51
|
Warren TD, Patel K, Rivera JL, Eshleman JR, Ostermeier M. Comprehensive mutagenesis on yeast cytosine deaminase yields improvements in 5‐fluorocytosine toxicity in HT1080 cells. AIChE J 2019. [DOI: 10.1002/aic.16688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tiana D. Warren
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland
| | - Krishna Patel
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland
| | - Jordan L. Rivera
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland
| | - James R. Eshleman
- Department of Pathology Johns Hopkins Medical Institutions Baltimore Maryland
- Department of Oncology Johns Hopkins Medical Institutions Baltimore Maryland
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland
| |
Collapse
|
52
|
VANGL2 regulates luminal epithelial organization and cell turnover in the mammary gland. Sci Rep 2019; 9:7079. [PMID: 31068622 PMCID: PMC6506599 DOI: 10.1038/s41598-019-43444-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 01/04/2023] Open
Abstract
The VANGL family of planar cell polarity proteins is implicated in breast cancer however its function in mammary gland biology is unknown. Here, we utilized a panel of Vang1 and Vangl2 mouse alleles to examine the requirement of VANGL family members in the murine mammary gland. We show that Vang1CKOΔ/Δ glands display normal branching while Vangl2flox/flox and Vangl2Lp/Lp tissue exhibit several phenotypes. In MMTV-Cre;Vangl2flox/flox glands, cell turnover is reduced and lumens are narrowed. A Vangl2 missense mutation in the Vangl2Lp/Lp tissue leads to mammary anlage sprouting defects and deficient outgrowth with transplantation of anlage or secondary tissue fragments. In successful Vangl2Lp/Lp outgrowths, three morphological phenotypes are observed: distended ducts, supernumerary end buds, and ectopic acini. Layer specific defects are observed with loss of Vangl2 selectively in either basal or luminal layers of mammary cysts. Loss in the basal compartment inhibits cyst formation, but has the opposite effect in the luminal compartment. Candidate gene analysis on MMTV-Cre;Vangl2flox/flox and Vangl2Lp/Lp tissue reveals a significant reduction in Bmi1 expression, with overexpression of Bmi1 rescuing defects in Vangl2 knockdown cysts. Our results demonstrate that VANGL2 is necessary for normal mammary gland development and indicate differential functional requirements in basal versus luminal mammary compartments.
Collapse
|
53
|
Meyer CT, Wooten DJ, Paudel BB, Bauer J, Hardeman KN, Westover D, Lovly CM, Harris LA, Tyson DR, Quaranta V. Quantifying Drug Combination Synergy along Potency and Efficacy Axes. Cell Syst 2019; 8:97-108.e16. [PMID: 30797775 PMCID: PMC6675406 DOI: 10.1016/j.cels.2019.01.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/22/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022]
Abstract
Two goals motivate treating diseases with drug combinations: reduce off-target toxicity by minimizing doses (synergistic potency) and improve outcomes by escalating effect (synergistic efficacy). Established drug synergy frameworks obscure such distinction, failing to harness the potential of modern chemical libraries. We therefore developed multi-dimensional synergy of combinations (MuSyC), a formalism based on a generalized, multi-dimensional Hill equation, which decouples synergistic potency and efficacy. In mutant-EGFR-driven lung cancer, MuSyC reveals that combining a mutant-EGFR inhibitor with inhibitors of other kinases may result only in synergistic potency, whereas synergistic efficacy can be achieved by co-targeting mutant-EGFR and epigenetic regulation or microtubule polymerization. In mutant-BRAF melanoma, MuSyC determines whether a molecular correlate of BRAFi insensitivity alters a BRAF inhibitor's potency, efficacy, or both. These findings showcase MuSyC's potential to transform the enterprise of drug-combination screens by precisely guiding translation of combinations toward dose reduction, improved efficacy, or both.
Collapse
Affiliation(s)
- Christian T. Meyer
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232,
USA.,Center for Cancer Systems Biology at Vanderbilt, Vanderbilt University, Nashville, TN 37232, USA
| | - David J. Wooten
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Center for Cancer Systems Biology at Vanderbilt, Vanderbilt University, Nashville, TN 37232, USA
| | - B. Bishal Paudel
- Department of Biochemistry, Vanderbilt University Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joshua Bauer
- Department of Biochemistry, Vanderbilt University Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Institute of Chemical Biology, High-Throughput Screening Facility, Vanderbilt University, Nashville, TN
37232, USA
| | - Keisha N. Hardeman
- Department of Biochemistry, Vanderbilt University Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Westover
- Institute of Chemical Biology, High-Throughput Screening Facility, Vanderbilt University, Nashville, TN
37232, USA
| | - Christine M. Lovly
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville,
TN 37232, USA
| | - Leonard A. Harris
- Center for Cancer Systems Biology at Vanderbilt, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biochemistry, Vanderbilt University Nashville, TN 37232, USA
| | - Darren R. Tyson
- Center for Cancer Systems Biology at Vanderbilt, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biochemistry, Vanderbilt University Nashville, TN 37232, USA
| | - Vito Quaranta
- Center for Cancer Systems Biology at Vanderbilt, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
54
|
Zhou J, Zhang L, Zhou W, Chen Y, Cheng Y, Dong J. LIMD1 phosphorylation in mitosis is required for mitotic progression and its tumor-suppressing activity. FEBS J 2019; 286:963-974. [PMID: 30600590 DOI: 10.1111/febs.14743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/23/2018] [Accepted: 01/01/2019] [Indexed: 12/13/2022]
Abstract
LIM domains containing 1 (LIMD1) is a member of the Zyxin family proteins and functions as a tumor suppressor in lung cancer. LIMD1 has been shown to regulate Hippo-YAP signaling activity. Here, we report a novel regulatory mechanism for LIMD1. We found that cyclin-dependent kinase 1 (CDK1) and c-Jun NH2-terminal kinases 1/2 (JNK1/2) phosphorylate LIMD1 in vitro and in cells during anti-tubulin drug-induced mitotic arrest. Phosphorylation also occurs during normal mitosis. S272, S277, S421, and S424 were identified as the main phosphorylation sites in LIMD1. Deletion of LIMD1 resulted in a shortened mitotic cell cycle and phosphorylation of LIMD1 is required for proper mitotic progression. We further showed that the phosphorylation-deficient mutant LIMD1-4A is less active in suppressing cell proliferation, anchorage-independent growth, cell migration, and invasion in lung cancer cells. Together, our findings suggest that LIMD1 is a key regulator of mitotic progression, and that dysregulation of LIMD1 contributes to tumorigenesis.
Collapse
Affiliation(s)
- Jiuli Zhou
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lin Zhang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Zhou
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
55
|
Tagaya H, Ishikawa K, Hosokawa Y, Kobayashi S, Ueoka Y, Shimada M, Ohashi Y, Mikami H, Yamamoto M, Ihara T, Kumazawa K, Sugihara K, Goshima N, Watanabe S, Semba K. A method of producing genetically manipulated mouse mammary gland. Breast Cancer Res 2019; 21:1. [PMID: 30611295 PMCID: PMC6321679 DOI: 10.1186/s13058-018-1086-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/05/2018] [Indexed: 01/23/2023] Open
Abstract
Background To obtain a deep understanding of the mechanism by which breast cancer develops, the genes involved in tumorigenesis should be analyzed in vivo. Mouse mammary gland can regenerate completely from a mammary stem cell (MaSC), which enables us to analyze the effect of gene expression and repression on tumorigenesis in mammary gland regenerated from genetically manipulated MaSCs. Although lentiviral and retroviral systems have usually been applied for gene transduction into MaSCs, they are associated with difficulty in introducing long, repeated, or transcriptional termination sequences. There is thus a need for an easier and quicker gene delivery system. Methods We devised a new system for gene delivery into MaSCs using the piggyBac transposon vectors and electroporation. Compared with viral systems, this system enables easier and quicker transfection of even long, repeated, or transcriptional termination DNA sequences. We designed gene expression vectors of the transposon system, equipped with a luciferase (Luc) expression cassette for monitoring gene transduction into regenerative mammary gland in mice by in-vivo imaging. A doxycycline (Dox)-inducible system was also integrated for expressing the target gene after mammary regeneration to mimic the actual mechanism of tumorigenesis. Results With this new gene delivery system, genetically manipulated mammary glands were successfully reconstituted even though the vector size was > 200 kb and even in the presence of DNA elements such as promoters and transcription termination sequences, which are major obstacles to viral vector packaging. They differentiated correctly into both basal and luminal cells, and showed normal morphological change and milk production after pregnancy, as well as self-renewal capacity. Using the Tet-On system, gene expression can be controlled by the addition of Dox after mammary reconstitution. In a case study using polyoma-virus middle T antigen (PyMT), oncogene-induced tumorigenesis was achieved. The histological appearance of the tumor was highly similar to that of the mouse mammary tumor virus-PyMT transgenic mouse model. Conclusions With this system, gene transduction in the mammary gland can be easily and quickly achieved, and gene expression can be controlled by Dox administration. This system for genetic manipulation could be useful for analyzing genes involved in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-018-1086-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroaki Tagaya
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo, 135-8073, Japan.
