51
|
Ma L, Cho W, Nelson ER. Our evolving understanding of how 27-hydroxycholesterol influences cancer. Biochem Pharmacol 2022; 196:114621. [PMID: 34043965 PMCID: PMC8611110 DOI: 10.1016/j.bcp.2021.114621] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/09/2023]
Abstract
Cholesterol has been implicated in the pathophysiology and progression of several cancers now, although the mechanisms by which it influences cancer biology are just emerging. Two likely contributing mechanisms are the ability for cholesterol to directly regulate signaling molecules within the membrane, and certain metabolites acting as signaling molecules. One such metabolite is the oxysterol 27-hydroxycholesterol (27HC), which is a primary metabolite of cholesterol synthesized by the enzyme Cytochrome P450 27A1 (CYP27A1). Physiologically, 27HC is involved in the regulation of cholesterol homeostasis and contributes to cholesterol efflux through liver X receptor (LXR) and inhibition of de novo cholesterol synthesis through the insulin-induced proteins (INSIGs). 27HC is also a selective modulator of the estrogen receptors. An increasing number of studies have identified its importance in cancer progression of various origins, especially in breast cancer. In this review, we discuss the physiological roles of 27HC targeting these two nuclear receptors and the subsequent contribution to cancer progression. We describe how 27HC promotes tumor growth directly through cancer-intrinsic factors, and indirectly through its immunomodulatory roles which lead to decreased immune surveillance and increased tumor invasion. This review underscores the importance of the cholesterol metabolic pathway in cancer progression and the potential therapeutic utility of targeting this metabolic pathway.
Collapse
Affiliation(s)
- Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL
| | - Erik R. Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL,Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, IL,To whom correspondence and reprint requests should be addressed: Erik R. Nelson. University of Illinois at Urbana-Champaign. 407 S Goodwin Ave (MC-114), Urbana, IL, 61801. Phone: 217-244-5477. Fax: 217-333-1133.
| |
Collapse
|
52
|
Chae HS, Dale O, Mir TM, Avula B, Zhao J, Khan IA, Khan SI. A Multitarget Approach to Evaluate the Efficacy of Aquilaria sinensis Flower Extract against Metabolic Syndrome. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030629. [PMID: 35163893 PMCID: PMC8838142 DOI: 10.3390/molecules27030629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022]
Abstract
Aquilaria sinensis (Lour.) Spreng is known for its resinous secretion (agarwood), often secreted in defense against injuries. We investigated the effects of A. sinensis flower extract (AF) on peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ), liver X receptor (LXR), glucose uptake, and lipid accumulation (adipogenesis). Activation of PPARα, PPARγ and LXR was determined in hepatic (HepG2) cells by reporter gene assays. Glucose uptake was determined in differentiated muscle (C2C12) cells using 2-NBDG (2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose). Adipogenesis was determined in adipocytes (3T3-L1 cells) by Oil red O staining. At a concentration of 50 µg/mL, AF caused 12.2-fold activation of PPARα and 5.7-fold activation of PPARγ, while the activation of LXR was only 1.7-fold. AF inhibited (28%) the adipogenic effect induced by rosiglitazone in adipocytes and increased glucose uptake (32.8%) in muscle cells at 50 μg/mL. It was concluded that AF acted as a PPARα/γ dual agonist without the undesired effect of adipogenesis and exhibited the property of enhancing glucose uptake. This is the first report to reveal the PPARα/γ dual agonistic action and glucose uptake enhancing property of AF along with its antiadipogenic effect, indicating its potential in ameliorating the symptoms of metabolic syndrome.
Collapse
Affiliation(s)
- Hee-Sung Chae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (H.-S.C.); (O.D.); (T.M.M.); (B.A.); (J.Z.); (I.A.K.)
| | - Olivia Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (H.-S.C.); (O.D.); (T.M.M.); (B.A.); (J.Z.); (I.A.K.)
| | - Tahir Maqbool Mir
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (H.-S.C.); (O.D.); (T.M.M.); (B.A.); (J.Z.); (I.A.K.)
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (H.-S.C.); (O.D.); (T.M.M.); (B.A.); (J.Z.); (I.A.K.)
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (H.-S.C.); (O.D.); (T.M.M.); (B.A.); (J.Z.); (I.A.K.)
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (H.-S.C.); (O.D.); (T.M.M.); (B.A.); (J.Z.); (I.A.K.)
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Shabana I. Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (H.-S.C.); (O.D.); (T.M.M.); (B.A.); (J.Z.); (I.A.K.)
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
- Correspondence: ; Tel.: +1-662-915-1041
| |
Collapse
|
53
|
van Daal MT, Folkerts G, Garssen J, Braber S. Pharmacological Modulation of Immune Responses by Nutritional Components. Pharmacol Rev 2021; 73:198-232. [PMID: 34663688 DOI: 10.1124/pharmrev.120.000063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The incidence of noncommunicable diseases (NCDs) has increased over the last few decades, and one of the major contributors to this is lifestyle, especially diet. High intake of saturated fatty acids and low intake of dietary fiber is linked to an increase in NCDs. Conversely, a low intake of saturated fatty acids and a high intake of dietary fiber seem to have a protective effect on general health. Several mechanisms have been identified that underlie this phenomenon. In this review, we focus on pharmacological receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors, which can be activated by nutritional components and their metabolites. Depending on the nutritional component and the receptors involved, both proinflammatory and anti-inflammatory effects occur, leading to an altered immune response. These insights may provide opportunities for the prevention and treatment of NCDs and their inherent (sub)chronic inflammation. SIGNIFICANCE STATEMENT: This review summarizes the reported effects of nutritional components and their metabolites on the immune system through manipulation of specific (pharmacological) receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors. Nutritional components, such as vitamins, fibers, and unsaturated fatty acids are able to resolve inflammation, whereas saturated fatty acids tend to exhibit proinflammatory effects. This may aid decision makers and scientists in developing strategies to decrease the incidence of noncommunicable diseases.
Collapse
Affiliation(s)
- Marthe T van Daal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| |
Collapse
|
54
|
Huang K, Jo H, Echesabal-Chen J, Stamatikos A. Combined LXR and RXR Agonist Therapy Increases ABCA1 Protein Expression and Enhances ApoAI-Mediated Cholesterol Efflux in Cultured Endothelial Cells. Metabolites 2021; 11:640. [PMID: 34564456 PMCID: PMC8466889 DOI: 10.3390/metabo11090640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial ABCA1 expression protects against atherosclerosis and this atheroprotective effect is partially attributed to enhancing apoAI-mediated cholesterol efflux. ABCA1 is a target gene for LXR and RXR; therefore, treating endothelial cells with LXR and/or RXR agonists may increase ABCA1 expression. We tested whether treating cultured immortalized mouse aortic endothelial cells (iMAEC) with the endogenous LXR agonist 22(R)-hydroxycholesterol, synthetic LXR agonist GW3965, endogenous RXR agonist 9-cis-retinoic acid, or synthetic RXR agonist SR11237 increases ABCA1 protein expression. We observed a significant increase in ABCA1 protein expression in iMAEC treated with either GW3965 or SR11237 alone, but no significant increase in ABCA1 protein was observed in iMAEC treated with either 22(R)-hydroxycholesterol or 9-cis-retionic acid alone. However, we observed significant increases in both ABCA1 protein expression and apoAI-mediated cholesterol efflux when iMAEC were treated with a combination of either 22(R)-hydroxycholesterol and 9-cis-retinoic acid or GW3965 and SR11237. Furthermore, treating iMAEC with either 22(R)-hydroxycholesterol and 9-cis-retinoic acid or GW3965 and SR11237 did not trigger an inflammatory response, based on VCAM-1, ICAM-1, CCL2, and IL-6 mRNA expression. Based on our findings, delivering LXR and RXR agonists precisely to endothelial cells may be a promising atheroprotective approach.
Collapse
Affiliation(s)
- Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA;
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| |
Collapse
|
55
|
Use of Lipid-Modifying Agents for the Treatment of Glomerular Diseases. J Pers Med 2021; 11:jpm11080820. [PMID: 34442464 PMCID: PMC8401447 DOI: 10.3390/jpm11080820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Although dyslipidemia is associated with chronic kidney disease (CKD), it is more common in nephrotic syndrome (NS), and guidelines for the management of hyperlipidemia in NS are largely opinion-based. In addition to the role of circulating lipids, an increasing number of studies suggest that intrarenal lipids contribute to the progression of glomerular diseases, indicating that proteinuric kidney diseases may be a form of "fatty kidney disease" and that reducing intracellular lipids could represent a new therapeutic approach to slow the progression of CKD. In this review, we summarize recent progress made in the utilization of lipid-modifying agents to lower renal parenchymal lipid accumulation and to prevent or reduce kidney injury. The agents mentioned in this review are categorized according to their specific targets, but they may also regulate other lipid-relevant pathways.
Collapse
|
56
|
Nishimura Y, Yamakawa D, Uchida K, Shiromizu T, Watanabe M, Inagaki M. Primary cilia and lipid raft dynamics. Open Biol 2021; 11:210130. [PMID: 34428960 PMCID: PMC8385361 DOI: 10.1098/rsob.210130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Primary cilia, antenna-like structures of the plasma membrane, detect various extracellular cues and transduce signals into the cell to regulate a wide range of functions. Lipid rafts, plasma membrane microdomains enriched in cholesterol, sphingolipids and specific proteins, are also signalling hubs involved in a myriad of physiological functions. Although impairment of primary cilia and lipid rafts is associated with various diseases, the relationship between primary cilia and lipid rafts is poorly understood. Here, we review a newly discovered interaction between primary cilia and lipid raft dynamics that occurs during Akt signalling in adipogenesis. We also discuss the relationship between primary cilia and lipid raft-mediated Akt signalling in cancer biology. This review provides a novel perspective on primary cilia in the regulation of lipid raft dynamics.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daishi Yamakawa
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Katsunori Uchida
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
57
|
Abstract
Introduction: Hepatic stellate cells (HSCs) are essential for physiological homeostasis of the liver extracellular matrix (ECM). Excessive transdifferentiation of HSC from a quiescent to an activated phenotype contributes to disrupt this balance and can lead to liver fibrosis. Accumulating evidence has suggested that nuclear receptors (NRs) are involved in the regulation of HSC activation, proliferation, and function. Therefore, these NRs may be therapeutic targets to balance ECM homeostasis and inhibit HSC activation in liver fibrosis.Areas covered: In this review, the authors summarized the recent progress in the understanding of the regulatory role of NRs in HSCs and their potential as drug targets in liver fibrosis.Expert opinion: NRs are still potential therapy targets for inhibiting HSCs activation and liver fibrosis. However, the development of NRs agonists or antagonists to inhibit HSCs requires fully consideration of systemic effects.
