51
|
Guennoun R. Progesterone in the Brain: Hormone, Neurosteroid and Neuroprotectant. Int J Mol Sci 2020; 21:ijms21155271. [PMID: 32722286 PMCID: PMC7432434 DOI: 10.3390/ijms21155271] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Progesterone has a broad spectrum of actions in the brain. Among these, the neuroprotective effects are well documented. Progesterone neural effects are mediated by multiple signaling pathways involving binding to specific receptors (intracellular progesterone receptors (PR); membrane-associated progesterone receptor membrane component 1 (PGRMC1); and membrane progesterone receptors (mPRs)) and local bioconversion to 3α,5α-tetrahydroprogesterone (3α,5α-THPROG), which modulates GABAA receptors. This brief review aims to give an overview of the synthesis, metabolism, neuroprotective effects, and mechanism of action of progesterone in the rodent and human brain. First, we succinctly describe the biosynthetic pathways and the expression of enzymes and receptors of progesterone; as well as the changes observed after brain injuries and in neurological diseases. Then, we summarize current data on the differential fluctuations in brain levels of progesterone and its neuroactive metabolites according to sex, age, and neuropathological conditions. The third part is devoted to the neuroprotective effects of progesterone and 3α,5α-THPROG in different experimental models, with a focus on traumatic brain injury and stroke. Finally, we highlight the key role of the classical progesterone receptors (PR) in mediating the neuroprotective effects of progesterone after stroke.
Collapse
Affiliation(s)
- Rachida Guennoun
- U 1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| |
Collapse
|
52
|
Huang HY, Chou HC, Law CH, Chang WT, Wen TN, Liao EC, Lin MW, Lin LH, Wei YS, Tsai YT, Chen HY, Tan KT, Kuo WH, Ko ML, Chang SJ, Lee YR, Chan HL. Progesterone receptor membrane component 1 is involved in oral cancer cell metastasis. J Cell Mol Med 2020; 24:9737-9751. [PMID: 32672400 PMCID: PMC7520311 DOI: 10.1111/jcmm.15535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023] Open
Abstract
Cancer metastasis is a common cause of failure in cancer therapy. However, over 60% of oral cancer patients present with advanced stage disease, and the five‐year survival rates of these patients decrease from 72.6% to 20% as the stage becomes more advanced. In order to manage oral cancer, identification of metastasis biomarker and mechanism is critical. In this study, we use a pair of oral squamous cell carcinoma lines, OC3, and invasive OC3‐I5 as a model system to examine invasive mechanism and to identify potential therapeutic targets. We used two‐dimensional differential gel electrophoresis (2D‐DIGE) and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF/TOF MS) to examine the global protein expression changes between OC3 and invasive OC3‐I5. A proteomic study reveals that invasive properties alter the expression of 101 proteins in OC3‐I5 cells comparing to OC3 cells. Further studies have used RNA interference technique to monitor the influence of progesterone receptor membrane component 1 (PGRMC1) protein in invasion and evaluate their potency in regulating invasion and the mechanism it involved. The results demonstrated that expression of epithelial‐mesenchymal transition (EMT) markers including Twist, p‐Src, Snail1, SIP1, JAM‐A, vimentin and vinculin was increased in OC3‐I5 compared to OC3 cells, whereas E‐cadherin expression was decreased in the OC3‐I5 cells. Moreover, in mouse model, PGRMC1 is shown to affect not only migration and invasion but also metastasis in vivo. Taken together, the proteomic approach allows us to identify numerous proteins, including PGRMC1, involved in invasion mechanism. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of oral cancer invasion.
Collapse
Affiliation(s)
- Hsun-Yu Huang
- Dental Department of Dimanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsuan Law
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wan-Ting Chang
- Dental Department of Dimanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Tzu-Ning Wen
- Dental Department of Dimanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - En-Chi Liao
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Meng-Wei Lin
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Hsun Lin
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Shan Wei
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ting Tsai
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Yi Chen
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Lan Ko
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.,Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Hong-Lin Chan
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
53
|
Progesterone receptor membrane component 1 regulates lipid homeostasis and drives oncogenic signaling resulting in breast cancer progression. Breast Cancer Res 2020; 22:75. [PMID: 32660617 PMCID: PMC7359014 DOI: 10.1186/s13058-020-01312-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
Background PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression. Methods The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in a xenograft mouse model. Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related signaling pathways including EGFR/HER2 and ERα signaling. Results Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels. PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of cholesterol and fatty acids induced by statins reversed this growth benefit. Conclusion PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.
Collapse
|
54
|
Association of circulating Progesterone Receptor Membrane Component-1 (PGRMC1) with PGRMC1 expression in breast tumour tissue and with clinical breast tumour characteristics. Maturitas 2020; 140:64-71. [PMID: 32972637 DOI: 10.1016/j.maturitas.2020.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/13/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Progesterone receptor membrane component-1 (PGRMC1) in breast cancer tissue has been suggested to predict a worse prognosis. The aim of this study was to assess for the first time whether PGRMC1 expressed in cancer tissue is associated with PGRMC1 blood concentrations and whether both are correlated with clinical tumour characteristics known to predict a worse outcome. METHODS In total, 201 patients with invasive breast cancer and 65 with benign breast disease (control group) were recruited. PGRMC1 blood concentrations were measured by a recently developed ELISA, PGRMC1 in breast cancer tissue was assessed by immunohistochemistry, and the correlation between the two was calculated. Receiver-operating characteristic (ROC) curve analysis was used to assess area under the curve (AUC). Furthermore, PGRMC1 was correlated with tumour characteristics such as tumour diameter, tumour grade and metastatic status, and with known blood tumour markers. RESULTS AUC for the breast cancer group was 0.713, which was significantly higher than in the control group (p < 0.01). Blood PGRMC1 concentrations had a strong (positive) correlation with tissue PGRMC1 expression (p < 0.01) but were not associated with serum tumour markers CEA, CA125, CA153 and TPS. Tissue PGRMC1, ER and cancer stage were positively associated with blood PGRMC1 (p < 0.05). CONCLUSIONS As PGRMC1 expression levels in cancer tissue were significantly correlated with PGRMC1 in blood, and because concentrations in blood were also positively associated with breast tumour characteristics known to predict a worse prognosis, PGRMC1 may be valuable as a new tumour marker and may be superior to known tumour markers such as CEA, CA125, CA153 and TPS.
Collapse
|
55
|
Novel nonclassic progesterone receptor PGRMC1 pulldown-precipitated proteins reveal a key role during human decidualization. Fertil Steril 2020; 113:1050-1066.e7. [DOI: 10.1016/j.fertnstert.2020.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/12/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
|
56
|
Thejer BM, Adhikary PP, Teakel SL, Fang J, Weston PA, Gurusinghe S, Anwer AG, Gosnell M, Jazayeri JA, Ludescher M, Gray LA, Pawlak M, Wallace RH, Pant SD, Wong M, Fischer T, New EJ, Fehm TN, Neubauer H, Goldys EM, Quinn JC, Weston LA, Cahill MA. PGRMC1 effects on metabolism, genomic mutation and CpG methylation imply crucial roles in animal biology and disease. BMC Mol Cell Biol 2020; 21:26. [PMID: 32293262 PMCID: PMC7160964 DOI: 10.1186/s12860-020-00268-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/20/2020] [Indexed: 01/08/2023] Open
Abstract
Background Progesterone receptor membrane component 1 (PGRMC1) is often elevated in cancers, and exists in alternative states of phosphorylation. A motif centered on PGRMC1 Y180 was evolutionarily acquired concurrently with the embryological gastrulation organizer that orchestrates vertebrate tissue differentiation. Results Here, we show that mutagenic manipulation of PGRMC1 phosphorylation alters cell metabolism, genomic stability, and CpG methylation. Each of several mutants elicited distinct patterns of genomic CpG methylation. Mutation of S57A/Y180/S181A led to increased net hypermethylation, reminiscent of embryonic stem cells. Pathways enrichment analysis suggested modulation of processes related to animal cell differentiation status and tissue identity, as well as cell cycle control and ATM/ATR DNA damage repair regulation. We detected different genomic mutation rates in culture. Conclusions A companion manuscript shows that these cell states dramatically affect protein abundances, cell and mitochondrial morphology, and glycolytic metabolism. We propose that PGRMC1 phosphorylation status modulates cellular plasticity mechanisms relevant to early embryological tissue differentiation.
Collapse
Affiliation(s)
- Bashar M Thejer
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Department of Biology, College of Science, University of Wasit, Kut, Wasit, Iraq
| | - Partho P Adhikary
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Present Address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Sarah L Teakel
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Johnny Fang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Paul A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Saliya Gurusinghe
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Present Address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Martin Gosnell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Quantitative (Biotechnology) Pty. Ltd., ABN 17 165 684 186, Australia
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Marina Ludescher
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Lesley-Ann Gray
- Australian Genome Research Facility Ltd., Victorian Comprehensive Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Michael Pawlak
- NMI TT Pharmaservices, Protein Profiling, 72770 Reutlingen, Germany
| | - Robyn H Wallace
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Sameer D Pant
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Marie Wong
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Tamas Fischer
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Elizabeth J New
- University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Present Address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Jane C Quinn
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,Faculty of Science, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia. .,ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
57
|
Thejer BM, Adhikary PP, Kaur A, Teakel SL, Van Oosterum A, Seth I, Pajic M, Hannan KM, Pavy M, Poh P, Jazayeri JA, Zaw T, Pascovici D, Ludescher M, Pawlak M, Cassano JC, Turnbull L, Jazayeri M, James AC, Coorey CP, Roberts TL, Kinder SJ, Hannan RD, Patrick E, Molloy MP, New EJ, Fehm TN, Neubauer H, Goldys EM, Weston LA, Cahill MA. PGRMC1 phosphorylation affects cell shape, motility, glycolysis, mitochondrial form and function, and tumor growth. BMC Mol Cell Biol 2020; 21:24. [PMID: 32245408 PMCID: PMC7119165 DOI: 10.1186/s12860-020-00256-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms. RESULTS We demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect. This was associated with increased PI3K/AKT activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/AKT activation. Mutation of Y180F strongly attenuated subcutaneous xenograft tumor growth in NOD-SCID gamma mice. Elsewhere we demonstrate altered metabolism, mutation incidence, and epigenetic status in these cells. CONCLUSIONS Altogether, these results indicate that mutational manipulation of PGRMC1 phosphorylation status exerts broad pleiotropic effects relevant to cancer and other cell biology.
