioral, electrophysiological and anatomical data illuminate a novel function for PVT GLP-1R signaling in food intake control and suggest a role for the PVT-to-NAc pathway in mediating the effects of PVT GLP-1R activation.
Collapse
Affiliation(s)
- Zhi Yi Ong
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA,School of Psychology, University of New South Wales, High Street, Sydney, NSW 2052, Australia, Tel: +612 9385 5480, Fax: +612 9385 3641, E-mail:
| | - Jing-Jing Liu
- Child Health Institute of New Jersey, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Harvey J Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
52
|
Manzardo AM, Johnson L, Miller JL, Driscoll DJ, Butler MG. Higher plasma orexin a levels in children with Prader-Willi syndrome compared with healthy unrelated sibling controls. Am J Med Genet A 2017; 170:2328-33. [PMID: 27518917 DOI: 10.1002/ajmg.a.37777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder associated with maladaptive social behavior, hyperphagia and morbid obesity. Orexin A is a hypothalamic neuropeptide important as a homeostatic regulator of feeding behavior and in energy metabolism through actions in the lateral hypothalamus. Dysregulation of orexin signaling may contribute to behavioral problems and hyperphagia seen in PWS and we sought to assess orexin A levels in PWS relative to controls children. Morning fasting plasma orexin A levels were analyzed in 23 children (aged 5-11 years) with genetically confirmed PWS and 18 age and gender matched healthy unrelated siblings without PWS. Multiplex immune assays utilized the Milliplex Human Neuropeptide Magnetic panel and the Luminex platform. Natural log-transformed orexin A data were analyzed using general linear model adjusting for diagnosis, gender, age, total body fat, and body mass index (BMI). Plasma orexin A levels were significantly higher (P < 0.006) in children with PWS (average ±SD = 1,028 pg/ml ± 358) compared with unrelated siblings (average ±SD = 609 pg/ml ± 351; P < 0.001). Orexin A levels correlated with age in females and were significantly elevated in PWS even after these effects were controlled. These findings support the hypothesis that dysregulation of orexin signaling may contribute to behavioral problems and hyperphagia in PWS. Further studies are warranted to better understand the complex relationship between orexin A levels and the problematic behaviors consistently found in individuals with PWS. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ann M Manzardo
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Lisa Johnson
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer L Miller
- Department of Pediatrics, University of Florida Medical Center, Gainesville, Florida
| | - Daniel J Driscoll
- Department of Pediatrics, University of Florida Medical Center, Gainesville, Florida
| | - Merlin G Butler
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
53
|
Abstract
Binge-eating disorder (BED) is the most prevalent eating disorder with estimates of 2-5% of the general adult population. Nonetheless, its pathophysiology is poorly understood. Furthermore, there exist few therapeutic options for its effective treatment. Here we review the current state of binge-eating neurobiology and pharmacology, drawing from clinical therapeutic, neuroimaging, cognitive, human genetic and animal model studies. These studies, which are still in their infancy, indicate that while there are many gaps in our knowledge, several key neural substrates appear to underpin binge-eating and may be conserved between human and animals. This observation suggests that behavioral intermediate phenotypes or endophenotypes relevant to BED may be modeled in animals, facilitating the identification and testing of novel pharmacological targets. The development of novel, safe and effective pharmacological therapies for the treatment of BED will enhance the ability of clinicians to provide optimal care for people with BED.
Collapse
Affiliation(s)
- Peter H Hutson
- Department of Neurobiology, CNS Discovery, Teva Pharmaceuticals, West Chester, PA, USA.
| | - Iris M Balodis
- Peter Boris Centre for Addiction Research, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Marc N Potenza
- Department of Psychiatry, Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; National Center on Addiction and Substance Abuse, USA; Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
54
|
Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neuropeptide orexin/hypocretin (OX), while largely transcribed within the hypothalamus, is released throughout the brain to affect complex behaviors. Primarily through the hypothalamus itself, OX homeostatically regulates adaptive behaviors needed for survival, including food intake, sleep-wake regulation, mating, and maternal behavior. However, through extrahypothalamic limbic brain regions, OX promotes seeking and intake of rewarding substances of abuse, like palatable food, alcohol, nicotine, and cocaine. This neuropeptide, in turn, is stimulated by the intake of or early life exposure to these substances, forming a nonhomeostatic, positive feedback loop. The specific OX receptor involved in these behaviors, whether adaptive behavior or substance seeking and intake, is dependent on the particular brain region that contributes to them. Thus, we propose that, while the primary function of OX is to maintain arousal for the performance of adaptive behaviors, this neuropeptide system is readily co-opted by rewarding substances that involve positive feedback, ultimately promoting their abuse.
Collapse
Affiliation(s)
- Jessica R Barson
- Drexel University College of Medicine, Philadelphia, PA, United States
| | | |
Collapse
|
55
|
Haight JL, Fuller ZL, Fraser KM, Flagel SB. A food-predictive cue attributed with incentive salience engages subcortical afferents and efferents of the paraventricular nucleus of the thalamus. Neuroscience 2017; 340:135-152. [PMID: 27793779 PMCID: PMC5154807 DOI: 10.1016/j.neuroscience.2016.10.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/27/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023]
Abstract
The paraventricular nucleus of the thalamus (PVT) has been implicated in behavioral responses to reward-associated cues. However, the precise role of the PVT in these behaviors has been difficult to ascertain since Pavlovian-conditioned cues can act as both predictive and incentive stimuli. The "sign-tracker/goal-tracker" rat model has allowed us to further elucidate the role of the PVT in cue-motivated behaviors, identifying this structure as a critical component of the neural circuitry underlying individual variation in the propensity to attribute incentive salience to reward cues. The current study assessed differences in the engagement of specific PVT afferents and efferents in response to presentation of a food-cue that had been attributed with only predictive value or with both predictive and incentive value. The retrograde tracer fluorogold (FG) was injected into the PVT or the nucleus accumbens (NAc) of rats, and cue-induced c-Fos in FG-labeled cells was quantified. Presentation of a predictive stimulus that had been attributed with incentive value elicited c-Fos in PVT afferents from the lateral hypothalamus, medial amygdala (MeA), and the prelimbic cortex (PrL), as well as posterior PVT efferents to the NAc. PVT afferents from the PrL also showed elevated c-Fos levels following presentation of a predictive stimulus alone. Thus, presentation of an incentive stimulus results in engagement of subcortical brain regions; supporting a role for the hypothalamic-thalamic-striatal axis, as well as the MeA, in mediating responses to incentive stimuli; whereas activity in the PrL to PVT pathway appears to play a role in processing the predictive qualities of reward-paired stimuli.