| | - Yoshito Hosokawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Shun Kobayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yukino Ueoka
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Mayuna Shimada
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yasuko Ohashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hirofumi Mikami
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Mizuki Yamamoto
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Ihara
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kentaro Kumazawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kosuke Sugihara
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Naoki Goshima
- National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, 135-0064, Japan.,Translational Research Center, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Translational Research Center, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan.
| |
Collapse
|
56
|
Abstract
Cells in tissues in vivo face a very different microenvironment than typical cultured cells plated on a plastic dish. Already several decades ago, cell biologists observed that cell lines show dramatically different morphology and growth characteristics when embedded into three-dimensional (3D) substrates or standard tissue culture plates (Montesano R, Schaller G, Orci L, Cell. 66:697-711, 1991; Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ, Development. 105:223-235, 1989; Simian M, Bissell MJ, J Cell Biol. 216:31-40, 2017). Despite its imminent benefit for cell biological studies, suspicion and prejudice toward more complicated sample preparation requirements limited the popularity of 3D culture techniques until recently, when it was shown that soft 3D gels made of basement membrane extracts (BME) allow prolonged culture of many types of primary epithelial cells (Clevers H, Cell. 165:1586-1597, 2016; Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al., Nature. 459:262-265, 2009). These observations have brought 3D organoid culture systems into the mainstream. Here we describe two protocols for culturing epithelial cells in 3D substrates, the "blob culture" setup where cells are fully embedded into BME gel and the "overlay setup" where cells are seeded on top of BME gel and then overlaid with a thin layer of BME (Debnath J, Brugge JS, Nat Rev Cancer. 5:675-688, 2005; Bryant DM, Datta A, Rodriguez-Fraticelli AE, Peranen J, Martin-Belmonte F, Mostov KE, Nat Cell Biol. 12:1035-1045, 2010).
Collapse
Affiliation(s)
- Kai Zhang
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. .,Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| | - Aki Manninen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| |
Collapse
|
57
|
Mills KL, Gomes AM, Standlee CR, Rojo MD, Carmeliet P, Lin Z, Machado HL. Gas6 is dispensable for pubertal mammary gland development. PLoS One 2018; 13:e0208550. [PMID: 30533018 PMCID: PMC6289431 DOI: 10.1371/journal.pone.0208550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/18/2018] [Indexed: 11/19/2022] Open
Abstract
Mammary gland development is a complex and dynamic process that occurs mainly postnatally. Ductal elongation and branching morphogenesis are regulated by a plethora of factors, including cytokines, hormones, growth factors and the extracellular matrix. Gas6 is a secreted gamma-carboxylated protein that binds to a family of receptors tyrosine kinase receptors known as the TAMR family (Tyro3, Axl, Mer). Gas6 function in developmental processes has been shown in nervous, reproductive and immune systems. In this study, we found that Gas6 is highly expressed in virgin adult mammary glands but declines during pregnancy and lactation. Specifically, Gas6 is highly expressed in luminal and basal mammary epithelial cells during puberty and adulthood, while TAMR expression is low. Mammary whole mount analysis revealed that Gas6 germline deletion does not impact ductal elongation, branching morphogenesis or terminal end bud formation. Masson's trichrome staining showed that collagen deposition is similar in Gas6-/- mice as compared to wildtype mice. Gas6-/- mammary glands presented an organized luminal and myoepithelial bilayer of cells, and the proportion of mammary stem cells was unchanged in Gas6-/- mammary glands as compared to wildtype. Finally, proliferation of epithelial cells and macrophage number were similar in both groups. These studies suggest that Gas6 is not essential for pubertal mammary gland development in nulliparous mice.
Collapse
Affiliation(s)
- Kylie L. Mills
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane School of Medicine, New Orleans, LA, United States of America
| | - Angelica M. Gomes
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane School of Medicine, New Orleans, LA, United States of America
| | - Courtney R. Standlee
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane School of Medicine, New Orleans, LA, United States of America
| | - Michelle D. Rojo
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane School of Medicine, New Orleans, LA, United States of America
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongsan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Zhen Lin
- Department of Pathology, Tulane Cancer Center, Tulane School of Medicine, New Orleans, LA, United States of America
| | - Heather L. Machado
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane School of Medicine, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
58
|
Villanueva H, Grimm S, Dhamne S, Rajapakshe K, Visbal A, Davis CM, Ehli EA, Hartig SM, Coarfa C, Edwards DP. The Emerging Roles of Steroid Hormone Receptors in Ductal Carcinoma in Situ (DCIS) of the Breast. J Mammary Gland Biol Neoplasia 2018; 23:237-248. [PMID: 30338425 PMCID: PMC6244884 DOI: 10.1007/s10911-018-9416-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor to most types of invasive breast cancer (IBC). Although it is estimated only one third of untreated patients with DCIS will progress to IBC, standard of care for treatment is surgery and radiation. This therapeutic approach combined with a lack of reliable biomarker panels to predict DCIS progression is a major clinical problem. DCIS shares the same molecular subtypes as IBC including estrogen receptor (ER) and progesterone receptor (PR) positive luminal subtypes, which encompass the majority (60-70%) of DCIS. Compared to the established roles of ER and PR in luminal IBC, much less is known about the roles and mechanism of action of estrogen (E2) and progesterone (P4) and their cognate receptors in the development and progression of DCIS. This is an underexplored area of research due in part to a paucity of suitable experimental models of ER+/PR + DCIS. This review summarizes information from clinical and observational studies on steroid hormones as breast cancer risk factors and ER and PR as biomarkers in DCIS. Lastly, we discuss emerging experimental models of ER+/PR+ DCIS.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Biomarkers, Tumor/metabolism
- Breast/pathology
- Breast Neoplasms/diagnosis
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma, Intraductal, Noninfiltrating/diagnosis
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/therapy
- Clinical Trials as Topic
- Disease Models, Animal
- Disease Progression
- Estrogens/metabolism
- Female
- Humans
- Neoplasm Invasiveness/pathology
- Observational Studies as Topic
- Predictive Value of Tests
- Progesterone/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Risk Factors
Collapse
Affiliation(s)
- Hugo Villanueva
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sandra Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sagar Dhamne
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Adriana Visbal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Christel M Davis
- Avera Institute for Human Genetics, 3720 W 69th St, Sioux Falls, SD, 57108, USA
| | - Erik A Ehli
- Avera Institute for Human Genetics, 3720 W 69th St, Sioux Falls, SD, 57108, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
59
|
Hara H, Seregin SS, Yang D, Fukase K, Chamaillard M, Alnemri ES, Inohara N, Chen GY, Núñez G. The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection. Cell 2018; 175:1651-1664.e14. [PMID: 30392956 DOI: 10.1016/j.cell.2018.09.047] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/26/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023]
Abstract
The activator and composition of the NLRP6 inflammasome remain poorly understood. We find that lipoteichoic acid (LTA), a molecule produced by Gram-positive bacteria, binds and activates NLRP6. In response to cytosolic LTA or infection with Listeria monocytogenes, NLRP6 recruited caspase-11 and caspase-1 via the adaptor ASC. NLRP6 activation by LTA induced processing of caspase-11, which promoted caspase-1 activation and interleukin-1β (IL-1β)/IL-18 maturation in macrophages. Nlrp6-/- and Casp11-/- mice were less susceptible to L. monocytogenes infection, which was associated with reduced pathogen loads and impaired IL-18 production. Administration of IL-18 to Nlrp6-/- or Casp11-/- mice restored the susceptibility of mutant mice to L. monocytogenes infection. These results reveal a previously unrecognized innate immunity pathway triggered by cytosolic LTA that is sensed by NLRP6 and exacerbates systemic Gram-positive pathogen infection via the production of IL-18.
Collapse
Affiliation(s)
- Hideki Hara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Sergey S Seregin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dahai Yang
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mathias Chamaillard
- CIIL-Centre d'Infection et d'Immunité de Lille, Université de Lille, CNRS, Inserm, CHRU Lille, Institut Pasteur de Lille, U1019-UMR 8204, F-59000, Lille, France
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Grace Y Chen
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
60
|
Feinberg TY, Zheng H, Liu R, Wicha MS, Yu SM, Weiss SJ. Divergent Matrix-Remodeling Strategies Distinguish Developmental from Neoplastic Mammary Epithelial Cell Invasion Programs. Dev Cell 2018; 47:145-160.e6. [PMID: 30269950 PMCID: PMC6317358 DOI: 10.1016/j.devcel.2018.08.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/19/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Metastasizing breast carcinoma cells have been hypothesized to mobilize tissue-invasive activity by co-opting the proteolytic systems employed by normal mammary epithelial cells undergoing branching morphogenesis. However, the critical effectors underlying morphogenesis remain unidentified, and their relationship to breast cancer invasion programs is yet to be established. Here, we identify the membrane-anchored matrix metalloproteinase, Mmp14/MT1-MMP, but not the closely related proteinase Mmp15/MT2-MMP, as the dominant proteolytic effector of both branching morphogenesis and carcinoma cell invasion in vivo. Unexpectedly, however, epithelial cell-specific targeting of Mmp14/MT1-MMP in the normal mammary gland fails to impair branching, whereas deleting the proteinase in carcinoma cells abrogates invasion, preserves matrix architecture, and completely blocks metastasis. By contrast, in the normal mammary gland, extracellular matrix remodeling and morphogenesis are ablated only when Mmp14/MT1-MMP expression is specifically deleted from the periductal stroma. Together, these findings uncover the overlapping but divergent strategies that underlie developmental versus neoplastic matrix remodeling programs.