Collapse
Affiliation(s)
- Bashar M Thejer
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
- Department of Biology, College of Science, University of Wasit, Wasit, 00964, Iraq
| | - Partho P Adhikary
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
- Present address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Amandeep Kaur
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
- Present address: School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah L Teakel
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Ashleigh Van Oosterum
- Life Sciences and Health, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Ishith Seth
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Darlinghurst, 2010, NSW, Australia
| | - Katherine M Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Megan Pavy
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Perlita Poh
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Thiri Zaw
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marina Ludescher
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Michael Pawlak
- NMI TT Pharmaservices, Protein Profiling, 72770, Reutlingen, Germany
| | - Juan C Cassano
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science & Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St Gallen, Switzerland
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Present address: GE Healthcare Life Sciences, Issaquah, WA, 98027, USA
| | - Mitra Jazayeri
- Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alexander C James
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Craig P Coorey
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine and University of Queensland Centre for Clinical Research, Herston, QLD, 4006, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Liverpool, NSW, 2170, Australia
- School of Medicine and University of Queensland Centre for Clinical Research, Herston, QLD, 4006, Australia
| | | | - Ross D Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3168, Australia
| | - Ellis Patrick
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
- Present address: The Kolling Institute, The University of Sydney, St Leonards (Sydney), NSW, 2064, Australia
| | - Elizabeth J New
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia
- Present address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia.
| |
Collapse
|
58
|
Trabert B, Sherman ME, Kannan N, Stanczyk FZ. Progesterone and Breast Cancer. Endocr Rev 2020; 41:5568276. [PMID: 31512725 PMCID: PMC7156851 DOI: 10.1210/endrev/bnz001] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/06/2019] [Indexed: 12/31/2022]
Abstract
Synthetic progestogens (progestins) have been linked to increased breast cancer risk; however, the role of endogenous progesterone in breast physiology and carcinogenesis is less clearly defined. Mechanistic studies using cell culture, tissue culture, and preclinical models implicate progesterone in breast carcinogenesis. In contrast, limited epidemiologic data generally do not show an association of circulating progesterone levels with risk, and it is unclear whether this reflects methodologic limitations or a truly null relationship. Challenges related to defining the role of progesterone in breast physiology and neoplasia include: complex interactions with estrogens and other hormones (eg, androgens, prolactin, etc.), accounting for timing of blood collections for hormone measurements among cycling women, and limitations of assays to measure progesterone metabolites in blood and progesterone receptor isotypes (PRs) in tissues. Separating the individual effects of estrogens and progesterone is further complicated by the partial dependence of PR transcription on estrogen receptor (ER)α-mediated transcriptional events; indeed, interpreting the integrated interaction of the hormones may be more essential than isolating independent effects. Further, many of the actions of both estrogens and progesterone, particularly in "normal" breast tissues, are driven by paracrine mechanisms in which ligand binding to receptor-positive cells evokes secretion of factors that influence cell division of neighboring receptor-negative cells. Accordingly, blood and tissue levels may differ, and the latter are challenging to measure. Given conflicting data related to the potential role of progesterone in breast cancer etiology and interest in blocking progesterone action to prevent or treat breast cancer, we provide a review of the evidence that links progesterone to breast cancer risk and suggest future directions for filling current gaps in our knowledge.
Collapse
Affiliation(s)
- Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mark E Sherman
- Health Sciences Research, Mayo Clinic, Jacksonville, Florida
| | - Nagarajan Kannan
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Frank Z Stanczyk
- Departments of Obstetrics and Gynecology, and Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
59
|
Wu XJ, Zhu Y. Downregulation of nuclear progestin receptor (Pgr) and subfertility in double knockouts of progestin receptor membrane component 1 (pgrmc1) and pgrmc2 in zebrafish. Gen Comp Endocrinol 2020; 285:113275. [PMID: 31536721 PMCID: PMC6888933 DOI: 10.1016/j.ygcen.2019.113275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/01/2019] [Accepted: 09/14/2019] [Indexed: 11/29/2022]
Abstract
The progestin receptor membrane components (Pgrmcs) contain two paralogs, Pgrmc1 and Pgrmc2. Our previous research into single knockout of Pgrmc1 or Pgrmc2 suggests that Pgrmc1 and Pgrmc2 regulate membrane progestin receptor or steroid synthesis and therefore female fertility in zebrafish. Additional roles of Pgrmcs may not be determined in using single Pgrmc knockouts due to compensatory roles between Pgrmc1 and Pgrmc2. To address this question, we crossed single knockout pgrmc1 (pgrmc1-/-) with pgrmc2 (pgrmc2-/-), and generated double knockouts for both pgrmc1 and pgrmc2 (pgrmc1/2-/-) in a vertebrate model, zebrafish. In addition to the delayed oocyte maturation and reduced female fertility, significant reduced ovulation was found in double knockout (pgrmc1/2-/-) in vivo, though not detected in either single knockout of Pgrmc (pgrmc1-/- or pgrmc2-/-). We also found significant down regulation of nuclear progestin receptor (Pgr) protein expression only in pgrmc1/2-/-, which was most likely the cause of reduced ovulation. Lower protein expression of Pgr also resulted in reduced expression of metalloproteinase in pgrmc1/2-/-. With this study, we have provided new evidence for the physiological functions of Pgrmcs in the regulation of female fertility by regulation of ovulation, likely via regulation of Pgr, which affects regulation of metalloproteinase expression and oocyte ovulation.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
60
|
González SL, Coronel MF, Raggio MC, Labombarda F. Progesterone receptor-mediated actions and the treatment of central nervous system disorders: An up-date of the known and the challenge of the unknown. Steroids 2020; 153:108525. [PMID: 31634489 DOI: 10.1016/j.steroids.2019.108525] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023]
Abstract
Progesterone has been shown to exert a wide range of remarkable protective actions in experimental models of central nervous system injury or disease. However, the intimate mechanisms involved in each of these beneficial effects are not fully depicted. In this review, we intend to give the readers a thorough revision on what is known about the participation of diverse receptors and signaling pathways in progesterone-mediated neuroprotective, pro-myelinating and anti-inflammatory outcomes, as well as point out to novel regulatory mechanisms that could open new perspectives in steroid-based therapies.
Collapse
Affiliation(s)
- Susana L González
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | - María F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Presidente Perón 1500, B1629AHJ Pilar, Buenos Aires, Argentina
| | - María C Raggio
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendócrina, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
61
|
Lyzikova YA, Zinovkin DA, Pranjol MZI. Increase in FoxP3, CD56 immune cells and decrease in glands PGRMC1 expression in the endometrium are associated with recurrent miscarriages. Eur J Obstet Gynecol Reprod Biol 2019; 245:121-126. [PMID: 31891895 DOI: 10.1016/j.ejogrb.2019.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Recurrent miscarriage (RM) is a multifactorial condition that involves frequent uterine anatomical abnormalities, parental karyotype abnormalities, and clotting disorders. We investigate the potential roles of endometrium FoxP3+ Tregs and CD56+ cells (uNK cells) and endometrial expression of PGRMC1 in the development of recurrent miscarriage. STUDY DESIGN This prospective study included 102 out of 286 cases of SA patients. The cases were divided into groups with RM (+RM) and without RM (-RM). Immunohistochemistry staining was made using primary antibodies to FoxP3, CD56, and PGRMC1 in both groups. Morphometry analyses were carried out in 10 non-overlapping high power fields. Mann-Whitney U test, Fisher two-tail test, correlation analysis and relative risk (RR) were evaluated. A p < 0.05 was considered statistically significant. RESULTS An increased presence of CD56-positive (p < 0.001) and FoxP3+ Treg (p = 0.0005) cells was found in the endometrium, with a reduction in PGRMC1 expression compared with -RM group (p = 0.004). A positive correlation was shown between the number of CD56-positive cells and FoxP3+ cells (r = 0.55), and an inverse correlation with PGRMC1 (r = -0.35) in the + RM group. A similar observation was found in the -RM group, with a positive correlation of uNK cell number with the number of pregnancies (p < 0.001; r = 0.34). Endometrial infiltration of CD56-positive (p < 0.0001) and FoxP3+ (p < 0.0001) cells revealed an increased relative risk of RM. This increased risk was also revealed in SA with a loss of PGRMC1 expression (p < 0.0001). CONCLUSION Our prospective study suggests, for the first time, that increased endometrial infiltration of uNK, FoxP3+ Treg cells and a decreased PGRMC1 expression may play potential roles in the development of RM.
Collapse
|
62
|
Yang WJ, Wang HB, Wang WD, Bai PY, Lu HX, Sun CH, Liu ZS, Guan DK, Yang GW, Zhang GL. A network-based predictive gene expression signature for recurrence risks in stage II colorectal cancer. Cancer Med 2019; 9:179-193. [PMID: 31724326 PMCID: PMC6943157 DOI: 10.1002/cam4.2642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/07/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
The current criteria for defining the recurrence risks of stage II colorectal cancer (CRC) are not robust; therefore, we aimed to explore novel gene signatures to predict recurrence risks and to reveal the underlying mechanisms of stage II CRC. First, the gene expression profiles of 124 patients with stage II CRC from The Cancer Genome Atlas (TCGA) database were obtained to screen differentially expressed genes (DEGs). A total of 202 DEGs, including 128 upregulated and 74 downregulated, were identified in the recurrence group (n = 24) compared to the nonrecurrence group (n = 100). Furthermore, the top 5 DEGs (ZNF561, WFS1, SLC2A1, MFI2, and PTGR1) were identified by random forest variable hunting, and four (ZNF561, WFS1, SLC2A1, and PTGR1) were selected to create a four‐gene recurrent model (GRM), with an area under the curve (AUC) of 0.882 according to the receiver operating characteristic curve, and the robust diagnostic effectiveness of the GRM was further validated with another gene expression profiling dataset (GSE12032), with an AUC of 0.943. The diagnostic effectiveness of the GRM regarding recurrence was associated with poor disease‐free survival in all stages of CRC. In addition, gene ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed 18 enriched functions and 6 enriched pathways. Four genes, ABCG2, CACNA1F, CYP19A1, and TF, were identified as hub genes by the protein‐protein interaction network, which further validated that these genes were correlated with a poor pathologic stage and overall survival in all stages of CRC. In conclusion, the GRM can effectively classify stage II CRC into groups of high and low risks of recurrence, thereby making up for the prognostic value of the traditional clinicopathological risk factors defined by the National Comprehensive Cancer Network guidelines. The hub genes may be useful therapeutic targets for recurrence. Thus, the GRM and hub genes could offer clinical value in directing individualized and precision therapeutic regimens for stage II CRC patients.
Collapse
Affiliation(s)
- Wen-Jing Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hai-Bo Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Wen-Da Wang
- Department of Anorectal Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Peng-Yu Bai
- Department of Anorectal Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Hong-Xia Lu
- Department of Gastroenterology, Shanxi Cancer Hospital, Taiyuan, China
| | - Chang-He Sun
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zi-Shen Liu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ding-Kun Guan
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Guo-Wang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Gan-Lin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
63
|
Wang D, Lu R, Rempala G, Sadee W. Ligand-Free Estrogen Receptor α (ESR1) as Master Regulator for the Expression of CYP3A4 and Other Cytochrome P450 Enzymes in the Human Liver. Mol Pharmacol 2019; 96:430-440. [PMID: 31399483 PMCID: PMC6724575 DOI: 10.1124/mol.119.116897] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022] Open
Abstract
Cytochrome P450 3A4 isoform (CYP3A4) transcription is controlled by hepatic transcription factors (TFs), but how TFs dynamically interact remains uncertain. We hypothesize that several TFs form a regulatory network with nonlinear, dynamic, and hierarchical interactions. To resolve complex interactions, we have applied a computational approach for estimating Sobol's sensitivity indices (SSI) under generalized linear models to existing liver RNA expression microarray data (GSE9588) and RNA-seq data from genotype-tissue expression (GTEx), generating robust importance ranking of TF effects and interactions. The SSI-based analysis identified TFs and interacting TF pairs, triplets, and quadruplets involved in CYP3A4 expression. In addition to known CYP3A4 TFs, estrogen receptor α (ESR1) emerges as key TF with the strongest main effect and as the most frequently included TF interacting partner. Model predictions were validated using small interfering RNA (siRNA)/short hairpin RNA (shRNA) gene knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)-mediated transcriptional activation of ESR1 in biliary epithelial Huh7 cells and human hepatocytes in the absence of estrogen. Moreover, ESR1 and known CYP3A4 TFs mutually regulate each other. Detectable in both male and female hepatocytes without added estrogen, the results demonstrate a role for unliganded ESR1 in CYP3A4 expression consistent with unliganded ESR1 signaling reported in other cell types. Added estrogen further enhances ESR1 effects. We propose a hierarchical regulatory network for CYP3A4 expression directed by ESR1 through self-regulation, cross regulation, and TF-TF interactions. We also demonstrate that ESR1 regulates the expression of other P450 enzymes, suggesting broad influence of ESR1 on xenobiotics metabolism in human liver. Further studies are required to understand the mechanisms underlying role of ESR1 in P450 regulation. SIGNIFICANCE STATEMENT: This study focuses on identifying key transcription factors and regulatory networks for CYP3A4, the main drug metabolizing enzymes in liver. We applied a new computational approach (Sobol's sensitivity analysis) to existing hepatic gene expression data to determine the role of transcription factors in regulating CYP3A4 expression, and used molecular genetics methods (siRNA/shRNA gene knockdown and CRISPR-mediated transcriptional activation) to test these interactions in life cells. This approach reveals a robust network of TFs, including their putative interactions and the relative impact of each interaction. We find that ESR1 serves as a key transcription factor function in regulating CYP3A4, and it appears to be acting at least in part in a ligand-free fashion.