Collapse
Affiliation(s)
- Joshua L Haight
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, United States
| | - Zachary L Fuller
- Undergraduate Program in Neuroscience, The University of Michigan, Ann Arbor, MI, United States
| | - Kurt M Fraser
- Undergraduate Program in Neuroscience, The University of Michigan, Ann Arbor, MI, United States
| | - Shelly B Flagel
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, United States; Undergraduate Program in Neuroscience, The University of Michigan, Ann Arbor, MI, United States; Department of Psychiatry, The University of Michigan, Ann Arbor, MI, United States; Molecular and Behavioral Neuroscience Institute, The University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
56
|
Barson JR, Poon K, Ho HT, Alam MI, Sanzalone L, Leibowitz SF. Substance P in the anterior thalamic paraventricular nucleus: promotion of ethanol drinking in response to orexin from the hypothalamus. Addict Biol 2017. [PMID: 26223289 DOI: 10.1111/adb.12288] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) appears to participate in drug addiction. Recent evidence in rats shows that ethanol drinking is increased by orexin/hypocretin (OX) afferents from the hypothalamus, acting specifically in the anterior (aPVT) rather than posterior (pPVT) PVT subregion. The present study sought to identify neuropeptides transcribed within the PVT, which themselves might contribute to ethanol drinking and possibly mediate the actions of OX. We discovered that substance P (SP) in the aPVT can stimulate intermittent-access ethanol drinking, similar to OX, and that SP receptor [neurokinin 1 receptor/tachykinin receptor 1 (NK1R)] antagonists in this subregion reduce ethanol drinking. As with OX, this effect is site specific, with SP in the pPVT or dorsal third ventricle having no effect on ethanol drinking, and it is behaviorally specific, with SP in the aPVT reducing the drinking of sucrose and stimulating it in the pPVT. A close relationship between SP and OX was demonstrated by a stimulatory effect of local OX injection on SP mRNA and peptide levels, specifically in the aPVT but not pPVT, and a stimulatory effect of OX on SP expression in isolated thalamic neurons, reflecting postsynaptic actions. A functional relationship between OX and SP in the aPVT is suggested by our additional finding that ethanol drinking induced by OX is blocked by a local NK1R antagonist administered at a sub-threshold dose. These results, suggesting that SP in the aPVT mediates the stimulatory effect of OX on ethanol drinking, identify a new role for SP in the control of this behavior.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| | - Kinning Poon
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| | - Hui Tin Ho
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| | - Mohammad I. Alam
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| | - Lilia Sanzalone
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| |
Collapse
|
57
|
Millan EZ, Ong Z, McNally GP. Paraventricular thalamus: Gateway to feeding, appetitive motivation, and drug addiction. PROGRESS IN BRAIN RESEARCH 2017; 235:113-137. [DOI: 10.1016/bs.pbr.2017.07.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
58
|
Matzeu A, Cauvi G, Kerr TM, Weiss F, Martin-Fardon R. The paraventricular nucleus of the thalamus is differentially recruited by stimuli conditioned to the availability of cocaine versus palatable food. Addict Biol 2017; 22:70-77. [PMID: 26096647 PMCID: PMC4788574 DOI: 10.1111/adb.12280] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) is not traditionally considered part of the brain addiction neurocircuitry but has received growing attention with regard to a role in the modulation of drug-seeking behavior. This study sought to establish the pattern of neural activation induced by a response-reinstating discriminative stimulus (SD ) conditioned to either cocaine (COC) or a conventional reinforcer using a palatable food substance, sweetened condensed milk (SCM). Male Wistar rats were trained to associate one SD (S+ ; COC or SCM availability) and a distinctly different SD (S- ; non-reward; i.e. the availability of saline or the absence of SCM). Following extinction of COC- and SCM-reinforced responding, rats were presented with the respective S+ or S- alone and tested for the reinstatement of reward seeking. The COC S+ and SCM S+ elicited identical reinstatement, whereas the non-reward S- was behaviorally ineffective. PVT sections were obtained following completion of the reinstatement tests and labeled for Fos. The number of Fos+ neurons was compared among rats that were presented with the COC S+ , SCM S+ or S- . Rats that were presented with the COC S+ exhibited a significant increase in Fos expression compared with rats that were presented with the S- . Moreover, Fos expression was significantly correlated with the number of reinstatement responses that were induced by the COC S+ . In contrast, the SCM S+ and S- produced identical increases in Fos expression, without behaviorally relevant correlations. The findings implicate the PVT as an important site that is selectively recruited during COC-seeking behavior.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabrielle Cauvi
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Tony M. Kerr
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Friedbert Weiss
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Rémi Martin-Fardon
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
59
|
Matzeu A, Kerr TM, Weiss F, Martin-Fardon R. Orexin-A/Hypocretin-1 Mediates Cocaine-Seeking Behavior in the Posterior Paraventricular Nucleus of the Thalamus via Orexin/Hypocretin Receptor-2. J Pharmacol Exp Ther 2016; 359:273-279. [PMID: 27540003 PMCID: PMC5074483 DOI: 10.1124/jpet.116.235945] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/17/2016] [Indexed: 01/31/2023] Open
Abstract
Orexin/hypocretin (Orx/Hcrt) projections from the lateral hypothalamus to the paraventricular nucleus of the thalamus (PVT) are implicated in drug addiction. Specifically, the posterior section of the PVT (pPVT) innervates brain structures that modulate motivated behavior. This study investigated the role of pPVT-Orx/Hcrt transmission in cocaine-seeking behavior. Because the effects of Orx/Hcrt are mediated by two Orx/Hcrt receptors (Hcrt-r1 and Hcrt-r2), we examined the extent to which Hcrt-r1 and Hcrt-r2 are involved in Orx/Hcrt-induced cocaine seeking. Male Wistar rats were made cocaine dependent by self-administering cocaine 6 hours/day (long access) for 21 days. After self-administration training, the rats underwent daily extinction training, during which cocaine was withheld. After extinction, the rats were injected into the pPVT with Orx-A/Hcrt-1 (0-2 µg) alone or, using a single dose of 0.5 µg, in combination with an Hcrt-r1 antagonist (SB334867; 0-15 µg) or an Hcrt-r2 antagonist (TCSOX229; 0-15 µg). Orx-A/Hcrt-1 alone reinstated (primed) cocaine seeking. Unexpectedly, coadministration of Orx-A/Hcrt-1 with SB334867 did not have any effects on Orx-A/Hcrt-1-induced reinstatement, whereas when coadministered with Orx-A/Hcrt-1, TCSOX229 prevented cocaine-seeking behavior. These results indicate that Hcrt-r2 in the pPVT mediates the reinstating effect of Orx-A/Hcrt-1 in animals with a history of cocaine dependence and further identify Hcrt-r2 as a possible molecular target that can guide future therapeutic approaches for the prevention of drug-seeking behavior.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, California
| | - Tony M Kerr
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, California
| | - Friedbert Weiss
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, California
| | - Rémi Martin-Fardon
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
60
|
Gökdeniz E, Özgür A, Canbeyli R. Automated Neuroanatomical Relation Extraction: A Linguistically Motivated Approach with a PVT Connectivity Graph Case Study. Front Neuroinform 2016; 10:39. [PMID: 27708573 PMCID: PMC5030238 DOI: 10.3389/fninf.2016.00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
Identifying the relations among different regions of the brain is vital for a better understanding of how the brain functions. While a large number of studies have investigated the neuroanatomical and neurochemical connections among brain structures, their specific findings are found in publications scattered over a large number of years and different types of publications. Text mining techniques have provided the means to extract specific types of information from a large number of publications with the aim of presenting a larger, if not necessarily an exhaustive picture. By using natural language processing techniques, the present paper aims to identify connectivity relations among brain regions in general and relations relevant to the paraventricular nucleus of the thalamus (PVT) in particular. We introduce a linguistically motivated approach based on patterns defined over the constituency and dependency parse trees of sentences. Besides the presence of a relation between a pair of brain regions, the proposed method also identifies the directionality of the relation, which enables the creation and analysis of a directional brain region connectivity graph. The approach is evaluated over the manually annotated data sets of the WhiteText Project. In addition, as a case study, the method is applied to extract and analyze the connectivity graph of PVT, which is an important brain region that is considered to influence many functions ranging from arousal, motivation, and drug-seeking behavior to attention. The results of the PVT connectivity graph show that PVT may be a new target of research in mood assessment.