Collapse
Affiliation(s)
- Shiyun Pu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Hongjing Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Yan Liu
- Department of Interventional Therapy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Jiao Liu
- Department of Interventional Therapy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
- Department of Hepatobiliary Surgery, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Yuanxin Guo
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| |
Collapse
|
58
|
Esfahani NS, Wu Q, Kumar N, Ganesan LP, Lafuse WP, Rajaram MVS. Aging influences the cardiac macrophage phenotype and function during steady state and during inflammation. Aging Cell 2021; 20:e13438. [PMID: 34342127 PMCID: PMC8373275 DOI: 10.1111/acel.13438] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 12/16/2022] Open
Abstract
Aging‐mediated immune dysregulation affects the normal cardiac immune cell phenotypes and functions, resulting in cardiac distress. During cardiac inflammation, immune activation is critical for mounting the regenerative responses to maintain normal heart function. We investigated the impact of aging on myeloid cell phenotype and function during cardiac inflammation induced by a sub‐lethal dose of LPS. Our data show that hearts of old mice contain more myeloid cells than the hearts of young mice. However, while the number of monocytic‐derived suppressor cells did not differ between young and old mice, monocytic‐derived suppressor cells from old mice were less able to suppress T‐cell proliferation. Since cardiac resident macrophages (CRMs) are important for immune surveillance, clearance of dead cells, and tissue repair, we focused our studies on CRMs phenotype and function during steady state and LPS treatment. In the steady state, we observed significantly more MHC‐IIlow and MHC‐IIhigh CRMs in the hearts of old mice; however, these populations were decreased in both young and aged mice upon LPS treatment and the decrease in CRM populations correlated with defects in cardiac electrical activity. Notably, mice treated with a liver X receptor (LXR) agonist showed an increase in MerTK expression in CRMs of both young and old mice, which resulted in the reversal of cardiac electrical dysfunction caused by lipopolysaccharide (LPS). We conclude that aging alters the phenotype of CRMs, which contributes to the dysregulation of cardiac electrical dysfunction during infection in aged mice.
Collapse
Affiliation(s)
- Noushin Saljoughian Esfahani
- Department of Microbial Infection and Immunity/ College of Medicine The Ohio State University Wexner Medical Center Columbus OH USA
| | - Qian Wu
- Department of Microbial Infection and Immunity/ College of Medicine The Ohio State University Wexner Medical Center Columbus OH USA
| | - Naresh Kumar
- Department of Microbial Infection and Immunity/ College of Medicine The Ohio State University Wexner Medical Center Columbus OH USA
| | - Latha Prabha Ganesan
- Department of Internal Medicine College of Medicine The Ohio State UniversityWexner Medical Center Columbus OH USA
| | - William P. Lafuse
- Department of Microbial Infection and Immunity/ College of Medicine The Ohio State University Wexner Medical Center Columbus OH USA
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity/ College of Medicine The Ohio State University Wexner Medical Center Columbus OH USA
| |
Collapse
|
59
|
Adam G, Shiomi T, Monica G, Jarrod S, Vincent A, Becky M, Tina Z, Jeanine D. Suppression of cigarette smoke induced MMP1 expression by selective serotonin re-uptake inhibitors. FASEB J 2021; 35:e21519. [PMID: 34137477 PMCID: PMC9292461 DOI: 10.1096/fj.202001966rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
Globally, COPD remains a major cause of disability and death. In the United States alone, it is estimated that approximately 14 million people suffer from the disease. Given the high disease burden and requirement for chronic, long‐term medical care associated with COPD, it is essential that new disease modifying agents are developed to complement the symptomatic therapeutics currently available. In the present report, we have identified a potentially novel therapeutic agent through the use of a high throughput screen based on the knowledge that cigarette smoke induces the proteolytic enzyme MMP1 leading to destruction of the lung in COPD. A construct utilizing the cigarette responsive promoter element of MMP‐1 was conjugated to a luciferase reporter and utilized in an in vitro assay to screen the NIH Molecular Libraries Small Molecule Repository to identify putative targets that suppressed luciferase expression in response to cigarette smoke extract (CSE). Selective serotonin reuptake inhibitors potently inhibited luciferase expression and were further validated. SSRI treatment suppressed MMP‐1 production in small airway epithelial cells exposed to (CSE) in vitro as well as in smoke exposed rabbits. In addition, SSRI treatment inhibited inflammatory cytokine production while rescuing cigarette smoke induced downregulation in vivo of the anti‐inflammatory lipid transporter ABCA1, previously shown by our laboratory to be lung protective. Importantly, SSRI treatment prevented lung destruction in smoke exposed rabbits as measured by morphometry. These studies support further investigation into SSRIs as a novel therapeutic for COPD may be warranted.
Collapse
Affiliation(s)
- Gerber Adam
- Department of Medicine, Anesthesiology, Physiology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Takayuki Shiomi
- Center for Basic Medical Sciences, Graduate School, International University of Health and Welfare, Chiba, Japan
| | - Goldklang Monica
- Department of Medicine, Anesthesiology, Physiology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sonett Jarrod
- Department of Medicine, Anesthesiology, Physiology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Anguiano Vincent
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Mercer Becky
- Office of Academic Affairs, Palm Beach State College, Florida, USA
| | - Zelonina Tina
- Department of Medicine, Anesthesiology, Physiology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - D'Armiento Jeanine
- Department of Medicine, Anesthesiology, Physiology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
60
|
Mai CT, Zheng DC, Li XZ, Zhou H, Xie Y. Liver X receptors conserve the therapeutic target potential for the treatment of rheumatoid arthritis. Pharmacol Res 2021; 170:105747. [PMID: 34186192 DOI: 10.1016/j.phrs.2021.105747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic multi-system autoimmune disease with extremely complex pathogenesis. Significantly altered lipid paradox related to the inflammatory burden is reported in RA patients, inducing 50% higher cardiovascular risks. Recent studies have also demonstrated that lipid metabolism can regulate many functions of immune cells in which metabolic pathways have altered. The nuclear liver X receptors (LXRs), including LXRα and LXRβ, play a central role in regulating lipid homeostasis and inflammatory responses. Undoubtedly, LXRs have been considered as an attractive therapeutic target for the treatment of RA. However, there are some contradictory effects of LXRs agonists observed in previous animal studies where both pro-inflammatory role and anti-inflammatory role were revealed for LXRs activation in RA. Therefore, in addition to updating the knowledge of LXRs as the prominent regulators of lipid homeostasis, the purpose of this review is to summarize the effects of LXRs agonists in RA-associated immune cells, to explore the underlying reasons for the contradictory therapeutic effects of LXRs agonists observed in RA animal models, and to discuss future strategy for the treatment of RA with LXRs modulators.
Collapse
Affiliation(s)
- Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xin-Zhi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
61
|
Molecular Human Targets of Bioactive Alkaloid-Type Compounds from Tabernaemontana cymose Jacq. Molecules 2021; 26:molecules26123765. [PMID: 34205626 PMCID: PMC8234993 DOI: 10.3390/molecules26123765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
Alkaloids are a group of secondary metabolites that have been widely studied for the discovery of new drugs due to their properties on the central nervous system and their anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking was performed for 10 indole alkaloids identified in the ethanol extract of Tabernaemontana cymosa Jacq. with 951 human targets involved in different diseases. The results were analyzed through the KEGG and STRING databases, finding the most relevant physiological associations for alkaloids. The molecule 5-oxocoronaridine proved to be the most active molecule against human proteins (binding energy affinity average = −9.2 kcal/mol) and the analysis of the interactions between the affected proteins pointed to the PI3K/ Akt/mTOR signaling pathway as the main target. The above indicates that indole alkaloids from T. cymosa constitute a promising source for the search and development of new treatments against different types of cancer.
Collapse
|
62
|
Fan X, Liu B, Zhou J, Gu X, Zhou Y, Yang Y, Guo F, Wei X, Wang H, Si N, Yang J, Bian B, Zhao H. High-Fat Diet Alleviates Neuroinflammation and Metabolic Disorders of APP/PS1 Mice and the Intervention With Chinese Medicine. Front Aging Neurosci 2021; 13:658376. [PMID: 34168550 PMCID: PMC8217439 DOI: 10.3389/fnagi.2021.658376] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease caused by the complex interaction of multiple mechanisms. Recent studies examining the effect of high-fat diet (HFD) on the AD phenotype have demonstrated a significant influence on both inflammation and cognition. However, different studies on the effect of high-fat diet on AD pathology have reported conflicting conclusions. To explore the involvement of HFD in AD, we investigated phenotypic and metabolic changes in an AD mouse model in response to HFD. The results indicated there was no significant effect on Aβ levels or contextual memory due to HFD treatment. Of note, HFD did moderate neuroinflammation, despite spurring inflammation and increasing cholesterol levels in the periphery. In addition, diet affected gut microbiota symbiosis, altering the production of bacterial metabolites. HFD created a favorable microenvironment for bile acid alteration and arachidonic acid metabolism in APP/PS1 mice, which may be related to the observed improvement in LXR/PPAR expression. Our previous research demonstrated that Huanglian Jiedu decoction (HLJDD) significantly ameliorated impaired learning and memory. Furthermore, HLJDD may globally suppress inflammation and lipid accumulation to relieve cognitive impairment after HFD intervention. It was difficult to define the effect of HFD on AD progression because the results were influenced by confounding factors and biases. Although there was still obvious damage in AD mice treated with HFD, there was no deterioration and there was even a slight remission of neuroinflammation. Moreover, HLJDD represents a potential AD drug based on its anti-inflammatory and lipid-lowering effects.
Collapse
Affiliation(s)
- Xiaorui Fan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Junyi Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinru Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
63
|
Roles of selenoprotein S in reactive oxygen species-dependent neutrophil extracellular trap formation induced by selenium-deficient arteritis. Redox Biol 2021; 44:102003. [PMID: 34034080 PMCID: PMC8166917 DOI: 10.1016/j.redox.2021.102003] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
Selenium (Se) deficiency and poor plasma Se levels can cause cardiovascular diseases by decreasing selenoprotein levels. Neutrophil extracellular traps (NETs) may be the vicious cycle center of inflammation in vasculitis. Here, we show that Se deficiency induced arteritis mainly by reducing selenoprotein S (SelS), and promoted the progression of arteritis by regulating the recruitment of neutrophils and NET formation. Silencing SelS induced chicken arterial endothelial cells (PAECs) to secrete cytokines, and activated neutrophils to promote NET formation. Conversely, scavenging DNA-NETs promoted cytokine secretion in PAECs. The NET formation regulated by siSelS was dependent on a reactive oxygen species (ROS) burst. We also found that the PPAR pathway was a major mediator of NET formation induced by Se-deficient arteritis. Overall, our results reveal how Se deficiency regulates NET formation in the progression of arteritis and support silencing-SelS worsens arteritis.