Collapse
Affiliation(s)
- Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Rong Lu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Grzegorz Rempala
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Wolfgang Sadee
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| |
Collapse
|
64
|
Wu XJ, Williams MJ, Patel PR, Kew KA, Zhu Y. Subfertility and reduced progestin synthesis in Pgrmc2 knockout zebrafish. Gen Comp Endocrinol 2019; 282:113218. [PMID: 31301284 PMCID: PMC6718323 DOI: 10.1016/j.ygcen.2019.113218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 01/22/2023]
Abstract
Progestin receptor membrane component (Pgrmc1 & 2) is a heme-binding protein. Studies on Pgrmc1 have suggested possible roles in heme binding, activation of steroid-synthesizing P450s, along with binding and transferring of membrane proteins. However, the studies of Pgrmc1's paralog, Pgrmc2 are still lacking. In order to determine the physiologic function(s) of Pgrmc2, we generated a zebrafish mutant line (pgrmc2-/-). We found a reduction in both spawning frequency and the number of embryos produced in female pgrmc2-/-. This subfertility is caused by reduced oocyte maturation (germinal vesicle breakdown, GVBD) in pgrmc2-/- in vivo. Nonetheless, oocytes from pgrmc2-/- had similar sensitivity to 17α,20β-dihydroxy-4-pregnen-3-one (DHP, a maturation induced progestin in zebrafish) compared with wildtype (wt) in vitro. Therefore, we hypothesized that oocyte maturation tardiness found in vivo, could be due to lack of progestin in pgrmc2-/-. Interestingly, we found significant reduced expression of hormones, receptors, and steroid synthesizing enzymes including lhcgr, egfra, ar, and esr2, cyp11a1 and hsd3b1. In addition, DHP levels in pgrmc2-/- ovaries showed a significant decrease compared to those in wt. In summary, we have provided a plausible molecular mechanism for the physiological functions of Pgrmc2 in the regulation of female fertility, likely via regulation of receptors and steroids in the ovary, which in turn regulates oocyte maturation in zebrafish.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | | - Kimberly Ann Kew
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
65
|
Ren J, Chung-Davidson YW, Jia L, Li W. Genomic sequence analyses of classical and non-classical lamprey progesterone receptor genes and the inference of homologous gene evolution in metazoans. BMC Evol Biol 2019; 19:136. [PMID: 31262250 PMCID: PMC6604198 DOI: 10.1186/s12862-019-1463-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 06/18/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Nuclear progesterone receptor (nPR) is an evolutionary innovation in vertebrates that mediates genomic responses to progesterone. Vertebrates also respond to progesterone via membrane progesterone receptors (mPRs) or membrane associated progesterone receptors (MAPRs) through rapid nongenomic mechanisms. Lampreys are extant agnathan vertebrates, residing at the evolutionary juncture where vertebrates diverged from invertebrates. A survey of the progesterone receptor (PR) gene sequences in lamprey genomes would inform PR gene evolutionary events during the transition from invertebrates to vertebrates. RESULTS In this study, we annotated sequences of one nPR, four mPR (β, γ, δ and ε) and four MAPR genes from genomes of two lamprey species (Petromyzon marinus and Lethenteron japonicum). To infer the origin and evolutionary history of PR genes, we constructed phylogenetic trees of PR homologous sequences across representative species of metazoans. Phylogenetic analyses revealed that the mPRγ gene first appeared in non-bilaterians, and the mPRβ gene likely arose from a duplication of mPRγ. On the other hand, the mPRγ gene gave rise to the mPRδ and ε genes much later in the vertebrate lineage. In addition, the mPRα gene first appeared in cartilaginous fishes, likely derived from duplication of mPRβ after the agnathan-gnathostome divergence. All known MAPR genes were present in the lamprey genomes. Progesterone receptor membrane component 1 (PGRMC1), neudesin and neuferricin genes probably evolved in parallel in non-bilaterians, whereas two copies of PGRMC genes probably derived from duplication of ancestral PGRMC1 sequence and appeared before the speciation of lampreys. CONCLUSIONS Non-classical mPR and MAPR genes first evolved in non-bilaterians and classical nPR genes evolved later in basal vertebrates. Sequence repertoires for membrane progesterone receptor genes in vertebrates likely originated from an ancestral metazoan sequence and expanded via several duplication events.
Collapse
Affiliation(s)
- Jianfeng Ren
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Liang Jia
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
66
|
Shih CC, Chou HC, Chen YJ, Kuo WH, Chan CH, Lin YC, Liao EC, Chang SJ, Chan HL. Role of PGRMC1 in cell physiology of cervical cancer. Life Sci 2019; 231:116541. [PMID: 31216441 DOI: 10.1016/j.lfs.2019.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
AIMS The most frequent cancers among women worldwide. The mortality of cervical cancer has declined significantly primarily due to the widespread use of Pap smear tests as a screening test and therapeutic vaccination. However, cervical cancer still remains a severe disease among the female population, as the prognosis of metastatic cervical cancer is very poor. KEY METHODS In this study, we performed 2D-DIGE and MALDI-TOF/TOF MS to analyze differentially expressed proteins between HeLa and invasive HeLa-I5 cells.. KEY FINDINGS According to our proteomics data, 68 differentially expressed proteins between the HeLa and HeLa-I5 cells were identified. One of these differentially expressed proteins, Progesterone receptor membrane component 1 (PGRMC1), was selected as a candidate for further studies. To correlate the role of PGRMC1 with cellular migration and cancer progression, small interfering RNA (siRNA) was used to knockdown the expression of PGRMC1. Similar function of PGRMC1 was also observed in two other cervical cancer lines, CaSki and ME-180. SIGNIFICANCE PGRMC1 plays an essential role in regulating cancer progression and metastasis of cervical cancer cells, thus serving as a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Chuan-Chi Shih
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan
| | - Ying-Jen Chen
- Dept. of Medical Sciences & Inst. of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hao Chan
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Yi-Chieh Lin
- Dept. of Medical Sciences & Inst. of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Dept. of Medical Sciences & Inst. of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan.
| | - Hong-Lin Chan
- Dept. of Medical Sciences & Inst. of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
67
|
Epitope mapping of anti-PGRMC1 antibodies reveals the non-conventional membrane topology of PGRMC1 on the cell surface. Sci Rep 2019; 9:653. [PMID: 30679694 PMCID: PMC6345922 DOI: 10.1038/s41598-018-37441-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023] Open
Abstract
Progesterone receptor membrane component1 (PGRMC1) is a heme-binding protein involved in cancers and Alzheimer's disease. PGRMC1 consists of a short N-terminal extracellular or luminal domain, a single membrane-spanning domain, and a long cytoplasmic domain. Previously, we generated two monoclonal antibodies (MAbs) 108-B6 and 4A68 that recognize cell surface-expressed PGRMC1 (csPGRMC1) on human pluripotent stem cells and some cancer cells. In this study, flow cytometric analysis found that an anti-PGRMC1 antibody recognizing the N-terminus of PGRMC1 could not bind to csPGRMC1 on cancer cells, and 108-B6 and 4A68 binding to csPGRMC1 was inhibited by trypsin treatment, suggesting that the epitopes of 108-B6 and 4A68 are trypsin-sensitive. To examine the epitope specificity of 108-B6 and 4A68, glutathione-S-transferase (GST)-fused PGRMC1 mutants were screened to identify the epitopes targeted by the antibodies. The result showed that 108-B6 and 4A68 recognized C-terminal residues 183-195 and 171-182, respectively, of PGRMC1, where trypsin-sensitive sites are located. A polyclonal anti-PGRMC1 antibody raised against the C-terminus of PGRMC1 could also recognized csPGRMC1 in a trypsin-sensitive manner, suggesting that the C-terminus of csPGRMC1 is exposed on the cell surface. This finding reveals that csPGRMC1 has a non-conventional plasma membrane topology, which is different from that of intracellular PGRMC1.
Collapse
|
68
|
Lee SR, Kwon SW, Kaya P, Lee YH, Lee JG, Kim G, Lee GS, Baek IJ, Hong EJ. Loss of progesterone receptor membrane component 1 promotes hepatic steatosis via the induced de novo lipogenesis. Sci Rep 2018; 8:15711. [PMID: 30356113 PMCID: PMC6200820 DOI: 10.1038/s41598-018-34148-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/01/2018] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) results from triglyceride accumulation within the liver and some of them advances to non-alcoholic steatohepatitis (NASH). It is important to note that in NAFLD development, hepatic de novo lipogenesis (DNL) derives from excess carbohydrates and fats under a condition of excess energy through β-oxidation. As a main regulator for DNL, sterol regulatory element-binding protein 1 (Srebp-1) forms complex with progesterone receptor membrane component 1 (Pgrmc1). To investigate whether Pgrmc1 may have a notable effect on DNL via SREBP-1 activation, we generated Pgrmc1 knockout (KO) mice and fed a high fat diet for one month. High-fat-fed Pgrmc1 KO mice showed a substantial increase in levels of hepatic TG accumulation, and they were predisposed to NAFLD when compared to WT mice. Loss of Pgrmc1 increased mature SREBP-1 protein level, suggesting that induction of hepatic steatosis in Pgrmc1 KO mice might be triggered by de novo lipogenesis. Moreover, Pgrmc1 KO mice were also more vulnerable to early stage of NASH, showing high levels of alanine aminotransferase, obesity-linked pro-inflammatory cytokines, and fibrosis markers. This is interesting because Pgrmc1 involves with the first step in regulating the hepatic de novo lipogenesis under an excess energy condition.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sun Woo Kwon
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Pelin Kaya
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Young Ho Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Geol Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Globinna Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
69
|
Small molecule modulators of σ2R/Tmem97 reduce alcohol withdrawal-induced behaviors. Neuropsychopharmacology 2018; 43:1867-1875. [PMID: 29728649 PMCID: PMC6046036 DOI: 10.1038/s41386-018-0067-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022]
Abstract
Repeated cycles of intoxication and withdrawal enhance the negative reinforcing properties of alcohol and lead to neuroadaptations that underlie withdrawal symptoms driving alcohol dependence. Pharmacotherapies that target these neuroadaptations may help break the cycle of dependence. The sigma-1 receptor (σ1R) subtype has attracted interest as a possible modulator of the rewarding and reinforcing effects of alcohol. However, whether the sigma-2 receptor, recently cloned and identified as transmembrane protein 97 (σ2R/TMEM97), plays a role in alcohol-related behaviors is currently unknown. Using a Caenorhabditis elegans model, we identified two novel, selective σ2R/Tmem97 modulators that reduce alcohol withdrawal behavior via an ortholog of σ2R/TMEM97. We then show that one of these compounds blunted withdrawal-induced excessive alcohol drinking in a well-established rodent model of alcohol dependence. These discoveries provide the first evidence that σ2R/TMEM97 is involved in alcohol withdrawal behaviors and that this receptor is a potential new target for treating alcohol use disorder.