Collapse
Affiliation(s)
- Erinç Gökdeniz
- Department of Computer Engineering, Boğaziçi University İstanbul, Turkey
| | - Arzucan Özgür
- Department of Computer Engineering, Boğaziçi University İstanbul, Turkey
| | - Reşit Canbeyli
- Department of Psychology, Boğaziçi University İstanbul, Turkey
| |
Collapse
|
61
|
The novel cannabinoid antagonist SM-11 reduces hedonic aspect of food intake through a dopamine-dependent mechanism. Pharmacol Res 2016; 113:108-115. [PMID: 27521837 DOI: 10.1016/j.phrs.2016.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/20/2016] [Accepted: 08/08/2016] [Indexed: 01/22/2023]
Abstract
Cannabinoids, endogenous and exogenously administered, are known to positively regulate food intake and energy balance. Since CB1 receptor antagonists reduce food intake and antagonize overweight, we developed a new CB1 receptor antagonist in an attempt to identify a compound with potential application in overeating disorders. The newly developed SM-11 compound dose-dependently decreases food intake in rats by 15-20%. Moreover, SM-11 reduces self-administration of palatable food in both food restricted and ad libitum fed rats, suggesting an action on the hedonic component of food intake. Thus, we next tested the effect of SM-11 on the stimulating properties of the CB1 receptor agonist WIN55,212-2 (WIN) on the electrophysiological activity of Nucleus Accumbens-projecting dopaminergic neurons of the ventral tegmental area (VTA). SM-11 fully and readily antagonized the WIN-induced increments in single spiking and burst firing of antidromically-identified dopamine neurons. When administered to naïve (no WIN-pretreated) rats, SM-11 did not alter basal neuronal activity, thereby suggesting a pure antagonistic profile. SM-11 thus appears as a promising candidate in the search of potential anti-obesity medications.
Collapse
|
62
|
Terrill SJ, Hyde KM, Kay KE, Greene HE, Maske CB, Knierim AE, Davis JF, Williams DL. Ventral tegmental area orexin 1 receptors promote palatable food intake and oppose postingestive negative feedback. Am J Physiol Regul Integr Comp Physiol 2016; 311:R592-9. [PMID: 27385732 DOI: 10.1152/ajpregu.00097.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/26/2016] [Indexed: 01/21/2023]
Abstract
Hypothalamic orexin neurons project to numerous brain areas, including the ventral tegmental area (VTA), which is involved in motivation and food-seeking behavior. Here we address how exogenously administered orexin-A and endogenous orexin 1 receptor (OX1R) activation in the VTA affects feeding behavior. We hypothesized that orexin-A and OX1R antagonist SB334867 delivered to the VTA, at doses that were subthreshold for effect when injected into the ventricle, would affect intake of palatable foods in multiple test situations. We first used a hedonic feeding model in which satiated rats selectively consume a high-fat diet (HFD). Intra-VTA orexin-A stimulated additional consumption of chow and increased HFD intake in this model. In ad libitum-fed rats given daily 30-min test sessions, intra-VTA orexin-A also increased intake of HFD and 0.1 M sucrose. Further analysis of licking patterns revealed that that VTA orexin-A increased meal size and licking burst size only toward the end of the meal. Consistent with this finding, a subthreshold dose of VTA orexin-A prevented intake suppression induced by gastrointestinal nutrient infusion. Surprisingly, intra-VTA orexin-A had no effect on operant responding for sucrose pellets on a progressive ratio schedule of reinforcement. A role for endogenous VTA OX1R stimulation is supported by our finding that bilateral VTA injection of the selective OX1R antagonist SB334867 suppressed 0.1 M sucrose intake. Together, our data suggest that OX1R activity in the VTA facilitates food intake, potentially by counteracting postingestive negative feedback that would normally suppress feeding later in a meal.
Collapse
Affiliation(s)
- Sarah J Terrill
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, Florida; and
| | - Kellie M Hyde
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, Florida; and
| | - Kristen E Kay
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, Florida; and
| | - Hayden E Greene
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, Florida; and
| | - Calyn B Maske
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, Florida; and
| | - Amanda E Knierim
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, Florida; and
| | - Jon F Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Diana L Williams
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, Florida; and
| |
Collapse
|
63
|
Sirohi S, Schurdak JD, Seeley RJ, Benoit SC, Davis JF. Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors. Physiol Behav 2016; 161:140-144. [DOI: 10.1016/j.physbeh.2016.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/21/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022]
|
64
|
Manzardo AM, Johnson L, Miller JL, Driscoll DJ, Butler MG. Higher plasma orexin A levels in children with Prader-Willi syndrome compared with healthy unrelated sibling controls. Am J Med Genet A 2016; 170:2097-102. [PMID: 27214028 DOI: 10.1002/ajmg.a.37749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/16/2016] [Indexed: 01/13/2023]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder associated with maladaptive social behavior, hyperphagia, and morbid obesity. Orexin A is a hypothalamic neuropeptide important as a homeostatic regulator of feeding behavior and in energy metabolism through actions in the lateral hypothalamus. Dysregulation of orexin signaling may contribute to behavioral problems and hyperphagia seen in PWS and we sought to assess orexin A levels in PWS relative to controls children. Morning fasting plasma orexin A levels were analyzed in 23 children (aged 5-11 years) with genetically confirmed PWS and 18 age and gender matched healthy unrelated siblings without PWS. Multiplex immune assays utilized the Milliplex Human Neuropeptide Magnetic panel and the Luminex platform. Natural log-transformed orexin A data were analyzed using general linear model adjusting for diagnosis, gender, age, total body fat and body mass index (BMI). Plasma orexin A levels were significantly higher (P < 0.006) in children with PWS (average ±SD = 1028 pg/ml ± 358) compared with unrelated siblings (average ±SD = 609 pg/ml ± 351; P < 0.001). Orexin A levels correlated with age in females and were significantly elevated in PWS even after these effects were controlled. These findings support the hypothesis that dysregulation of orexin signaling may contribute to behavioral problems and hyperphagia in PWS. Further studies are warranted to better understand the complex relationship between orexin A levels and the problematic behaviors consistently found in individuals with PWS. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ann M Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Lisa Johnson
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer L Miller
- Department of Pediatrics, University of Florida Medical Center, Gainesville, Florida
| | - Daniel J Driscoll
- Department of Pediatrics, University of Florida Medical Center, Gainesville, Florida
| | - Merlin G Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
65
|
Orexin/Hypocretin-1 Receptor Antagonism Selectively Reduces Cue-Induced Feeding in Sated Rats and Recruits Medial Prefrontal Cortex and Thalamus. Sci Rep 2015; 5:16143. [PMID: 26536818 PMCID: PMC4633617 DOI: 10.1038/srep16143] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/07/2015] [Indexed: 12/31/2022] Open
Abstract
The orexin/hypocretin system is important for reward-seeking behaviors, however less is known about its function in non-homeostatic feeding. Environmental influences, particularly cues for food can stimulate feeding in the absence of hunger and lead to maladaptive overeating behavior. The key components of the neural network that mediates this cue-induced overeating in sated rats include lateral hypothalamus, amygdala, and medial prefrontal cortex (mPFC), yet the neuropharmacological mechanisms within this network remain unknown. The current study investigated a causal role for orexin in cue-driven feeding, and examined the neural substrates through which orexin mediates this effect. Systemic administration of the orexin-1 receptor (OX1R) antagonist SB-334867 had no effect on baseline eating, but significantly reduced cue-driven consumption in sated rats. Complementary neural analysis revealed that decreased cue-induced feeding under SB-334867 increased Fos expression in mPFC and paraventricular thalamus. These results demonstrate that OX1R signaling critically regulates cue-induced feeding, and suggest orexin is acting through prefrontal cortical and thalamic sites to drive eating in the absence of hunger. These findings inform our understanding of how food-associated cues override signals from the body to promote overeating, and indicate OX1R antagonism as a potential pharmacologic target for treatment of disordered eating in humans.