Collapse
|
64
|
Xu X, Xiao X, Yan Y, Zhang T. Activation of liver X receptors prevents emotional and cognitive dysfunction by suppressing microglial M1-polarization and restoring synaptic plasticity in the hippocampus of mice. Brain Behav Immun 2021; 94:111-124. [PMID: 33662504 DOI: 10.1016/j.bbi.2021.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Depression is a long-lasting and persistent mood disorder in which the regulatory mechanisms of neuroinflammation are thought to play a contributing role to the physiopathology of the condition. Previous studies have shown that liver X receptors (LXRs) can regulate the activation of microglia and neuroinflammation. However, the role of LXRs in depression remains to be fully understood. In this study, we hypothesized that stress impairs the function of LXRs and that the LXRs agonist GW3965 plays a potential anti-depressive role by inhibiting neuroinflammation. The anti-depressive effects of GW3965 were evaluated in both chronic unpredictable mild stress (CUMS) and lipopolysaccharide (LPS) models. The LXRs antagonist GSK2033 was also employed to block LXRs. Behavioural tests were performed to measure depression-like phenotypes and learning abilities. Electrophysiological recordings and Golgi staining were used to measure the plasticity of the dentate gyrus synapse. The expression of synapse and neuroinflammation related proteins were evaluated by Western blotting and immunofluorescence. The activation of LXRs by GW3965 prevented emotional and cognitive deficits induced by either CUMS or LPS. GW3965 prevented the decreased level of LXR-β induced by CUMS. The activation of LXRs significantly improved the impairment of synaptic plasticity, prevented the up-regulation of inflammatory factors and inhibited NF-κB phosphorylation and microglial M1-polarization in both models. The antidepressive-like effects of GW3965 were blocked by GSK2033 in the CUMS and LPS models. Our data suggest that inhibition of the LXRs signalling pathway may be a key driver in the pathogenesis of neuroinflammation during depression and that LXRs agonists have a high potential in the treatment of depression.
Collapse
Affiliation(s)
- Xinxin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Xi Xiao
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Yuxing Yan
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|
65
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
66
|
Raas Q, van de Beek MC, Forss-Petter S, Dijkstra IM, Deschiffart A, Freshner BC, Stevenson TJ, Jaspers YR, Nagtzaam L, Wanders RJ, van Weeghel M, Engelen-Lee JY, Engelen M, Eichler F, Berger J, Bonkowsky JL, Kemp S. Metabolic rerouting via SCD1 induction impacts X-linked adrenoleukodystrophy. J Clin Invest 2021; 131:142500. [PMID: 33690217 DOI: 10.1172/jci142500] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
X-linked adrenoleukodystrophy (ALD) is a progressive neurodegenerative disease caused by mutations in ABCD1, the peroxisomal very long-chain fatty acid (VLCFA) transporter. ABCD1 deficiency results in accumulation of saturated VLCFAs. A drug screen using a phenotypic motor assay in a zebrafish ALD model identified chloroquine as the top hit. Chloroquine increased expression of stearoyl-CoA desaturase-1 (scd1), the enzyme mediating fatty acid saturation status, suggesting that a shift toward monounsaturated fatty acids relieved toxicity. In human ALD fibroblasts, chloroquine also increased SCD1 levels and reduced saturated VLCFAs. Conversely, pharmacological inhibition of SCD1 expression led to an increase in saturated VLCFAs, and CRISPR knockout of scd1 in zebrafish mimicked the motor phenotype of ALD zebrafish. Importantly, saturated VLCFAs caused ER stress in ALD fibroblasts, whereas monounsaturated VLCFA did not. In parallel, we used liver X receptor (LXR) agonists to increase SCD1 expression, causing a shift from saturated toward monounsaturated VLCFA and normalizing phospholipid profiles. Finally, Abcd1-/y mice receiving LXR agonist in their diet had VLCFA reductions in ALD-relevant tissues. These results suggest that metabolic rerouting of saturated to monounsaturated VLCFAs may alleviate lipid toxicity, a strategy that may be beneficial in ALD and other peroxisomal diseases in which VLCFAs play a key role.
Collapse
Affiliation(s)
- Quentin Raas
- Department of Pediatrics, University of Utah, Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Malu-Clair van de Beek
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Inge Me Dijkstra
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Abigail Deschiffart
- Department of Pediatrics, University of Utah, Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Briana C Freshner
- Department of Pediatrics, University of Utah, Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Tamara J Stevenson
- Department of Pediatrics, University of Utah, Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Yorrick Rj Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Liselotte Nagtzaam
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Ja Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Joo-Yeon Engelen-Lee
- Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam UMC, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Florian Eichler
- Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Neurology, Amsterdam UMC, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
67
|
Mahmoud NM, Gomaa RS, Salem AE. Activation of liver X receptors ameliorates alterations in testicular function in rats exposed to electromagnetic radiation. ALEXANDRIA JOURNAL OF MEDICINE 2021. [DOI: 10.1080/20905068.2021.1884333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
| | - Randa Salah Gomaa
- Medical Physiology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Amal Elsayd Salem
- Pharmacology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
68
|
De Anna JS, Castro JM, Darraz LA, Elías FD, Cárcamo JG, Luquet CM. Exposure to hydrocarbons and chlorpyrifos alters the expression of nuclear receptors and antioxidant, detoxifying, and immune response proteins in the liver of the rainbow trout, Oncorhynchus mykiss. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111394. [PMID: 33031985 DOI: 10.1016/j.ecoenv.2020.111394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The development of oil and gas production together with the fruit production in nearby areas of North Patagonia, Argentina, suggests aquatic pollution scenarios which include permanent oil pollution combined with short events of pesticides application. It has been reported that oil hydrocarbons activate the aryl hydrocarbon receptor (AhR) pathway in the rainbow trout, Oncorhynchus mykiss, and that the insecticide Chlorpyrifos (CPF) interacts with these effects. Thus, it is interesting to investigate whether hydrocarbons and insecticides, applied by separate or combined, can affect fish health and reproductive signaling by acting on different nuclear receptors' regulatory pathways. To study this kind of interactions, we exposed juvenile rainbow trout to water accommodated fraction (WAF) of crude oil (62 μg L-1 TPH) for 48 h and subsequently exposed the livers ex vivo to the insecticide Chlorpyrifos (CPF) (20 µg L-1) for 1 h. We analyzed the mRNA expression of nuclear receptors and proteins involved in detoxifying, antioxidant, immune and apoptosis responses by qRT-PCR. We also performed histopathological analysis. WAF induced the expression of the androgen (AR) and the Liver X receptor (LXR) by 8- and 3-fold, respectively. AR induction was reversed by subsequent exposure to CPF. The progesterone receptor (PR) and glucocorticoid receptor (GR) were increased 2-fold and 3-fold by WAF respectively, while estrogen and mineralocorticoid receptors were not affected. GR was also induced by CPF with an additive effect in the WAF-CPF treatment. The antioxidant genes, gamma glutamyl transferase (GGT), superoxide dismutase (SOD1) were induced by WAF (2-3-fold). WAF upregulated the ATP Binding Cassette Subfamily C Member 2 (ABCC2, MRP2) (4-fold) and downregulated alkaline phosphatase. WAF also induced the inflammatory interleukins (IL) IL-8, and IL-6 and the anti-inflammatory IL-10, while CPF induced the inflammatory tumor necrosis factor (-α) and IL-6, and activated the intrinsic apoptotic pathway through the induction of caspases 3 and 9. Both, WAF and CPF downregulated the expression of the extrinsic apoptosis initiator caspase 8 and the inflammatory caspase 1. In conclusion, WAF hydrocarbons alter O. mykiss endocrine regulation by inducing AR, PR and GR. The subsequent exposure to CPF reverses AR, suggesting a complex interaction of different pollutants in contaminated environments, WAF hydrocarbons alter liver metabolism by inducing the expression of LXR, GR, antioxidant and detoxifying enzymes, and both inflammatory and anti-inflammatory cytokines, and causing mild hepatic steatosis. CPF activates inflammatory and stress responses associated with the induction of inflammatory cytokines together with apoptosis initiator and executioner caspases.
Collapse
Affiliation(s)
- Julieta S De Anna
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina
| | - Juan M Castro
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina
| | - Luis Arias Darraz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Federico D Elías
- Centro Atómico Bariloche e Instituto Balseiro, CNEA, CONICET, Universidad Nacional de Cuyo, Bariloche, Argentina
| | - Juan G Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina.
| |
Collapse
|
69
|
Pineda-Torra I, Siddique S, Waddington KE, Farrell R, Jury EC. Disrupted Lipid Metabolism in Multiple Sclerosis: A Role for Liver X Receptors? Front Endocrinol (Lausanne) 2021; 12:639757. [PMID: 33927692 PMCID: PMC8076792 DOI: 10.3389/fendo.2021.639757] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neurological disease driven by autoimmune, inflammatory and neurodegenerative processes leading to neuronal demyelination and subsequent degeneration. Systemic lipid metabolism is disturbed in people with MS, and lipid metabolic pathways are crucial to the protective process of remyelination. The lipid-activated transcription factors liver X receptors (LXRs) are important integrators of lipid metabolism and immunity. Consequently, there is a strong interest in targeting these receptors in a number of metabolic and inflammatory diseases, including MS. We have reviewed the evidence for involvement of LXR-driven lipid metabolism in the dysfunction of peripheral and brain-resident immune cells in MS, focusing on human studies, both the relapsing remitting and progressive phases of the disease are discussed. Finally, we discuss the therapeutic potential of modulating the activity of these receptors with existing pharmacological agents and highlight important areas of future research.