Collapse
|
70
|
Tesei A, Cortesi M, Zamagni A, Arienti C, Pignatta S, Zanoni M, Paolillo M, Curti D, Rui M, Rossi D, Collina S. Sigma Receptors as Endoplasmic Reticulum Stress "Gatekeepers" and their Modulators as Emerging New Weapons in the Fight Against Cancer. Front Pharmacol 2018; 9:711. [PMID: 30042674 PMCID: PMC6048940 DOI: 10.3389/fphar.2018.00711] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the interest aroused by sigma receptors (SRs) in the area of oncology, their role in tumor biology remains enigmatic. The predominant subcellular localization and main site of activity of SRs are the endoplasmic reticulum (ER). Current literature data, including recent findings on the sigma 2 receptor subtype (S2R) identity, suggest that SRs may play a role as ER stress gatekeepers. Although SR endogenous ligands are still unknown, a wide series of structurally unrelated compounds able to bind SRs have been identified. Currently, the identification of novel antiproliferative molecules acting via SR interaction is a challenging task for both academia and industry, as shown by the fact that novel anticancer drugs targeting SRs are in the preclinical-stage pipeline of pharmaceutical companies (i.e., Anavex Corp. and Accuronix). So far, no clinically available anticancer drugs targeting SRs are still available. The present review focuses literature advancements and provides a state-of-the-art overview of SRs, with emphasis on their involvement in cancer biology and on the role of SR modulators as anticancer agents. Findings from preclinical studies on novel anticancer drugs targeting SRs are presented in brief.
Collapse
Affiliation(s)
- Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Mayra Paolillo
- Pharmacology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Curti
- Laboratory of Cellular and Molecular Neuropharmacology, Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Marta Rui
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Rossi
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Simona Collina
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
71
|
Cai S, Zhu J, Zeng X, Ye Q, Ye C, Mao X, Zhang S, Qiao S, Zeng X. Maternal N-Carbamylglutamate Supply during Early Pregnancy Enhanced Pregnancy Outcomes in Sows through Modulations of Targeted Genes and Metabolism Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5845-5852. [PMID: 29804448 DOI: 10.1021/acs.jafc.8b01637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reducing pregnancy loss is important for improving reproductive efficiency for both human and mammalian animals. Our previous study demonstrates that maternal N-carbamylglutamate (NCG) supply during early pregnancy enhances embryonic survival in gilts. However, whether maternal NCG supply improves the pregnancy outcomes is still not known. Here we found maternal NCG supply during early pregnancy in sows significantly increased the numbers of total piglets born alive per litter ( P < 0.05) and significantly changed the levels of metabolites in amniotic fluid and serum involved in metabolism of energy, lipid, and glutathione and immunological regulation. The expression of endometrial progesterone receptor membrane component 1 (PGRMC1) was significantly increased by NCG supplementation ( P < 0.05) as well as the expression of PGRMC1, endothelial nitric oxide synthesases (eNOS), and lamin A/C in fetuses and placentae ( P < 0.05). Among the NCG-associated amino acids, arginine and glutamine, markedly increased PGRMC1 and eNOS expression in porcine trophectoderm cells ( P < 0.05), whereas glutamate could stimulate the expression of vimentin and lamin A/C in porcine trophectoderm (pTr) cells ( P < 0.05) and proline stimulated lamin A/C expression ( P < 0.05). Collectively, these data reveal the mechanisms of NCG in reducing early embryo loss. These findings have important implications that NCG has great potential to improve pregnancy outcomes in human and mammalian animals.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Jinlong Zhu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Xiangbing Mao
- Animal Nutrition Institute , Sichuan Agricultural University , No. 211, Gongpinghuimin Road , Wenjiang District, Chengdu 611130 , China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science , South China Agricultural University , Guangzhou 510642 , China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
72
|
Boonyaratanakornkit V, Hamilton N, Márquez-Garbán DC, Pateetin P, McGowan EM, Pietras RJ. Extranuclear signaling by sex steroid receptors and clinical implications in breast cancer. Mol Cell Endocrinol 2018; 466:51-72. [PMID: 29146555 PMCID: PMC5878997 DOI: 10.1016/j.mce.2017.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Estrogen and progesterone play essential roles in the development and progression of breast cancer. Over 70% of breast cancers express estrogen receptors (ER) and progesterone receptors (PR), emphasizing the need for better understanding of ER and PR signaling. ER and PR are traditionally viewed as transcription factors that directly bind DNA to regulate gene networks. In addition to nuclear signaling, ER and PR mediate hormone-induced, rapid extranuclear signaling at the cell membrane or in the cytoplasm which triggers downstream signaling to regulate rapid or extended cellular responses. Specialized membrane and cytoplasmic proteins may also initiate hormone-induced extranuclear signaling. Rapid extranuclear signaling converges with its nuclear counterpart to amplify ER/PR transcription and specify gene regulatory networks. This review summarizes current understanding and updates on ER and PR extranuclear signaling. Further investigation of ER/PR extranuclear signaling may lead to development of novel targeted therapeutics for breast cancer management.
Collapse
Affiliation(s)
- Viroj Boonyaratanakornkit
- Department of Clinical Chemistry Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nalo Hamilton
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Diana C Márquez-Garbán
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Prangwan Pateetin
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eileen M McGowan
- Chronic Disease Solutions Team, School of Life Sciences, University of Technology Sydney, Ultimo, 2007, Sydney, Australia
| | - Richard J Pietras
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
73
|
Gou M, Ran X, Martin DW, Liu CJ. The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. NATURE PLANTS 2018; 4:299-310. [PMID: 29725099 DOI: 10.1038/s41477-018-0142-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/28/2018] [Indexed: 05/18/2023]
Abstract
Lignin is a complex and irregular biopolymer of crosslinked phenylpropanoid units in plant secondary cell walls. Its biosynthesis requires three endoplasmic reticulum (ER)-resident cytochrome P450 monooxygenases, C4H, C3'H and F5H, to establish the structural characteristics of its monomeric precursors. These P450 enzymes were reported to associate with each other or potentially with other soluble monolignol biosynthetic enzymes to form an enzyme complex or a metabolon. However, the molecular basis governing such enzyme or pathway organization remains elusive. Here, we show that Arabidopsis membrane steroid-binding proteins (MSBPs) serve as a scaffold to physically organize monolignol P450 monooxygenases, thereby regulating the lignin biosynthetic process. We find that although C4H, C3'H and F5H are in spatial proximity to each other on the ER membrane in vivo, they do not appear to directly interact with each other. Instead, two MSBP proteins physically interact with all three P450 enzymes and, moreover, MSBPs themselves associate as homomers and heteromers on the ER membrane, thereby organizing P450 clusters. Downregulation of MSBP genes does not affect the transcription levels of monolignol biosynthetic P450 genes but substantially impairs the stability and activity of the MSBP-interacting P450 enzymes and, consequently, lignin deposition, and the accumulation of soluble phenolics in the monolignol branch but not in the flavonoid pathway. Our study suggests that MSBP proteins are essential structural components in the ER membrane that physically organize and stabilize the monolignol biosynthetic P450 enzyme complex, thereby specifically controlling phenylpropanoid-monolignol branch biosynthesis.
Collapse
Affiliation(s)
- Mingyue Gou
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Xiuzhi Ran
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Dwight W Martin
- Department of Medicine and the Proteomics Center, Stony Brook University, Stony Brook, NY, USA
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
74
|
Tocchetti GN, Domínguez CJ, Zecchinati F, Arana MR, Ruiz ML, Villanueva SSM, Weiss J, Mottino AD, Rigalli JP. Biphasic modulation of cAMP levels by the contraceptive nomegestrol acetate. Impact on P-glycoprotein expression and activity in hepatic cells. Biochem Pharmacol 2018; 154:118-126. [PMID: 29684377 DOI: 10.1016/j.bcp.2018.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022]
Abstract
ABC transporters are key players in drug excretion with alterations in their expression and activity by therapeutic agents potentially leading to drug-drug interactions. The interaction potential of nomegestrol acetate (NMGA), a synthetic progestogen increasingly used as oral contraceptive, had never been explored. In this work we evaluated (1) the effect of NMGA on ABC transporters in the human hepatic cell line HepG2 and (2) the underlying molecular mechanism. NMGA (5, 50 and 500 nM) increased P-glycoprotein (P-gp) expression at both protein and mRNA levels and reduced intracellular calcein accumulation, indicating an increase also in transporter activity. This up-regulation of P-gp was corroborated in Huh7 cells and was independent of the classical progesterone receptor. Instead, using a siRNA-mediated silencing approach, we demonstrated the involvement of membrane progesterone receptor α. Moreover, we found that the activation of this receptor by NMGA led to a falling-rising profile in intracellular cAMP levels and protein kinase A activity over time, ultimately leading to transcriptional P-gp up-regulation. Finally, we identified inhibitory G protein and phosphodiesterases as mediators of this novel biphasic modulation. These results demonstrate the ability of NMGA to selectively up-regulate hepatic P-gp expression and activity and constitute the first report of ABC transporter modulation by membrane progesterone receptor α. If a similar regulation took place in vivo, decreased bioavailability and therapeutic efficacy of NMGA-coadministered P-gp substrates could be expected. This holds special importance considering long-term administration of NMGA and broad substrate specificity of P-gp.
Collapse
Affiliation(s)
- Guillermo Nicolás Tocchetti
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina; Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Camila Juliana Domínguez
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Felipe Zecchinati
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Maite Rocío Arana
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | | | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Aldo Domingo Mottino
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
75
|
Kabe Y, Handa H, Suematsu M. Function and structural regulation of the carbon monoxide (CO)-responsive membrane protein PGRMC1. J Clin Biochem Nutr 2018; 63:12-17. [PMID: 30087538 PMCID: PMC6064819 DOI: 10.3164/jcbn.17-132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/04/2018] [Indexed: 01/29/2023] Open
Abstract
Progesterone receptor membrane associated component 1 is a multifunctional heme-binding protein that plays a role in several biological processes such as tumor progression, metabolic regulation, and viability control of nerve cells. Notably, progesterone receptor membrane associated component 1 is highly expressed in various types of cancer cells, and facilitates cancer proliferation and chemoresistance. Recently, progesterone receptor membrane associated component 1 structure has been explored by X-ray crystallographic analysis. Interestingly, whereas apo- progesterone receptor membrane associated component 1 exists as a monomer, the heme-bound progesterone receptor membrane associated component 1 converts into a stable dimer by forming a unique heme-heme stacking structure, leading to activation of epidermal growth factor receptor signaling and chemoresistance in cancer cells. Furthermore, the gas mediator carbon monoxide inhibits progesterone receptor membrane associated component 1-mediated activation in cancer cells by dissociating the heme-stacking dimer of progesterone receptor membrane associated component 1. The dynamic structural regulation of progesterone receptor membrane associated component 1 will provide new insights for understanding the mechanisms underlying its various functions.
