51
|
Black HD, Xu W, Hortle E, Robertson SI, Britton WJ, Kaur A, New EJ, Witting PK, Chami B, Oehlers SH. The cyclic nitroxide antioxidant 4-methoxy-TEMPO decreases mycobacterial burden in vivo through host and bacterial targets. Free Radic Biol Med 2019; 135:157-166. [PMID: 30878645 DOI: 10.1016/j.freeradbiomed.2019.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
Tuberculosis is a chronic inflammatory disease caused by persistent infection with Mycobacterium tuberculosis. The rise of antibiotic resistant strains necessitates the design of novel treatments. Recent evidence shows that not only is M. tuberculosis highly resistant to oxidative killing, it also co-opts host oxidant production to induce phagocyte death facilitating bacterial dissemination. We have targeted this redox environment with the cyclic nitroxide derivative 4-methoxy-TEMPO (MetT) in the zebrafish-M. marinum infection model. MetT inhibited the production of mitochondrial ROS and decreased infection-induced cell death to aid containment of infection. We identify a second mechanism of action whereby stress conditions, including hypoxia, found in the infection microenvironment appear to sensitise M. marinum to killing by MetT both in vitro and in vivo. Together, our study demonstrates MetT inhibited the growth and dissemination of M. marinum through host and bacterial targets.
Collapse
Affiliation(s)
- Harrison D Black
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Discipline of Pathology Faculty of Medicine and Health, Australia
| | - Wenbo Xu
- Centenary Institute, The University of Sydney, Australia
| | - Elinor Hortle
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Central Clinical School Faculty of Medicine and Health and Marie Bashir Institute, Australia
| | | | - Warwick J Britton
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Central Clinical School Faculty of Medicine and Health and Marie Bashir Institute, Australia
| | - Amandeep Kaur
- The University of Sydney, School of Chemistry, Australia
| | | | - Paul K Witting
- The University of Sydney, Discipline of Pathology Faculty of Medicine and Health, Australia
| | - Belal Chami
- The University of Sydney, Discipline of Pathology Faculty of Medicine and Health, Australia
| | - Stefan H Oehlers
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Central Clinical School Faculty of Medicine and Health and Marie Bashir Institute, Australia.
| |
Collapse
|
52
|
Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem 2019; 66:1-16. [PMID: 30660832 DOI: 10.1016/j.jnutbio.2018.12.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/04/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
Monocytes and macrophages are important cells of the innate immune system that have diverse functions, including defense against invading pathogens, removal of dead cells by phagocytosis, antigen presentation in the context of MHC class I and class II molecules, and production of various pro-inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1. In addition, pro-inflammatory (M1) and anti-inflammatory (M2) macrophages clearly play important roles in the progression of several inflammatory diseases. Therefore, therapies that target macrophage polarization and function by either blocking their trafficking to sites of inflammation, or skewing M1 to M2 phenotype polarization may hold clinical promise in several inflammatory diseases. Dietary-derived polyphenols have potent natural anti-oxidative properties. Within this group of polyphenols, curcumin has been shown to suppress macrophage inflammatory responses. Curcumin significantly reduces co-stimulatory molecules and also inhibits MAPK activation and the translocation of NF-κB p65. Curcumin can also polarize/repolarize macrophages toward the M2 phenotype. Curcumin-treated macrophages have been shown to be highly efficient at antigen capture and endocytosis via the mannose receptor. These novel findings provide new perspectives for the understanding of the immunopharmacological role of curcumin, as well as its therapeutic potential for impacting macrophage polarization and function in the context of inflammation-related disease. However, the precise effects of curcumin on the migration, differentiation, polarization and immunostimulatory functions of macrophages remain unknown. Therefore, in this review, we summarized whether curcumin can influence macrophage polarization, surface molecule expression, cytokine and chemokine production and their underlying pathways in the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, University of Western Australia, Perth, Australia.
| |
Collapse
|
53
|
Lee HJ, Ko HJ, Kim SH, Jung YJ. Pasakbumin A controls the growth of Mycobacterium tuberculosis by enhancing the autophagy and production of antibacterial mediators in mouse macrophages. PLoS One 2019; 14:e0199799. [PMID: 30865638 PMCID: PMC6415846 DOI: 10.1371/journal.pone.0199799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb) and remains a major health problem worldwide. Thus, identification of new and more effective drugs to treat emerging multidrug-resistant TB (MDR-TB) and to reduce the side effects of anti-TB drugs, such as liver toxicity and other detrimental changes, is urgently needed. In this study, to develop a novel candidate drug for effective TB treatment with few side effects in the host, we selected pasakbumin A isolated from Eurycoma longifolia (E. longifolia) Jack, which protected host cells against Mtb infection-induced death. Pasakbumin A significantly inhibited intracellular Mtb growth by inducing the autophagy via the ERK1/2-mediated signaling pathway in Mtb-infected macrophages. We further investigated whether pasakbumin A could be used as a potential adjuvant for TB treatment. Treatment with pasakbumin A and anti-TB drug rifampicin (RMP) potently suppressed intracellular Mtb killing by promoting autophagy as well as TNF-α production via the ERK1/2- and NF-κB-mediated signaling pathways in Mtb-infected cells. Our results suggest that pasakbumin A could be developed as a novel anti-TB drug or host-directed therapeutic (HDT) strategy to protect against host cell death and improve host defense mechanisms against Mtb infection in macrophages.