Collapse
Affiliation(s)
- Inés Pineda-Torra
- Centre for Cardiometabolic and Vascular Medicine, Department of Medicine, University College London, London, United Kingdom
- *Correspondence: Elizabeth C. Jury, ; Inés Pineda-Torra,
| | - Sherrice Siddique
- Centre for Rheumatology, Department of Medicine, University College London, London, United Kingdom
| | - Kirsty E. Waddington
- Centre for Cardiometabolic and Vascular Medicine, Department of Medicine, University College London, London, United Kingdom
- Centre for Rheumatology, Department of Medicine, University College London, London, United Kingdom
| | - Rachel Farrell
- Department of Neuroinflammation, Institute of Neurology and National Hospital of Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Elizabeth C. Jury
- Centre for Rheumatology, Department of Medicine, University College London, London, United Kingdom
- *Correspondence: Elizabeth C. Jury, ; Inés Pineda-Torra,
| |
Collapse
|
70
|
Buñay J, Fouache A, Trousson A, de Joussineau C, Bouchareb E, Zhu Z, Kocer A, Morel L, Baron S, Lobaccaro JMA. Screening for liver X receptor modulators: Where are we and for what use? Br J Pharmacol 2020; 178:3277-3293. [PMID: 33080050 DOI: 10.1111/bph.15286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor superfamily that are canonically activated by oxidized derivatives of cholesterol. Since the mid-90s, numerous groups have identified LXRs as endocrine receptors that are involved in the regulation of various physiological functions. As a result, when their expression is genetically modified in mice, phenotypic analyses reveal endocrine disorders ranging from infertility to diabetes and obesity, nervous system pathologies such Alzheimer's or Parkinson's disease, immunological disturbances, inflammatory response, and enhancement of tumour development. Based on such findings, it appears that LXRs could constitute good pharmacological targets to prevent and/or to treat these diseases. This review discusses the various aspects of LXR drug discovery, from the tools available for the screening of potential LXR modulators to the current situational analysis of the drugs in development. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Julio Buñay
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Erwan Bouchareb
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Zhekun Zhu
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Laurent Morel
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Silvere Baron
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
71
|
Pierantonelli I, Lioci G, Gurrado F, Giordano DM, Rychlicki C, Bocca C, Trozzi L, Novo E, Panera N, De Stefanis C, D'Oria V, Marzioni M, Maroni L, Parola M, Alisi A, Svegliati-Baroni G. HDL cholesterol protects from liver injury in mice with intestinal specific LXRα activation. Liver Int 2020; 40:3127-3139. [PMID: 33098723 DOI: 10.1111/liv.14712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Liver X receptors (LXRs) exert anti-inflammatory effects even though their hepatic activation is associated with hypertriglyceridemia and hepatic steatosis. Selective induction of LXRs in the gut might provide protective signal(s) in the aberrant wound healing response that induces fibrosis during chronic liver injury, without hypertriglyceridemic and steatogenic effects. METHODS Mice with intestinal constitutive LXRα activation (iVP16-LXRα) were exposed to intraperitoneal injection of carbon tetrachloride (CCl4 ) for 8 weeks, and in vitro cell models were used to evaluate the beneficial effect of high-density lipoproteins (HDL). RESULTS After CCl4 treatment, the iVP16-LXRα phenotype showed reduced M1 macrophage infiltration, increased expression M2 macrophage markers, and lower expression of hepatic pro-inflammatory genes. This anti-inflammatory effect in the liver was also associated with decreased expression of hepatic oxidative stress genes and reduced expression of fibrosis markers. iVP16-LXRα exhibited increased reverse cholesterol transport in the gut by ABCA1 expression and consequent enhancement of the levels of circulating HDL and their receptor SRB1 in the liver. No hepatic steatosis development was observed in iVP16-LXRα. In vitro, HDL induced a shift from M1 to M2 phenotype of LPS-stimulated Kupffer cells, decreased TNFα-induced oxidative stress in hepatocytes and reduced NF-kB activity in both cells. SRB1 silencing reduced TNFα gene expression in LPS-stimulated KCs, and NOX-1 and IL-6 in HepG2. CONCLUSIONS Intestinal activation of LXRα modulates hepatic response to injury by increasing circulating HDL levels and SRB1 expression in the liver, thus suggesting this circuit as potential actionable pathway for therapy.
Collapse
Affiliation(s)
| | - Gessica Lioci
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Fabio Gurrado
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Debora M Giordano
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Chiara Rychlicki
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Claudia Bocca
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Luciano Trozzi
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Erica Novo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Nadia Panera
- Research Area for Multifactorial Diseases, Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Hospital, IRCCS, Rome, Italy
| | - Cristiano De Stefanis
- Research Area for Multifactorial Diseases, Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Hospital, IRCCS, Rome, Italy
| | - Valentina D'Oria
- Research Area for Multifactorial Diseases, Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Hospital, IRCCS, Rome, Italy
| | - Marco Marzioni
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Anna Alisi
- Research Area for Multifactorial Diseases, Molecular Genetics of Complex Phenotypes Research Unit, Bambino Gesù Hospital, IRCCS, Rome, Italy
| | - Gianluca Svegliati-Baroni
- Obesity Center, Marche Polytechnic University, Ancona, Italy.,Liver Injury and Transplant Unit, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
72
|
Ahi EP, Lecaudey LA, Ziegelbecker A, Steiner O, Goessler W, Sefc KM. Expression levels of the tetratricopeptide repeat protein gene ttc39b covary with carotenoid-based skin colour in cichlid fish. Biol Lett 2020; 16:20200629. [PMID: 33236977 PMCID: PMC7728679 DOI: 10.1098/rsbl.2020.0629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Carotenoid pigments play a major role in animal body colouration, generating strong interest in the genes involved in the metabolic processes that lead from their dietary uptake to their storage in the integument. Here, we used RNA sequencing (RNA-Seq) to test for differentially expressed genes in a taxonomically replicated design using three pairs of related cichlid fish taxa from the genera Tropheus and Aulonocara. Within each pair, taxa differed in terms of red and yellow body colouration, and high‐performance liquid chromatography (HPLC) analyses of skin extracts revealed different carotenoid profiles and concentrations across the studied taxa. Five genes were differentially expressed in all three yellow–red skin contrasts (dhrsx, nlrc3, tcaf2, urah and ttc39b), but only the tetratricopeptide repeat protein-coding gene ttc39b, whose gene product is linked to mammalian lipid metabolism, was consistently expressed more highly in the red skin samples. The RNA-Seq results were confirmed by quantitative PCR. We propose ttc39b as a compelling candidate gene for variation in animal carotenoid colouration. Since differential expression of ttc39b was correlated with the presence/absence of yellow carotenoids in a previous study, we suggest that ttc39b is more likely associated with the concentration of total carotenoids than with the metabolic formation of red carotenoids.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| | - Laurène A Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | | | - Oliver Steiner
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | - Kristina M Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
73
|
Biochanin A Mitigates Atherosclerosis by Inhibiting Lipid Accumulation and Inflammatory Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8965047. [PMID: 33959213 PMCID: PMC8074550 DOI: 10.1155/2020/8965047] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/13/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022]
Abstract
Biochanin A (BCA), a dietary isoflavone extracted from red clover and cabbage, has been shown to antagonize hypertension and myocardial ischemia/reperfusion injury. However, very little is known about its role in atherogenesis. The aim of this study was to observe the effects of BCA on atherosclerosis and explore the underlying mechanisms. Our results showed that administration of BCA promoted reverse cholesterol transport (RCT), improved plasma lipid profile, and decreased serum proinflammatory cytokine levels and atherosclerotic lesion area in apoE-/- mice fed a Western diet. In THP-1 macrophage-derived foam cells, treatment with BCA upregulated ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG1 expression and facilitated subsequent cholesterol efflux and diminished intracellular cholesterol contents by activating the peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) and PPARγ/heme oxygenase 1 (HO-1) pathways. BCA also activated these two signaling pathways to inhibit the secretion of proinflammatory cytokines. Taken together, these findings suggest that BCA is protective against atherosclerosis by inhibiting lipid accumulation and inflammatory response through the PPARγ/LXRα and PPARγ/HO-1 pathways. BCA may be an attractive drug for the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
|
74
|
Discovery of novel liver X receptor inverse agonists as lipogenesis inhibitors. Eur J Med Chem 2020; 206:112793. [DOI: 10.1016/j.ejmech.2020.112793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
|
75
|
He H, Wang J, Yannie PJ, Korzun WJ, Yang H, Ghosh S. Nanoparticle-based "Two-pronged" approach to regress atherosclerosis by simultaneous modulation of cholesterol influx and efflux. Biomaterials 2020; 260:120333. [PMID: 32853832 PMCID: PMC7530139 DOI: 10.1016/j.biomaterials.2020.120333] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 02/08/2023]
Abstract
Reduction of lipoprotein uptake by macrophages and stimulation of cholesterol efflux are two essential steps required for atherosclerotic plaque regression. We used the optimized mannose-functionalized dendrimeric nanoparticle (mDNP)-based platform for macrophage-specific delivery of therapeutics to simultaneously deliver SR-A siRNA (to reduce LDL uptake) and LXR ligand (LXR-L, to stimulate cholesterol efflux) - a novel "Two-pronged" approach to facilitate plaque regression. mDNP-mediated delivery of SR-A siRNA led to a significant reduction in SR-A expression with a corresponding decrease in uptake of oxLDL. Delivery of LXR-L increased expression of ABCA1/G1 and cholesterol efflux. Combined delivery of siRNA and LXR-L led to a significantly greater decrease in macrophage cholesterol content compared to either treatment alone. Administration of this in vitro optimized formulation of mDNP complexed with SR-A-siRNA and LXR-L (Two-pronged complex) to atherosclerotic LDLR-/- mice fed western diet (TD88137) led to significant regression of atherosclerotic plaques with a corresponding decrease in aortic cholesterol content.
Collapse
Affiliation(s)
- Hongliang He
- Department of Internal Medicine, VCU Medical Center, Richmond, VA, 23298, USA; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Jing Wang
- Department of Internal Medicine, VCU Medical Center, Richmond, VA, 23298, USA
| | - Paul J Yannie
- Hunter Homes McGuire VA Medical Center, Richmond, VA, 23249, USA
| | - William J Korzun
- Department of Clinical and Laboratory Sciences VCU Medical Center, Richmond, VA, 23298, USA
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Shobha Ghosh
- Department of Internal Medicine, VCU Medical Center, Richmond, VA, 23298, USA; Hunter Homes McGuire VA Medical Center, Richmond, VA, 23249, USA.
| |
Collapse
|
76
|
Chan CT, Fenn AM, Harder NK, Mindur JE, McAlpine CS, Patel J, Valet C, Rattik S, Iwamoto Y, He S, Anzai A, Kahles F, Poller WC, Janssen H, Wong LP, Fernandez-Hernando C, Koolbergen DR, van der Laan AM, Yvan-Charvet L, Sadreyev RI, Nahrendorf M, Westerterp M, Tall AR, Gustafsson JA, Swirski FK. Liver X receptors are required for thymic resilience and T cell output. J Exp Med 2020; 217:e20200318. [PMID: 32716519 PMCID: PMC7537384 DOI: 10.1084/jem.20200318] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/07/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
The thymus is a primary lymphoid organ necessary for optimal T cell development. Here, we show that liver X receptors (LXRs)-a class of nuclear receptors and transcription factors with diverse functions in metabolism and immunity-critically contribute to thymic integrity and function. LXRαβ-deficient mice develop a fatty, rapidly involuting thymus and acquire a shrunken and prematurely immunoinhibitory peripheral T cell repertoire. LXRαβ's functions are cell specific, and the resulting phenotypes are mutually independent. Although thymic macrophages require LXRαβ for cholesterol efflux, thymic epithelial cells (TECs) use LXRαβ for self-renewal and thymocytes for negative selection. Consequently, TEC-derived LXRαβ protects against homeostatic premature involution and orchestrates thymic regeneration following stress, while thymocyte-derived LXRαβ limits cell disposal during negative selection and confers heightened sensitivity to experimental autoimmune encephalomyelitis. These results identify three distinct but complementary mechanisms by which LXRαβ governs T lymphocyte education and illuminate LXRαβ's indispensable roles in adaptive immunity.