Collapse
|
66
|
Barson JR, Leibowitz SF. GABA-induced inactivation of dorsal midline thalamic subregions has distinct effects on emotional behaviors. Neurosci Lett 2015; 609:92-6. [PMID: 26475506 DOI: 10.1016/j.neulet.2015.10.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 01/12/2023]
Abstract
The paraventricular nucleus of the thalamus (PVT) is a key node integrating information about emotion and relaying output to other limbic structures influencing motor behavior. With recent studies showing the anterior (aPVT) and posterior (pPVT) subregions of this nucleus to have different anatomical connections and functions in ingestive behavior, the present study investigated whether they also make different contributions to emotional behaviors. Rats were microinjected in the aPVT or pPVT with saline vehicle or the GABAB+GABAA agonists, baclofen+muscimol (bac+mus; 0.3+0.03nmol), to inhibit neural activity and were then tested between-subject for differences in emotional behavior. In a novel activity chamber, bac+mus significantly reduced locomotor activity, with this change somewhat larger after injection in the pPVT than the aPVT. In a familiar activity chamber, bac+mus again reduced locomotor activity but induced similar changes after injection in the aPVT and pPVT. In an elevated plus maze, bac+mus significantly decreased open arm time and entries, although this was observed only after injection in the pPVT. Thus, while both PVT subregions are necessary for general locomotor activity, the pPVT appears to have a greater function in both novelty-induced activity and anxiety-like behavior, indicating that this subregion makes a greater contribution than the aPVT to reactions to stressful stimuli.
Collapse
Affiliation(s)
- Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA; Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065 USA.
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
67
|
Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci Biobehav Rev 2015; 56:315-29. [DOI: 10.1016/j.neubiorev.2015.08.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
|
68
|
Li AJ, Wang Q, Elsarelli MM, Brown RL, Ritter S. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats. Endocrinology 2015; 156:2807-20. [PMID: 25978516 PMCID: PMC5393341 DOI: 10.1210/en.2015-1138] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| | - Qing Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| | - Megan M Elsarelli
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| | - R Lane Brown
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| | - Sue Ritter
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| |
Collapse
|
69
|
Vertes RP, Linley SB, Hoover WB. Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 2015; 54:89-107. [PMID: 25616182 PMCID: PMC4976455 DOI: 10.1016/j.neubiorev.2015.01.014] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or 'limbic thalamus') consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The 'limbic' thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic-associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the 'limbic thalamus'.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | - Stephanie B Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Walter B Hoover
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, United States
| |
Collapse
|
70
|
Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neurosci Biobehav Rev 2015; 54:3-17. [DOI: 10.1016/j.neubiorev.2014.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
71
|
Distribution of the orexin-1 receptor (OX1R) in the mouse forebrain and rostral brainstem: A characterisation of OX1R-eGFP mice. J Chem Neuroanat 2015; 66-67:1-9. [DOI: 10.1016/j.jchemneu.2015.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 02/02/2023]
|
72
|
Li AJ, Wang Q, Davis H, Wang R, Ritter S. Orexin-A enhances feeding in male rats by activating hindbrain catecholamine neurons. Am J Physiol Regul Integr Comp Physiol 2015; 309:R358-67. [PMID: 26062632 DOI: 10.1152/ajpregu.00065.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/05/2015] [Indexed: 11/22/2022]
Abstract
Both lateral hypothalamic orexinergic neurons and hindbrain catecholaminergic neurons contribute to control of feeding behavior. Orexin fibers and terminals are present in close proximity to hindbrain catecholaminergic neurons, and fourth ventricular (4V) orexin injections that increase food intake also increase c-Fos expression in hindbrain catecholamine neurons, suggesting that orexin neurons may stimulate feeding by activating catecholamine neurons. Here we examine that hypothesis in more detail. We found that 4V injection of orexin-A (0.5 nmol/rat) produced widespread activation of c-Fos in hindbrain catecholamine cell groups. In the A1 and C1 cell groups in the ventrolateral medulla, where most c-Fos-positive neurons were also dopamine β hydroxylase (DBH) positive, direct injections of a lower dose (67 pmol/200 nl) of orexin-A also increased food intake in intact rats. Then, with the use of the retrogradely transported immunotoxin, anti-DBH conjugated to saporin (DSAP), which targets and destroys DBH-expressing catecholamine neurons, we examined the hypothesis that catecholamine neurons are required for orexin-induced feeding. Rats given paraventricular hypothalamic injections of DSAP, or unconjugated saporin (SAP) as control, were implanted with 4V or lateral ventricular (LV) cannulas and tested for feeding in response to ventricular injection of orexin-A (0.5 nmol/rat). Both LV and 4V orexin-A stimulated feeding in SAP controls, but DSAP abolished these responses. These results reveal for the first time that catecholamine neurons are required for feeding induced by injection of orexin-A into either LV or 4V.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Qing Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Hana Davis
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Rong Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Sue Ritter
- Programs in Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
73
|
Barson JR, Ho HT, Leibowitz SF. Anterior thalamic paraventricular nucleus is involved in intermittent access ethanol drinking: role of orexin receptor 2. Addict Biol 2015; 20:469-81. [PMID: 24712379 DOI: 10.1111/adb.12139] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The paraventricular nucleus of the thalamus (PVT) has been shown to participate in hedonic feeding and is thought to influence drug seeking. This understudied nucleus contains anterior (aPVT) and posterior (pPVT) subregions, which receive dense projections from hypothalamic orexin/hypocretin (OX) but exhibit anatomical and functional differences. This study sought to characterize in Long-Evans rats the involvement of these PVT subregions and their OX receptor activity in consumption of the drug, ethanol. Compared with those maintained on water and chow only (water group), rats trained to drink pharmacologically relevant levels of ethanol (ethanol group) showed increased neuronal activation in the PVT, specifically the aPVT but not pPVT, as indicated by c-Fos immunoreactivity. Similar results were obtained in rats administered ethanol via oral gavage, indicating that this site-specific effect was due to ethanol exposure. In support of the involvement of OX, the ethanol group also showed increased mRNA levels of this neuropeptide in the hypothalamus and of OX 2 receptor (OX2R) but not OX 1 receptor (OX1R), again in the aPVT but not pPVT. Similarly, ethanol gavage increased double labeling of c-Fos with OX2R but not OX1R, specifically in the aPVT. Evidence directly supporting a role for aPVT OX2R in ethanol consumption was provided by results with local injections, showing ethanol intake to be enhanced by OX-A or OX-B in the aPVT but not pPVT and reduced by a local antagonist of OX2R but not OX1R. These results focus attention on the aPVT and specifically its OX2R in mediating a positive feedback relationship with ethanol intake.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| | - Hui Tin Ho
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| |
Collapse
|
74
|
Liu S, Borgland S. Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience 2015; 289:19-42. [DOI: 10.1016/j.neuroscience.2014.12.046] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/27/2014] [Accepted: 12/31/2014] [Indexed: 12/30/2022]
|
75
|
Urstadt KR, Stanley BG. Direct hypothalamic and indirect trans-pallidal, trans-thalamic, or trans-septal control of accumbens signaling and their roles in food intake. Front Syst Neurosci 2015; 9:8. [PMID: 25741246 PMCID: PMC4327307 DOI: 10.3389/fnsys.2015.00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023] Open
Abstract
Due in part to the increasing incidence of obesity in developed nations, recent research aims to elucidate neural circuits that motivate humans to overeat. Earlier research has described how the nucleus accumbens shell (AcbSh) motivates organisms to feed by activating neuronal populations in the lateral hypothalamus (LH). However, more recent research suggests that the LH may in turn communicate with the AcbSh, both directly and indirectly, to re-tune the motivation to consume foods with homeostatic and food-related sensory signals. Here, we discuss the functional and anatomical evidence for an LH to AcbSh connection and its role in eating behaviors. The LH appears to modulate Acb activity directly, using neurotransmitters such as hypocretin/orexin or melanin concentrating hormone (MCH). The LH also indirectly regulates AcbSh activity through certain subcortical "relay" regions, such as the lateral septum (LS), ventral pallidum (VP), and paraventricular thalamus, using a variety of neurotransmitters. This review aims to summarize studies on these topics and outline a model by which LH circuits processing energy balance can modulate AcbSh neural activity to regulate feeding behavior.