Collapse
Affiliation(s)
- Hyo-Ji Lee
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Yu-Jin Jung
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
- * E-mail:
| |
Collapse
|
54
|
Carranza C, Chavez-Galan L. Several Routes to the Same Destination: Inhibition of Phagosome-Lysosome Fusion by Mycobacterium tuberculosis. Am J Med Sci 2019; 357:184-194. [DOI: 10.1016/j.amjms.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023]
|
55
|
Rawat K, Das S, Vivek Vinod BS, Vekariya U, Garg T, Dasgupta A, Tripathi RK. Targeted depletion of BTF3a in macrophages activates autophagic pathway to eliminate Mycobacterium tuberculosis. Life Sci 2019; 220:21-31. [DOI: 10.1016/j.lfs.2019.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
|
56
|
Amaral EP, Costa DL, Namasivayam S, Riteau N, Kamenyeva O, Mittereder L, Mayer-Barber KD, Andrade BB, Sher A. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med 2019; 216:556-570. [PMID: 30787033 PMCID: PMC6400546 DOI: 10.1084/jem.20181776] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/15/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022] Open
Abstract
Necrotic tissue damage is a major pathological feature of tuberculosis. Here, Amaral et al. show that ferroptosis, a newly described regulated cell death pathway, plays an important role in Mycobacterium tuberculosis–induced cellular necrosis both in vitro and in vivo. Necrotic cell death during Mycobacterium tuberculosis (Mtb) infection is considered host detrimental since it facilitates mycobacterial spread. Ferroptosis is a type of regulated necrosis induced by accumulation of free iron and toxic lipid peroxides. We observed that Mtb-induced macrophage necrosis is associated with reduced levels of glutathione and glutathione peroxidase-4 (Gpx4), along with increased free iron, mitochondrial superoxide, and lipid peroxidation, all of which are important hallmarks of ferroptosis. Moreover, necrotic cell death in Mtb-infected macrophage cultures was suppressed by ferrostatin-1 (Fer-1), a well-characterized ferroptosis inhibitor, as well as by iron chelation. Additional experiments in vivo revealed that pulmonary necrosis in acutely infected mice is associated with reduced Gpx4 expression as well as increased lipid peroxidation and is likewise suppressed by Fer-1 treatment. Importantly, Fer-1–treated infected animals also exhibited marked reductions in bacterial load. Together, these findings implicate ferroptosis as a major mechanism of necrosis in Mtb infection and as a target for host-directed therapy of tuberculosis.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Diego L Costa
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nicolas Riteau
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,University of Orleans and CNRS, UMR7355, Orleans, France
| | - Olena Kamenyeva
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Lara Mittereder
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD
| | - Bruno B Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, José Silveira Foundation, Salvador, Brazil.,Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN.,Universidade Salvador, Laureate University, Salvador, Bahia, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
57
|
BoseDasgupta S, Pieters J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis. Semin Immunopathol 2018; 40:577-591. [PMID: 30306257 DOI: 10.1007/s00281-018-0710-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Macrophages, being the cornerstone of the immune system, have adapted the ancient nutrient acquisition mechanism of phagocytosis to engulf various infectious organisms thereby helping to orchestrate an appropriate host response. Phagocytosis refers to the process of internalization and degradation of particulate material, damaged and senescent cells and microorganisms by specialized cells, after which the vesicle containing the ingested particle, the phagosome, matures into acidic phagolysosomes upon fusion with hydrolytic enzyme-containing lysosomes. The destructive power of the macrophage is further exacerbated through the induction of macrophage activation upon a variety of inflammatory stimuli. Despite being the end-point for many phagocytosed microbes, the macrophage can also serve as an intracellular survival niche for a number of intracellular microorganisms. One microbe that is particularly successful at surviving within macrophages is the pathogen Mycobacterium tuberculosis, which can efficiently manipulate the macrophage at several levels, including modulation of the phagocytic pathway as well as interfering with a number of immune activation pathways that normally would lead to eradication of the internalized bacilli. M. tuberculosis excels at circumventing destruction within macrophages, thus establishing itself successfully for prolonged times within the macrophage. In this contribution, we describe a number of general features of macrophages in the context of their function to clear an infection, and highlight the strategies employed by M. tuberculosis to counter macrophage attack. Interestingly, research on the evasion tactics employed by M. tuberculosis within macrophages not only helps to design strategies to curb tuberculosis, but also allows a better understanding of host cell biology.
Collapse
Affiliation(s)
- Somdeb BoseDasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Jean Pieters
- Department of Biochemistry, Biozentrum, University of Basel, 50-70 Klingelbergstrasse, 4056, Basel, Switzerland.
| |
Collapse
|
58
|
Upadhyay S, Mittal E, Philips JA. Tuberculosis and the art of macrophage manipulation. Pathog Dis 2018; 76:4970761. [PMID: 29762680 DOI: 10.1093/femspd/fty037] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
Macrophages are first-line responders against microbes. The success of Mycobacterium tuberculosis (Mtb) rests upon its ability to convert these antimicrobial cells into a permissive cellular niche. This is a remarkable accomplishment, as the antimicrobial arsenal of macrophages is extensive. Normally bacteria are delivered to an acidic, degradative lysosome through one of several trafficking pathways, including LC3-associated phagocytosis (LAP) and autophagy. Once phagocytozed, the bacilli are subjected to reactive oxygen and nitrogen species, and they induce the expression of proinflammatory cytokines, which serve to augment host responses. However, Mtb hijacks these host defense mechanisms, manipulating host cellular trafficking, innate immune responses, and cell death pathways to its benefit. The complex series of measures and countermeasures between host and pathogen ultimately determines the outcome of infection. In this review, we focus on the diverse effectors that Mtb uses in its multipronged effort to subvert the innate immune responses of macrophages. We highlight recent advances in understanding the molecular interface of the Mtb-macrophage interaction.
Collapse
Affiliation(s)
- S Upadhyay
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - E Mittal
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J A Philips
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
59
|
Mohareer K, Asalla S, Banerjee S. Cell death at the cross roads of host-pathogen interaction in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 113:99-121. [PMID: 30514519 DOI: 10.1016/j.tube.2018.09.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) continues to be the leading cause of death by any single infectious agent, accounting for around 1.7 million annual deaths globally, despite several interventions and support programs by national and international agencies. With the development of drug resistance in Mycobacterium tuberculosis (M. tb), there has been a paradigm shift in TB research towards host-directed therapy. The potential targets include the interactions between host and bacterial proteins that are crucial for pathogenesis. Hence, collective efforts are being made to understand the molecular details of host-pathogen interaction for possible translation into host-directed therapy. The present review focuses on 'host cell death modalities' of host-pathogen interaction, which play a crucial role in determining the outcome of TB disease progression. Several cell death modalities that occur in response to mycobacterial infection have been identified in human macrophages either as host defences for bacterial clearance or as pathogen strategies for multiplication and dissemination. These cell death modalities include apoptosis, necrosis, pyroptosis, necroptosis, pyronecrosis, NETosis, and autophagy. These processes are highly overlapping with several mycobacterial proteins participating in more than one cell death pathway. Until now, reviews in M. tb and host cell death have discussed either focusing on host evasion strategies, apoptosis, autophagy, and necrosis or describing all these forms with limited discussions of their role in host-pathogen interactions. Here, we present a comprehensive review of various mycobacterial factors modulating host cell death pathways and the cross-talk between them. Besides this, we have discussed the networking of host cell death pathways including the interference of host miRNA during M. tb infection with their respective targets. Through this review, we present the host targets that overlap across several cell death modalities and the technical limitations of methodology in cell death research. Given the compelling need to discover alternative drug target(s), this review identifies these overlapping cell death factors as potential targets for host-directed therapy.