Collapse
Affiliation(s)
- Tamar Y Feinberg
- Division of Molecular Medicine and Genetics, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Department of Internal Medicine, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Life Sciences Institute, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huarui Zheng
- Division of Molecular Medicine and Genetics, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Department of Internal Medicine, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Life Sciences Institute, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA
| | - Rui Liu
- Division of Molecular Medicine and Genetics, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Department of Internal Medicine, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Life Sciences Institute, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Department of Internal Medicine, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Life Sciences Institute, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
61
|
de Groot JS, Ratze MAK, van Amersfoort M, Eisemann T, Vlug EJ, Niklaas MT, Chin S, Caldas C, van Diest PJ, Jonkers J, de Rooij J, Derksen PWB. αE-catenin is a candidate tumor suppressor for the development of E-cadherin-expressing lobular-type breast cancer. J Pathol 2018; 245:456-467. [PMID: 29774524 PMCID: PMC6055824 DOI: 10.1002/path.5099] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022]
Abstract
Although mutational inactivation of E-cadherin (CDH1) is the main driver of invasive lobular breast cancer (ILC), approximately 10-15% of all ILCs retain membrane-localized E-cadherin despite the presence of an apparent non-cohesive and invasive lobular growth pattern. Given that ILC is dependent on constitutive actomyosin contraction for tumor development and progression, we used a combination of cell systems and in vivo experiments to investigate the consequences of α-catenin (CTNNA1) loss in the regulation of anchorage independence of non-invasive breast carcinoma. We found that inactivating somatic CTNNA1 mutations in human breast cancer correlated with lobular and mixed ducto-lobular phenotypes. Further, inducible loss of α-catenin in mouse and human E-cadherin-expressing breast cancer cells led to atypical localization of E-cadherin, a rounded cell morphology, and anoikis resistance. Pharmacological inhibition experiments subsequently revealed that, similar to E-cadherin-mutant ILC, anoikis resistance induced by α-catenin loss was dependent on Rho/Rock-dependent actomyosin contractility. Finally, using a transplantation-based conditional mouse model, we demonstrate that inducible inactivation of α-catenin instigates acquisition of lobular features and invasive behavior. We therefore suggest that α-catenin represents a bona fide tumor suppressor for the development of lobular-type breast cancer and as such provides an alternative event to E-cadherin inactivation, adherens junction (AJ) dysfunction, and subsequent constitutive actomyosin contraction. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jolien S de Groot
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Max AK Ratze
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Tanja Eisemann
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Eva J Vlug
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mijanou T Niklaas
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Suet‐Feung Chin
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge Department of OncologyUniversity of Cambridge, Addenbrooke's Hospital, Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research CentreCambridgeUK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge Department of OncologyUniversity of Cambridge, Addenbrooke's Hospital, Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research CentreCambridgeUK
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jos Jonkers
- Department of Molecular PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Johan de Rooij
- Department of Molecular Cancer ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Patrick WB Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
62
|
Zeng H, Jorapur A, Shain AH, Lang UE, Torres R, Zhang Y, McNeal AS, Botton T, Lin J, Donne M, Bastian IN, Yu R, North JP, Pincus L, Ruben BS, Joseph NM, Yeh I, Bastian BC, Judson RL. Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation. Cancer Cell 2018; 34:56-68.e9. [PMID: 29990501 PMCID: PMC6084788 DOI: 10.1016/j.ccell.2018.05.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 02/12/2018] [Accepted: 05/30/2018] [Indexed: 02/03/2023]
Abstract
Loss of the CDKN2A tumor suppressor is associated with melanoma metastasis, but the mechanisms connecting the phenomena are unknown. Using CRISPR-Cas9 to engineer a cellular model of melanoma initiation from primary human melanocytes, we discovered that a lineage-restricted transcription factor, BRN2, is downstream of CDKN2A and directly regulated by E2F1. In a cohort of melanocytic tumors that capture distinct progression stages, we observed that CDKN2A loss coincides with both the onset of invasive behavior and increased BRN2 expression. Loss of the CDKN2A protein product p16INK4A permitted metastatic dissemination of human melanoma lines in mice, a phenotype rescued by inhibition of BRN2. These results demonstrate a mechanism by which CDKN2A suppresses the initiation of melanoma invasion through inhibition of BRN2.
Collapse
Affiliation(s)
- Hanlin Zeng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Aparna Jorapur
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - A Hunter Shain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Ursula E Lang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Rodrigo Torres
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Yuntian Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Andrew S McNeal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Thomas Botton
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew Donne
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ingmar N Bastian
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Richard Yu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA; Faculty of Medicine, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Jeffrey P North
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Laura Pincus
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Beth S Ruben
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA; Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | - Nancy M Joseph
- Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Iwei Yeh
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Boris C Bastian
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Robert L Judson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
63
|
Willis NA, Panday A, Duffey EE, Scully R. Rad51 recruitment and exclusion of non-homologous end joining during homologous recombination at a Tus/Ter mammalian replication fork barrier. PLoS Genet 2018; 14:e1007486. [PMID: 30024881 PMCID: PMC6067765 DOI: 10.1371/journal.pgen.1007486] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 07/31/2018] [Accepted: 06/13/2018] [Indexed: 11/19/2022] Open
Abstract
Classical non-homologous end joining (C-NHEJ) and homologous recombination (HR) compete to repair mammalian chromosomal double strand breaks (DSBs). However, C-NHEJ has no impact on HR induced by DNA nicking enzymes. In this case, the replication fork is thought to convert the DNA nick into a one-ended DSB, which lacks a readily available partner for C-NHEJ. Whether C-NHEJ competes with HR at a non-enzymatic mammalian replication fork barrier (RFB) remains unknown. We previously showed that conservative "short tract" gene conversion (STGC) induced by a chromosomal Tus/Ter RFB is a product of bidirectional replication fork stalling. This finding raises the possibility that Tus/Ter-induced STGC proceeds via a two-ended DSB intermediate. If so, Tus/Ter-induced STGC might be subject to competition by C-NHEJ. However, in contrast to the DSB response, where genetic ablation of C-NHEJ stimulates HR, we report here that Tus/Ter-induced HR is unaffected by deletion of either of two C-NHEJ genes, Xrcc4 or Ku70. These results show that Tus/Ter-induced HR does not entail the formation of a two-ended DSB to which C-NHEJ has competitive access. We found no evidence that the alternative end-joining factor, DNA polymerase θ, competes with Tus/Ter-induced HR. We used chromatin-immunoprecipitation to compare Rad51 recruitment to a Tus/Ter RFB and to a neighboring site-specific DSB. Rad51 accumulation at Tus/Ter was more intense and more sustained than at a DSB. In contrast to the DSB response, Rad51 accumulation at Tus/Ter was restricted to within a few hundred base pairs of the RFB. Taken together, these findings suggest that the major DNA structures that bind Rad51 at a Tus/Ter RFB are not conventional DSBs. We propose that Rad51 acts as an "early responder" at stalled forks, binding single stranded daughter strand gaps on the arrested lagging strand, and that Rad51-mediated fork remodeling generates HR intermediates that are incapable of Ku binding and therefore invisible to the C-NHEJ machinery.
Collapse
Affiliation(s)
- Nicholas A. Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erin E. Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
64
|
Smith GH, Medina D. Does the Mouse Mammary Gland Arise from Unipotent or Multipotent Mammary Stem/Progenitor Cells? J Mammary Gland Biol Neoplasia 2018; 23:1-3. [PMID: 29644495 DOI: 10.1007/s10911-018-9394-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/27/2018] [Indexed: 10/17/2022] Open
Abstract
The presence of long-lived lineage restricted progenitor and multipotent progenitor cells in adult mouse mammary gland for cancer development is compelling. Mammary cancers are phenotypically diverse This might be explained by transformation of long-lived, lineage-limited progenitor subpopulations. Mammary multipotent epithelial stem cells and their environmental niches must be considered, since their niche(s), once empty might be occupied by lineage-limited progenitors that are proximal. The existence of premalignant mammary populationst that manifest characteristics of lineage limitation argues strongly for this proposition.