Collapse
Affiliation(s)
- Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), 20F Yomiuri Shimbun Bldg, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
76
|
Kim JY, Kim SY, Choi HS, Kim MK, Lee HM, Jang YJ, Ryu CJ. Progesterone Receptor Membrane Component 1 suppresses the p53 and Wnt/β-catenin pathways to promote human pluripotent stem cell self-renewal. Sci Rep 2018; 8:3048. [PMID: 29445107 PMCID: PMC5813096 DOI: 10.1038/s41598-018-21322-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/02/2018] [Indexed: 12/22/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a multifunctional heme-binding protein involved in various diseases, including cancers and Alzheimer’s disease. Previously, we generated two monoclonal antibodies (MAbs) 108-B6 and 4A68 against surface molecules on human pluripotent stem cells (hPSCs). Here we show that PGRMC1 is the target antigen of both MAbs, and is predominantly expressed on hPSCs and some cancer cells. PGRMC1 is rapidly downregulated during early differentiation of hPSCs. Although PGRMC1 knockdown leads to a spread-out morphology and impaired self-renewal in hPSCs, PGRMC1 knockdown hPSCs do not show apoptosis and autophagy. Instead, PGRMC1 knockdown leads to differentiation of hPSCs into multiple lineage cells without affecting the expression of pluripotency markers. PGRMC1 knockdown increases cyclin D1 expression and decreases Plk1 expression in hPSCs. PGRMC1 knockdown also induces p53 expression and stability, suggesting that PGRMC1 maintains hPSC self-renewal through suppression of p53-dependent pathway. Analysis of signaling molecules further reveals that PGRMC1 knockdown promotes inhibitory phosphorylation of GSK-3β and increased expression of Wnt3a and β-catenin, which leads to activation of Wnt/β-catenin signaling. The results suggest that PGRMC1 suppresses the p53 and Wnt/β-catenin pathways to promote self-renewal and inhibit early differentiation in hPSCs.
Collapse
Affiliation(s)
- Ji Yea Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - So Young Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Min Kyu Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea.
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea.
| |
Collapse
|
77
|
Cahill MA, Jazayeri JA, Kovacevic Z, Richardson DR. PGRMC1 regulation by phosphorylation: potential new insights in controlling biological activity. Oncotarget 2018; 7:50822-50827. [PMID: 27448967 PMCID: PMC5239438 DOI: 10.18632/oncotarget.10691] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 01/22/2023] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a multifunctional protein implicated in multiple pathologies, including cancer and Alzheimer's disease. The recently published structure of PGRMC1 revealed heme-mediated dimerization that directed the PGRMC1-dependent cytochrome P450-mediated detoxification of doxorubicin. We describe here how the PGRMC1 structure also enables important new insights into the possible regulation of PGRMC1 function by phosphorylation. Predicted regulatory interaction sites for SH2- and SH3-domain proteins are in non-structured regions that could be available to cytoplasmic enzymes. Further to the published interpretation, we suggest that phosphorylation of PGRMC1 at position Y113 may promote the attested membrane trafficking function of PGRMC1. To stimulate further experimentation, we also discuss that heme-mediated dimerization of PGRMC1 and membrane trafficking may be mutually exclusive functions. These roles could potentially be reciprocally regulated by phosphorylation/dephosphorylation at Y113. It follows that the phosphorylation status of PGRMC1 should be further explored in order to better understand many of its proposed biological functions.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
78
|
Wu XJ, Thomas P, Zhu Y. Pgrmc1 Knockout Impairs Oocyte Maturation in Zebrafish. Front Endocrinol (Lausanne) 2018; 9:560. [PMID: 30319543 PMCID: PMC6165893 DOI: 10.3389/fendo.2018.00560] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022] Open
Abstract
Recent investigations suggest progestin receptor membrane component 1 (PGRMC1) associates with and transports a wide range of molecules such as heme, cytochromes P450, steroids with 21 carbons, membrane progestin receptor alpha (mPRα/Paqr7), epidermal growth factor receptor (EGFR), and insulin receptor. It is difficult to discriminate the true functions of PGRMC1 from the functions of its associated molecules using biochemical and pharmacological approaches. To determine the physiological function(s) of PGRMC1, we generated global knockouts for pgrmc1 (pgrmc1 -/-) in zebrafish. We found a reduction in both spawning frequency and the number of embryos produced by female mutants. We also observed reduced sensitivity of fully-grown immature oocytes to a progestin hormone and a reduced number of oocytes undergone meiotic maturation both in vivo and in vitro in pgrmc1 -/-. This reduced sensitivity to progestin corresponds well with significant reduced expression of mPRα, the receptor mainly responsible for mediating oocyte maturation and meiosis resumption in fish. The results provide in vivo and in vitro evidence for the physiological functions of Pgrmc1 in oocyte maturation and fertility, as well as a plausible molecular mechanism via regulation of mPRα, which in turn directly regulates oocyte maturation and affects fertility in zebrafish.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC, United States
- *Correspondence: Yong Zhu
| |
Collapse
|
79
|
Lampe JN. Advances in the Understanding of Protein-Protein Interactions in Drug Metabolizing Enzymes through the Use of Biophysical Techniques. Front Pharmacol 2017; 8:521. [PMID: 28848438 PMCID: PMC5550701 DOI: 10.3389/fphar.2017.00521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
In recent years, a growing appreciation has developed for the importance of protein-protein interactions to modulate the function of drug metabolizing enzymes. Accompanied with this appreciation, new methods and technologies have been designed for analyzing protein-protein interactions both in vitro and in vivo. These technologies have been applied to several classes of drug metabolizing enzymes, including: cytochrome P450's (CYPs), monoamine oxidases (MAOs), UDP-glucuronosyltransferases (UGTs), glutathione S-transferases (GSTs), and sulfotransferases (SULTs). In this review, we offer a brief description and assessment of the impact of many of these technologies to the study of protein-protein interactions in drug disposition. The still expanding list of these techniques and assays has the potential to revolutionize our understanding of how these enzymes carry out their important functions in vivo.
Collapse
Affiliation(s)
- Jed N Lampe
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical CenterKansas City, MO, United States
| |
Collapse
|
80
|
Yi B, Sahn JJ, Ardestani PM, Evans AK, Scott LL, Chan JZ, Iyer S, Crisp A, Zuniga G, Pierce JT, Martin SF, Shamloo M. Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer's disease. J Neurochem 2017; 140:561-575. [PMID: 27926996 DOI: 10.1111/jnc.13917] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 12/29/2022]
Abstract
Accumulating evidence suggests that modulating the sigma 2 receptor (Sig2R) can provide beneficial effects for neurodegenerative diseases. Herein, we report the identification of a novel class of Sig2R ligands and their cellular and in vivo activity in experimental models of Alzheimer's disease (AD). We report that SAS-0132 and DKR-1051, selective ligands of Sig2R, modulate intracellular Ca2+ levels in human SK-N-SH neuroblastoma cells. The Sig2R ligands SAS-0132 and JVW-1009 are neuroprotective in a C. elegans model of amyloid precursor protein-mediated neurodegeneration. Since this neuroprotective effect is replicated by genetic knockdown and knockout of vem-1, the ortholog of progesterone receptor membrane component-1 (PGRMC1), these results suggest that Sig2R ligands modulate a PGRMC1-related pathway. Last, we demonstrate that SAS-0132 improves cognitive performance both in the Thy-1 hAPPLond/Swe+ transgenic mouse model of AD and in healthy wild-type mice. These results demonstrate that Sig2R is a promising therapeutic target for neurocognitive disorders including AD.
Collapse
Affiliation(s)
- Bitna Yi
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - James J Sahn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Pooneh Memar Ardestani
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Luisa L Scott
- Waggoner Center for Alcohol and Addiction Research, Institute of Neuroscience, Center for Learning and Memory, Center for Brain, Behavior and Evolution and Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Jessica Z Chan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Sangeetha Iyer
- Waggoner Center for Alcohol and Addiction Research, Institute of Neuroscience, Center for Learning and Memory, Center for Brain, Behavior and Evolution and Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Ashley Crisp
- Waggoner Center for Alcohol and Addiction Research, Institute of Neuroscience, Center for Learning and Memory, Center for Brain, Behavior and Evolution and Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Gabriella Zuniga
- Waggoner Center for Alcohol and Addiction Research, Institute of Neuroscience, Center for Learning and Memory, Center for Brain, Behavior and Evolution and Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Jonathan T Pierce
- Waggoner Center for Alcohol and Addiction Research, Institute of Neuroscience, Center for Learning and Memory, Center for Brain, Behavior and Evolution and Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Stephen F Martin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
81
|
Cahill MA, Medlock AE. Thoughts on interactions between PGRMC1 and diverse attested and potential hydrophobic ligands. J Steroid Biochem Mol Biol 2017; 171:11-33. [PMID: 28104494 DOI: 10.1016/j.jsbmb.2016.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/05/2023]
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is located in many different subcellular locations with many different attested and probably location-specific functions. PGRMC1 was recently identified in the mitochondrial outer membrane where it interacts with ferrochelatase, the last enzyme in the heme synthetic pathway. It has been proposed that PGRMC1 may act as a chaperone to shuttle newly synthesized heme from the mitochondrion to cytochrome P450 (cyP450) enzymes. Here we consider potential roles that PGRMC1 may play in transferring heme, and other small hydrophobic ligands such as cholesterol and steroids, between the hydrophobic compartment of the membrane lipid bilayer interior to aqueous proteins, and perhaps to the membranes of other organelles. We review the synthesis and roles of especially PGRMC1- and cyP450-bound heme, the sources and transport of cholesterol, the involvement of PGRMC1 in cholesterol regulation, and the production of the first progestogen pregnenolone from cholesterol. We also show by clustering by inferred models of evolution (CLIME) analysis that PGRMC1 and related proteins exhibit co-evolution with a series of cyP450 enzymes, as well as a group of mitochondrial proteins lacking in several parasitic protist groups. Altogether, PGRMC1 is implicated with important roles in sterol synthesis and energy regulation that are dispensable in certain parasites. Some novel hypothetical models for PGRMC1 function are proposed to direct future investigative research.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, 30602-1111, USA
| |
Collapse
|
82
|
Clark NC, Pru CA, Yee SP, Lydon JP, Peluso JJ, Pru JK. Conditional Ablation of Progesterone Receptor Membrane Component 2 Causes Female Premature Reproductive Senescence. Endocrinology 2017; 158:640-651. [PMID: 28005395 PMCID: PMC5460782 DOI: 10.1210/en.2016-1701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/21/2016] [Indexed: 01/04/2023]
Abstract
The nonclassical progesterone receptors progesterone receptor membrane component (PGRMC) 1 and PGRMC2 have been implicated in regulating cell survival of endometrial and ovarian cells in vitro and are abundantly expressed in these cell types. The objective of this study was to determine if Pgrmc1 and Pgrmc2 are essential for normal female reproduction. To accomplish this objective, Pgrmc1 and/or Pgrmc2 floxed mice (Pgrmc2fl/fl and Pgrmc1/2fl/fl) were crossed with Pgr-cre mice, which resulted in the conditional ablation of Pgrmc1 and/or Pgrmc2 from female reproductive tissues (i.e.,Pgrmc2d/d and Pgrmc1/2d/d mice). A breeding trial revealed that conditional ablation of Pgrmc2 initially led to subfertility, with Pgrmc2d/d female mice producing 47% fewer pups/litter than Pgrmc2fl/fl mice (P = 0.001). Pgrmc2d/d mice subsequently underwent premature reproductive senescence by parities 2 to 5, producing 37.8% fewer litters overall during the trial compared with Pgrmc2fl/fl mice (P = 0.020). Similar results were observed with Pgrmc1/2d/d mice. Based on ovarian morphology and serum P4, the subfertility/infertility was not due to faulty ovulation or luteal insufficiency. Rather an analysis of midgestation implantation sites revealed that postimplantation embryonic death was the major cause of the subfertility/infertility. As with our previous report of Pgrmc1d/d mice, Pgrmc2d/d and Pgrmc1/2d/d mice developed endometrial cysts consistent with accelerated aging of this tissue. Given the timing of postimplantation embryonic demise, uterine decidualization may be disrupted in mice deficient in PGRMC2 or PGRMC1/2. Overall, this study revealed that Pgrmc1 and/or Pgrmc2 are required for the maintenance of uterine histoarchitecture and normal female reproductive lifespan.