Collapse
Affiliation(s)
- Kevin R Urstadt
- Department of Psychology, University of Michigan Ann Arbor, MI, USA
| | - B Glenn Stanley
- Departments of Psychology and Cell Biology and Neuroscience, University of California - Riverside Riverside, CA, USA
| |
Collapse
|
76
|
Prince CD, Rau AR, Yorgason JT, España RA. Hypocretin/Orexin regulation of dopamine signaling and cocaine self-administration is mediated predominantly by hypocretin receptor 1. ACS Chem Neurosci 2015; 6:138-46. [PMID: 25496218 PMCID: PMC4304483 DOI: 10.1021/cn500246j] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
![]()
Extensive
evidence suggests that the hypocretins/orexins influence
cocaine reinforcement and dopamine signaling via actions at hypocretin
receptor 1. By comparison, the involvement of hypocretin receptor
2 in reward and reinforcement processes has received relatively little
attention. Thus, although there is some evidence that hypocretin receptor
2 regulates intake of some drugs of abuse, it is currently unclear
to what extent hypocretin receptor 2 participates in the regulation
of dopamine signaling or cocaine self-administration, particularly
under high effort conditions. To address this, we examined the effects
of hypocretin receptor 1, and/or hypocretin receptor 2 blockade on
dopamine signaling and cocaine reinforcement. We used in vivo fast
scan cyclic voltammetry to test the effects of hypocretin antagonists
on dopamine signaling in the nucleus accumbens core and a progressive
ratio schedule to examine the effects of these antagonists on cocaine
self-administration. Results demonstrate that blockade of either hypocretin
receptor 1 or both hypocretin receptor 1 and 2 significantly reduces
the effects of cocaine on dopamine signaling and decreases the motivation
to take cocaine. In contrast, blockade of hypocretin receptor 2 alone
had no significant effects on dopamine signaling or self-administration.
These findings suggest a differential involvement of the two hypocretin
receptors, with hypocretin receptor 1 appearing to be more involved
than hypocretin receptor 2 in the regulation of dopamine signaling
and cocaine self-administration. When considered with the existing
literature, these data support the hypothesis that hypocretins exert
a permissive influence on dopamine signaling and motivated behavior
via preferential actions on hypocretin receptor 1.
Collapse
Affiliation(s)
- Courtney D. Prince
- Department
of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| | - Andrew R. Rau
- Department
of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Jordan T. Yorgason
- Vollum
Institute, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Rodrigo A. España
- Department
of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| |
Collapse
|
77
|
Abstract
Although food intake is necessary to provide energy for all bodily activities, considering food intake as a motivated behavior is complex. Rather than being a simple unconditioned reflex to energy need, eating is mediated by diverse factors. These include homeostatic signals such as those related to body fat stores, to food available and being eaten, and to circulating energy-rich compounds like glucose and fatty acids. Eating is also greatly influenced by non-homeostatic signals that convey information related to learning and experience, hedonics, stress, the social situation, opportunity, and many other factors. Recent developments identifying the intricate nature of the relationships between homeostatic and non-homeostatic influences significantly add to the complexity underlying the neural basis of the motivation to eat. The future of research in the field of food intake would seem to lie in the identification of the neural circuitry and interactions between homeostatic and non-homeostatic influences.
Collapse
|
78
|
Li S, Shi Y, Kirouac GJ. The hypothalamus and periaqueductal gray are the sources of dopamine fibers in the paraventricular nucleus of the thalamus in the rat. Front Neuroanat 2014; 8:136. [PMID: 25477789 PMCID: PMC4238322 DOI: 10.3389/fnana.2014.00136] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/03/2014] [Indexed: 11/16/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) sends a very dense projection to the nucleus accumbens. This area of the striatum plays a key role in motivation and recent experimental evidence indicates that the PVT may have a similar function. It is well known that a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus accumbens is a key regulator of motivation and reward-related behavior. Dopamine (DA) fibers have also been localized in the PVT but the source of these fibers in the rat has not been unequivocally identified. The present study was done to re-examine this question. Small iontophoretic injections of cholera toxin B (CTb) were made in the PVT to retrogradely label tyrosine hydroxylase (TH) neurons. Neurons that were double-labeled for TH/CTb were found scattered in DA cell groups of the hypothalamus (ventrorostral A10, A11, A13, A15 DA cell groups) and the midbrain (dorsocaudal A10 embedded in the periaqueductal gray). In contrast, double-labeled neurons were absent in the retrorubral field (A8), substantia nigra (A9) and VTA (A10) of the midbrain. We conclude that DA fibers in the PVT do not originate from VTA but from a heterogeneous population of DA neurons located in the hypothalamus and periaqueductal gray.
Collapse
Affiliation(s)
- Sa Li
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China ; Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China
| | - Gilbert J Kirouac
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada ; Department of Psychiatry, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
79
|
Williams DL. Neural integration of satiation and food reward: role of GLP-1 and orexin pathways. Physiol Behav 2014; 136:194-9. [PMID: 24650552 PMCID: PMC4167985 DOI: 10.1016/j.physbeh.2014.03.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/23/2014] [Accepted: 03/10/2014] [Indexed: 02/07/2023]
Abstract
Central nervous system control of food intake involves detecting, integrating and responding to diverse internal and external signals. For maintenance of energy homeostasis, the brain uses long-term signals of metabolic status and short-term signals related to the nutrient content of individual meals. Feeding is also clearly influenced by hedonic, reward-related factors: palatability, motivation, and learned associations and cues that predict the availability of food. Different neural circuits have been proposed to mediate these homeostatic and hedonic aspects of eating. This review describes research on neural pathways that appear to be involved in both, integrating gastrointestinal satiation signaling with food reward. First, the glucagon-like peptide 1 projections from the nucleus of the solitary tract to the nucleus accumbens and ventral tegmental area are discussed as a mechanism through which meal-related gut signals may influence palatability, motivation for food, and meal size. Second, the orexin projection from lateral hypothalamus to the nucleus of the solitary tract and area postrema is discussed as a mechanism through which cues that predict rewarding food may act to increase motivation for food and also to suppress satiation. Additional potential integrative sites and pathways are also briefly discussed. Based on these findings, it is suggested that the brain circuitry involved in energy homeostasis and the circuitry mediating food reward are, in fact, overlapping and far less distinct than previously considered.
Collapse
Affiliation(s)
- Diana L Williams
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
80
|
Abstract
Addiction is a chronic relapsing disorder which presents a significant global health burden and unmet medical need. The orexin/hypocretin system is an attractive potential therapeutic target as demonstrated by the successful clinical trials of antagonist medications like Suvorexant for insomnia. It is composed of two neuropeptides, orexin-A and orexin-B and two excitatory and promiscuous G-protein coupled receptors, OX1 and OX2. Orexins are known to have a variety of functions, most notably in regulating arousal, appetite and reward. The orexins have been shown to have a role in mediating the effects of several drugs of abuse, such as cocaine, morphine and alcohol via projections to key brain regions such as the ventral tegmental area, nucleus accumbens and prefrontal cortex. However, it has not yet been demonstrated whether the dual orexin receptor antagonists (DORAs) under development for insomnia are ideal drugs for the treatment of addiction. The question of whether to use a DORA or single orexin receptor antagonist (SORA) for the treatment of addiction is a key question that will need to be answered in order to maximize the clinical utility of orexin receptor antagonists. This review will examine the role of the orexin/hypocretin system in addiction, orexin-based pharmacotherapies under development and factors affecting the selection of one or both orexin receptors as drug targets for the treatment of addiction.