Collapse
Affiliation(s)
- Gilbert H Smith
- Mammary Stem Cell Biology, BRL,CCR, NCI, NIH, Bethesda, MD, 20892, USA.
| | - Daniel Medina
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
65
|
Relation T, Yi T, Guess AJ, La Perle K, Otsuru S, Hasgur S, Dominici M, Breuer C, Horwitz EM. Intratumoral Delivery of Interferonγ-Secreting Mesenchymal Stromal Cells Repolarizes Tumor-Associated Macrophages and Suppresses Neuroblastoma Proliferation In Vivo. Stem Cells 2018; 36:915-924. [PMID: 29430789 DOI: 10.1002/stem.2801] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/10/2018] [Accepted: 01/31/2018] [Indexed: 12/25/2022]
Abstract
Neuroblastoma, the most common extracranial solid tumor in childhood, remains a therapeutic challenge. However, one promising patient treatment strategy is the delivery of anti-tumor therapeutic agents via mesenchymal stromal cell (MSC) therapy. MSCs have been safely used to treat genetic bone diseases such as osteogenesis imperfecta, cardiovascular diseases, autoimmune diseases, and cancer. The pro-inflammatory cytokine interferon-gamma (IFNγ) has been shown to decrease tumor proliferation by altering the tumor microenvironment (TME). Despite this, clinical trials of systemic IFNγ therapy have failed due to the high blood concentration required and associated systemic toxicities. Here, we developed an intra-adrenal model of neuroblastoma, characterized by liver and lung metastases. We then engineered MSCs to deliver IFNγ directly to the TME. In vitro, these MSCs polarized murine macrophages to the M1 phenotype. In vivo, we attained a therapeutically active TME concentration of IFNγ without increased systemic concentration or toxicity. The TME-specific IFNγ reduced tumor growth rate and increased survival in two models of T cell deficient athymic nude mice. Absence of this benefit in NOD SCID gamma (NSG) immunodeficient mouse model indicates a mechanism dependent on the innate immune system. IL-17 and IL-23p19, both uniquely M1 polarization markers, transiently increased in the tumor interstitial fluid. Finally, the MSC vehicle did not promote tumor growth. These findings reveal that MSCs can deliver effective cytokine therapy directly to the tumor while avoiding systemic toxicity. This method transiently induces inflammatory M1 macrophage polarization, which reduces tumor burden in our novel neuroblastoma murine model. Stem Cells 2018;36:915-924.
Collapse
Affiliation(s)
- Theresa Relation
- The Ohio State University Medical Scientist Training Program, Columbus, Ohio, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tai Yi
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Adam J Guess
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Krista La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Satoru Otsuru
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Suheyla Hasgur
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Massimo Dominici
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Christopher Breuer
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Edwin M Horwitz
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
66
|
Zhang Z, Christin JR, Wang C, Ge K, Oktay MH, Guo W. Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation. Cell Rep 2018; 16:3146-3156. [PMID: 27653681 DOI: 10.1016/j.celrep.2016.08.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 01/23/2023] Open
Abstract
Cancer genomics has provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC) organoid-based approach for rapid generation of somatic genetically engineered mouse models (GEMMs). By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study has established a robust in vivo platform for functional cancer genomics and has discovered functional breast cancer mutations.
Collapse
Affiliation(s)
- Zheng Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Christin
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chunhui Wang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20814, USA
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
67
|
Seong J, Kim NS, Kim JA, Lee W, Seo JY, Yum MK, Kim JH, Park I, Kang JS, Bae SH, Yun CH, Kong YY. Side branching and luminal lineage commitment by ID2 in developing mammary glands. Development 2018; 145:dev.165258. [DOI: 10.1242/dev.165258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
Abstract
Mammary glands develop through primary ductal elongation and side branching to maximize the spatial area. Although primary ducts are generated by bifurcation of terminal end buds, the mechanism through which side branching occurs is still largely unclear. Here, we show that inhibitor of DNA-binding 2 (ID2) drives side branch formation through differentiation of K6+ bipotent progenitor cells into CD61+ luminal progenitor cells. Id2-null mice had side branching defects, along with developmental blockage of K6+ bipotent progenitor cells into CD61+ luminal progenitor cells. Notably, CD61+ luminal progenitor cells were found in budding and side branches, but not in terminal end buds. Hormone reconstitution studies using ovariectomized MMTV-NLS-Id2 transgenic mice revealed that ID2 is a key mediator of progesterone, which drives luminal lineage differentiation and side branching. Our results suggest that CD61 is a marker for side branches and that ID2 regulates side branch formation by inducing luminal lineage commitment from K6+ bipotent progenitor cells to CD61+ luminal progenitor cells.
Collapse
Affiliation(s)
- Jinwoo Seong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Nam-Shik Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jee-Ah Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Wonbin Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Yun Seo
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min Kyu Yum
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Inkuk Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jong-Seol Kang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung-Hwan Bae
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Young-Yun Kong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
68
|
Willis NA, Frock RL, Menghi F, Duffey EE, Panday A, Camacho V, Hasty EP, Liu ET, Alt FW, Scully R. Mechanism of tandem duplication formation in BRCA1-mutant cells. Nature 2017; 551:590-595. [PMID: 29168504 PMCID: PMC5728692 DOI: 10.1038/nature24477] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Small, approximately 10-kilobase microhomology-mediated tandem duplications are abundant in the genomes of BRCA1-linked but not BRCA2-linked breast cancer. Here we define the mechanism underlying this rearrangement signature. We show that, in primary mammalian cells, BRCA1, but not BRCA2, suppresses the formation of tandem duplications at a site-specific chromosomal replication fork barrier imposed by the binding of Tus proteins to an array of Ter sites. BRCA1 has no equivalent role at chromosomal double-stranded DNA breaks, indicating that tandem duplications form specifically at stalled forks. Tandem duplications in BRCA1 mutant cells arise by a replication restart-bypass mechanism terminated by end joining or by microhomology-mediated template switching, the latter forming complex tandem duplication breakpoints. Solitary DNA ends form directly at Tus-Ter, implicating misrepair of these lesions in tandem duplication formation. Furthermore, BRCA1 inactivation is strongly associated with ~10 kilobase tandem duplications in ovarian cancer. This tandem duplicator phenotype may be a general signature of BRCA1-deficient cancer.
Collapse
Affiliation(s)
- Nicholas A. Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Richard L. Frock
- Boston Children’s Hospital, Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Erin E. Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Virginia Camacho
- Department of Medicine, Flow Cytometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - E. Paul Hasty
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Edison T. Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Frederick W. Alt
- Boston Children’s Hospital, Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
69
|
Control of HIV Infection In Vivo Using Gene Therapy with a Secreted Entry Inhibitor. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:132-144. [PMID: 29246292 PMCID: PMC5633861 DOI: 10.1016/j.omtn.2017.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 11/22/2022]
Abstract
HIV entry inhibitors are highly effective in controlling virus replication. We have developed a lentiviral vector that expresses a secreted entry inhibitor, soluble CD4 (sCD4), which binds to the HIV envelope glycoproteins and inactivates the virus. We have shown that sCD4 was secreted from gene-modified CD4+ T cells, as well as from human umbilical cord blood-derived CD34+ hematopoietic stem/progenitor cells (HSPCs), and protected unmodified HIV target cells from infection in vitro. To investigate the in vivo application of our approach, we injected gene-modified HSPCs into NOD/SCID/γcnull (NSG) mice. NSG hosts supported multi-lineage differentiation of human gene-modified HSPCs. Upon challenge with HIV, humanized mice capable of secreting sCD4 demonstrated a reduction of viral load over time compared to control humanized mice. In contrast to gene therapy approaches that render only gene-modified HIV target cells resistant to infection, our approach also showed protection of unmodified CD4+ T cells in the peripheral blood and tissues. Our findings provide support for the continuous delivery of secreted entry inhibitors via gene therapy as an alternative to oral administration of antiretroviral drugs or injection of antiretroviral proteins, including antibodies.
Collapse
|
70
|
Suarez CD, Wu J, Badve SS, Sparano JA, Kaliney W, Littlepage LE. The AKT inhibitor triciribine in combination with paclitaxel has order-specific efficacy against Zfp217-induced breast cancer chemoresistance. Oncotarget 2017; 8:108534-108547. [PMID: 29312549 PMCID: PMC5752462 DOI: 10.18632/oncotarget.19308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022] Open
Abstract
We previously identified the transcription factor ZNF217 (human) / Zfp217 (mouse) as an oncogene and prognostic indicator of reduced survival, increased metastasis, and reduced response to therapy in breast cancer patients. Here we investigated the role of Zfp217 in chemotherapy resistance. Preclinical animal models of Zfp217 overexpression were treated with a combination therapy of the microtubule inhibitor epothilone B, doxorubicin (Adriamycin), and cyclophosphamide (EAC). Tumors overexpressing Zfp217 increased their tumor burden compared to control tumors after treatment and accumulated a mammary gland progenitor cell population (K8+K14+). To overcome this chemoresistance after ZNF217 overexpression, we treated tumors ± Zfp217 overexpression with paclitaxel and triciribine, a nucleoside analog and AKT inhibitor that kills cells that overexpress ZNF217. Treatment order critically impacted the efficacy of the therapy. Combination treatment of triciribine followed by paclitaxel (TCN→PAC) inhibited tumor burden and increased survival in tumors that overexpressed Zfp217, whereas single agent or combination treatment in the reverse order (PAC→TCN) did not improve response. Analysis of these tumors and patient-derived tumor xenograft tumors treated with the same therapies suggested that Zfp217 overexpression in tumors contributes both to decreased microvessel density and vessel maturity, while TCN→PAC tumors overexpressing Zfp217 showed improved vessel maturity.