Collapse
Affiliation(s)
- Krishnaveni Mohareer
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046
| | - Suman Asalla
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046
| | - Sharmistha Banerjee
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046.
| |
Collapse
|
60
|
Xia X, Wang P, Wan R, Huo W, Chang Z. Toxic effects of cyhalofop-butyl on embryos of the Yellow River carp (Cyprinus carpio var.): alters embryos hatching, development failure, mortality of embryos, and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24305-24315. [PMID: 29948714 DOI: 10.1007/s11356-018-2489-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
As a universal environmental contaminant, the herbicide cyhalofop-butyl is considered to have infested effects on the embryonic development of aquatic species. The present study focused on an assessment of the impacts of cyhalofop-butyl on Yellow River carp embryos. It was found that cyhalofop-butyl inhibited the hatching of the embryos, and the hatching rate decreased with higher concentrations of the herbicide. The mortality rate was increased on exposure to cyhalofop-butyl and was significantly higher in the 1.6 and 2 mg/L treatment groups over 48 h. All of the embryos of the 2 mg/L treatment group died within the 48 h post-hatching stage. And the transcription of several embryos related to apoptosis was also influenced by cyhalofop-butyl exposure. Further, cyhalofop-butyl exposure leads to a series of morphological changes (pericardial edema, tail deformation, and spine deformation) in embryos, which were consistent with significant modifications in the associated genes. These results provided a scientific basis for further studies into the effects of cyhalofop-butyl on aquatic organisms.
Collapse
Affiliation(s)
- Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China.
| | - Peijin Wang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Ruyan Wan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Weiran Huo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| |
Collapse
|
61
|
Benítez-Guzmán A, Arriaga-Pizano L, Morán J, Gutiérrez-Pabello JA. Endonuclease G takes part in AIF-mediated caspase-independent apoptosis in Mycobacterium bovis-infected bovine macrophages. Vet Res 2018; 49:69. [PMID: 30021619 PMCID: PMC6052627 DOI: 10.1186/s13567-018-0567-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/11/2018] [Indexed: 01/12/2023] Open
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis encodes different virulence mechanisms to survive inside of host cells. One of the possible outcomes in this host-pathogen interaction is cell death. Previous results from our group showed that M. bovis induces a caspase-independent apoptosis in bovine macrophages with the possible participation of apoptosis inducing factor mitochondria associated 1 (AIFM1/AIF), a flavoprotein that functions as a cell-death regulator. However, contribution of other caspase-independent cell death mediators in M. bovis-infected macrophages is not known. In this study, we aimed to further characterize M. bovis-induced apoptosis, addressing Endonuclease G (Endo G) and Poly (ADP-ribose) polymerase 1 (PARP-1). In order to accomplish our objective, we infected bovine macrophages with M. bovis AN5 (MOI 10:1). Analysis of M. bovis-infected nuclear protein extracts by immunoblot, identified a 15- and 43-fold increase in concentration of mitochondrial proteins AIF and Endo G respectively. Interestingly, pretreatment of M. bovis-infected macrophages with cyclosporine A, a mitochondrial permeability transition pore inhibitor, abolished AIF and Endo G nuclear translocation. In addition, it also decreased macrophage DNA fragmentation to baseline and caused a 26.2% increase in bacterial viability. We also demonstrated that PARP-1 protein expression in macrophages did not change during M. bovis infection. Furthermore, pretreatment of M. bovis-infected bovine macrophages with 3-aminobenzamide, a PARP-1 inhibitor, did not change the proportion of macrophage DNA fragmentation. Our results suggest participation of Endo G, but not PARP-1, in M. bovis-induced macrophage apoptosis. To the best of our knowledge this is the first report associating Endo G with caspase-independent apoptosis induced by a member of the Mycobacterium tuberculosis complex.
Collapse
Affiliation(s)
- Alejandro Benítez-Guzmán
- Laboratorio de Investigación en Tuberculosis Bovina, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Arriaga-Pizano
- Unidad Médica de Investigación en Inmunoquímica, Hospital Siglo XXI, IMSS, Mexico City, Mexico
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - José A Gutiérrez-Pabello
- Laboratorio de Investigación en Tuberculosis Bovina, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
62
|
Michelet X, Tuli A, Gan H, Geadas C, Sharma M, Remold HG, Brenner MB. Lysosome-Mediated Plasma Membrane Repair Is Dependent on the Small GTPase Arl8b and Determines Cell Death Type in Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:3160-3169. [PMID: 29592961 DOI: 10.4049/jimmunol.1700829] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 02/23/2018] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis is an extremely successful pathogen, and its success is widely attributed to its ability to manipulate the intracellular environment of macrophages. A central phenomenon of tuberculosis pathology enabling immune evasion is the capacity of virulent M. tuberculosis (H37Rv) to induce macrophage necrosis, which facilitates the escape of the mycobacteria from the macrophage and spread of infection. In contrast, avirulent M. tuberculosis (H37Ra) induces macrophage apoptosis, which permits Ag presentation and activation of adaptive immunity. Previously, we found that H37Rv induces plasma membrane microdisruptions, leading to necrosis in the absence of plasma membrane repair. In contrast, H37Ra permits plasma membrane repair, which changes the host cell death modality to apoptosis, suggesting that membrane repair is critical for sequestering the pathogen in apoptotic vesicles. However, mechanisms of plasma membrane repair induced in response to M. tuberculosis infection remain unknown. Plasma membrane repair is known to induce a Ca2+-mediated signaling, which recruits lysosomes to the area of damaged plasma membrane sites for its resealing. In this study, we found that the small GTPase Arl8b is required for plasma membrane repair by controlling the exocytosis of lysosomes in cell lines and in human primary macrophages. Importantly, we found that the Arl8b secretion pathway is crucial to control the type of cell death of the M. tuberculosis-infected macrophages. Indeed, Arl8b-depleted macrophages infected with avirulent H37Ra undergo necrotic instead of apoptotic cell death. These findings suggest that membrane repair mediated by Arl8b may be an important mechanism distinguishing avirulent from virulent M. tuberculosis-induced necrotic cell death.
Collapse
Affiliation(s)
- Xavier Michelet
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| | - Amit Tuli
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; .,Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Huixian Gan
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Carolina Geadas
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Mahak Sharma
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306, India
| | - Heinz G Remold
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Michael B Brenner
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
63
|
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018; 233:6425-6440. [PMID: 29319160 DOI: 10.1002/jcp.26429] [Citation(s) in RCA: 3096] [Impact Index Per Article: 442.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
Macrophages are heterogeneous and their phenotype and functions are regulated by the surrounding micro-environment. Macrophages commonly exist in two distinct subsets: 1) Classically activated or M1 macrophages, which are pro-inflammatory and polarized by lipopolysaccharide (LPS) either alone or in association with Th1 cytokines such as IFN-γ, GM-CSF, and produce pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-12, IL-23, and TNF-α; and 2) Alternatively activated or M2 macrophages, which are anti-inflammatory and immunoregulatory and polarized by Th2 cytokines such as IL-4 and IL-13 and produce anti-inflammatory cytokines such as IL-10 and TGF-β. M1 and M2 macrophages have different functions and transcriptional profiles. They have unique abilities by destroying pathogens or repair the inflammation-associated injury. It is known that M1/M2 macrophage balance polarization governs the fate of an organ in inflammation or injury. When the infection or inflammation is severe enough to affect an organ, macrophages first exhibit the M1 phenotype to release TNF-α, IL-1β, IL-12, and IL-23 against the stimulus. But, if M1 phase continues, it can cause tissue damage. Therefore, M2 macrophages secrete high amounts of IL-10 and TGF-β to suppress the inflammation, contribute to tissue repair, remodeling, vasculogenesis, and retain homeostasis. In this review, we first discuss the basic biology of macrophages including origin, differentiation and activation, tissue distribution, plasticity and polarization, migration, antigen presentation capacity, cytokine and chemokine production, metabolism, and involvement of microRNAs in macrophage polarization and function. Secondly, we discuss the protective and pathogenic role of the macrophage subsets in normal and pathological pregnancy, anti-microbial defense, anti-tumor immunity, metabolic disease and obesity, asthma and allergy, atherosclerosis, fibrosis, wound healing, and autoimmunity.