Collapse
|
81
|
Cason AM, Aston-Jones G. Role of orexin/hypocretin in conditioned sucrose-seeking in female rats. Neuropharmacology 2014; 86:97-102. [PMID: 25036612 DOI: 10.1016/j.neuropharm.2014.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 11/24/2022]
Abstract
The orexin/hypocretin system has recently been implicated in reward-seeking, especially for highly salient food and drug rewards. Given that eating disorders affect women more than men, we reasoned that the orexin system may be strongly engaged in female rats, and during periods of food restriction as we recently reported in male rats. Therefore, the present study examined the involvement of the orexin system in operant responding for sucrose, and in cue-induced reinstatement of extinguished sucrose-seeking, in ad libitum fed vs. food-restricted female subjects. Female Sprague Dawley rats were trained to self-administer sucrose pellets, and we determined the effects of pretreatment with the OxR1 receptor antagonist SB 334867 (SB; 10-30 mg/kg) on fixed ratio (FR) sucrose self-administration, and on cue-induced reinstatement of extinguished sucrose-seeking. SB decreased sucrose self-administration in food-restricted but not in ad libitum-fed females. SB did not alter active lever responding during cue-induced reinstatement of sucrose-seeking in either feeding group. These results confirm our previous results in male rats that signaling at the OxR1 receptor is involved in the sucrose reinforcement and self-administration in food-restricted subjects. However, the finding that SB is ineffective at attenuating cue-induced reinstatement in females, but was effective in food-restricted males, leads us to conclude that food seeking induced by conditioned stimuli engages the orexin system differentially in males and females.
Collapse
Affiliation(s)
- Angie M Cason
- Department of Neurosciences, Medical University of South Carolina, Basic Science Building 406, 173 Ashley Avenue, MSC 510, Charleston, SC 29425, USA.
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Basic Science Building 406, 173 Ashley Avenue, MSC 510, Charleston, SC 29425, USA
| |
Collapse
|
82
|
Varela C. Thalamic neuromodulation and its implications for executive networks. Front Neural Circuits 2014; 8:69. [PMID: 25009467 PMCID: PMC4068295 DOI: 10.3389/fncir.2014.00069] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/07/2014] [Indexed: 01/25/2023] Open
Abstract
The thalamus is a key structure that controls the routing of information in the brain. Understanding modulation at the thalamic level is critical to understanding the flow of information to brain regions involved in cognitive functions, such as the neocortex, the hippocampus, and the basal ganglia. Modulators contribute the majority of synapses that thalamic cells receive, and the highest fraction of modulator synapses is found in thalamic nuclei interconnected with higher order cortical regions. In addition, disruption of modulators often translates into disabling disorders of executive behavior. However, modulation in thalamic nuclei such as the midline and intralaminar groups, which are interconnected with forebrain executive regions, has received little attention compared to sensory nuclei. Thalamic modulators are heterogeneous in regards to their origin, the neurotransmitter they use, and the effect on thalamic cells. Modulators also share some features, such as having small terminal boutons and activating metabotropic receptors on the cells they contact. I will review anatomical and physiological data on thalamic modulators with these goals: first, determine to what extent the evidence supports similar modulator functions across thalamic nuclei; and second, discuss the current evidence on modulation in the midline and intralaminar nuclei in relation to their role in executive function.
Collapse
Affiliation(s)
- Carmen Varela
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
83
|
Rorabaugh JM, Stratford JM, Zahniser NR. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior. PLoS One 2014; 9:e95019. [PMID: 24736531 PMCID: PMC3988143 DOI: 10.1371/journal.pone.0095019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/21/2014] [Indexed: 02/06/2023] Open
Abstract
Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc) shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM) display signatures of hedonic feeding including bingeing and altered DA receptor (R) numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day) exposure to the IAM, rats given 8–12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR). This activation was negatively correlated with orexin (Orx) neuron activation in the lateral hypothalamus/perifornical area (LH/PeF), a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day) access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p.) equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior. Specifically, long-term fructose bingeing activates a hyperphagic circuit composed in part of NAc shell and LH/PeF Orx neurons.
Collapse
Affiliation(s)
- Jacki M. Rorabaugh
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| | - Jennifer M. Stratford
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Nancy R. Zahniser
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
84
|
Haight JL, Flagel SB. A potential role for the paraventricular nucleus of the thalamus in mediating individual variation in Pavlovian conditioned responses. Front Behav Neurosci 2014; 8:79. [PMID: 24672443 PMCID: PMC3953953 DOI: 10.3389/fnbeh.2014.00079] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/24/2014] [Indexed: 12/24/2022] Open
Abstract
There is ample evidence to suggest that the paraventricular nucleus of the thalamus (PVT) mediates cue-reward learning, especially as it relates to drug-seeking behavior. However, its exact role in these complex processes remains unknown. Here we will present and discuss data from our own laboratory which suggests that the PVT plays a role in multiple forms of stimulus-reward learning, and does so via distinct neurobiological systems. Using an animal model that captures individual variation in response to reward-associated cues, we are able to parse the incentive from the predictive properties of reward cues and to elucidate the neural circuitry underlying these different forms of cue-reward learning. When rats are exposed to a classical Pavlovian conditioning paradigm, wherein a cue predicts food reward, some rats, termed sign-trackers, approach and manipulate the cue upon its presentation. This behavior is indicative of attributing incentive salience to the cue. That is, the cue gains excessive control over behavior for sign-trackers. In contrast, other rats, termed goal-trackers, treat the cue as a mere predictor, and upon its presentation go to the location of reward delivery. Based on our own data utilizing this model, we hypothesize that the PVT represents a common node, but differentially regulates the sign- vs. goal-tracking response. We postulate that the PVT regulates sign-tracking behavior, or the attribution of incentive salience, via subcortical, dopamine-dependent mechanisms. In contrast, we propose that goal-tracking behavior, or the attribution of predictive value, is the product of “top-down” glutamatergic processing between the prelimbic cortex (PrL) and the PVT. Together, data from our laboratory and others support a role for the PVT in cue-motivated behaviors and suggest that it may be an important locus within the neural circuitry that goes awry in addiction and related disorders.
Collapse
Affiliation(s)
- Joshua L Haight
- Neuroscience Graduate Program, University of Michigan Ann Arbor, MI, USA
| | - Shelly B Flagel
- Neuroscience Graduate Program, University of Michigan Ann Arbor, MI, USA ; Department of Psychiatry, University of Michigan Ann Arbor, MI, USA ; Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
85
|
Asevedo E, Rizzo LB, Gadelha A, Mansur RB, Ota VK, Berberian AA, Scarpato BS, Teixeira AL, Bressan RA, Brietzke E. Peripheral interleukin-2 level is associated with negative symptoms and cognitive performance in schizophrenia. Physiol Behav 2014; 129:194-8. [PMID: 24576679 DOI: 10.1016/j.physbeh.2014.02.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/07/2013] [Accepted: 02/12/2014] [Indexed: 01/13/2023]
Abstract
Although several studies have pointed to a possible role of interleukin 2 (IL-2) in schizophrenia (SZ), association between IL-2 and the different groups of symptoms has not been explored. The objective of this study was to investigate a possible correlation of peripheral IL-2 levels with symptoms and cognitive performance in patients with SZ. In addition, we compared the plasma levels of IL-2 between patients with SZ and healthy controls. Twenty-nine chronically medicated outpatients with SZ according to DSM-IV were compared with twenty-six healthy controls. The patients were evaluated with the Positive and Negative Syndrome Scale (PANSS), the Calgary Depression Scale for Schizophrenia (CDSS), the Clinical Global Impression (CGI) and the Global Assessment of Functioning (GAF). All the participants had blood collected into EDTA tubes by venipuncture between 9:00 and 10:00AM. Plasma concentrations of IL-2 were determined by cytometric bead array. A computerized neuropsychological battery assessed verbal learning, verbal fluency, working memory, set shifting, executive function, inhibition and intelligence. Patients with SZ had lower levels of IL-2 than healthy controls (p<0.001). In the SZ group, IL-2 levels were positively correlated with scores in the digit span test (rho=0.416, P=0.025) and intelligence (rho=0.464, P=0.011). We also found a negative correlation between IL-2 and total score in the negative subscale of PANSS (rho=-0.447, p=0.015). Our findings suggest that IL-2 may be involved in the mechanisms related to cognitive deterioration and negative symptomatology in schizophrenia.