Collapse
Affiliation(s)
- Christopher D Suarez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Junmin Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Sunil S Badve
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph A Sparano
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Laurie E Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| |
Collapse
|
71
|
Valdez KE, Elsarraj HS, Hong Y, Grimm SL, Ricci LR, Fan F, Tawfik O, May L, Cusick T, Inciardi M, Redick M, Gatewood J, Winblad O, Hilsenbeck S, Edwards DP, Hagan C, Godwin AK, Fabian C, Behbod F. NEMO, a Transcriptional Target of Estrogen and Progesterone, Is Linked to Tumor Suppressor PML in Breast Cancer. Cancer Res 2017; 77:3802-3813. [PMID: 28515148 PMCID: PMC8236416 DOI: 10.1158/0008-5472.can-16-2794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/08/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022]
Abstract
The beneficial versus detrimental roles of estrogen plus progesterone (E+P) in breast cancer remains controversial. Here we report a beneficial mechanism of E+P treatment in breast cancer cells driven by transcriptional upregulation of the NFκB modulator NEMO, which in turn promotes expression of the tumor suppressor protein promyelocytic leukemia (PML). E+P treatment of patient-derived epithelial cells derived from ductal carcinoma in situ (DCIS) increased secretion of the proinflammatory cytokine IL6. Mechanistic investigations indicated that IL6 upregulation occurred as a result of transcriptional upregulation of NEMO, the gene that harbored estrogen receptor (ER) binding sites within its promoter. Accordingly, E+P treatment of breast cancer cells increased ER binding to the NEMO promoter, thereby increasing NEMO expression, NFκB activation, and IL6 secretion. In two mouse xenograft models of DCIS, we found that RNAi-mediated silencing of NEMO increased tumor invasion and progression. This seemingly paradoxical result was linked to NEMO-mediated regulation of NFκB and IL6 secretion, increased phosphorylation of STAT3 on Ser727, and increased expression of PML, a STAT3 transcriptional target. In identifying NEMO as a pivotal transcriptional target of E+P signaling in breast cancer cells, our work offers a mechanistic explanation for the paradoxical antitumorigenic roles of E+P in breast cancer by showing how it upregulates the tumor suppressor protein PML. Cancer Res; 77(14); 3802-13. ©2017 AACR.
Collapse
Affiliation(s)
- Kelli E. Valdez
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Hanan S. Elsarraj
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Sandra L. Grimm
- Department of Molecular & Cellular Biology, Pathology & Immunology, One Baylor Plaza, Houston, Texas 77030
| | - Lawrence R. Ricci
- Department of Radiology, Truman Medical Center, 2301 Holmes Street, Kansas City, MO 64108
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Lisa May
- Department of Radiology, The University of Kansas School of Medicine-Wichita, 1010 N. Kansas, Wichita, KS, 67214
| | - Therese Cusick
- Department of Surgery, The University of Kansas School of Medicine-Wichita, 1010 N. Kansas, Wichita, KS, 67214
| | - Marc Inciardi
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Mark Redick
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Jason Gatewood
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Onalisa Winblad
- Department of Radiology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Susan Hilsenbeck
- Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Dean P. Edwards
- Department of Molecular & Cellular Biology, Pathology & Immunology, One Baylor Plaza, Houston, Texas 77030
| | - Christy Hagan
- Department of Biochemistry, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Carol Fabian
- Department of Medicine, Breast Cancer Survivorship Center, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160
| | - Fariba Behbod
- Corresponding author and requests for reprints: Fariba Behbod, Department of Pathology and Laboratory Medicine, MS 3045, The University of Kansas Medical Center, Kansas City, KS, 66160, Tel: (913) 945-6642, Fax: (913) 945-6838,
| |
Collapse
|
72
|
Dasgupta N, Thakur BK, Ta A, Das S, Banik G, Das S. Polo-like kinase 1 expression is suppressed by CCAAT/enhancer-binding protein α to mediate colon carcinoma cell differentiation and apoptosis. Biochim Biophys Acta Gen Subj 2017; 1861:1777-1787. [PMID: 28341486 DOI: 10.1016/j.bbagen.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/12/2017] [Accepted: 03/18/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human polo-like kinase 1 (PLK1), a highly conserved serine/threonine kinase is a key player in several essential cell-cycle events. PLK1 is considered an oncogene and its overexpression often correlates with poor prognosis of cancers, including colorectal cancer (CRC). However, regulation of PLK1 expression in colorectal cells was never studied earlier and it is currently unknown if PLK1 regulates differentiation and apoptosis of CRC. METHODS PLK1 expression was analyzed by real-time PCR and western blotting. Transcriptional regulation was studied by reporter assay, gene knock-down, EMSA and ChIP. RESULTS PLK1 expression was down-regulated during butyrate-induced differentiation of HT-29 and other CRC cells. Also, PLK1 down-regulation mediated the role of butyrate in CRC differentiation and apoptosis. We report here a novel transcriptional regulation of PLK1 by butyrate. Transcription factors CCAAT/enhancer-binding protein α (C/EBPα) and Oct-1 share an overlapping binding site over the PLK1 promoter. Elevated levels of C/EBPα by butyrate treatment of CRC cells competed out the activator protein Oct-1 from binding to the PLK1 promoter and sequestered it. Binding of C/EBPα was associated with increased deacetylation near the transcription start site (TSS) of the PLK1 promoter, which abrogated transcription through reduced recruitment of RNA polymerase II. We also found a synergistic role between the synthetic PLK1-inhibitor SBE13 and butyrate on the apoptosis of CRC cells. CONCLUSION This study offered a novel p53-independent regulation of PLK1 during CRC differentiation and apoptosis. GENERAL SIGNIFICANCE Down-regulation of PLK1 is one of the mechanisms underlying the anti-cancer role of dietary fibre-derived butyrate in CRC.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India; Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Bhupesh Kumar Thakur
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Atri Ta
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Sayan Das
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - George Banik
- BD Biosciences, Salt Lake, Kolkata 700102, India
| | - Santasabuj Das
- National Institute of Cholera & Enteric Diseases (ICMR), Clinical Medicine, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India.
| |
Collapse
|
73
|
Zhang K, Myllymäki SM, Gao P, Devarajan R, Kytölä V, Nykter M, Wei GH, Manninen A. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene 2017; 36:5681-5694. [PMID: 28604746 PMCID: PMC5658677 DOI: 10.1038/onc.2017.177] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022]
Abstract
In many cancer types, integrin-mediated signaling regulates proliferation, survival and invasion of tumorigenic cells. However, it is still unclear how integrins crosstalk with oncogenes to regulate tumorigenesis and metastasis. Here we show that oncogenic K-RasV12 upregulates α6-integrin expression in Madin–Darby canine kidney (MDCK) cells via activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)/Fos-related antigen 1-signaling cascade. Activated α6-integrins promoted metastatic capacity and anoikis resistance, and led to perturbed growth of MDCK cysts. Transcriptomic analysis of K-RasV12-transformed MDCK cells also revealed robust downregulation of αV-class integrins. Re-expression of αV-integrin in K-RasV12-transformed MDCK cells synergistically upregulated the expression of Zinc finger E-box-binding homeobox 1 and Twist-related protein 1 and triggered epithelial-mesenchymal transition leading to induced cell motility and invasion. These results delineate the signaling cascades connecting oncogenic K-RasV12 with α6- and αV-integrin functions to modulate cancer cell survival and tumorigenesis, and reveal new possible strategies to target highly oncogenic K-RasV12 mutants.
Collapse
Affiliation(s)
- K Zhang
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - S-M Myllymäki
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - P Gao
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - R Devarajan
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - V Kytölä
- Prostate Cancer Research Center, Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - M Nykter
- Prostate Cancer Research Center, Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - G-H Wei
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - A Manninen
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
74
|
Pham K, Dong J, Jiang X, Qu Y, Yu H, Yang Y, Olea W, Marini JC, Chan L, Wang J, Wehrens XHT, Cui X, Li Y, Hadsell DL, Cheng N. Loss of glutaredoxin 3 impedes mammary lobuloalveolar development during pregnancy and lactation. Am J Physiol Endocrinol Metab 2017; 312:E136-E149. [PMID: 27894063 PMCID: PMC5374299 DOI: 10.1152/ajpendo.00150.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Mammalian glutaredoxin 3 (Grx3) has been shown to be important for regulating cellular redox homeostasis in the cell. Our previous studies indicate that Grx3 is significantly overexpressed in various human cancers including breast cancer and demonstrate that Grx3 controls cancer cell growth and invasion by regulating reactive oxygen species (ROS) and NF-κB signaling pathways. However, it remains to be determined whether Grx3 is required for normal mammary gland development and how it contributes to epithelial cell proliferation and differentiation in vivo. In the present study, we examined Grx3 expression in different cell types within the developing mouse mammary gland (MG) and found enhanced expression of Grx3 at pregnancy and lactation stages. To assess the physiological role of Grx3 in MG, we generated the mutant mice in which Grx3 was deleted specifically in mammary epithelial cells (MECs). Although the reduction of Grx3 expression had only minimal effects on mammary ductal development in virgin mice, it did reduce alveolar density during pregnancy and lactation. The impairment of lobuloalveolar development was associated with high levels of ROS accumulation and reduced expression of milk protein genes. In addition, proliferative gene expression was significantly suppressed with proliferation defects occurring in knockout MECs during alveolar development compared with wild-type controls. Therefore, our findings suggest that Grx3 is a key regulator of ROS in vivo and is involved in pregnancy-dependent mammary gland development and secretory activation through modulating cellular ROS.