Collapse
Affiliation(s)
- Nicole C. Clark
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| | - Cindy A. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| | - Siu-Pok Yee
- Departments of Cell Biology and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut 06030; and
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - John J. Peluso
- Departments of Cell Biology and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut 06030; and
| | - James K. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| |
Collapse
|
83
|
Zhang D, Xia X, Wang X, Zhang P, Lu W, Yu Y, Deng S, Yang H, Zhu H, Xu N, Liang S. PGRMC1 Is a Novel Potential Tumor Biomarker of Human Renal Cell Carcinoma Based on Quantitative Proteomic and Integrative Biological Assessments. PLoS One 2017; 12:e0170453. [PMID: 28107520 PMCID: PMC5249100 DOI: 10.1371/journal.pone.0170453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 01/05/2017] [Indexed: 02/05/2023] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is widely observed with an elevated level in multiple human cancers. However, the roles of PGRMC1 in renal cancer are not clear and merit further study. In this report, we made a systematic, integrative biological assessment for PGRMC1 in renal cell carcinoma (RCC) by a quantitative proteomic identification, immunohistochemical detection, and its clinic pathologic significance analysis. We found that PGRMC1 abundance is increased by 3.91-fold in RCC tissues compared with its autologous para-cancerous tissues by a quantitative proteome identification. To validate the proteomic result with more confidence, 135 clinic RCC tissues were recruited to measure PGRMC1 abundance by immunohistochemical staining, and 63.7% RCC samples (n = 86) showed a higher abundance of PGRMC1 than the noncancerous counterparts. And the elevated PGRMC1 level was related to the tumor malignancy degree and overall survival of RCC patients. Meanwhile the average serum PGRMC1 concentration for RCC patients (n = 18) was significantly increased by 1.67 fold compared with healthy persons. Moreover an exogenous elevated abundance of PGRMC1 by plasmid transfections significantly enhanced cell proliferation of renal cancer cells in vitro. Our findings demonstrate PGRMC1, which promotes RCC progression phenotypes in vitro and in vivo, is a novel potential biomarker and therapeutic target for RCC.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Xiangying Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, P. R. China
| | - Weiliang Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Shi Deng
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, P. R. China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| |
Collapse
|
84
|
Kim YJ, Lee N, Woo S, Ryu JC, Yum S. Transcriptomic change as evidence for cadmium-induced endocrine disruption in marine fish model of medaka, Oryzias javanicus. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-016-0045-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
85
|
Kanageswaran N, Nagel M, Scholz P, Mohrhardt J, Gisselmann G, Hatt H. Modulatory Effects of Sex Steroids Progesterone and Estradiol on Odorant Evoked Responses in Olfactory Receptor Neurons. PLoS One 2016; 11:e0159640. [PMID: 27494699 PMCID: PMC4975405 DOI: 10.1371/journal.pone.0159640] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
The influence of the sex steroid hormones progesterone and estradiol on physiology and behavior during menstrual cycles and pregnancy is well known. Several studies indicate that olfactory performance changes with cyclically fluctuating steroid hormone levels in females. Knowledge of the exact mechanisms behind how female sex steroids modulate olfactory signaling is limited. A number of different known genomic and non-genomic actions that are mediated by progesterone and estradiol via interactions with different receptors may be responsible for this modulation. Next generation sequencing-based RNA-Seq transcriptome data from the murine olfactory epithelium (OE) and olfactory receptor neurons (ORNs) revealed the expression of several membrane progestin receptors and the estradiol receptor Gpr30. These receptors are known to mediate rapid non-genomic effects through interactions with G proteins. RT-PCR and immunohistochemical staining results provide evidence for progestin and estradiol receptors in the ORNs. These data support the hypothesis that steroid hormones are capable of modulating the odorant-evoked activity of ORNs. Here, we validated this hypothesis through the investigation of steroid hormone effects by submerged electro-olfactogram and whole cell patch-clamp recordings of ORNs. For the first time, we demonstrate that the sex steroid hormones progesterone and estradiol decrease odorant-evoked signals in the OE and ORNs of mice at low nanomolar concentrations. Thus, both of these sex steroids can rapidly modulate the odor responsiveness of ORNs through membrane progestin receptors and the estradiol receptor Gpr30.
Collapse
Affiliation(s)
| | - Maximilian Nagel
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Paul Scholz
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Julia Mohrhardt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Günter Gisselmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- * E-mail:
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| |
Collapse
|
86
|
Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR. The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochim Biophys Acta Rev Cancer 2016; 1866:339-349. [PMID: 27452206 DOI: 10.1016/j.bbcan.2016.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023]
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a multi-functional protein with a heme-binding moiety related to that of cytochrome b5, which is a putative progesterone receptor. The recently solved PGRMC1 structure revealed that heme-binding involves coordination by a tyrosinate ion at Y113, and induces dimerization which is stabilized by hydrophobic stacking of heme on adjacent monomers. Dimerization is required for association with cytochrome P450 (cyP450) enzymes, which mediates chemoresistance to doxorubicin and may be responsible for PGRMC1's anti-apoptotic activity. Here we review the multiple attested involvement of PGRMC1 in diverse functions, including regulation of cytochrome P450, steroidogenesis, vesicle trafficking, progesterone signaling and mitotic spindle and cell cycle regulation. Its wide range of biological functions is attested to particularly by its emerging association with cancer and progesterone-responsive female reproductive tissues. PGRMC1 exhibits all the hallmarks of a higher order nexus signal integration hub protein. It appears capable of acting as a detector that integrates information from kinase/phosphatase pathways with heme and CO levels and probably redox status.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Susan M Catalano
- Cognition Therapeutics Inc., Pittsburgh, PA 15203, United States
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
87
|
Schwartz N, Verma A, Bivens CB, Schwartz Z, Boyan BD. Rapid steroid hormone actions via membrane receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2289-98. [PMID: 27288742 DOI: 10.1016/j.bbamcr.2016.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Abstract
Steroid hormones regulate a wide variety of physiological and developmental functions. Traditional steroid hormone signaling acts through nuclear and cytosolic receptors, altering gene transcription and subsequently regulating cellular activity. This is particularly important in hormonally-responsive cancers, where therapies that target classical steroid hormone receptors have become clinical staples in the treatment and management of disease. Much progress has been made in the last decade in detecting novel receptors and elucidating their mechanisms, particularly their rapid signaling effects and subsequent impact on tumorigenesis. Many of these receptors are membrane-bound and lack DNA-binding sites, functionally separating them from their classical cytosolic receptor counterparts. Membrane-bound receptors have been implicated in a number of pathways that disrupt the cell cycle and impact tumorigenesis. Among these are pathways that involve phospholipase D, phospholipase C, and phosphoinositide-3 kinase. The crosstalk between these pathways has been shown to affect apoptosis and proliferation in cardiac cells, osteoblasts, and chondrocytes as well as cancer cells. This review focuses on rapid signaling by 17β-estradiol and 1α,25-dihydroxy vitamin D3 to examine the integrated actions of classical and rapid steroid signaling pathways both in contrast to each other and in concert with other rapid signaling pathways. This new approach lends insight into rapid signaling by steroid hormones and its potential for use in targeted drug therapies that maximize the benefits of traditional steroid hormone-directed therapies while mitigating their less desirable effects.
Collapse
Affiliation(s)
- Nofrat Schwartz
- Department of Otolaryngology, Meir Hospital, Kfar Saba, Israel
| | - Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Caroline B Bivens
- School of Art, Virginia Commonwealth University, Richmond, VA, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States; University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
88
|
Sun F, Nguyen T, Jin X, Huang R, Chen Z, Cunningham RL, Singh M, Su C. Pgrmc1/BDNF Signaling Plays a Critical Role in Mediating Glia-Neuron Cross Talk. Endocrinology 2016; 157:2067-79. [PMID: 26990062 PMCID: PMC4870882 DOI: 10.1210/en.2015-1610] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone (P4) exerts robust cytoprotection in brain slice cultures (containing both neurons and glia), yet such protection is not as evident in neuron-enriched cultures, suggesting that glia may play an indispensable role in P4's neuroprotection. We previously reported that a membrane-associated P4 receptor, P4 receptor membrane component 1, mediates P4-induced brain-derived neurotrophic factor (BDNF) release from glia. Here, we sought to determine whether glia are required for P4's neuroprotection and whether glia's roles are mediated, at least partially, via releasing soluble factors to act on neighboring neurons. Our data demonstrate that P4 increased the level of mature BDNF (neuroprotective) while decreasing pro-BDNF (potentially neurotoxic) in the conditioned media (CMs) of cultured C6 astrocytes. We examined the effects of CMs derived from P4-treated astrocytes (P4-CMs) on 2 neuronal models: 1) all-trans retinoid acid-differentiated SH-SY5Y cells and 2) mouse primary hippocampal neurons. P4-CM increased synaptic marker expression and promoted neuronal survival against H2O2. These effects were attenuated by Y1036 (an inhibitor of neurotrophin receptor [tropomysin-related kinase] signaling), as well as tropomysin-related kinase B-IgG (a more specific inhibitor to block BDNF signaling), which pointed to BDNF as the key protective component within P4-CM. These findings suggest that P4 may exert its maximal protection by triggering a glia-neuron cross talk, in which P4 promotes mature BDNF release from glia to enhance synaptogenesis as well as survival of neurons. This recognition of the importance of glia in mediating P4's neuroprotection may also inform the design of effective therapeutic methods for treating diseases wherein neuronal death and/or synaptic deficits are noted.
Collapse
Affiliation(s)
- Fen Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Trinh Nguyen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Xin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Renqi Huang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Zhenglan Chen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Rebecca L Cunningham
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Meharvan Singh
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Chang Su
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
89
|
Zhang YT, Liu DT, Zhu Y, Chen SX, Hong WS. Cloning and olfactory expression of progestin receptors in the Chinese black sleeper Bostrichthys sinensis. Gen Comp Endocrinol 2016; 230-231:87-102. [PMID: 27018395 PMCID: PMC5421406 DOI: 10.1016/j.ygcen.2016.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/03/2016] [Accepted: 03/24/2016] [Indexed: 12/15/2022]
Abstract
Our previous studies suggested that 17α,20β-dihydroxy-4-pregnen-3-one (DHP), an oocyte maturation inducing progestin, also acts as a sex pheromone in Chinese black sleeper Bostrichthys sinensis, a fish species that inhabits intertidal zones and mates and spawns inside a muddy burrow. The electro-olfactogram response to DHP increased during the breeding season. In the present study, we cloned the cDNAs of the nine progestin receptors (pgr, paqr5, 6, 7(a, b), 8, 9, pgrmc1, 2) from B. sinensis, analyzed their tissue distribution, and determined the expression in the olfactory rosette during the reproductive cycle in female and male fish. The deduced amino acid sequences of the nine progestin receptors share high sequence identities with those of other fish species and relatively lower homology with their mammalian counterparts, and phylogenetic analyses classified the nine B. sinensis progestin receptors into their respective progestin receptor groups. Tissue distribution of B. sinensis progestin receptors showed differential expression patterns, but all these nine genes were expressed in the olfactory rosette. Interestingly, paqr5 mRNA was found in the intermediate and basal parts of the olfactory epithelium but not in the central core using in situ hybridization, and its expression level was the highest in the olfactory rosette among the tissues examined. These results suggested Paqr5 may have an important role for transmitting progestin signaling in the olfactory system. The expression levels of paqr7a and paqr7b, pgr and pgrmc2 mRNA peaked around the mid meiotic stage, and that of paqr8 peaked at late meiotic stage in the olfactory rosette in males, while the olfactory expression of paqr5 decreased gradually as spermatogenesis progressed. In contrast, the expression of the progestin receptors did not change significantly during the development of the ovary in the olfactory rosette in females, except that of pgr. Interestingly, the changes of paqr8 expression in the olfactory rosette in males mirrored the changes of plasma DHP levels in females during the reproductive cycle, suggesting the Paqr8 may also be important for deciphering progestin signaling released by female. To our knowledge, this is the first time to demonstrate the presence of all known progestin receptors in a teleost olfactory rosette, and to show different expressions between the males and females during the reproductive cycle. This study provides the first evidence on changes of all purported progestin receptors during a reproductive cycle in teleost olfactory rosette, and suggests that distinct olfactory sensitivities to DHP may be due to the changes and compositions of each progestin receptor in B. sinensis.