Collapse
Affiliation(s)
- Abbas Shapouri-Moghaddam
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Mohammadian
- Faculty of Medicine, Student Research Committee, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Vazini
- Nursing Department, Basic Sciences Faculty, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mahdi Taghadosi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed-Alireza Esmaeili
- Faculty of Medicine, Student Research Committee, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mardani
- Faculty of Medicine, Student Research Committee, Immunology Research Center, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bita Seifi
- Department of Anatomy, Islamic Azad University, Mashhad Branch, Iran
| | - Asadollah Mohammadi
- Inflammation and Inflammatory Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil T Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
64
|
Pahari S, Kaur G, Negi S, Aqdas M, Das DK, Bashir H, Singh S, Nagare M, Khan J, Agrewala JN. Reinforcing the Functionality of Mononuclear Phagocyte System to Control Tuberculosis. Front Immunol 2018; 9:193. [PMID: 29479353 PMCID: PMC5811511 DOI: 10.3389/fimmu.2018.00193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
The mononuclear phagocyte system (MPS) constitutes dendritic cells, monocytes, and macrophages. This system contributes to various functions that are essential for maintaining homeostasis, activation of innate immunity, and bridging it with the adaptive immunity. Consequently, MPS is highly important in bolstering immunity against the pathogens. However, MPS is the frontline cells in destroying Mycobacterium tuberculosis (Mtb), yet the bacterium prefers to reside in the hostile environment of macrophages. Therefore, it may be very interesting to study the struggle between Mtb and MPS to understand the outcome of the disease. In an event when MPS predominates Mtb, the host remains protected. By contrast, the situation becomes devastating when the pathogen tames and tunes the host MPS, which ultimately culminates into tuberculosis (TB). Hence, it becomes extremely crucial to reinvigorate MPS functionality to overwhelm Mtb and eliminate it. In this article, we discuss the strategies to bolster the function of MPS by exploiting the molecules associated with the innate immunity and highlight the mechanisms involved to overcome the Mtb-induced suppression of host immunity. In future, such approaches may provide an insight to develop immunotherapeutics to treat TB.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gurpreet Kaur
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepjyoti K Das
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mukta Nagare
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Junaid Khan
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
65
|
Leng S, Zheng J, Jin Y, Zhang H, Zhu Y, Wu J, Xu Y, Zhang P. Plasma cell-free DNA level and its integrity as biomarkers to distinguish non-small cell lung cancer from tuberculosis. Clin Chim Acta 2017; 477:160-165. [PMID: 29113814 DOI: 10.1016/j.cca.2017.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 01/20/2023]
Abstract
AIMS The aim of this study was to evaluate the potential clinical value of the plasma cell-free DNA (cfDNA) concentrations and strand integrity as an auxiliary tool for Non-small cell lung cancer (NSCLC) differential diagnosis from tuberculosis in patients with solitary pulmonary nodules detected by computed tomography (CT). METHODS This research was divided into 3 groups: NSCLC (n=106), tuberculosis (n=105) and healthy controls (n=107). The quantization of plasma DNA fragments was performed by quantitative real-time PCR. Amplifying and quantifying shorter (115bp) and longer (247bp) fragments from abundant genomic ALU repeats. RESULTS The level of cfDNA (ALU115) in patients with NSCLC [95.67 (51.28, 238.85) ng/μl] was significantly higher than that in patients with tuberculosis [59.60 (34.25, 102.53) ng/μl, P=0.001] and that in healthy controls [44.66 (24.56, 66.54) ng/μl, P=0.001]. The integrity of cfDNA in patients with NSCLC [5.91(4.14, 7.45)] was also significantly higher than that in patients with tuberculosis [3.85 (2.91, 5.06), P=0.000] and that in healthy controls [2.78(2.18, 4.82), P=0.000]. Receiver-operating characteristic (ROC) curve analysis showed that cfDNA(ALU115) and its integrity could be used as biomarkers to distinguish NSCLC from tuberculosis (AUC=0.628, P=0.001, cut-off values=91.48, sensitivity=57.50%, specificity=64.80%; AUC=0.722, P=0.000, cut-off values=5.54, sensitivity=55.70%, specificity=82.90%, respectively). In addition, the effect of integrity of cfDNA(AUC=0.722) to distinguish NSCLC from tuberculosis was higher than traditional tumor marker Carbohydrate antigen 125(CA125) (AUC=0.626), Neuron-specific enolase(NSE) (AUC=0.716) and Carcino-embryonic antigen(CEA) (AUC=0.589). CONCLUSIONS cfDNA and its integrity could be used as indicators for identification of NSCLC from tuberculosis. Moreover, the effect of integrity of cfDNA to distinguish NSCLC from tuberculosis was higher than traditional tumor marker CA125, NSE and CEA.
Collapse
Affiliation(s)
- Shaoyi Leng
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianjun Zheng
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Yinhua Jin
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Hongbin Zhang
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Ya Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jing Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yan Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Puhong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
66
|
Kammüller M, Tsai TF, Griffiths CE, Kapoor N, Kolattukudy PE, Brees D, Chibout SD, Safi J, Fox T. Inhibition of IL-17A by secukinumab shows no evidence of increased Mycobacterium tuberculosis infections. Clin Transl Immunology 2017; 6:e152. [PMID: 28868144 PMCID: PMC5579471 DOI: 10.1038/cti.2017.34] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022] Open
Abstract
Secukinumab, a fully human monoclonal antibody that selectively neutralizes interleukin-17A (IL-17A), has been shown to have significant efficacy in the treatment of moderate to severe psoriasis, psoriatic arthritis and ankylosing spondylitis. Blocking critical mediators of immunity may carry a risk of increased opportunistic infections. Here we present clinical and in vitro findings examining the effect of secukinumab on Mycobacterium tuberculosis infection. We re-assessed the effect of secukinumab on the incidence of acute tuberculosis (TB) and reactivation of latent TB infection (LTBI) in pooled safety data from five randomized, double-blind, placebo-controlled, phase 3 clinical trials in subjects with moderate to severe plaque psoriasis. No cases of TB were observed after 1 year. Importantly, in subjects with a history of pulmonary TB (but negative for interferon-γ release and receiving no anti-TB medication) or positive for latent TB (screened by interferon-γ release assay and receiving anti-TB medication), no cases of active TB were reported. Moreover, an in vitro study examined the effect of the anti-tumor necrosis factor-α (TNFα) antibody adalimumab and secukinumab on dormant M. tuberculosis H37Rv in a novel human three-dimensional microgranuloma model. Auramine-O, Nile red staining and rifampicin resistance of M. tuberculosis were measured. In vitro, anti-TNFα treatment showed increased staining for Auramine-O, decreased Nile red staining and decreased rifampicin resistance, indicative of mycobacterial reactivation. In contrast, secukinumab treatment was comparable to control indicating a lack of effect on M. tuberculosis dormancy. To date, clinical and preclinical investigations with secukinumab found no evidence of increased M. tuberculosis infections.