Collapse
Affiliation(s)
- Khanh Pham
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jie Dong
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xiqian Jiang
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas
| | - Ying Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Han Yu
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Yisheng Yang
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Walter Olea
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Juan C Marini
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lawrence Chan
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jin Wang
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas
- Center for Drug Discovery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; and
| | - Xander H T Wehrens
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; and
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Darryl L Hadsell
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ninghui Cheng
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas;
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; and
| |
Collapse
|
75
|
Marcello M, Richards R, Mason D, Sée V. Live Imaging of Cell Invasion Using a Multicellular Spheroid Model and Light-Sheet Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1035:155-161. [DOI: 10.1007/978-3-319-67358-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
76
|
Lin X, Jia J, Qin Y, Lin X, Li W, Xiao G, Li Y, Xie R, Huang H, Zhong L, Wu Q, Wang W, Huang W, Yao K, Xiao D, Sun Y. Simple and rapid determination of homozygous transgenic mice via in vivo fluorescence imaging. Oncotarget 2016; 6:39073-87. [PMID: 26472024 PMCID: PMC4766372 DOI: 10.18632/oncotarget.5535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Setting up breeding programs for transgenic mouse strains require to distinguish homozygous from the heterozygous transgenic animals. The combinational use of the fluorescence reporter transgene and small animal in-vivo imaging system might allow us to rapidly and visually determine the transgenic mice homozygous for transgene(s) by the in vivo fluorescence imaging. RLG, RCLG or Rm17LG transgenic mice ubiquitously express red fluorescent protein (RFP). To identify homozygous RLG transgenic mice, whole-body fluorescence imaging for all of newborn F2-generation littermates produced by mating of RFP-positive heterozygous transgenic mice (F1-generation) derived from the same transgenic founder was performed. Subsequently, the immediate data analysis of the in vivo fluorescence imaging was carried out, which greatly facilitated us to rapidly and readily distinguish RLG transgenic individual(s) with strong fluorescence from the rest of F2-generation littermates, followed by further determining this/these RLG individual(s) showing strong fluorescence to be homozygous, as strongly confirmed by mouse mating. Additionally, homozygous RCLG or Rm17LG transgenic mice were also rapidly and precisely distinguished by the above-mentioned optical approach. This approach allowed us within the shortest time period to obtain 10, 8 and 2 transgenic mice homozygous for RLG, RCLG and Rm17LG transgene, respectively, as verified by mouse mating, indicating the practicality and reliability of this optical method. Taken together, our findings fully demonstrate that the in vivo fluorescence imaging offers a visual, rapid and reliable alternative method to the traditional approaches (i.e., mouse mating and real-time quantitative PCR) in identifying homozygous transgenic mice harboring fluorescence reporter transgene under the control of a ubiquitous promoter in the situation mentioned in this study.
Collapse
Affiliation(s)
- Xiaolin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Junshuang Jia
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Yujuan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Xia Lin
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Wei Li
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Gaofang Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Yanqing Li
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Raoying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Hailu Huang
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Lin Zhong
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Qinghong Wu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Wanshan Wang
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Kaitai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Yan Sun
- Joint Program in Transfusion Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
77
|
Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A 2016; 113:E8228-E8237. [PMID: 27930322 DOI: 10.1073/pnas.1615677113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Casitas B-cell lymphoma (Cbl) family ubiquitin ligases negatively regulate tyrosine kinase-dependent signal transduction by promoting degradation of active kinases. We and others previously reported that loss of Cbl functions caused hyperproliferation in lymphoid and hematopoietic systems. Unexpectedly, Cbl deletion in Cbl-b-null, Cbl-c-null primary mouse mammary epithelial cells (MECs) (Cbl triple-deficiency) induced rapid cell death despite enhanced MAP kinase and AKT activation. Acute Cbl triple-deficiency elicited distinct transcriptional and biochemical responses with partial overlap with previously described cellular reactions to unfolded proteins and oxidative stress. Although the levels of reactive oxygen species were comparable, detergent-insoluble protein aggregates containing phosphorylated c-Src accumulated in Cbl triple-deficient MECs. Treatment with a broad-spectrum kinase inhibitor dasatinib blocked protein aggregate accumulation and restored in vitro organoid formation. This effect is most likely mediated through c-Src because Cbl triple-deficient MECs were able to form organoids upon shRNA-mediated c-Src knockdown. Taking these data together, the present study demonstrates that Cbl family proteins are required to protect MECs from proteotoxic stress-induced cell death by promoting turnover of active c-Src.
Collapse
|
78
|
Li H, Gumbiner BM. Deregulation of the Hippo pathway in mouse mammary stem cells promotes mammary tumorigenesis. Mamm Genome 2016; 27:556-564. [PMID: 27601049 DOI: 10.1007/s00335-016-9662-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023]
Abstract
The Hippo-YAP pathway mediates organ size control, contact inhibition, and tumorigenesis. It is a kinase cascade that inhibits the nuclear localization and transcriptional activities of YAP and TAZ. E-cadherin, cell junctions, polarity proteins, and the merlin/NF2 tumor suppressor activate the pathway to inhibit YAP/TAZ activity, while growth factor signaling inhibits the pathway to activate YAP/TAZ in the nucleus. We examined its role in the development of mouse mammary glands and tumor formation using gland reconstitution by transplantation of genetically modified mammary stem cells (MaSCs). Knockdown of YAP and TAZ with shRNA in MaSCs did not inhibit gland reconstitution. In contrast, knockdown of β-catenin blocked gland reconstitution, consistent with the known role of Wnt signaling in mammary gland development. However, we find that Hippo signaling is involved in mammary tumor formation. Expression of a constitutively active form of YAP caused rapid formation of large tumors. Moreover, knockdown of YAP/TAZ slowed the development of tumors in polyoma middle T transgenic mice, a well-studied mammary tumor model involving activation of several signaling pathways. YAP accumulated in nuclei of mammary glands in ErbB2/EGFR-transgenic mice, suggesting that EGFR signaling affects YAP in vivo similar to cell culture. ErbB2/EGFR-transgenic mice develop mammary tumors in 7-8 months, but surprisingly, MaSCs from these mice did not form tumors when transplanted into host mice. Nonetheless, expression of dominant-negative Lats, which inhibits Hippo signaling, leads to tumor formation in ErbB2-transgenic mice, suggesting that Hippo signaling is involved in EGFR-induced mammary tumorigenesis.
Collapse
Affiliation(s)
- Hongbin Li
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Barry M Gumbiner
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Pediatrics, Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington School of Medicine, 1900 9th Ave. Mailstop JMB-5, Seattle, WA, 98101, USA.
| |
Collapse
|
79
|
Dasgupta N, Thakur BK, Ta A, Dutta P, Das S. Suppression of Spleen Tyrosine Kinase (Syk) by Histone Deacetylation Promotes, Whereas BAY61-3606, a Synthetic Syk Inhibitor Abrogates Colonocyte Apoptosis by ERK Activation. J Cell Biochem 2016; 118:191-203. [PMID: 27293079 DOI: 10.1002/jcb.25625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/10/2016] [Indexed: 01/10/2023]
Abstract
Spleen tyrosine kinase (Syk), a non-receptor tyrosine kinase, regulates tumor progression, either negatively or positively, depending on the tissue lineage. Information about the role of Syk in colorectal cancers (CRC) is limited, and conflicting reports have been published. We studied Syk expression and its role in differentiation and apoptosis of the colonocytes. Here, we reported for the first time that expression of two transcript variants of Syk is suppressed in colonocytes during butyrate-induced differentiation, which mediates apoptosis of HT-29 cells. Despite being a known HDAC inhibitor, butyrate deacetylates histone3/4 around the transcription start site (TSS) of Syk. Histone deacetylation precludes the binding of RNA Polymerase II to the promoter and inhibits transcription. Since butyrate is a colonic metabolite derived from undigested fibers, our study offers a plausible explanation of the underlying mechanisms of the protective role of butyrate as well as the dietary fibers against CRC through the regulation of Syk. We also report that combined use of butyrate and highly specific Syk inhibitor BAY61-3606 does not enhance differentiation and apoptosis of colonocytes. Instead, BAY completely abolishes butyrate-induced differentiation and apoptosis in a Syk- and ERK1/2-dependent manner. While butyrate dephosphorylates ERK1/2 in HT-29 cells, BAY re-phosphorylates it, leading to its activation. This study describes a novel mechanism of butyrate action in CRC and explores the role of Syk in butyrate-induced differentiation and apoptosis. In addition, our study highlights those commercial small molecule inhibitors, although attractive drug candidates should be used with concern because of their frequent off-target effects. J. Cell. Biochem. 118: 191-203, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Bhupesh Kumar Thakur
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Atri Ta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Pujarini Dutta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Santasabuj Das
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| |
Collapse
|
80
|
Tschaharganeh DF, Lowe SW, Garippa RJ, Livshits G. Using CRISPR/Cas to study gene function and model disease in vivo. FEBS J 2016; 283:3194-203. [PMID: 27149548 DOI: 10.1111/febs.13750] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 12/23/2022]
Abstract
The recent discovery of the CRISPR/Cas system and repurposing of this technology to edit a variety of different genomes have revolutionized an array of scientific fields, from genetics and translational research, to agriculture and bioproduction. In particular, the prospect of rapid and precise genome editing in laboratory animals by CRISPR/Cas has generated an immense interest in the scientific community. Here we review current in vivo applications of CRISPR/Cas and how this technology can improve our knowledge of gene function and our understanding of biological processes in animal models.