Collapse
Affiliation(s)
- Christopher T. Chan
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ashley M. Fenn
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Nina K. Harder
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - John E. Mindur
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Cameron S. McAlpine
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Jyoti Patel
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Colin Valet
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Sara Rattik
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yoshiko Iwamoto
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Shun He
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Atsushi Anzai
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Florian Kahles
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Wolfram C. Poller
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Henrike Janssen
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Department of Comparative Medicine and Pathology, Yale University School of Medicine, New Haven, CT
| | - David R. Koolbergen
- Heart Center, Department of Cardiothoracic Surgery, Amsterdam Universitair Medische Centra, University of Amsterdam, Amsterdam, Netherlands
| | - Anja M. van der Laan
- Heart Center, Department of Cardiology, Amsterdam Universitair Medische Centra, University of Amsterdam, Amsterdam, Netherlands
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire, Atip-Avenir, Fédération Hospitalo-Universitaire Oncoage, Nice, France
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY
| | - Ruslan I. Sadreyev
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Marit Westerterp
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY
| | - Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX
| | - Filip K. Swirski
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
77
|
Tan LX, Germer CJ, La Cunza N, Lakkaraju A. Complement activation, lipid metabolism, and mitochondrial injury: Converging pathways in age-related macular degeneration. Redox Biol 2020; 37:101781. [PMID: 33162377 PMCID: PMC7767764 DOI: 10.1016/j.redox.2020.101781] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The retinal pigment epithelium (RPE) is the primary site of injury in non-neovascular age-related macular degeneration or dry AMD. Polymorphisms in genes that regulate complement activation and cholesterol metabolism are strongly associated with AMD, but the biology underlying disease-associated variants is not well understood. Here, we highlight recent studies that have used molecular, biochemical, and live-cell imaging methods to elucidate mechanisms by which aging-associated insults conspire with AMD genetic risk variants to tip the balance towards disease. We discuss how critical functions including lipid metabolism, autophagy, complement regulation, and mitochondrial dynamics are compromised in the RPE, and how a deeper understanding of these mechanisms has helped identify promising therapeutic targets to preserve RPE homeostasis in AMD.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
| | - Colin J Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Nilsa La Cunza
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA; Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
78
|
Seneviratne U, Huang Z, Am Ende CW, Butler TW, Cleary L, Dresselhaus E, Evrard E, Fisher EL, Green ME, Helal CJ, Humphrey JM, Lanyon LF, Marconi M, Mukherjee P, Sciabola S, Steppan CM, Sylvain EK, Tuttle JB, Verhoest PR, Wager TT, Xie L, Ramaswamy G, Johnson DS, Pettersson M. Photoaffinity Labeling and Quantitative Chemical Proteomics Identify LXRβ as the Functional Target of Enhancers of Astrocytic apoE. Cell Chem Biol 2020; 28:148-157.e7. [PMID: 32997975 DOI: 10.1016/j.chembiol.2020.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/17/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022]
Abstract
Utilizing a phenotypic screen, we identified chemical matter that increased astrocytic apoE secretion in vitro. We designed a clickable photoaffinity probe based on a pyrrolidine lead compound and carried out probe-based quantitative chemical proteomics in human astrocytoma CCF-STTG1 cells to identify liver x receptor β (LXRβ) as the target. Binding of the small molecule ligand stabilized LXRβ, as shown by cellular thermal shift assay (CETSA). In addition, we identified a probe-modified peptide by mass spectrometry and proposed a model where the photoaffinity probe is bound in the ligand-binding pocket of LXRβ. Taken together, our findings demonstrated that the lead chemical matter bound directly to LXRβ, and our results highlight the power of chemical proteomic approaches to identify the target of a phenotypic screening hit. Additionally, the LXR photoaffinity probe and lead compound described herein may serve as valuable tools to further evaluate the LXR pathway.
Collapse
Affiliation(s)
| | - Zhen Huang
- Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | | | - Todd W Butler
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Leah Cleary
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | | | - Edelweiss Evrard
- Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | - Ethan L Fisher
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Michael E Green
- Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | | | - John M Humphrey
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | | | - Michael Marconi
- Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | | | - Simone Sciabola
- Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | - Claire M Steppan
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Emily K Sylvain
- Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | - Jamison B Tuttle
- Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | | | - Travis T Wager
- Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | - Longfei Xie
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | | | | | - Martin Pettersson
- Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA.
| |
Collapse
|
79
|
He P, Gelissen IC, Ammit AJ. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: cholesterol-dependent and - independent signaling pathways with relevance to inflammatory lung disease. Respir Res 2020; 21:250. [PMID: 32977800 PMCID: PMC7519545 DOI: 10.1186/s12931-020-01515-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The role of the ATP binding cassette transporter A1 (ABCA1) in maintaining cellular lipid homeostasis in cardiovascular disease is well established. More recently, the important beneficial role played by ABCA1 in modulating pathogenic disease mechanisms, such as inflammation, in a broad range of chronic conditions has been realised. These studies position ABCA1 as a potential therapeutic target in a diverse range of diseases where inflammation is an underlying cause. Chronic respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD) are driven by inflammation, and as such, there is now a growing recognition that we need a greater understanding of the signaling pathways responsible for regulation of ABCA1 expression in this clinical context. While the signaling pathways responsible for cholesterol-mediated ABCA1 expression have been clearly delineated through decades of studies in the atherosclerosis field, and thus far appear to be translatable to the respiratory field, less is known about the cholesterol-independent signaling pathways that can modulate ABCA1 expression in inflammatory lung disease. This review will identify the various signaling pathways and ligands that are associated with the regulation of ABCA1 expression and may be exploited in future as therapeutic targets in the setting of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Patrick He
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ingrid C Gelissen
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
80
|
Curley S, Gall J, Byrne R, Yvan‐Charvet L, McGillicuddy FC. Metabolic Inflammation in Obesity—At the Crossroads between Fatty Acid and Cholesterol Metabolism. Mol Nutr Food Res 2020; 65:e1900482. [DOI: 10.1002/mnfr.201900482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Sean Curley
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| | - Julie Gall
- University of Nice Unité Mixte de Recherce (UMR) Institut National de la Santé et de la Recherche Médicale U1065 062104 Nice Cedex 3 France
| | - Rachel Byrne
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| | - Laurent Yvan‐Charvet
- University of Nice Unité Mixte de Recherce (UMR) Institut National de la Santé et de la Recherche Médicale U1065 062104 Nice Cedex 3 France
| | - Fiona C. McGillicuddy
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| |
Collapse
|
81
|
Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. MicroRNA sequences modulating inflammation and lipid accumulation in macrophage “foam” cells: Implications for atherosclerosis. World J Cardiol 2020; 12:303-333. [PMID: 32843934 PMCID: PMC7415235 DOI: 10.4330/wjc.v12.i7.303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of macrophage “foam” cells, laden with cholesterol and cholesteryl ester, within the intima of large arteries, is a hallmark of early “fatty streak” lesions which can progress to complex, multicellular atheromatous plaques, involving lipoproteins from the bloodstream and cells of the innate and adaptive immune response. Sterol accumulation triggers induction of genes encoding proteins mediating the atheroprotective cholesterol efflux pathway. Within the arterial intima, however, this mechanism is overwhelmed, leading to distinct changes in macrophage phenotype and inflammatory status. Over the last decade marked gains have been made in understanding of the epigenetic landscape which influence macrophage function, and in particular the importance of small non-coding micro-RNA (miRNA) sequences in this context. This review identifies some of the miRNA sequences which play a key role in regulating “foam” cell formation and atherogenesis, highlighting sequences involved in cholesterol accumulation, those influencing inflammation in sterol-loaded cells, and novel sequences and pathways which may offer new strategies to influence macrophage function within atherosclerotic lesions.
Collapse
Affiliation(s)
- Richard James Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Janice Marie Walsh Taylor
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Yvonne Dempsie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| |
Collapse
|
82
|
Plascencia-Villa G, Perry G. Status and future directions of clinical trials in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:3-50. [PMID: 32739008 DOI: 10.1016/bs.irn.2020.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) senile plaques and neurofibrillary tangles of tau are generally recognized as the culprits of Alzheimer's disease (AD) and related dementia. About 25 years ago, the amyloid cascade hypotheses postulated a direct correlation of plaques with the development of AD, and it has been the dominant theory since then. In this period, more than 200 clinical trials focused mainly on targeting components of the Aβ cascade have dramatically failed, some of them in Phase III. With a greater than 99.6% failure rate at a cost of several billion from governments, industry, and private funders, therapeutic strategies targeting amyloid and tau are now under scrutiny. Therefore, it is time to reevaluate alternatives to targeting Aβ and tau as effective therapeutic strategies for AD. The diagnosis of AD is currently based on medical examination of symptoms including tests to assess memory impairment, attention, language, and other thinking skills. This is complemented with brain scans, such as computed tomography, magnetic resonance imaging, or positron emission tomography with the help of imaging probes targeting Aβ or tau deposits. This approach has contributed to the tunnel vision focus on Aβ and tau as the main culprits of AD. However, events upstream of these proteopathies (age-related impaired neuronal bioenergetics, lysosome function, neurotrophic signaling, and neuroinflammation, among others) are almost surely where the development of alternative therapeutic interventions should be targeted. Here, we present the current status of therapeutic candidates targeting diverse mechanisms and strategies including Aβ and tau, proteins involved in Aβ production and trafficking (ApoE, α/β/γ-secretases), neuroinflammation, neurotransmitters, neuroprotective agents antimicrobials, and gene and stem cell therapy. There are currently around 33 compounds in Phase III, 78 in Phase II, and 32 more in Phase I trials. With the current world health crisis of increased dementia in a rapidly aging population, effective AD therapies are desperately needed.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States
| | - George Perry
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States.
| |
Collapse
|
83
|
Vieira CP, Fortmann SD, Hossain M, Longhini AL, Hammer SS, Asare-Bediako B, Crossman DK, Sielski MS, Adu-Agyeiwaah Y, Dupont M, Floyd JL, Li Calzi S, Lydic T, Welner RS, Blanchard GJ, Busik JV, Grant MB. Selective LXR agonist DMHCA corrects retinal and bone marrow dysfunction in type 2 diabetes. JCI Insight 2020; 5:137230. [PMID: 32641586 DOI: 10.1172/jci.insight.137230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
In diabetic dyslipidemia, cholesterol accumulates in the plasma membrane, decreasing fluidity and thereby suppressing the ability of cells to transduce ligand-activated signaling pathways. Liver X receptors (LXRs) make up the main cellular mechanism by which intracellular cholesterol is regulated and play important roles in inflammation and disease pathogenesis. N, N-dimethyl-3β-hydroxy-cholenamide (DMHCA), a selective LXR agonist, specifically activates the cholesterol efflux arm of the LXR pathway without stimulating triglyceride synthesis. In this study, we use a multisystem approach to understand the effects and molecular mechanisms of DMHCA treatment in type 2 diabetic (db/db) mice and human circulating angiogenic cells (CACs), which are hematopoietic progenitor cells with vascular reparative capacity. We found that DMHCA is sufficient to correct retinal and BM dysfunction in diabetes, thereby restoring retinal structure, function, and cholesterol homeostasis; rejuvenating membrane fluidity in CACs; hampering systemic inflammation; and correcting BM pathology. Using single-cell RNA sequencing on lineage-sca1+c-Kit+ (LSK) hematopoietic stem cells (HSCs) from untreated and DMHCA-treated diabetic mice, we provide potentially novel insights into hematopoiesis and reveal DMHCA's mechanism of action in correcting diabetic HSCs by reducing myeloidosis and increasing CACs and erythrocyte progenitors. Taken together, these findings demonstrate the beneficial effects of DMHCA treatment on diabetes-induced retinal and BM pathology.