Collapse
Affiliation(s)
- Michael Kammüller
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Christopher Em Griffiths
- Dermatology Centre, Salford Royal Hospital, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nidhi Kapoor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Dominique Brees
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Salah-Dine Chibout
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jorge Safi
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Todd Fox
- Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
67
|
Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis. J Immunol Res 2017; 2017:5212910. [PMID: 28713838 PMCID: PMC5496129 DOI: 10.1155/2017/5212910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/09/2017] [Indexed: 01/14/2023] Open
Abstract
Tuberculosis (TB) is an airborne infection caused by Mycobacterium tuberculosis (Mtb). About one-third of the world's population is latently infected with TB and 5–15% of them will develop active TB in their lifetime. It is estimated that each case of active TB may cause 10–20 new infections. Host immune response to Mtb is influenced by interferon- (IFN-) signaling pathways, particularly by type I and type II interferons (IFNs). The latter that consists of IFN-γ has been associated with the promotion of Th1 immune response which is associated with protection against TB. Although this aspect remains controversial at present due to the lack of established correlates of protection, currently, there are different prophylactic, diagnostic, and immunotherapeutic approaches in which IFNs play an important role. This review summarizes the main aspects related with the biology of IFNs, mainly associated with TB, as well as presents the main applications of these cytokines related to prophylaxis, diagnosis, and immunotherapy of TB.
Collapse
|
68
|
Wang L, Zuo M, Chen H, Liu S, Wu X, Cui Z, Yang H, Liu H, Ge B. Mycobacterium tuberculosis Lipoprotein MPT83 Induces Apoptosis of Infected Macrophages by Activating the TLR2/p38/COX-2 Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 198:4772-4780. [PMID: 28507027 DOI: 10.4049/jimmunol.1700030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis continues to pose a serious global health threat. The attenuated Mycobacterium bovis bacillus Calmette-Guérin, as the only licensed vaccine, has limited protective efficacy against TB. The development of more effective antituberculosis vaccines is urgent and demands for further identification and understanding of M. tuberculosis Ags. MPT83 (Rv2873), a secreted mycobacterial lipoprotein, has been applied into subunit vaccine development and shown protective effects against M. tuberculosis infection in animals; however, the understanding of the underlying mechanism is limited. In present study, we systematically studied the effect of MPT83 on macrophage apoptosis by constructing Mycobacterium smegmatis strain overexpressing MPT83 (MS_MPT83) and purifying rMPT83 protein. We found that MPT83 induced apoptosis in both human and mouse macrophages. MPT83 induced cyclooxygenase-2 (COX-2) expression at both the transcriptional and protein levels in macrophages, whereas silencing or inhibiting COX-2 blocked rMPT83-induced apoptosis or the enhanced apoptotic response to MS_MPT83 in comparison with M. smegmatis transfected with pMV261 vector (MS_Vec), indicating that COX-2 is required for MPT83-induced apoptosis. Additionally, tlr2 deficiency led to significant reduction of COX-2 expression, accompanied by less apoptosis in macrophages stimulated with rMPT83 or infected with MS_MPT83. Moreover, the activation of p38 accounted for MPT83-induced COX-2 expression. Finally, lower bacteria burdens in the lungs and spleens and enhanced survival were observed in mice i.v. infected with MS_MPT83 compared with MS_Vec. Taken together, our results established a proapoptotic effect of MPT83 and identified the TLR2/p38/COX-2 axis in MPT83-induced macrophage apoptosis.
Collapse
Affiliation(s)
- Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and
| | - Mianyong Zuo
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and
| | - Hao Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and
| | - Siyu Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and
| | - Xiangyang Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and
| | - Zhenling Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; .,Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; .,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; and.,Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
69
|
The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. mBio 2017; 8:mBio.00148-17. [PMID: 28270579 PMCID: PMC5340868 DOI: 10.1128/mbio.00148-17] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cell wall of Mycobacterium tuberculosis is composed of unique lipids that are important for pathogenesis. Indeed, the first-ever genetic screen in M. tuberculosis identified genes involved in the biosynthesis and transport of the cell wall lipid PDIM (phthiocerol dimycocerosates) as crucial for the survival of M. tuberculosis in mice. Here we show evidence for a novel molecular mechanism of the PDIM-mediated virulence in M. tuberculosis We characterized the DNA interaction and the regulon of Rv3167c, a transcriptional repressor that is involved in virulence regulation of M. tuberculosis, and discovered that it controls the PDIM operon. A loss-of-function genetic approach showed that PDIM levels directly correlate with the capacity of M. tuberculosis to escape the phagosome and induce host cell necrosis and macroautophagy. In conclusion, our study attributes a novel role of the cell wall lipid PDIM in intracellular host cell modulation, which is important for host cell exit and dissemination of M. tuberculosisIMPORTANCEMycobacterium tuberculosis is a major human pathogen that has coevolved with its host for thousands of years. The complex and unique cell wall of M. tuberculosis contains the lipid PDIM (phthiocerol dimycocerosates), which is crucial for virulence of the bacterium, but its function is not well understood. Here we show that PDIM expression by M. tuberculosis is negatively regulated by a novel transcriptional repressor, Rv3167c. In addition, we discovered that the escape of M. tuberculosis from its intracellular vacuole was greatly augmented by the presence of PDIM. The increased release of M. tuberculosis into the cytosol led to increased host cell necrosis. The discovery of a link between the cell wall lipid PDIM and a major pathogenesis pathway of M. tuberculosis provides important insights into the molecular mechanisms of host cell manipulation by M. tuberculosis.