Collapse
Affiliation(s)
- Darjus F Tschaharganeh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA
| | - Ralph J Garippa
- RNAi Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Geulah Livshits
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
81
|
Kim HJ, Kang GJ, Kim EJ, Park MK, Byun HJ, Nam S, Lee H, Lee CH. Novel effects of sphingosylphosphorylcholine on invasion of breast cancer: Involvement of matrix metalloproteinase-3 secretion leading to WNT activation. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1533-43. [PMID: 27216977 DOI: 10.1016/j.bbadis.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 01/17/2023]
Abstract
Sphingosylphosphorylcholine (SPC) participates in several cellular processes including metastasis. SPC induces keratin reorganization and regulates the viscoelasticity of metastatic cancer cells including PANC-1 cancer cells leading to enhanced migration and invasion. The role of SPC and the relevant mechanism in invasion of breast cell are as yet unknown. SPC dose-dependently induces invasion of breast cancer cells or breast immortalized cells. Reverse transcription polymerase chain reaction and Western blot analyses of MCF10A and ZR-75-1 cells indicated that SPC induces expression and secretion of matrix metalloproteinase-3 (MMP3). From online KMPLOT, relapse free survival is high in patients having low MMP3 expressed basal breast cancer (n=581, p=0.032). UK370106 (MMP3 inhibitor) or gene silencing of MMP3 markedly inhibited the SPC-induced invasion of MCF10A cells. An extracellular signal-regulated kinase (ERK) inhibitor, PD98059, significantly suppressed the secretion and the gelatinolytic activity of MMP3, and invasion in MCF10A cells. Over-expression of ERK1 and ERK2 promoted both the expression and secretion of MMP3. In contrast, gene silencing of ERK1 and ERK2 attenuated the secretion of MMP3 in MCF10A cells. The effects of SPC-induced MMP3 secretion on β-catenin and TCF/lymphoid enhancer factor (LEF) promoter activity were examined since MMP3 indirectly activates canonical Wnt signaling. SPC induced translocation of β-catenin to nucleus and increased TCF/LEF promoter activity. These events were suppressed by UK370106 or PD98059. Wnt inhibitor, FH535 inhibited SPC-induced MMP3 secretion and invasion. Taken together, these results suggest that SPC induces MMP3 expression and secretion via ERK leading to Wnt activation.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gyeoung Jin Kang
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Eun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Jung Byun
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Seungyoon Nam
- Department of Life Sciences, College of BioNano Technology, Gachon University, Sungnam 13120, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
82
|
Zeng L, Cai C, Li S, Wang W, Li Y, Chen J, Zhu X, Zeng YA. Essential Roles of Cyclin Y-Like 1 and Cyclin Y in Dividing Wnt-Responsive Mammary Stem/Progenitor Cells. PLoS Genet 2016; 12:e1006055. [PMID: 27203244 PMCID: PMC4874687 DOI: 10.1371/journal.pgen.1006055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Cyclin Y family can enhance Wnt/β-catenin signaling in mitosis. Their physiological roles in mammalian development are yet unknown. Here we show that Cyclin Y-like 1 (Ccnyl1) and Cyclin Y (Ccny) have overlapping function and are crucial for mouse embryonic development and mammary stem/progenitor cell functions. Double knockout of Ccnys results in embryonic lethality at E16.5. In pubertal development, mammary terminal end buds robustly express Ccnyl1. Depletion of Ccnys leads to reduction of Lrp6 phosphorylation, hampering β-catenin activities and abolishing mammary stem/progenitor cell expansion in vitro. In lineage tracing experiments, Ccnys-deficient mammary cells lose their competitiveness and cease to contribute to mammary development. In transplantation assays, Ccnys-deficient mammary cells fail to reconstitute, whereas constitutively active β-catenin restores their regeneration abilities. Together, our results demonstrate the physiological significance of Ccnys-mediated mitotic Wnt signaling in embryonic development and mammary stem/progenitor cells, and reveal insights in the molecular mechanisms orchestrating cell cycle progression and maintenance of stem cell properties. Stem cell self-renewal has two essential elements, cell division and at least of one of the daughter cells retaining stem cell properties, so-called stemness. The interconnections between cell cycle and cell fate specification have been explored in embryonic stem cells. However, less is known about how cell cycle affects the cell fate decision in tissue stem cells. In this study, we explore the function of particular mitotic factors Ccny and Ccnyl1 in regulating the dividing tissue stem cells. The development of the mammary gland occurs mostly in postnatal pubertal stage. At the time, the robustly dividing stem/progenitor cells reside at the forefront of the mammary epithelium extension, underlining the mammary gland as a good model to study the interconnection of cell cycle and tissue stem cells. In this study, we show that in dividing mammary stem/progenitor cells, Ccny and Ccnyl1 enhance Wnt signaling activities in mitosis. The signaling enhancement in this time window is essential for the stem/progenitor cell property maintenance during division. Deletion of Ccnys results in diminishing their competitiveness and developmental potential.
Collapse
Affiliation(s)
- Liyong Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheguo Cai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shan Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaping Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (XZ); (YAZ)
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (XZ); (YAZ)
| |
Collapse
|
83
|
Cantrell MA, Ebelt ND, Pfefferle AD, Perou CM, Van Den Berg CL. c-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression. Oncotarget 2016; 6:11863-81. [PMID: 25970777 PMCID: PMC4494910 DOI: 10.18632/oncotarget.3787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a heterogeneous disease with several subtypes carrying unique prognoses. Patients with differentiated luminal tumors experience better outcomes, while effective treatments are unavailable for poorly differentiated tumors, including the basal-like subtype. Mechanisms governing mammary tumor subtype generation could prove critical to developing better treatments. C-Jun N-terminal kinase 2 (JNK2) is important in mammary tumorigenesis and tumor progression. Using a variety of mouse models, human breast cancer cell lines and tumor expression data, studies herein support that JNK2 inhibits cell differentiation in normal and cancer-derived mammary cells. JNK2 prevents precocious pubertal mammary development and inhibits Notch-dependent expansion of luminal cell populations. Likewise, JNK2 suppresses luminal populations in a p53-competent Polyoma Middle T-antigen tumor model where jnk2 knockout causes p53-dependent upregulation of Notch1 transcription. In a p53 knockout model, JNK2 restricts luminal populations independently of Notch1, by suppressing Brca1 expression and promoting epithelial to mesenchymal transition. JNK2 also inhibits estrogen receptor (ER) expression and confers resistance to fulvestrant, an ER inhibitor, while stimulating tumor progression. These data suggest that therapies inhibiting JNK2 in breast cancer may promote tumor differentiation, improve endocrine therapy response, and inhibit metastasis.
Collapse
Affiliation(s)
- Michael A Cantrell
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Nancy D Ebelt
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Adam D Pfefferle
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Carla Lynn Van Den Berg
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA.,Division of Pharmacology &Toxicology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| |
Collapse
|
84
|
Quantitative proteomic analyses of mammary organoids reveals distinct signatures after exposure to environmental chemicals. Proc Natl Acad Sci U S A 2016; 113:E1343-51. [PMID: 26903627 DOI: 10.1073/pnas.1600645113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Common environmental contaminants such as bisphenols and phthalates and persistent contaminants such as polychlorinated biphenyls are thought to influence tissue homeostasis and carcinogenesis by acting as disrupters of endocrine function. In this study we investigated the direct effects of exposure to bisphenol A (BPA), mono-n-butyl phthalate (Pht), and polychlorinated biphenyl 153 (PCB153) on the proteome of primary organotypic cultures of the mouse mammary gland. At low-nanomolar doses each of these agents induced distinct effects on the proteomes of these cultures. Although BPA treatment produced effects that were similar to those induced by estradiol, there were some notable differences, including a reduction in the abundance of retinoblastoma-associated protein and increases in the Rho GTPases Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle protein CDC42. Both Pht and PCB153 induced changes that were distinct from those induced by estrogen, including decreased levels of the transcriptional corepressor C-terminal binding protein 1. Interestingly, the three chemicals appeared to alter the abundance of distinct splice forms of many proteins as well as the abundance of several proteins that regulate RNA splicing. Our combined results indicate that the three classes of chemical have distinct effects on the proteome of normal mouse mammary cultures, some estrogen-like but most estrogen independent, that influence diverse biological processes including apoptosis, cell adhesion, and proliferation.
Collapse
|
85
|
Kenific CM, Stehbens SJ, Goldsmith J, Leidal AM, Faure N, Ye J, Wittmann T, Debnath J. NBR1 enables autophagy-dependent focal adhesion turnover. J Cell Biol 2016; 212:577-90. [PMID: 26903539 PMCID: PMC4772495 DOI: 10.1083/jcb.201503075] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022] Open
Abstract
The selective autophagy cargo receptor NBR1 enhances the disassembly of cell-matrix focal adhesions during cell migration. Autophagy is a catabolic pathway involving the sequestration of cellular contents into a double-membrane vesicle, the autophagosome. Although recent studies have demonstrated that autophagy supports cell migration, the underlying mechanisms remain unknown. Using live-cell imaging, we uncover that autophagy promotes optimal migratory rate and facilitates the dynamic assembly and disassembly of cell-matrix focal adhesions (FAs), which is essential for efficient motility. Additionally, our studies reveal that autophagosomes associate with FAs primarily during disassembly, suggesting autophagy locally facilitates the destabilization of cell-matrix contact sites. Furthermore, we identify the selective autophagy cargo receptor neighbor of BRCA1 (NBR1) as a key mediator of autophagy-dependent FA remodeling. NBR1 depletion impairs FA turnover and decreases targeting of autophagosomes to FAs, whereas ectopic expression of autophagy-competent, but not autophagy-defective, NBR1 enhances FA disassembly and reduces FA lifetime during migration. Our findings provide mechanistic insight into how autophagy promotes migration by revealing a requirement for NBR1-mediated selective autophagy in enabling FA disassembly in motile cells.