Collapse
Affiliation(s)
- Yu Ting Zhang
- College of Ocean and Earth Sciences, Xiamen University, Fujian 361005, PR China
| | - Dong Teng Liu
- College of Ocean and Earth Sciences, Xiamen University, Fujian 361005, PR China
| | - Yong Zhu
- College of Ocean and Earth Sciences, Xiamen University, Fujian 361005, PR China; Department of Biology, Howell Science Complex, East Carolina University, 1000 E, 5th Street, Greenville, NC 27858-4553, USA
| | - Shi Xi Chen
- College of Ocean and Earth Sciences, Xiamen University, Fujian 361005, PR China.
| | - Wan Shu Hong
- College of Ocean and Earth Sciences, Xiamen University, Fujian 361005, PR China.
| |
Collapse
|
90
|
Evidence of recent signatures of selection during domestication in an Atlantic salmon population. Mar Genomics 2016; 26:41-50. [DOI: 10.1016/j.margen.2015.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 11/17/2022]
|
91
|
Hampton KK, Stewart R, Napier D, Claudio PP, Craven RJ. PGRMC1 Elevation in Multiple Cancers and Essential Role in Stem Cell Survival. ACTA ACUST UNITED AC 2016; 4:37-51. [PMID: 27867772 PMCID: PMC5113835 DOI: 10.4236/alc.2015.43006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer is one of the leading causes of death in America, and there is an urgent need for new therapeutic approaches. The progesterone receptor membrane component 1 (PGRMC1) is a cytoch-rome b5 related protein that binds heme and is associated with signaling, apoptotic suppression and autophagy. PGRMC1 is essential for tumor formation, invasion and metastasis, and is upregulated in breast, colon, lung and thyroid tumors. In the present study, we have analyzed PGRMC1 levels in over 600 tumor sections, including a larger cohort of lung tumors than in previous studies, and report the first clinical analysis of PGRMC1 levels in human oral cavity and ovarian tumors compared to corresponding nonmalignant tissues. PGRMC1 was highly expressed in lung and ovarian cancers and correlated with patient survival. PGRMC1 has been previously associated with drug resistance, a characteristic of cancer stem cells. The stem cell theory proposes that a subset of cancerous stem cells contribute to drug resistance and tumor maintenance, and PGRMC1 was detected in lung-tumor derived stem cells. Drug treatment with a PGRMC1 inhibitor, AG-205, triggered stem cell death whereas treatment with erlotinib and the ERK inhibitor, PD98059, did not, suggesting a specific role for PGRMC1 in cancer stem cell viability. Together, our data demonstrate PGRMC1 as a potential tumor biomarker across a variety of tumors, as well as a therapeutic target for cancer stem cells.
Collapse
Affiliation(s)
- Kaia K Hampton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Rachel Stewart
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Dana Napier
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Pier Paolo Claudio
- Department of Biomolecular Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA; Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
92
|
Palmerini CA, Mazzoni M, Radicioni G, Marzano V, Granieri L, Iavarone F, Longhi R, Messana I, Cabras T, Sanna MT, Castagnola M, Vitali A. Antagonistic Effect of a Salivary Proline-Rich Peptide on the Cytosolic Ca2+ Mobilization Induced by Progesterone in Oral Squamous Cancer Cells. PLoS One 2016; 11:e0147925. [PMID: 26814504 PMCID: PMC4729474 DOI: 10.1371/journal.pone.0147925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 01/11/2016] [Indexed: 11/21/2022] Open
Abstract
A salivary proline-rich peptide of 1932 Da showed a dose-dependent antagonistic effect on the cytosolic Ca2+ mobilization induced by progesterone in a tongue squamous carcinoma cell line. Structure-activity studies showed that the activity of the peptide resides in the C-terminal region characterized by a proline stretch flanked by basic residues. Furthermore, lack of activity of the retro-inverso peptide analogue suggested the involvement of stereospecific recognition. Mass spectrometry-based shotgun analysis, combined with Western blotting tests and biochemical data obtained with the Progesterone Receptor Membrane Component 1 (PGRMC1) inhibitor AG205, showed strong evidence that p1932 performs its modulatory action through an interaction with the progesterone receptor PGRMC1, which is predominantly expressed in this cell line and, clearly, plays a role in progesterone induced Ca2+ response. Thus, our results point to p1932 as a modulator of the transduction signal pathway mediated by this protein and, given a well-established involvement of PGRMC1 in tumorigenesis, highlight a possible therapeutic potential of p1932 for the treatment of oral cancer.
Collapse
Affiliation(s)
- Carlo Alberto Palmerini
- Dipartimento di Scienze Agrarie Alimentari ed Ambientali, Unità di Ricerca di Biochimica e Biologia Molecolare, Perugia, Italy
| | - Michela Mazzoni
- Dipartimento di Scienze Agrarie Alimentari ed Ambientali, Unità di Ricerca di Biochimica e Biologia Molecolare, Perugia, Italy
| | - Giorgia Radicioni
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, Roma, Italy
| | - Valeria Marzano
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, Roma, Italy
| | - Letizia Granieri
- Dipartimento di Scienze Agrarie Alimentari ed Ambientali, Unità di Ricerca di Biochimica e Biologia Molecolare, Perugia, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, Roma, Italy
| | - Renato Longhi
- Istituto per la Chimica del Riconoscimento Molecolare, Italian National Research Council, Milan, Italy
| | - Irene Messana
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | - Maria Teresa Sanna
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Catholic University, Roma, Italy
- Istituto per la Chimica del Riconoscimento Molecolare, Italian National Research Council, Rome, UoS Rome, Italy
| | - Alberto Vitali
- Istituto per la Chimica del Riconoscimento Molecolare, Italian National Research Council, Rome, UoS Rome, Italy
- * E-mail:
| |
Collapse
|
93
|
Li X, Rhee DK, Malhotra R, Mayeur C, Hurst LA, Ager E, Shelton G, Kramer Y, McCulloh D, Keefe D, Bloch KD, Bloch DB, Peterson RT. Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. J Clin Invest 2015; 126:389-401. [PMID: 26657863 DOI: 10.1172/jci83831] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/05/2015] [Indexed: 01/19/2023] Open
Abstract
Iron homeostasis is tightly regulated by the membrane iron exporter ferroportin and its regulatory peptide hormone hepcidin. The hepcidin/ferroportin axis is considered a promising therapeutic target for the treatment of diseases of iron overload or deficiency. Here, we conducted a chemical screen in zebrafish to identify small molecules that decrease ferroportin protein levels. The chemical screen led to the identification of 3 steroid molecules, epitiostanol, progesterone, and mifepristone, which decrease ferroportin levels by increasing the biosynthesis of hepcidin. These hepcidin-inducing steroids (HISs) did not activate known hepcidin-inducing pathways, including the BMP and JAK/STAT3 pathways. Progesterone receptor membrane component-1 (PGRMC1) was required for HIS-dependent increases in hepcidin biosynthesis, as PGRMC1 depletion in cultured hepatoma cells and zebrafish blocked the ability of HISs to increase hepcidin mRNA levels. Neutralizing antibodies directed against PGRMC1 attenuated the ability of HISs to induce hepcidin gene expression. Inhibiting the kinases of the SRC family, which are downstream of PGRMC1, blocked the ability of HISs to increase hepcidin mRNA levels. Furthermore, HIS treatment increased hepcidin biosynthesis in mice and humans. Together, these data indicate that PGRMC1 regulates hepcidin gene expression through an evolutionarily conserved mechanism. These studies have identified drug candidates and potential therapeutic targets for the treatment of diseases of abnormal iron metabolism.
Collapse
|
94
|
Shanmugam AK, Mysona BA, Wang J, Zhao J, Tawfik A, Sanders A, Markand S, Zorrilla E, Ganapathy V, Bollinger KE, Smith SB. Progesterone Receptor Membrane Component 1 (PGRMC1) Expression in Murine Retina. Curr Eye Res 2015; 41:1105-1112. [PMID: 26642738 DOI: 10.3109/02713683.2015.1085579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Sigma receptors 1 (σR1) and 2 (σR2) are thought to be two distinct proteins which share the ability to bind multiple ligands, several of which are common to both receptors. Whether σR1 and σR2 share overlapping biological functions is unknown. Recently, progesterone receptor membrane component 1 (PGRMC1) was shown to contain the putative σR2 binding site. PGRMC1 has not been studied in retina. We hypothesize that biological interactions between σR1 and PGRMC1 will be evidenced by compensatory upregulation of PGRMC1 in σR1-/- mice. METHODS Immunofluorescence, RT-PCR, and immunoblotting methods were used to analyze expression of PGRMC1 in wild-type mouse retina. Tissues from σR1-/- mice were used to investigate whether a biological interaction exists between σR1 and PGRMC1. RESULTS In the eye, PGRMC1 is expressed in corneal epithelium, lens, ciliary body epithelium, and retina. In retina, PGRMC1 is present in Müller cells and retinal pigment epithelium. This expression pattern is similar, but not identical to σR1. PGRMC1 protein levels in neural retina and eye cup from σR1-/- mice did not differ from wild-type mice. Nonocular tissues, lung, heart, and kidney showed similar Pgrmc1 gene expression in wild-type and σR1-/- mice. In contrast, liver, brain, and intestine showed increased Pgrmc1 gene expression in σR1-/- mice. CONCLUSION Despite potential biological overlap, deletion of σR1 did not result in a compensatory change in PGRMC1 protein levels in σR1-/- mouse retina. Increased Pgrmc1 gene expression in organs with high lipid content such as liver, brain, and intestine indicates a possible tissue-specific interaction between σR1 and PGRMC1. The current studies establish the presence of PGRMC1 in retina and lay the foundation for analysis of its biological function.