Collapse
|
70
|
Marín D, Marín N, del Corral H, López L, Ramirez-Agudelo ME, Rojas CA, Arbeláez MP, García LF, Rojas M. PPD-induced monocyte mitochondrial damage is associated with a protective effect to develop tuberculosis in BCG vaccinated individuals: A cohort study. PLoS One 2017; 12:e0171930. [PMID: 28222109 PMCID: PMC5319776 DOI: 10.1371/journal.pone.0171930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/29/2017] [Indexed: 12/04/2022] Open
Abstract
Introduction The mechanisms of mononuclear phagocyte death have been associated with the permissiveness and resistance to mycobacterial replication, but it remains unknown whether or not they help predict the risk of developing TB. Objective To describe the factors associated with the induction of monocyte mitochondrial and membrane damage in response to PPD as well as determine if this type of damage might predict the susceptibility of developing active tuberculosis in a cohort of household contacts (HHCs) from Medellin, Colombia from 2005 to 2008. Methods The prospective cohort study contains 2060 HHCs patients with pulmonary tuberculosis who were meticulously followed for two years. A survey of the socio-demographic, clinical, epidemiological factors and blood samples were collected. Mononuclear cell cultures were stimulated with or without PPD and the type of monocyte death was determined by the flow of cytometry, an indicator was also used for its analysis. Logistic regression was adjusted by the Generalized Estimations Equations and the survival was estimated with the Kaplan-Meier and Cox regression. Confidence intervals were used for estimating the association. Results 1,859 out of 2,060 blood samples of the HHCs patients analyzed showed monocyte death. In response to PPD, 83.4% underwent mitochondrial damage while 50.9% had membrane damage. The membrane damage in response to PPD was higher in children under 4 years (OR: 1.57; (95% CI: 1.1 to 2.4) and the HHCs who slept regularly in the same household has an index case of (OR: 1.54; 95% CI: 1.0 to 2.3). After adjustment by age, comorbidities, nutritional status, proximity to index case and overcrowding, the risk of developing active TB among BCG vaccinated HHCs individuals with induction of mitochondrial damage was HR = 0.19 (95% CI: 0.1 to 0.5). Conclusions The induction of monocytes mitochondrial damage by PPD stimulation correlates with protection of TB disease development in BCG-vaccinated HHCs. This represents a potential tool to predict susceptibility of developing active disease in this population.
Collapse
Affiliation(s)
- Diana Marín
- Grupo de Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
- * E-mail: (DM); (MR)
| | - Nancy Marín
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Helena del Corral
- Grupo de Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
| | - Lucelly López
- Grupo de Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
| | - María Elena Ramirez-Agudelo
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carlos A. Rojas
- Grupo de Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
| | - María P. Arbeláez
- Grupo de Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
| | - Luis F. García
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Mauricio Rojas
- Centro Colombiano de Investigación en Tuberculosis (CCITB), Colciencias, Medellín, Colombia
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
- * E-mail: (DM); (MR)
| |
Collapse
|
71
|
Schaaf K, Smith SR, Duverger A, Wagner F, Wolschendorf F, Westfall AO, Kutsch O, Sun J. Mycobacterium tuberculosis exploits the PPM1A signaling pathway to block host macrophage apoptosis. Sci Rep 2017; 7:42101. [PMID: 28176854 PMCID: PMC5296758 DOI: 10.1038/srep42101] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/30/2016] [Indexed: 12/19/2022] Open
Abstract
The ability to suppress host macrophage apoptosis is essential for M. tuberculosis (Mtb) to replicate intracellularly while protecting it from antibiotic treatment. We recently described that Mtb infection upregulated expression of the host phosphatase PPM1A, which impairs the antibacterial response of macrophages. Here we establish PPM1A as a checkpoint target used by Mtb to suppress macrophage apoptosis. Overproduction of PPM1A suppressed apoptosis of Mtb-infected macrophages by a mechanism that involves inactivation of the c-Jun N-terminal kinase (JNK). Targeted depletion of PPM1A by shRNA or inhibition of PPM1A activity by sanguinarine restored JNK activation, resulting in increased apoptosis of Mtb-infected macrophages. We also demonstrate that activation of JNK by subtoxic concentrations of anisomycin induced selective apoptotic killing of Mtb-infected human macrophages, which was completely blocked in the presence of a specific JNK inhibitor. Finally, selective killing of Mtb-infected macrophages and subsequent bacterial release enabled rifampicin to effectively kill Mtb at concentrations that were insufficient to act against intracellular Mtb, providing proof of principle for the efficacy of a "release and kill" strategy. Taken together, these findings suggest that drug-induced selective apoptosis of Mtb-infected macrophages is achievable.
Collapse
Affiliation(s)
- Kaitlyn Schaaf
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samuel R. Smith
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexandra Duverger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frederic Wagner
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frank Wolschendorf
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew O. Westfall
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jim Sun
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
72
|
Wu Y, Zhao D, Zhuang J, Zhang F, Xu C. Caspase-8 and Caspase-9 Functioned Differently at Different Stages of the Cyclic Stretch-Induced Apoptosis in Human Periodontal Ligament Cells. PLoS One 2016; 11:e0168268. [PMID: 27942018 PMCID: PMC5152893 DOI: 10.1371/journal.pone.0168268] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022] Open
Abstract
Background Human periodontal ligament (PDL) cells underwent apoptosis after mechanical stretch loading. However, the exact signalling pathway remains unknown. This study aimed to elucidate how the apoptotic caspases functioned in the cyclic stretch-induced apoptosis in human PDL cells. Materials and Methods In the present study, 20% cyclic stretch was selected to load the cells for 6 or 24 h. The following parameters were analyzed: apoptotic rates, the protein levels of caspase-3, -7, -8 and -9 and the activities of caspase-8 and -9. Subsequently, the influences of caspase-8 and caspase-9 inhibitors on the apoptotic rate and the protein level of the activated caspase-3 were assessed as well. Results The apoptotic rates increased in response to cyclic stretch, but the cells entered different apoptotic stages after 6 and 24 h stretches. Caspase-3, -7, -8 and -9 were all activated after stretch loading. The stretch-induced apoptosis and the protein level of the activated caspase-3 were inhibited after inhibiting both caspase-8 and caspase-9 in both 6 and 24 h stretched cells and after inhibiting caspase-9 in 24 h stretched cells. Conclusion Caspase-8 and -9 functioned differently at different apoptotic stages in human PDL cells after cyclic stretch.
Collapse
Affiliation(s)
- Yaqin Wu
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dan Zhao
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiabao Zhuang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- * E-mail:
| |
Collapse
|
73
|
MicroRNAs play big roles in modulating macrophages response toward mycobacteria infection. INFECTION GENETICS AND EVOLUTION 2016; 45:378-382. [PMID: 27693402 DOI: 10.1016/j.meegid.2016.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 11/22/2022]
Abstract
Macrophages are crucial player in the defense against multiple intracellular pathogens. Mycobacterium tuberculosis, the causative agent of tuberculosis which inflicted around one third of global population, can replicate and persist within macrophages. MicroRNAs, endogenous, small noncoding RNA, can regulate the expression of macrophages genes required for appropriate signaling. Mycobacteria can manipulate the expression of macrophages microRNAs to subvert cell response for its survival and persistence. This review summarized the progress of microRNAs in mycobacterial pathogenesis.