Collapse
Affiliation(s)
| | - Seth D Fortmann
- Department of Ophthalmology and Visual Sciences and.,Medical Scientist Training Program (MSTP), School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | | | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | - Todd Lydic
- Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, Michigan, USA
| | - Robert S Welner
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gary J Blanchard
- Medical Scientist Training Program (MSTP), School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
84
|
Pharmacokinetics of T0901317 in mouse serum and tissues using a validated UFLC-IT-TOF/MS method. J Pharm Biomed Anal 2020; 189:113420. [PMID: 32593849 DOI: 10.1016/j.jpba.2020.113420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/08/2023]
Abstract
T0901317, a liver X receptors (LXRs) agonist with high-affinity, is widely used to explore the functions of LXRs in various diseases such as atherosclerosis and Alzheimer's disease. However, there is currently little information available about the pharmacokinetics (PK) behavior of T0901317. Here we established a novel ultrafast liquid chromatography-high resolution mass spectrometry method to quantify the concentration of T0901317 in serum, liver, and brain. The chromatographic separation was attained on a C18 (2.1 × 100 mm, 1.8 μm) column using acetonitrile and 0.1 % of formic acid in water as mobile phase operated in gradient elution mode. The mass detection was carried out using negative ions m/z 479.9809 and 322.0882 for T0901317 and internal standard, respectively. The proposed method was fully validated according to the FDA guidelines, and it generally provides good results in terms of linearity (r2 > 0.99), precision (RSD < 18 % and 12 % for LLOQ and other QC levels, respectively), accuracy (between 92.30 % and 108.16 %), and matrix effect (between 86.56 % and 113.81 %). We then for the first time determined and computed the PK parameters of T0901317 in mouse after intraperitoneal administration of a 20 mg/kg dosage. The peak times (Tmax) in serum, liver, and brain were 1.5, 1.5, and 4 h, respectively, while the half-lives (t1/2) were 4.9, 3.3, and 4.5 h, respectively. Taken together, our results provide a significant choice to study the PK property of T0901317, from which the design of the dosing and sampling protocols of LXRs receptor-antagonist experiments employing T0901317 can also benefit.
Collapse
|
85
|
Madenspacher JH, Morrell ED, Gowdy KM, McDonald JG, Thompson BM, Muse G, Martinez J, Thomas S, Mikacenic C, Nick JA, Abraham E, Garantziotis S, Stapleton RD, Meacham JM, Thomassen MJ, Janssen WJ, Cook DN, Wurfel MM, Fessler MB. Cholesterol 25-hydroxylase promotes efferocytosis and resolution of lung inflammation. JCI Insight 2020; 5:137189. [PMID: 32343675 DOI: 10.1172/jci.insight.137189] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alveolar macrophages (AM) play a central role in initiation and resolution of lung inflammation, but the integration of these opposing core functions is poorly understood. AM expression of cholesterol 25-hydroxylase (CH25H), the primary biosynthetic enzyme for 25-hydroxycholesterol (25HC), far exceeds the expression of macrophages in other tissues, but no role for CH25H has been defined in lung biology. As 25HC is an agonist for the antiinflammatory nuclear receptor, liver X receptor (LXR), we speculated that CH25H might regulate inflammatory homeostasis in the lung. Here, we show that, of natural oxysterols or sterols, 25HC is induced in the inflamed lung of mice and humans. Ch25h-/- mice fail to induce 25HC and LXR target genes in the lung after LPS inhalation and exhibit delayed resolution of airway neutrophilia, which can be rescued by systemic treatment with either 25HC or synthetic LXR agonists. LXR-null mice also display delayed resolution, suggesting that native oxysterols promote resolution. During resolution, Ch25h is induced in macrophages upon their encounter with apoptotic cells and is required for LXR-dependent prevention of AM lipid overload, induction of Mertk, efferocytic resolution of airway neutrophilia, and induction of TGF-β. CH25H/25HC/LXR is, thus, an inducible metabolic axis that programs AMs for efferocytic resolution of inflammation.
Collapse
Affiliation(s)
- Jennifer H Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Eric D Morrell
- Section of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, Seattle, Washington, USA
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, and.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bonne M Thompson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ginger Muse
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Jennifer Martinez
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Seddon Thomas
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Carmen Mikacenic
- Section of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, Seattle, Washington, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Edward Abraham
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stavros Garantziotis
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Renee D Stapleton
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Julie M Meacham
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Mary Jane Thomassen
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | - Mark M Wurfel
- Section of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, Seattle, Washington, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
86
|
Fan Q, Nørgaard RC, Grytten I, Ness CM, Lucas C, Vekterud K, Soedling H, Matthews J, Lemma RB, Gabrielsen OS, Bindesbøll C, Ulven SM, Nebb HI, Grønning-Wang LM, Sæther T. LXRα Regulates ChREBPα Transactivity in a Target Gene-Specific Manner through an Agonist-Modulated LBD-LID Interaction. Cells 2020; 9:cells9051214. [PMID: 32414201 PMCID: PMC7290792 DOI: 10.3390/cells9051214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 01/02/2023] Open
Abstract
The cholesterol-sensing nuclear receptor liver X receptor (LXR) and the glucose-sensing transcription factor carbohydrate responsive element-binding protein (ChREBP) are central players in regulating glucose and lipid metabolism in the liver. More knowledge of their mechanistic interplay is needed to understand their role in pathological conditions like fatty liver disease and insulin resistance. In the current study, LXR and ChREBP co-occupancy was examined by analyzing ChIP-seq datasets from mice livers. LXR and ChREBP interaction was determined by Co-immunoprecipitation (CoIP) and their transactivity was assessed by real-time quantitative polymerase chain reaction (qPCR) of target genes and gene reporter assays. Chromatin binding capacity was determined by ChIP-qPCR assays. Our data show that LXRα and ChREBPα interact physically and show a high co-occupancy at regulatory regions in the mouse genome. LXRα co-activates ChREBPα and regulates ChREBP-specific target genes in vitro and in vivo. This co-activation is dependent on functional recognition elements for ChREBP but not for LXR, indicating that ChREBPα recruits LXRα to chromatin in trans. The two factors interact via their key activation domains; the low glucose inhibitory domain (LID) of ChREBPα and the ligand-binding domain (LBD) of LXRα. While unliganded LXRα co-activates ChREBPα, ligand-bound LXRα surprisingly represses ChREBPα activity on ChREBP-specific target genes. Mechanistically, this is due to a destabilized LXRα:ChREBPα interaction, leading to reduced ChREBP-binding to chromatin and restricted activation of glycolytic and lipogenic target genes. This ligand-driven molecular switch highlights an unappreciated role of LXRα in responding to nutritional cues that was overlooked due to LXR lipogenesis-promoting function.
Collapse
Affiliation(s)
- Qiong Fan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Rikke Christine Nørgaard
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Ivar Grytten
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway;
| | - Cecilie Maria Ness
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Christin Lucas
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Kristin Vekterud
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Helen Soedling
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Roza Berhanu Lemma
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway; (R.B.L.); (O.S.G.)
| | - Odd Stokke Gabrielsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0317 Oslo, Norway; (R.B.L.); (O.S.G.)
| | - Christian Bindesbøll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
| | - Stine Marie Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Hilde Irene Nebb
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Line Mariann Grønning-Wang
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (R.C.N.); (C.M.N.); (C.L.); (H.S.); (J.M.); (S.M.U.); (H.I.N.); (L.M.G.-W.)
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway; (Q.F.); (K.V.); (C.B.)
- Correspondence: ; Tel.: +47-22-851510
| |
Collapse
|
87
|
Alvarez LD, Dansey MV, Ogara MF, Peña CI, Houtman R, Veleiro AS, Pecci A, Burton G. Cholestenoic acid analogues as inverse agonists of the liver X receptors. J Steroid Biochem Mol Biol 2020; 199:105585. [PMID: 31931135 DOI: 10.1016/j.jsbmb.2020.105585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/27/2019] [Accepted: 01/07/2020] [Indexed: 01/18/2023]
Abstract
Liver X Receptors (LXRs) are ligand dependent transcription factors activated by oxidized cholesterol metabolites (oxysterols) that play fundamental roles in the transcriptional control of lipid metabolism, cholesterol transport and modulation of inflammatory responses. In the last decade, LXRs have become attractive pharmacological targets for intervention in human metabolic diseases and thus, several efforts have concentrated on the development of synthetic analogues able to modulate LXR transcriptional response. In this sense, we have previously found that cholestenoic acid analogues with a modified side chain behave as LXR inverse agonists. To further investigate the structure-activity relationships and to explore how cholestenoic acid derivatives interact with the LXRs, we evaluated the LXR biological activity of new analogues containing a C24-C25 double bond. Furthermore, a microarray assay was performed to evaluate the recruitment of coregulators to recombinant LXR LBD upon ligand binding. Also, conventional and accelerated molecular dynamics simulations were applied to gain insight on the molecular determinants involved in the inverse agonism. As LXR inverse agonists emerge as very promising candidates to control LXR activity, the cholestenoic acid analogues here depicted constitute a new relevant steroidal scaffold to inhibit LXR action.
Collapse
Affiliation(s)
- Lautaro D Alvarez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, UMYMFOR, Buenos Aires, Argentina
| | - María V Dansey
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, UMYMFOR, Buenos Aires, Argentina
| | - María F Ogara
- CONICET-Universidad de Buenos Aires, IFIBYNE, Buenos Aires, Argentina
| | - Carina I Peña
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, UMYMFOR, Buenos Aires, Argentina
| | - René Houtman
- Pamgene International BV, 5211 HH Den Bosch, The Netherlands
| | - Adriana S Veleiro
- CONICET-Universidad de Buenos Aires, UMYMFOR, Buenos Aires, Argentina
| | - Adali Pecci
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, IFIBYNE, Buenos Aires, Argentina
| | - Gerardo Burton
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, UMYMFOR, Buenos Aires, Argentina.
| |
Collapse
|
88
|
Inhibitors of cellular stress overcome acute effects of ethanol on hippocampal plasticity and learning. Neurobiol Dis 2020; 141:104875. [PMID: 32334031 DOI: 10.1016/j.nbd.2020.104875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
Ethanol intoxication can produce marked changes in cognitive function including states in which the ability to learn and remember new information is completely disrupted. These defects likely reflect changes in the synaptic plasticity thought to underlie memory formation. We have studied mechanisms contributing to the adverse effects of ethanol on hippocampal long-term potentiation (LTP) and provided evidence that ethanol-mediated LTP inhibition involves a form of metaplasticity resulting from local metabolism of ethanol to acetaldehyde and untimely activation of N-methyl-d-aspartate receptors (NMDARs), both of which are neuronal stressors. In the present studies, we sought to understand the role of cellular stress in LTP defects, and demonstrate that ethanol's effects on LTP in the CA1 hippocampal region are overcome by agents that inhibit cellular stress responses, including ISRIB, a specific inhibitor of integrated stress responses, and GW3965, an agonist that acts at liver X receptors (LXRs) and dampens cellular stress. The agents that alter LTP inhibition also prevent the adverse effects of acute ethanol on one trial inhibitory avoidance learning. Unexpectedly, we found that the LXR agonist but not ISRIB overcomes effects of ethanol on synaptic responses mediated by N-methyl-d-aspartate receptors (NMDARs). These results have implications for understanding the adverse effects of ethanol and possibly for identifying novel paths to treatments that can prevent or overcome ethanol-induced cognitive dysfunction.