Collapse
Affiliation(s)
- Elson Asevedo
- Schizophrenia Program (PROESQ), Department of Psychiatry, Federal University of São Paulo, Rua Machado Bittencourt, 222, São Paulo, SP, CEP 04044-000, Brazil; Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Lucas B Rizzo
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Ary Gadelha
- Schizophrenia Program (PROESQ), Department of Psychiatry, Federal University of São Paulo, Rua Machado Bittencourt, 222, São Paulo, SP, CEP 04044-000, Brazil; Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Rodrigo B Mansur
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Vanessa K Ota
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Arthur A Berberian
- Schizophrenia Program (PROESQ), Department of Psychiatry, Federal University of São Paulo, Rua Machado Bittencourt, 222, São Paulo, SP, CEP 04044-000, Brazil; Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Bruno S Scarpato
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Antônio L Teixeira
- Translational Psychoneuroimmunology Group, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte MG, CEP 31270-901, Brazil.
| | - Rodrigo A Bressan
- Schizophrenia Program (PROESQ), Department of Psychiatry, Federal University of São Paulo, Rua Machado Bittencourt, 222, São Paulo, SP, CEP 04044-000, Brazil; Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| | - Elisa Brietzke
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Federal University of São Paulo, Rua Pedro de Toledo, 669, Edifício de Pesquisas II, third floor, São Paulo SP, CEP 04039-032, Brazil.
| |
Collapse
|
86
|
shRNA-induced saturation of the microRNA pathway in the rat brain. Gene Ther 2014; 21:205-11. [DOI: 10.1038/gt.2013.76] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/13/2013] [Accepted: 10/17/2013] [Indexed: 12/20/2022]
|
87
|
Kay K, Parise EM, Lilly N, Williams DL. Hindbrain orexin 1 receptors influence palatable food intake, operant responding for food, and food-conditioned place preference in rats. Psychopharmacology (Berl) 2014; 231:419-27. [PMID: 23978908 PMCID: PMC3946976 DOI: 10.1007/s00213-013-3248-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Brain orexin 1 receptors (OX1Rs) are involved in food-motivated behavior. Most research has focused on forebrain OX1R populations, but hindbrain OX1Rs affect feeding. We hypothesized that hindbrain OX1Rs affect the reward value of food. OBJECTIVES We examined the effects of hindbrain OX1R stimulation or blockade on motivation for food, palatable high-fat (HF) food intake, and food-conditioned place preference. METHODS Rats trained to lever press for sucrose on a progressive ratio (PR) schedule received fourth intracerebroventricular (icv) injections of vehicle, orexin-A (0.1-1 nmol), or the OX1R antagonist SB334867 (10-20 nmol) before operant test sessions. Effects of these treatments on HF food intake during daily 1-h tests were assessed with fourth icv and nucleus of the solitary tract (NTS) injections. We conditioned a place preference by pairing HF food with one side of a two-sided chamber and then examined the effect of 20 nmol fourth icv SB334867 on the expression of that preference. RESULTS In ad lib fed rats on the PR schedule, fourth icv orexin-A significantly increased responding and breakpoint relative to the vehicle. In 24-h food-deprived rats, fourth icv SB334867 significantly decreased responding and breakpoint. Orexin-A delivered to the fourth ventricle (0.1 nmol) or NTS (0.01 nmol) increased HF diet intake. Fourth icv SB334867 did not affect HF food intake, but SB334867 delivered either fourth icv (20 nmol) or intra-NTS (5-10 nmol) suppressed chow intake. Expression of HF food-conditioned place preference was inhibited by fourth icv SB334867. CONCLUSIONS Hindbrain OX1R activity affects food-motivated operant behavior and may play a role in responding to cues that predict palatable food.
Collapse
Affiliation(s)
- Kristen Kay
- Department of Psychology and Program in Neuroscience, Florida State
University, Box 3064301, Tallahassee, FL 32306-4301, USA
| | - Eric M. Parise
- Department of Psychology and Program in Neuroscience, Florida State
University, Box 3064301, Tallahassee, FL 32306-4301, USA
| | - Nicole Lilly
- Department of Psychology and Program in Neuroscience, Florida State
University, Box 3064301, Tallahassee, FL 32306-4301, USA
| | - Diana L. Williams
- Department of Psychology and Program in Neuroscience, Florida State
University, Box 3064301, Tallahassee, FL 32306-4301, USA
| |
Collapse
|
88
|
Attenuation of saccharin-seeking in rats by orexin/hypocretin receptor 1 antagonist. Psychopharmacology (Berl) 2013; 228:499-507. [PMID: 23494235 PMCID: PMC3707982 DOI: 10.1007/s00213-013-3051-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/27/2013] [Indexed: 12/28/2022]
Abstract
RATIONALE The orexin (Orx)/hypocretin system has been implicated in reward-seeking, especially for highly salient food and drug rewards. We recently demonstrated that signaling at the OxR1 receptor is involved in sucrose reinforcement and reinstatement of sucrose-seeking elicited by sucrose-paired cues in food-restricted rats. Because sucrose reinforcement has both a hedonic and caloric component, it remains unknown what aspect of this reward drives its reinforcing value. OBJECTIVES The present study examined the involvement of the Orx system in operant responding for saccharin, a noncaloric, hedonic (sweet) reward, and in cue-induced reinstatement of extinguished saccharin-seeking in ad libitum-fed vs food-restricted male subjects. METHODS Male Sprague Dawley rats were fed ad libitum or food-restricted and trained to self-administer saccharin. We determined the effects of pretreatment with the OxR1 receptor antagonist SB-334867 (SB; 10-30 mg/kg) on fixed ratio (FR) saccharin self-administration and on cue-induced reinstatement of extinguished saccharin-seeking. RESULTS SB decreased responding and number of reinforcers earned during FR responding for saccharin and decreased cue-induced reinstatement of extinguished saccharin-seeking. All of these effects were obtained similarly in food-restricted and ad libitum-fed rats. CONCLUSIONS These results indicate that signaling at the OxR1 receptor is involved in saccharin reinforcement and reinstatement of saccharin-seeking elicited by saccharin-paired cues regardless of food restriction. These findings lead us to conclude that the Orx system contributes to the motivational effects of hedonic food rewards, independently of caloric value and homeostatic needs.
Collapse
|
89
|
Rajkumar R, See LKY, Dawe GS. Acute antipsychotic treatments induce distinct c-Fos expression patterns in appetite-related neuronal structures of the rat brain. Brain Res 2013; 1508:34-43. [DOI: 10.1016/j.brainres.2013.02.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/23/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
90
|
Cason AM, Aston-Jones G. Role of orexin/hypocretin in conditioned sucrose-seeking in rats. Psychopharmacology (Berl) 2013; 226:155-65. [PMID: 23096770 PMCID: PMC3572270 DOI: 10.1007/s00213-012-2902-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Abstract
RATIONALE The orexin/hypocretin system has recently been implicated in reward-seeking, especially for highly salient food and drug rewards. We reasoned that this system may be strongly engaged during periods of reward restriction, including food restriction. OBJECTIVES This study examined the involvement of the orexin (Orx) system in responding for sucrose, and in cue-induced reinstatement of extinguished sucrose-seeking, in ad libitum fed versus food-restricted male subjects. METHODS Sprague-Dawley rats (n = 108) were trained to self-administer sucrose, and we determined the effects of pretreatment with the OxR1 receptor antagonist SB-334867 (SB; 10-30 mg/kg) on fixed ratio (FR) or progressive ratio (PR) sucrose self-administration, as well as on cue-induced reinstatement of sucrose-seeking. Finally, expression of the immediate early gene c-fos in Orx neurons was examined after self-administration, late extinction or cue-induced reinstatement of sucrose seeking. RESULTS SB decreased lever responding (by about 1/3) and the number of reinforcers earned during FR, and less so during PR, schedules and decreased cue-induced reinstatement to sucrose-seeking to extinction levels, predominately in food-restricted rats. Additionally, Fos expression in Orx neurons in perifornical and dorsomedial hypothalamus was increased during extinction. CONCLUSIONS These results indicate that signaling at the OxR1 receptor is involved in pronounced sucrose reinforcement, and reinstatement of sucrose-seeking elicited by sucrose-paired cues, in food-restricted subjects. These findings lead us to conclude that conditioned activation of Orx neurons increases motivation for food reward during food restriction.