Collapse
|
74
|
de Almeida SMV, da Silva LPBG, de Lima LRA, Longato GB, Padilha RJR, Alves LC, Brayner FA, Ruiz ALTG, de Carvalho JE, Beltrão EIC, de Lima MDCA, de Carvalho Júnior LB. Ultrastructural Assessment of 2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide activity on human breast adenocarcinoma cells. Micron 2016; 90:114-122. [PMID: 27668344 DOI: 10.1016/j.micron.2016.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 08/28/2016] [Indexed: 12/31/2022]
Abstract
The aim of the present study was to investigate ultrastructural changes induced by (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (APHCA) treatment on human breast adenocarcinoma cancer cells MCF-7, besides the evaluation of phosphatidylserine externalization and DNA fragmentation in treated cells. Cell viability analysis demonstrated concentration and time-manner cytotoxicity. Treated MCF-7 cells did not expose phosphatidylserine residues to the external plasma membrane surface and DNA fragmentation was not visualized by electrophoresis. Light microscopy showed compromised cell density and presence of vacuolization after APHCA treatment with 60μM. Scanning and transmission electron microscopies revealed hallmarks of autophagy, namely the presence of membrane bebbling and autophagosomes, besides shrunken cells and cell debris in treated MCF-7 cells. However, more specific tests such as the quantification of mammalian autophagy proteins are necessary to determine the kind of death that is trigged by APHCA.
Collapse
Affiliation(s)
- Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Universidade de Pernambuco (UPE), Garanhuns 55290-000, PE, Brazil.
| | - Lúcia Patrícia Bezerra Gomes da Silva
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Luiza Rayanna Amorim de Lima
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Giovanna Barbarini Longato
- Laboratório de Pesquisa em Biologia Celular e Molecular de Tumores e Compostos Bioativos, Universidade São Francisco, Bragança Paulista 12916- 900, SP - Brazil
| | - Rafael José Ribeiro Padilha
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Luiz Carlos Alves
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; Fundação Oswaldo Cruz (CPqAM/FIOCRUZ), Centro de Pesquisas Aggeu Magalhães, Laboratório de Biologia Celular e Molecular. Avenida Professor Moraes Rêgo s/n, Cidade Universitária, Recife 50740-465, PE, Brazil; Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Rua Arnóbio Marques 310, Recife 50100-130, Santo Amaro, PE, Brazil
| | - Fábio André Brayner
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; Fundação Oswaldo Cruz (CPqAM/FIOCRUZ), Centro de Pesquisas Aggeu Magalhães, Laboratório de Biologia Celular e Molecular. Avenida Professor Moraes Rêgo s/n, Cidade Universitária, Recife 50740-465, PE, Brazil
| | - Ana Lucia Tasca Gois Ruiz
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
| | - João Ernesto de Carvalho
- Divisão de Farmacologia e Toxicologia, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil
| | - Eduardo Isidoro Carneiro Beltrão
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | | | - Luiz Bezerra de Carvalho Júnior
- Laboratório de Imunopatologia Keizo Asami (LIKA) and Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| |
Collapse
|
75
|
Das K, Garnica O, Dhandayuthapani S. Modulation of Host miRNAs by Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:79. [PMID: 27536558 PMCID: PMC4971075 DOI: 10.3389/fcimb.2016.00079] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment.
Collapse
Affiliation(s)
| | | | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl Paso, TX, USA
| |
Collapse
|
76
|
Lam RS, O’Brien-Simpson NM, Holden JA, Lenzo JC, Fong SB, Reynolds EC. Unprimed, M1 and M2 Macrophages Differentially Interact with Porphyromonas gingivalis. PLoS One 2016; 11:e0158629. [PMID: 27383471 PMCID: PMC4934774 DOI: 10.1371/journal.pone.0158629] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/20/2016] [Indexed: 11/19/2022] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Tissue macrophages are amongst the first immune cells to respond to bacteria and depending on the cytokine profile at the infection site, macrophages are primed to react to infection in different ways. Priming of naive macrophages with IFN-γ produces a classical pro-inflammatory, antibacterial M1 macrophage after TLR ligation, whereas priming with IL-4 induces an anti-inflammatory tissue-repair M2 phenotype. Previous work has shown that M1 are preferentially generated in gingival tissue following infection with P. gingivalis. However, few studies have investigated the interactions of macrophage subsets with P. gingivalis cells. The aim of this study was to determine the ability of naive, M1 and M2 macrophages to phagocytose P. gingivalis and investigate how this interaction affects both the bacterial cell and the macrophage. M1 and M2 macrophages were both found to have enhanced phagocytic capacity compared with that of naive macrophages, however only the naive and M1 macrophages were able to produce a respiratory burst in order to clear the bacteria from the phagosome. P. gingivalis was found to persist in naive and M2, but not M1 macrophages for 24 hours. Phagocytosis of P. gingivalis also induced high levels of TNF-α, IL-12 and iNOS in M1 macrophages, but not in naive or M2 macrophages. Furthermore, infection of macrophages with P. gingivalis at high bacteria to macrophage ratios, while inducing an inflammatory response, was also found to be deleterious to macrophage longevity, with high levels of apoptotic cell death found in macrophages after infection. The activation of M1 macrophages observed in this study may contribute to the initiation and maintenance of a pro-inflammatory state during chronic periodontitis.
Collapse
Affiliation(s)
- Roselind S. Lam
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Neil M. O’Brien-Simpson
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - James A. Holden
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Jason C. Lenzo
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Shao B. Fong
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
77
|
Identification of a Transcription Factor That Regulates Host Cell Exit and Virulence of Mycobacterium tuberculosis. PLoS Pathog 2016; 12:e1005652. [PMID: 27191591 PMCID: PMC4871555 DOI: 10.1371/journal.ppat.1005652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/01/2016] [Indexed: 02/04/2023] Open
Abstract
The interaction of Mycobacterium tuberculosis (Mtb) with host cell death signaling pathways is characterized by an initial anti-apoptotic phase followed by a pro-necrotic phase to allow for host cell exit of the bacteria. The bacterial modulators regulating necrosis induction are poorly understood. Here we describe the identification of a transcriptional repressor, Rv3167c responsible for regulating the escape of Mtb from the phagosome. Increased cytosolic localization of MtbΔRv3167c was accompanied by elevated levels of mitochondrial reactive oxygen species and reduced activation of the protein kinase Akt, and these events were critical for the induction of host cell necrosis and macroautophagy. The increase in necrosis led to an increase in bacterial virulence as reflected in higher bacterial burden and reduced survival of mice infected with MtbΔRv3167c. The regulon of Rv3167c thus contains the bacterial mediators involved in escape from the phagosome and host cell necrosis induction, both of which are crucial steps in the intracellular lifecycle and virulence of Mtb. Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a highly successful human pathogen. Following entry into host phagocytic cells, Mtb resides within a modified phagosomal compartment and inhibits apoptotic host cell death. Recent studies have demonstrated that Mtb eventually translocates from the phagosomal compartment to the cytosol. This event is followed by the induction of necrotic host cell death allowing the bacteria to exit the host cell and infect naive cell populations. Our study adds to this relatively unexplored aspect of Mtb pathogenesis by revealing that the transcriptional repressor Rv3167c of Mtb negatively regulates phagosomal escape and host cell necrosis. We furthermore demonstrate that the increased necrosis induction by the Mtb mutant strain deficient in Rv3167c required elevated reactive oxygen species levels within host cell mitochondria and reduced activation of the protein kinase Akt. In addition, the increased virulence of the Mtb mutant strain observed after aerosol infection of mice strengthens the link between the ability of the bacteria to induce host cell necrosis and virulence. The Mtb genes negatively regulated by Rv3167c are thus potential virulence factors that can be targeted for drug and vaccine development.