Collapse
|
89
|
Yao PL, Peavey J, Malek G. Leveraging Nuclear Receptors as Targets for Pathological Ocular Vascular Diseases. Int J Mol Sci 2020; 21:ijms21082889. [PMID: 32326149 PMCID: PMC7215709 DOI: 10.3390/ijms21082889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculogenesis and angiogenesis are physiological mechanisms occurring throughout the body. Any disruption to the precise balance of blood vessel growth necessary to support healthy tissue, and the inhibition of abnormal vessel sprouting has the potential to negatively impact stages of development and/or healing. Therefore, the identification of key regulators of these vascular processes is critical to identifying therapeutic means by which to target vascular-associated compromises and complications. Nuclear receptors are a family of transcription factors that have been shown to be involved in modulating different aspects of vascular biology in many tissues systems. Most recently, the role of nuclear receptors in ocular biology and vasculopathies has garnered interest. Herein, we review studies that have used in vitro assays and in vivo models to investigate nuclear receptor-driven pathways in two ocular vascular diseases associated with blindness, wet or exudative age-related macular degeneration, and proliferative diabetic retinopathy. The potential therapeutic targeting of nuclear receptors for ocular diseases is also discussed.
Collapse
Affiliation(s)
- Pei-Li Yao
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27503, USA; (P.-L.Y.); (J.P.)
| | - Jeremy Peavey
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27503, USA; (P.-L.Y.); (J.P.)
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27503, USA; (P.-L.Y.); (J.P.)
- Department of Pathology, Duke University School of Medicine, Durham, NC 27503, USA
- Correspondence: ; Tel.: +919-684-0820
| |
Collapse
|
90
|
Fan W, Zhang R, Han D, Jiang Z, Li S, Zhang J, Li Y, Wang Y, Cao F. Reduced Sirtuin1 signalling exacerbates diabetic mice hindlimb ischaemia injury and inhibits the protective effect of a liver X receptor agonist. J Cell Mol Med 2020; 24:5476-5490. [PMID: 32286000 PMCID: PMC7214142 DOI: 10.1111/jcmm.15201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus causes endothelial dysfunction, which further exacerbates peripheral arterial disease (PAD). Improving endothelial function via reducing endothelial oxidative stress (OS) may be a promising therapy for diabetic PAD. Activation of liver X receptor (LXR) inhibits excessive OS and provides protective effects on endothelial cells in diabetic individuals. Therefore, we investigated the effects of LXR agonist treatment on diabetic PAD with a focus on modulating endothelial OS. We used a streptozotocin‐induced diabetes mouse model combined with a hindlimb ischaemia (HLI) injury to mimic diabetic PAD, which was followed by LXR agonist treatment. In our study, the LXR agonist T0901317 protected against HLI injury in diabetic mice by attenuating endothelial OS and stimulating angiogenesis. However, a deficiency in endothelial Sirtuin1 (SIRT1) largely inhibited the therapeutic effects of T0901317. Furthermore, we found that the underlying therapeutic mechanisms of T0901317 were related to SIRT1 and non‐SIRT1 signalling, and the isoform LXRβ was involved in LXR agonist‐elicited SIRT1 regulation. In conclusion, LXR agonist treatment protected against HLI injury in diabetic mice via mitigating endothelial OS and stimulating cellular viability and angiogenesis by LXRβ, which elicited both SIRT1‐mediated and non‐SIRT1‐mediated signalling pathways. Therefore, LXR agonist treatment may be a promising therapeutic strategy for diabetic PAD.
Collapse
Affiliation(s)
- Wensi Fan
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases2nd Medical CenterChinese PLA General HospitalBeijingChina
| | - Ran Zhang
- Department of Cardiology1st Medical CenterChinese PLA General HospitalBeijingChina
| | - Dong Han
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXianChina
| | - Zhenhua Jiang
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXianChina
| | - Shuang Li
- Department of CardiologyThe General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu610083China
| | - Jibin Zhang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases2nd Medical CenterChinese PLA General HospitalBeijingChina
| | - Yanhua Li
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases2nd Medical CenterChinese PLA General HospitalBeijingChina
| | - Yabin Wang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases2nd Medical CenterChinese PLA General HospitalBeijingChina
- Department of Cardiology1st Medical CenterChinese PLA General HospitalBeijingChina
| | - Feng Cao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases2nd Medical CenterChinese PLA General HospitalBeijingChina
- Department of Cardiology1st Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
91
|
Sohrabi Y, Sonntag GVH, Braun LC, Lagache SMM, Liebmann M, Klotz L, Godfrey R, Kahles F, Waltenberger J, Findeisen HM. LXR Activation Induces a Proinflammatory Trained Innate Immunity-Phenotype in Human Monocytes. Front Immunol 2020; 11:353. [PMID: 32210962 PMCID: PMC7077358 DOI: 10.3389/fimmu.2020.00353] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/13/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives The concept of trained innate immunity describes a long-term proinflammatory memory in innate immune cells. Trained innate immunity is regulated through reprogramming of cellular metabolic pathways including cholesterol and fatty acid synthesis. Here, we have analyzed the role of Liver X Receptor (LXR), a key regulator of cholesterol and fatty acid homeostasis, in trained innate immunity. Methods and Results Human monocytes were isolated and incubated with different stimuli for 24 h, including LXR agonists, antagonists and Bacillus Calmette-Guerin (BCG) vaccine. After 5 days resting time, cells were restimulated with the TLR2-agonist Pam3cys. LXR activation did not only increase BCG trained immunity, but also induced a long-term inflammatory activation by itself. This inflammatory activation by LXR agonists was accompanied by characteristic features of trained innate immunity, such as activating histone marks on inflammatory gene promoters and metabolic reprogramming with increased lactate production and decreased oxygen consumption rate. Mechanistically, LXR priming increased cellular acetyl-CoA levels and was dependent on the activation of the mevalonate pathway and IL-1β signaling. In contrast to mevalonate pathway inhibition, blocking fatty acid synthesis further increased proinflammatory priming by LXR. Conclusion We demonstrate that LXR activation induces a proinflammatory trained immunity phenotype in human monocytes through epigenetic and metabolic reprogramming. Our data reveal important novel aspects of LXR signaling in innate immunity.
Collapse
Affiliation(s)
- Yahya Sohrabi
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Glenn V H Sonntag
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Laura C Braun
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Sina M M Lagache
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Marie Liebmann
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luisa Klotz
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Rinesh Godfrey
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Florian Kahles
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Johannes Waltenberger
- Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Hannes M Findeisen
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| |
Collapse
|
92
|
Rewiring of Lipid Metabolism and Storage in Ovarian Cancer Cells after Anti-VEGF Therapy. Cells 2019; 8:cells8121601. [PMID: 31835444 PMCID: PMC6953010 DOI: 10.3390/cells8121601] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022] Open
Abstract
Anti-angiogenic therapy triggers metabolic alterations in experimental and human tumors, the best characterized being exacerbated glycolysis and lactate production. By using both Liquid Chromatography-Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance (NMR) analysis, we found that treatment of ovarian cancer xenografts with the anti-Vascular Endothelial Growth Factor (VEGF) neutralizing antibody bevacizumab caused marked alterations of the tumor lipidomic profile, including increased levels of triacylglycerols and reduced saturation of lipid chains. Moreover, transcriptome analysis uncovered up-regulation of pathways involved in lipid metabolism. These alterations were accompanied by increased accumulation of lipid droplets in tumors. This phenomenon was reproduced under hypoxic conditions in vitro, where it mainly depended from uptake of exogenous lipids and was counteracted by treatment with the Liver X Receptor (LXR)-agonist GW3965, which inhibited cancer cell viability selectively under reduced serum conditions. This multi-level analysis indicates alterations of lipid metabolism following anti-VEGF therapy in ovarian cancer xenografts and suggests that LXR-agonists might empower anti-tumor effects of bevacizumab.
Collapse
|
93
|
Liu Y, Izem L, Morton RE. Identification of a hormone response element that mediates suppression of APOF by LXR and PPARα agonists. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158583. [PMID: 31812787 DOI: 10.1016/j.bbalip.2019.158583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022]
Abstract
Apolipoprotein F (ApoF) regulates cholesteryl ester transfer protein activity. We previously observed that hepatic APOF mRNA levels are decreased by high fat, cholesterol-enriched diets. Here we show in human liver C3A cells that APOF mRNA levels are reduced by agonists of LXR and PPARα nuclear receptors. This negative regulation requires co-incubation with the RXR agonist, retinoic acid. Bioinformatic analysis of the ~2 kb sequence upstream of the APOF promoter identified one potential LXR and 4 potential PPARα binding sites clustered between nucleotides -2007 and -1961. ChIP analysis confirmed agonist-dependent binding of LXRα, PPARα, and RXRα to this hormone response element complex (HREc). A luciferase reporter containing the 2 kb 5' APOF sequence was negatively regulated by LXR and PPARα ligands as seen in cells. This regulation was maintained in constructs lacking the ~1700 nucleotides between the HREc and the APOF proximal promoter. Mutations of the HREc that disrupted LXRα and PPARα binding led to the loss of reporter construct inhibition by agonists of these nuclear receptors. siRNA knockdown studies showed that APOF gene regulation by LXRα or PPARα agonists did not require an interaction between these two nuclear receptors. Thus, APOF is subject to negative regulation by agonist-activated LXR or PPARα nuclear receptors binding to a regulatory element ~1900 bases 5' to the APOF promoter. High fat, cholesterol-enriched diets likely reduce APOF gene expression via these receptors interacting at this regulatory site.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States of America
| | - Lahoucine Izem
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States of America
| | - Richard E Morton
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States of America.