Collapse
Affiliation(s)
- Angie M Cason
- Department of Neurosciences, Medical University of South Carolina, Basic Science Building 406, 173 Ashley Avenue, MSC 510, Charleston, SC 29425, USA
| | | |
Collapse
|
91
|
Martin-Fardon R, Boutrel B. Orexin/hypocretin (Orx/Hcrt) transmission and drug-seeking behavior: is the paraventricular nucleus of the thalamus (PVT) part of the drug seeking circuitry? Front Behav Neurosci 2012; 6:75. [PMID: 23162448 PMCID: PMC3494007 DOI: 10.3389/fnbeh.2012.00075] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/19/2012] [Indexed: 11/17/2022] Open
Abstract
The orexin/hypocretin (Orx/Hcrt) system has long been considered to regulate a wide range of physiological processes, including feeding, energy metabolism, and arousal. More recently, concordant observations have demonstrated an important role for these peptides in the reinforcing properties of most drugs of abuse. Orx/Hcrt neurons arise in the lateral hypothalamus (LH) and project to all brain structures implicated in the regulation of arousal, stress, and reward. Although Orx/Hcrt neurons have been shown to massively project to the paraventricular nucleus of the thalamus (PVT), only recent evidence suggested that the PVT may be a key relay of Orx/Hcrt-coded reward-related communication between the LH and both the ventral and dorsal striatum. While this thalamic region was not thought to be part of the “drug addiction circuitry,” an increasing amount of evidence demonstrated that the PVT—particularly PVT Orx/Hcrt transmission—was implicated in the modulation of reward function in general and several aspects of drug-directed behaviors in particular. The present review discusses recent findings that suggest that maladaptive recruitment of PVT Orx/Hcrt signaling by drugs of abuse may promote persistent compulsive drug-seeking behavior following a period of protracted abstinence and as such may represent a relevant target for understanding the long-term vulnerability to drug relapse after withdrawal.
Collapse
Affiliation(s)
- Rémi Martin-Fardon
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute La Jolla, CA, USA
| | | |
Collapse
|
92
|
Davis JF, Perello M, Choi DL, Magrisso IJ, Kirchner H, Pfluger PT, Tschoep M, Zigman JM, Benoit SC. GOAT induced ghrelin acylation regulates hedonic feeding. Horm Behav 2012; 62:598-604. [PMID: 22982020 PMCID: PMC3489978 DOI: 10.1016/j.yhbeh.2012.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/10/2012] [Accepted: 08/29/2012] [Indexed: 11/21/2022]
Abstract
Ghrelin is an orexigenic hormone that regulates homeostatic and reward-related feeding behavior. Recent evidence indicates that acylation of ghrelin by the gut enzyme ghrelin O-acyl transferase (GOAT) is necessary to render ghrelin maximally active within its target tissues. Here we tested the hypothesis that GOAT activity modulates food motivation and food hedonics using behavioral pharmacology and mutant mice deficient for GOAT and the ghrelin receptor (GHSR). We evaluated operant responding following pharmacological administration of acyl-ghrelin and assessed the necessity of endogenous GOAT activity for operant responding in GOAT and GHSR-null mice. Hedonic-based feeding behavior also was examined in GOAT-KO and GHSR-null mice using a "Dessert Effect" protocol in which the intake of a palatable high fat diet "dessert" was assessed in calorically-sated mice. Pharmacological administration of acyl-ghrelin augmented operant responding; notably, this effect was dependent on intact GHSR signaling. GOAT-KO mice displayed attenuated operant responding and decreased hedonic feeding relative to controls. These behavioral results correlated with decreased expression of the orexin-1 receptor in reward-related brain regions in GOAT-KO mice. In summary, the ability of ghrelin to stimulate food motivation is dependent on intact GHSR signaling and modified by endogenous GOAT activity. Furthermore, GOAT activity is required for hedonic feeding behavior, an effect potentially mediated by forebrain orexin signaling. These data highlight the significance of the GOAT-ghrelin system for the mediation of food motivation and hedonic feeding.
Collapse
Affiliation(s)
- J F Davis
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, OH, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Stratford TR, Wirtshafter D. Injections of muscimol into the paraventricular thalamic nucleus, but not mediodorsal thalamic nuclei, induce feeding in rats. Brain Res 2012; 1490:128-33. [PMID: 23111346 DOI: 10.1016/j.brainres.2012.10.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/18/2012] [Accepted: 10/20/2012] [Indexed: 12/31/2022]
Abstract
The paraventricular thalamic nucleus (PVT) is a component of the midline thalamic group that is interconnected with several brain regions known to play important roles in the control of food intake, including the lateral hypothalamus and nucleus accumbens shell, suggesting that the PVT itself may be involved in mediating feeding behavior. In the current study, we examined whether inhibition of cells in the PVT with the GABA(A) agonist muscimol could alter food intake in non-deprived rats. To control for possible spread of the drug, we also observed food intake after injections of muscimol into the overlying ventricle or laterally adjacent mediodorsal thalamic nuclei (MD). We found that muscimol injections into the central PVT dose-dependently increased food intake. In contrast, intra-MD injections of muscimol resulted in a potent dose-dependent suppression of food intake, while those into the overlying ventricle had no effect. These results support the proposal that the PVT is a component of the neural circuitry controlling feeding behavior.
Collapse
Affiliation(s)
- Thomas R Stratford
- Laboratory of Integrative Neuroscience and Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607-7137, USA.
| | | |
Collapse
|
94
|
Charra R, Datiche F, Gigot V, Schaal B, Coureaud G. Pheromone-induced odor learning modifies Fos expression in the newborn rabbit brain. Behav Brain Res 2012; 237:129-40. [PMID: 23000352 DOI: 10.1016/j.bbr.2012.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/08/2012] [Accepted: 09/13/2012] [Indexed: 12/24/2022]
Abstract
Associative learning contributes crucially to adjust the behavior of neonates to the permanently changing environment. In the European rabbit, the mammary pheromone (MP) excreted in milk triggers sucking behavior in newborns, and additionally promotes very rapid learning of initially neutral odor cues. Such stimuli become then as active as the MP itself to elicit the orocephalic motor responses involved in suckling. In this context, the rabbit is an interesting model to address the question of brain circuits early engaged by learning and memory. Here, we evaluated the brain activation (olfactory bulb and central regions) induced in 4-day-old pups by an odorant (ethyl acetoacetate, EAA) after single pairing with the MP and its subsequent acquired ability to elicit sucking-related behavior (conditioned group) or after mere exposure to EAA alone (unconditioned group). The brain-wide mapping of c-Fos expression was used to compare neural activation patterns in both groups. Evidence of high immunostaining to odorant EAA occurred in the mitral+granule cells layer of the main olfactory bulb in pups previously exposed to EAA in association with the MP. These pups also showed higher expression of Fos in the piriform cortex, the hypothalamic lateral preoptic area and the amygdala (cortical and basal nuclei). Thus, MP-induced odor learning induces rapid brain modifications in rabbit neonates. The cerebral framework supporting the acquisition appears however different compared to the circuit involved in the processing of the MP itself.
Collapse
Affiliation(s)
- R Charra
- Developmental Ethology and Cognitive Psychology Group and Brain, Sensoriality and Metabolism Group, Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne, Dijon, France
| | | | | | | | | |
Collapse
|