Collapse
|
78
|
Bhargava A, Khare NK, Bunkar N, Lenka RK, Mishra PK. Role of mitochondrial oxidative stress on lymphocyte homeostasis in patients diagnosed with extra-pulmonary tuberculosis. Cell Biol Int 2016; 40:166-176. [PMID: 26431927 DOI: 10.1002/cbin.10549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
Abstract
Extra-pulmonary tuberculosis is often an underrated illness. Recent clinical studies have pointed out that lymphocyte homeostasis is dramatically disturbed as revealed through a series of signs and symptoms. Lymphocytes, the known effector cells of our immune system, play an important role in providing immunologic resistance against Mycobacterium infection. It is important to have quantitative insights into the lifespan of these cells; therefore, we aimed to study the precise effect of gastrointestinal tuberculosis infection on peripheral blood lymphocyte subpopulations and function. Our results indicated that gastrointestinal tuberculosis could increase mitochondrial oxidative stress, lower mitochondrial DNA copy number, promote nuclear DNA damage and repair response, decrease mitochondrial respiratory chain enzyme activities, and upregulate Bcl-2 and caspase-3 gene expression in lymphocytes. We further revealed that Mycobacterium infection induces autophagy for selective sequestration and subsequent degradation of the dysfunctional mitochondrion before activating cellular apoptosis in the peripheral lymphocyte pool. Together, these observations uncover a new role of mitochondrial-nuclear crosstalk that apparently contributes to lymphocyte homeostasis in gastrointestinal tuberculosis infection.
Collapse
Affiliation(s)
- Arpit Bhargava
- Translational Research Laboratory, School of Biological Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh, India
| | - Naveen Kumar Khare
- Division of Translational Research, Tata Memorial Centre, ACTREC, Navi Mumbai, Maharashtra, India
| | - Neha Bunkar
- Translational Research Laboratory, School of Biological Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh, India
| | - Rajesh Kumar Lenka
- Department of Microbiology, I.M.S. & SUM Hospital, Bhubaneswar, Odisha, India
| | - Pradyumna Kumar Mishra
- Translational Research Laboratory, School of Biological Sciences, Dr. H. S. Gour Central University, Sagar, Madhya Pradesh, India
| |
Collapse
|
79
|
Amaral EP, Lasunskaia EB, D'Império-Lima MR. Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes Infect 2015; 18:11-20. [PMID: 26369715 DOI: 10.1016/j.micinf.2015.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022]
Abstract
The success of Mycobacterium tuberculosis as a human pathogen has been attributed to the ability of the bacillus to proliferate inside macrophages and to induce cell death. This review describes how the sensors of the innate immune system modulate the cell death pathways in infected macrophages and, consequently, the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Elena B Lasunskaia
- Laboratory of Recognition Biology, Center of Biosciences and Biotechnology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | |
Collapse
|
80
|
Sun J, Siroy A, Lokareddy RK, Speer A, Doornbos KS, Cingolani G, Niederweis M. The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD. Nat Struct Mol Biol 2015; 22:672-8. [PMID: 26237511 PMCID: PMC4560639 DOI: 10.1038/nsmb.3064] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis (Mtb) induces necrosis of infected cells to evade immune responses. Recently, we found that Mtb uses the protein CpnT to kill human macrophages by secreting its C-terminal domain, named tuberculosis necrotizing toxin (TNT), which induces necrosis by an unknown mechanism. Here we show that TNT gains access to the cytosol of Mtb-infected macrophages, where it hydrolyzes the essential coenzyme NAD(+). Expression or injection of a noncatalytic TNT mutant showed no cytotoxicity in macrophages or in zebrafish zygotes, respectively, thus demonstrating that the NAD(+) glycohydrolase activity is required for TNT-induced cell death. To prevent self-poisoning, Mtb produces an immunity factor for TNT (IFT) that binds TNT and inhibits its activity. The crystal structure of the TNT-IFT complex revealed a new NAD(+) glycohydrolase fold of TNT, the founding member of a toxin family widespread in pathogenic microorganisms.
Collapse
Affiliation(s)
- Jim Sun
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Axel Siroy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alexander Speer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kathryn S Doornbos
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
81
|
Repasy T, Martinez N, Lee J, West K, Li W, Kornfeld H. Bacillary replication and macrophage necrosis are determinants of neutrophil recruitment in tuberculosis. Microbes Infect 2015; 17:564-74. [PMID: 25862076 DOI: 10.1016/j.micinf.2015.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/13/2015] [Accepted: 03/27/2015] [Indexed: 01/27/2023]
Abstract
We previously determined that burst size necrosis is the chief mode of mononuclear cell death in the lungs of mice with tuberculosis. The present study explored the link between infection-induced necrosis of mononuclear phagocytes and neutrophil accumulation in the lungs of mice challenged with one of four Mycobacterium tuberculosis strains of increasing virulence (RvΔphoPR mutant, H37Ra, H37Rv and Erdman). At all time points studied, Erdman produced the highest bacterial load and the highest proportion and number of M. tuberculosis-infected neutrophils. These parameters, and the proportion of TUNEL-positive cells, tracked with virulence across all strains tested. Differences in neutrophil infection were not reflected by levels of chemoattractant cytokines in bronchoalveolar lavage fluid, while interferon-γ (reported to suppress neutrophil trafficking to the lung in tuberculosis) was highest in Erdman-infected mice. Treating Erdman-infected mice with ethambutol decreased the proportion of mononuclear phagocytes with high bacterial burden and the ratio of infected neutrophils to infected mononuclear cells in a dose-dependent manner. We propose that faster replicating M. tuberculosis strains cause more necrosis which in turn promotes neutrophil recruitment. Neutrophils infected with M. tuberculosis constitute a biomarker for poorly controlled bacterial replication, infection-induced mononuclear cell death, and increased severity of immune pathology in tuberculosis.
Collapse
Affiliation(s)
- Teresa Repasy
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jinhee Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kim West
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|