| |
Collapse
|
94
|
He P, Smith A, Gelissen IC, Ammit AJ. The effect of statins and the synthetic LXR agonist T0901317 on expression of ABCA1 transporter protein in human lung epithelial cell lines in vitro. Pharmacol Rep 2019; 71:1219-1226. [PMID: 31669886 DOI: 10.1016/j.pharep.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The pathogenesis of chronic obstructive pulmonary disease (COPD) is associated with dyslipidemia, an established co-morbidity. Statins treat hypercholesterolemia, but more recently have been trailed in the setting of COPD for their potential anti-inflammatory benefits. The outcomes of prospective trials however have been inconsistent. Thus, we hypothesize that the variation in results may have been due to statin-induced downregulation of ATP-binding cassette transporter A1 (ABCA1), thereby reducing cholesterol export. This study aims to elucidate whether statin treatment in a cellular model of COPD leads to a decrease in ABCA1 protein expression. METHODS To mimic the inflammatory environment of COPD, two commonly used lung epithelial cell lines (BEAS-2B and A549) were treated with tumor necrosis factor (TNF), and co-treated with cholesterol/25-hydroxycholesterol (25-OH) to mimic dyslipidemia. ABCA1 protein was detected by Western Blotting. RESULTS We unexpectedly showed that statins did not affect ABCA1 expression. However, the LXR agonist T0901317 significantly increased ABCA1 expression in both cell lines, while TNF, cholesterol or 25-OH induced ABCA1 protein upregulation in BEAS-2B cells, indicating cell line differences in response. There was also evidence of synergistic impacts of combined treatments on ABCA1 upregulation in BEAS-2B cells. CONCLUSION Statins did not have an impact on ABCA1 expression in lung epithelial cell lines, disproving our original hypothesis. However, we showed for the first time, the effect of the inflammatory cytokine TNF, cholesterol/25-OH, statins and the LXR agonist T0901317 on expression of ABCA1 transporter protein in human lung epithelial cell lines in vitro. We hope that these in vitro studies may prove beneficial for addressing dyslipidemia in COPD in the future.
Collapse
Affiliation(s)
- Patrick He
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Aaron Smith
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | | | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
95
|
Melchor GS, Khan T, Reger JF, Huang JK. Remyelination Pharmacotherapy Investigations Highlight Diverse Mechanisms Underlying Multiple Sclerosis Progression. ACS Pharmacol Transl Sci 2019; 2:372-386. [PMID: 32259071 DOI: 10.1021/acsptsci.9b00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by a complex lesion microenvironment. Although much progress has been made in developing immunomodulatory treatments to reduce myelin damage and delay the progression of MS, there is a paucity in treatment options that address the multiple pathophysiological aspects of the disease. Currently available immune-centered therapies are able to reduce the immune-mediated damage exhibited in MS patients, however, they cannot rescue the eventual failure of remyelination or permanent neuronal damage that occurs as MS progresses. Recent advances have provided a better understanding of remyelination processes, specifically oligodendrocyte lineage cell progression following demyelination. Further there have been new findings highlighting various components of the lesion microenvironment that contribute to myelin repair and restored axonal health. In this review we discuss the complexities of myelin repair following immune-mediated damage in the CNS, the contribution of animal models of MS in providing insight on OL progression and myelin repair, and current and potential remyelination-centered therapeutic targets. As remyelination therapies continue to progress into clinical trials, we consider a dual approach targeting the inflammatory microenvironment and intrinsic remyelination mechanisms to be optimal in aiding MS patients.
Collapse
Affiliation(s)
- George S Melchor
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| | - Tahiyana Khan
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| | - Joan F Reger
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
96
|
Chen CH, Zhao JF, Hsu CP, Kou YR, Lu TM, Lee TS. The detrimental effect of asymmetric dimethylarginine on cholesterol efflux of macrophage foam cells: Role of the NOX/ROS signaling. Free Radic Biol Med 2019; 143:354-365. [PMID: 31437479 DOI: 10.1016/j.freeradbiomed.2019.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/07/2019] [Accepted: 08/18/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase inhibitor and has been proposed to be an independent risk factor for cardiovascular diseases. However, little is known about its role in the regulation of lipid metabolism. In this study, we investigated the effect of ADMA on cholesterol metabolism and its underlying molecular mechanism. METHODS Oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cells were used as an in vitro model. Apolipoprotein E-deficient (apoE-/-) hyperlipidemic mice were used as an in vivo model. Western blot analysis was used to evaluate protein expression. Luciferase reporter assays were used to assess the activity of promoters and transcription factors. Conventional assay kits were used to measure the levels of ADMA, cholesterol, triglycerides, and cytokines. RESULTS Treatment with oxLDL decreased the protein expression of dimethylarginine dimethylaminohydrolase-2 (DDAH-2) but not DDAH-1. Incubation with ADMA markedly increased oxLDL-induced lipid accumulation in macrophages. ADMA impaired cholesterol efflux following oxLDL challenge and downregulated the expression of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 by interfering with liver X receptor α (LXRα) expression and activity. Additionally, this inhibitory effect of ADMA on cholesterol metabolism was mediated through the activation of the NADPH oxidase/reactive oxygen species pathway. In vivo experiments revealed that chronic administration of ADMA for 4 weeks exacerbated systemic inflammation, decreased the aortic protein levels of ABCA1 and ABCG1, and impaired the capacity of reverse cholesterol transport, ultimately, leading to the progression of atherosclerosis in apoE-/- mice. CONCLUSION Our findings suggest that the ADMA/DDAH-2 axis plays a crucial role in regulating cholesterol metabolism in macrophage foam cells and atherosclerotic progression.
Collapse
Affiliation(s)
- Chia-Hui Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jin-Feng Zhao
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Chiao-Po Hsu
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu Ru Kou
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tse-Min Lu
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
97
|
Liver X Receptors and Male (In)fertility. Int J Mol Sci 2019; 20:ijms20215379. [PMID: 31671745 PMCID: PMC6862486 DOI: 10.3390/ijms20215379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Liver X receptors (LXRs) are ligand-dependent transcription factors acting as ‘cholesterol sensors’ to regulate lipid homeostasis in cells. The two isoforms, LXRα (NR1H3) and LXRβ (NR1H2), are differentially expressed, with the former expressed predominantly in metabolically active tissues and the latter more ubiquitously. Both are activated by oxidised cholesterol metabolites, endogenously produced oxysterols. LXRs have important roles in lipid metabolism and inflammation, plus a number of newly emerging roles. They are implicated in regulating lipid balance in normal male reproductive function and may provide a link between male infertility and lipid disorders and/or obesity. Studies from Lxr knockout mouse models provide compelling evidence to support this. More recently published data suggest distinct and overlapping roles of the LXR isoforms in the testis and recent evidence of a role for LXRs in human male fertility. This review summarises the current literature and explores the likely link between LXR, lipid metabolism and male fertility as part of a special issue on Liver X receptors in International Journal of Molecular Sciences.
Collapse
|
98
|
Inhibition of Chikungunya Virus Replication in Primary Human Fibroblasts by Liver X Receptor Agonist. Antimicrob Agents Chemother 2019; 63:AAC.01220-19. [PMID: 31307983 PMCID: PMC6709483 DOI: 10.1128/aac.01220-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/10/2019] [Indexed: 01/05/2023] Open
Abstract
The mosquito-borne chikungunya virus (CHIKV) causes acute pain and joint inflammation, and in recent years the virus has caused large epidemics in previously CHIKV-free geographic areas. To advance the understanding of host factors that antagonize CHIKV, we show that synthetic agonist of liver X receptor (LXR-623) inhibits CHIKV replication by upregulating the cholesterol exporter ABCA1 and that endogenous and pharmacological activation of interferon signaling pathway partners with LXR-623 to generate a superior antiviral state.
Collapse
|
99
|
Mouzat K, Chudinova A, Polge A, Kantar J, Camu W, Raoul C, Lumbroso S. Regulation of Brain Cholesterol: What Role Do Liver X Receptors Play in Neurodegenerative Diseases? Int J Mol Sci 2019; 20:E3858. [PMID: 31398791 PMCID: PMC6720493 DOI: 10.3390/ijms20163858] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Liver X Receptors (LXR) alpha and beta are two members of nuclear receptor superfamily documented as endogenous cholesterol sensors. Following conversion of cholesterol in oxysterol, both LXR isoforms detect intracellular concentrations and act as transcription factors to promote expression of target genes. Among their numerous physiological roles, they act as central cholesterol-lowering factors. In the central nervous system (CNS), cholesterol has been shown to be an essential determinant of brain function, particularly as a major constituent of myelin and membranes. In the brain, LXRs act as cholesterol central regulators, and, beyond this metabolic function, LXRs have additional roles such as providing neuroprotective effects and lowering neuroinflammation. In many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and multiple sclerosis (MS), dysregulations of cholesterol and oxysterol have been reported. In this paper, we propose to focus on recent advances in the knowledge of the LXRs roles on brain cholesterol and oxysterol homeostasis, neuroinflammation, neuroprotection, and their putative involvement in neurodegenerative disorders. We will discuss their potential use as candidates for both molecular diagnosis and as promising pharmacological targets in the treatment of ALS, AD, or MS patients.
Collapse
Affiliation(s)
- Kevin Mouzat
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France.
| | - Aleksandra Chudinova
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - Anne Polge
- Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Jovana Kantar
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, Inserm UMR1051, 34000 Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, Inserm UMR1051, University of Montpellier, 34091 Montpellier, France
| | - Serge Lumbroso
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| |
Collapse
|
100
|
Dou F, Chen J, Cao H, Jia Q, Shen D, Liu T, Chen C. Anti-atherosclerotic effects of LXRα agonist through induced conversion of M1 macrophage to M2. Am J Transl Res 2019; 11:3825-3840. [PMID: 31312392 PMCID: PMC6614608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/11/2019] [Indexed: 06/10/2023]
Abstract
Liver X receptor alpha (LXRα) plays important roles in lipid metabolism and inflammation. Therefore, it is essential for protection against atherosclerosis (AS). In AS plaques, the key cells involved in lipid metabolism and inflammation are macrophages. However, the mechanism by which LXRα regulates macrophage involvement in AS formation remains unclear. In this study, we first confirmed the effects of an LXRα agonist (T0901317) and antagonist (GSK2033) on foam cell formation and inflammation in vivo and in vitro. Indeed, T0901317 reduced the number of macrophages in AS plaques and decreased the number of migrated macrophages, as assessed using an in vitro transwell assay. Next, we investigated the relationship between the reduction in macrophages in AS plaques and cytokine levels or foam cell formation. The results show that T0901317 reduced the number of high cholesterol-induced M1 macrophages by converting them into M2 macrophages in vivo and in vitro. Due to this phenotypic transition of macrophages, the inflammatory response was alleviated, and lipid metabolism was enhanced in AS plaques. This effect was achieved by promoting the expression of reverse transporters (ATP-binding cassette transporter member 1 and ATP-binding cassette subfamily G member 1) and inhibiting the phosphorylation of nuclear factor-κB-mediated phosphorylation.
Collapse
Affiliation(s)
- Fangfang Dou
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Hui Cao
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Qingling Jia
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Dingzhu Shen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| |
Collapse
|