Collapse
Affiliation(s)
- Arul K Shanmugam
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Barbara A Mysona
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Jing Wang
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Jing Zhao
- b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,c Department of Ophthalmology , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| | - Amany Tawfik
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - A Sanders
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| | - Shanu Markand
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Eric Zorrilla
- d Harold L. Dorris Neurological Research Institute , The Scripps Research Institute , La Jolla , CA , USA
| | - Vadivel Ganapathy
- b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,e Department of Cell Biology and Biochemistry , Texas Tech University Health Sciences Center , Lubbock , TX , USA
| | - Kathryn E Bollinger
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,c Department of Ophthalmology , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| | - Sylvia B Smith
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,c Department of Ophthalmology , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| |
Collapse
|
95
|
Jackson ACW, Roche SL, Byrne AM, Ruiz-Lopez AM, Cotter TG. Progesterone receptor signalling in retinal photoreceptor neuroprotection. J Neurochem 2015; 136:63-77. [PMID: 26447367 DOI: 10.1111/jnc.13388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022]
Abstract
'Norgestrel', a synthetic form of the female hormone progesterone has been identified as potential drug candidate for the treatment of the degenerative eye disease retinitis pigmentosa. However, to date, no work has looked at the compound's specific cellular target. Therefore, this study aimed to identify the receptor target of Norgestrel and begin to examine its potential mechanism of action in the retina. In this work, we identify and characterize the expression of progesterone receptors present in the C57 wild type and rd10 mouse model of retinitis pigmentosa. Classical progesterone receptors A and B (PR A/B), progesterone receptor membrane components 1 and 2 (PGRMC1, PGRMC2) and membrane progesterone receptors α, β and γ were found to be expressed. All receptors excluding PR A/B were also found in the 661W photoreceptor cell line. PGRMC1 is a key regulator of apoptosis and its expression is up-regulated in the degenerating rd10 mouse retina. Activated by Norgestrel through nuclear trafficking, siRNA knock down of PGRMC1 abrogated the protective properties of Norgestrel on damaged photoreceptors. Furthermore, specific inhibition of PGRMC1 by AG205 blocked Norgestrel-induced protection in stressed retinal explants. Therefore, we conclude that PGRMC1 is crucial to the neuroprotective effects of Norgestrel on stressed photoreceptors. The synthetic progestin 'Norgestrel' has been identified as a potential therapeutic for the treatment of Retinitis Pigmentosa, a degenerative eye disease. However, the mechanism behind this neuroprotection is currently unknown. In this work, we identify 'Progesterone Receptor Membrane Component 1' as the major progesterone receptor eliciting the protective effects of Norgestrel, both in vitro and ex vivo. This furthers our understanding of Norgestrel's molecular mechanism, which we hope will help bring Norgestrel one step closer to the clinic.
Collapse
Affiliation(s)
- Alice C Wyse Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
96
|
Resnyk CW, Chen C, Huang H, Wu CH, Simon J, Le Bihan-Duval E, Duclos MJ, Cogburn LA. RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism. PLoS One 2015; 10:e0139549. [PMID: 26445145 PMCID: PMC4596860 DOI: 10.1371/journal.pone.0139549] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/14/2015] [Indexed: 01/20/2023] Open
Abstract
Genetic selection for enhanced growth rate in meat-type chickens (Gallus domesticus) is usually accompanied by excessive adiposity, which has negative impacts on both feed efficiency and carcass quality. Enhanced visceral fatness and several unique features of avian metabolism (i.e., fasting hyperglycemia and insulin insensitivity) mimic overt symptoms of obesity and related metabolic disorders in humans. Elucidation of the genetic and endocrine factors that contribute to excessive visceral fatness in chickens could also advance our understanding of human metabolic diseases. Here, RNA sequencing was used to examine differential gene expression in abdominal fat of genetically fat and lean chickens, which exhibit a 2.8-fold divergence in visceral fatness at 7 wk. Ingenuity Pathway Analysis revealed that many of 1687 differentially expressed genes are associated with hemostasis, endocrine function and metabolic syndrome in mammals. Among the highest expressed genes in abdominal fat, across both genotypes, were 25 differentially expressed genes associated with de novo synthesis and metabolism of lipids. Over-expression of numerous adipogenic and lipogenic genes in the FL chickens suggests that in situ lipogenesis in chickens could make a more substantial contribution to expansion of visceral fat mass than previously recognized. Distinguishing features of the abdominal fat transcriptome in lean chickens were high abundance of multiple hemostatic and vasoactive factors, transporters, and ectopic expression of several hormones/receptors, which could control local vasomotor tone and proteolytic processing of adipokines, hemostatic factors and novel endocrine factors. Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the pro-thrombotic state found in obese humans. Clearly, divergent genetic selection for an extreme (2.5-2.8-fold) difference in visceral fatness provokes a number of novel regulatory responses that govern growth and metabolism of visceral fat in this unique avian model of juvenile-onset obesity and glucose-insulin imbalance.
Collapse
Affiliation(s)
- Christopher W. Resnyk
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Cathy H. Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Jean Simon
- INRA UR83 Recherches Avicoles, 37380, Nouzilly, France
| | | | | | - Larry A. Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
97
|
A potential mechanism underlying atypical antipsychotics-induced lipid disturbances. Transl Psychiatry 2015; 5:e661. [PMID: 26485545 PMCID: PMC4930135 DOI: 10.1038/tp.2015.161] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/25/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022] Open
Abstract
Previous findings suggested that a four-protein complex, including sterol-regulatory element-binding protein (SREBP), SREBP-cleavage-activating protein (SCAP), insulin-induced gene (INSIG) and progesterone receptor membrane component 1 (PGRMC1), within the endoplasmic reticulum appears to be an important regulator responsible for atypical antipsychotic drug (AAPD)-induced lipid disturbances. In the present study, effects of typical antipsychotic drug and AAPDs as well as treatment outcome of steroid antagonist mifepristone (MIF) on the PGRMC1/INSIG/SCAP/SREBP pathway were investigated in rat liver using real-time quantitative polymerase chain reaction (qPCR) and western blot analysis. In addition, serum triacylglycerol, total cholesterol, free fatty acids and various hormones including progesterone, corticosterone and insulin were measured simultaneously. Following treatment with clozapine or risperidone, both lipogenesis and cholesterogenesis were enhanced via inhibition of PGRMC1/INSIG-2 and activation of SCAP/SREBP expressions. Such metabolic disturbances, however, were not demonstrated in rats treated with aripiprazole (ARI) or haloperidol (HAL). Moreover, the add-on treatment of MIF was effective in reversing the AAPD-induced lipid disturbances by upregulating the expression of PGRMC1/INSIG-2 and subsequent downregulation of SCAP/SREBP. Taken together, our findings suggest that disturbances in lipid metabolism can occur at an early stage of AAPD treatment before the presence of weight gain. Such metabolic defects can be modified by an add-on treatment of steroid antagonist MIF enhancing the PGRMC1 pathway. Thus, it is likely that PGRMC1/INSIG-2 signaling may be a therapeutic target for AAPD-induced weight gain.
Collapse
|
98
|
van Waarde A, Rybczynska AA, Ramakrishnan NK, Ishiwata K, Elsinga PH, Dierckx RAJO. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:2703-14. [PMID: 25173780 DOI: 10.1016/j.bbamem.2014.08.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to both sigma receptor subpopulations. The sigma-1 receptor is a ligand-regulated molecular chaperone with various ion channels and G-protein-coupled membrane receptors as clients. The sigma-2 receptor was identified as the progesterone receptor membrane component 1 (PGRMC1). Although sigma receptors are over-expressed in tumors and up-regulated in rapidly dividing normal tissue, their ligands induce significant cell death only in tumor tissue. Sigma ligands may therefore be used to selectively eradicate tumors. Multiple mechanisms appear to underlie cell killing after administration of sigma ligands, and the signaling pathways are dependent both on the type of ligand and the type of tumor cell. Recent evidence suggests that the sigma-2 receptor is a potential tumor and serum biomarker for human lung cancer and an important target for inhibiting tumor invasion and cancer progression. Current radiochemical efforts are focused on the development of subtype-selective radioligands for positron emission tomography (PET) imaging. Right now, the mostpromising tracers are [18F]fluspidine and [18F]FTC-146 for sigma-1 receptors and [11C]RHM-1 and [18F]ISO-1 for the sigma-2 subtype. Nanoparticles coupled to sigma ligands have shown considerable potential for targeted delivery of antitumor drugs in animal models of cancer, but clinical studies exploring this strategy in cancer patients have not yet been reported. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Anna A Rybczynska
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nisha K Ramakrishnan
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Kiichi Ishiwata
- Tokyo Metropolitan Institute of Gerontology, Research Team for Neuroimaging, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; University of Ghent, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
99
|
Ohta H, Kimura I, Konishi M, Itoh N. Neudesin as a unique secreted protein with multi-functional roles in neural functions, energy metabolism, and tumorigenesis. Front Mol Biosci 2015; 2:24. [PMID: 26042224 PMCID: PMC4436896 DOI: 10.3389/fmolb.2015.00024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/04/2015] [Indexed: 12/19/2022] Open
Abstract
Neudesin was originally identified as a secreted protein with neurotrophic activity, and, thereafter, was also termed neuron-derived neurotrophic factor (NENF) or the candidate oncogene GIG47. Neudesin with a conserved cytochrome 5-like heme/steroid-binding domain activates intracellular signaling pathways possibly through the activation of G protein-coupled receptors. In the brain, hypothalamic Neudesin decreases food intake. Neudesin knockout (KO) mice also exhibit anxiety-like behavior, indicating its roles in the hippocampal anxiety circuitry. Neudesin is also expressed in various peripheral tissues. Neudesin KO mice are strongly resistant to high-fat diet (HFD)-induced obesity due to elevated systemic sympathetic activity, heat production, and adipocytic lipolysis. Neudesin, which is over-expressed or induced by DNA hypomethylation in multiple human cancers, also stimulates tumorigenesis. These findings indicate that Neudesin plays roles in neural functions, energy metabolism, and tumorigenesis and is expected to be a novel target for obesity and anti-cancer treatments.
Collapse
Affiliation(s)
- Hiroya Ohta
- Department of Microbial Chemistry, Kobe Pharmaceutical University Kobe, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology Tokyo, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University Kobe, Japan
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences Kyoto, Japan
| |
Collapse
|
100
|
Neubauer H, Chen R, Schneck H, Knorrp T, Templin MF, Fehm T, Cahill MA, Seeger H, Yu Q, Mueck AO. New insight on a possible mechanism of progestogens in terms of breast cancer risk. Horm Mol Biol Clin Investig 2015; 6:185-92. [PMID: 25961254 DOI: 10.1515/hmbci.2010.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/13/2010] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Progestogens influence mammary gland development and probably breast cancer tumorigenesis by regulating a broad spectrum of physiological processes. We investigated receptor membrane-initiated actions of progestogens in MCF-7 breast cancer cells overexpressing progesterone receptor membrane component 1 (PGRMC1). DESIGN MCF-7 cells were stably transfected with PGRMC1 expression plasmid (MCF-7/PGRMC1-3HA) and overexpression of PGRMC1 was verified by immune fluorescent analysis and Western blot. To test the effects of progestogens on cell proliferation, MCF-7 and MCF-7/PGRMC1-3HA cells were stimulated with a membrane-impermeable progesterone: BSA-fluorescein-isothiocyanate conjugate (P4-BSA-FITC), unconjugated progesterone (P4), medroxyprogesterone acetate (MPA), norethisterone (NET) and drospirenone (DRSP). Furthermore, reverse phase protein technology was applied to identify modified downstream signaling. RESULTS Progesterone did not elicit any proliferative effect on MCF-7/PGRMC1-3HA cells. By contrast, P4-BSA-FITC, DRSP, MPA and NET significantly triggered proliferation of MCF-7/PGRMC1-3HA cells, the effect being more pronounced for NET. Almost no effect of progestogens on proliferation was observed in MCF-7 cells. In MCF-7/PGRMC1-3HA cells, expression of Erk1/2 was significantly reduced by 40% compared to MCF-7 cells. CONCLUSIONS Our data indicate that PGRMC1 mediates a progestogen-dependent proliferative signal in MCF-7 cells. Of significant interest is that progesterone and synthetic progestins that are used for hormone therapy are different in their proliferative effects on MCF-7 and MCF-7/PGRMC1-3HA cells. Progesterone appears to act neutrally, whereas MPA, NET and DRSP trigger proliferation and thus might increase breast cancer risk. The data presented are very important in terms of the positive results of progestogens and breast cancer risk in clinical studies so far.
Collapse
|