Collapse
Affiliation(s)
- Candia M Kenific
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - Samantha J Stehbens
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Juliet Goldsmith
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| | - Nathalie Faure
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| | - Jordan Ye
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
86
|
Al Sorkhy M, Fifield BA, Myers D, Porter LA. Direct interactions with both p27 and Cdk2 regulate Spy1-mediated proliferation in vivo and in vitro. Cell Cycle 2016; 15:128-36. [PMID: 26771716 PMCID: PMC4825785 DOI: 10.1080/15384101.2015.1121327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022] Open
Abstract
Families of cyclin-like proteins have emerged that bind and activate cyclin dependent kinases (Cdk)s, directing the phosphorylation of noncanonical Cdk substrates. One of these proteins, Spy1, has demonstrated the unique ability to directly bind and activate both Cdk1 and Cdk2, as well as binding and promoting the degradation of at least one Cdk inhibitor, p27(Kip1). Spy1 accelerates somatic cell growth and proliferation and is implicated in a number of human cancers including the breast, brain and liver. Herein we isolate key residues mediating the direct interaction with p27. We use mutants of Spy1 to determine the physiological role of direct interactions with distinct binding partners Cdk2 and p27. We demonstrate that disrupting the direct interaction with either Spy1 binding partner decreased endogenous activity of Cdk2, as well as Spy1-mediated proliferation. However, only the direct interaction with p27 was essential for Spy1-mediated effects on p27 stability. In vivo neither mutation completely prevented tumorigenesis, although each mutation slowed the rate of Spy1-mediated tumorigenesis and decreased overall tumor volumes. This work supports the conclusion that direct interaction with both p27 and Cdk2 contribute to Spy1-mediated effects on cell growth. It is important to elucidate the dynamics of these interactions and to consider these data when assessing functional outcomes.
Collapse
Affiliation(s)
- Mohammad Al Sorkhy
- Al-Ain University of Science and Technology, College of Pharmacy, Al Ain, UAE
| | - Bre-Anne Fifield
- Dept. of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Dorothy Myers
- The Applied Health Research Centre of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Lisa A. Porter
- Dept. of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
87
|
A diphtheria toxin resistance marker for in vitro and in vivo selection of stably transduced human cells. Sci Rep 2015; 5:14721. [PMID: 26420058 PMCID: PMC4588510 DOI: 10.1038/srep14721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022] Open
Abstract
We developed a selectable marker rendering human cells resistant to Diphtheria Toxin (DT). The marker (DTR) consists of a primary microRNA sequence engineered to downregulate the ubiquitous DPH2 gene, a key enzyme for the biosynthesis of the DT target diphthamide. DTR expression in human cells invariably rendered them resistant to DT in vitro, without altering basal cell growth. DTR-based selection efficiency and stability were comparable to those of established drug-resistance markers. As mice are insensitive to DT, DTR-based selection can be also applied in vivo. Direct injection of a GFP-DTR lentiviral vector into human cancer cell-line xenografts and patient-derived tumorgrafts implanted in mice, followed by systemic DT administration, yielded tumors entirely composed of permanently transduced cells and detectable by imaging systems. This approach enabled high-efficiency in vivo selection of xenografted human tumor tissues expressing ectopic transgenes, a hitherto unmet need for functional and morphological studies in laboratory animals.
Collapse
|
88
|
Villanueva H, Visbal AP, Obeid NF, Ta AQ, Faruki AA, Wu MF, Hilsenbeck SG, Shaw CA, Yu P, Plummer NW, Birnbaumer L, Lewis MT. An essential role for Gα(i2) in Smoothened-stimulated epithelial cell proliferation in the mammary gland. Sci Signal 2015; 8:ra92. [PMID: 26373672 DOI: 10.1126/scisignal.aaa7355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hedgehog (Hh) signaling is critical for organogenesis, tissue homeostasis, and stem cell maintenance. The gene encoding Smoothened (SMO), the primary effector of Hh signaling, is expressed aberrantly in human breast cancer, as well as in other cancers. In mice that express a constitutively active form of SMO that does not require Hh stimulation in mammary glands, the cells near the transgenic cells proliferate and participate in hyperplasia formation. Although SMO is a seven-transmembrane receptor like G protein-coupled receptors (GPCRs), SMO-mediated activation of the Gli family of transcription factors is not known to involve G proteins. However, data from Drosophila and mammalian cell lines indicate that SMO functions as a GPCR that couples to heterotrimeric G proteins of the pertussis toxin (PTX)-sensitive Gαi class. Using genetically modified mice, we demonstrated that SMO signaling through G proteins occurred in the mammary gland in vivo. SMO-induced stimulation of proliferation was PTX-sensitive and required Gαi2, but not Gαi1, Gαi3, or activation of Gli1 or Gli2. Our findings show that activated SMO functions as a GPCR to stimulate proliferation in vivo, a finding that may have clinical importance because most SMO-targeted agents have been selected based largely on their ability to block Gli-mediated transcription.
Collapse
Affiliation(s)
- Hugo Villanueva
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adriana P Visbal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nadine F Obeid
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew Q Ta
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adeel A Faruki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng-Fen Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA. Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
89
|
Wei W, Tweardy DJ, Zhang M, Zhang X, Landua J, Petrovic I, Bu W, Roarty K, Hilsenbeck SG, Rosen JM, Lewis MT. STAT3 signaling is activated preferentially in tumor-initiating cells in claudin-low models of human breast cancer. Stem Cells 2015; 32:2571-82. [PMID: 24891218 DOI: 10.1002/stem.1752] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/16/2014] [Accepted: 05/03/2014] [Indexed: 12/31/2022]
Abstract
In breast cancer, a subset of tumor-initiating cells (TIC) or "cancer stem cells" are thought to be responsible for tumor maintenance, treatment resistance, and disease recurrence. While current breast cancer stem cell markers (e.g., CD44(high) /CD24(low/neg) , ALDH positive) have allowed enrichment for such cells, they are not universally expressed and may actually identify distinct TIC subpopulations in the same tumor. Thus, additional markers of functional stem cells are needed. The STAT3 pathway is a critical regulator of the function of normal stem cells, and evidence is accumulating for its important role in breast cancer stem cells. However, due to the lack of a method for separating live cells based on their level of STAT3 activity, it remains unknown whether STAT3 functions in the cancer stem cells themselves, or in surrounding niche cells, or in both. To approach this question, we constructed a series of lentiviral fluorescent (enhanced green fluorescent protein, EGFP) reporters that enabled flow cytometric enrichment of cells differing in STAT3-mediated transcriptional activity, as well as in vivo/in situ localization of STAT3 responsive cells. Using in vivo claudin-low cell line xenograft models of human breast cancer, we found that STAT3 signaling reporter activity (EGFP(+) ) is associated with a subpopulation of cancer cells enriched for mammosphere-forming efficiency, as well as TIC function in limiting dilution transplantation assays compared to negative or unsorted populations. Our results support STAT3 signaling activity as another functional marker for human breast cancer stem cells thus making it an attractive therapeutic target for stem-cell-directed therapy in some breast cancer subtypes.
Collapse
Affiliation(s)
- Wei Wei
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Hines WC, Yaswen P, Bissell MJ. Modelling breast cancer requires identification and correction of a critical cell lineage-dependent transduction bias. Nat Commun 2015; 6:6927. [PMID: 25896888 PMCID: PMC4411288 DOI: 10.1038/ncomms7927] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/13/2015] [Indexed: 01/15/2023] Open
Abstract
Clinically relevant human culture models are essential for developing effective therapies and exploring the biology and etiology of human cancers. Current breast tumour models, such as those from oncogenically transformed primary breast cells, produce predominantly basal-like properties, whereas the more common phenotype expressed by the vast majority of breast tumours are luminal. Reasons for this puzzling, yet important phenomenon, are not understood. We show here that luminal epithelial cells are significantly more resistant to viral transduction than their myoepithelial counterparts. We suggest that this is a significant barrier to generating luminal cell lines and experimental tumours in vivo and to accurate interpretation of results. We show that the resistance is due to lower affinity of luminal cells for virus attachment, which can be overcome by pretreating cells—or virus—with neuraminidase. We present an analytical method for quantifying transductional differences between cell types and an optimized protocol for transducing unsorted primary human breast cells in context. Clinical breast cancers predominantly present luminal features, but experimental models are essentially basal. Here the authors show that luminal cells are significantly less susceptible to viral transduction, and present methods to analyse and overcome the bias in heterogeneous populations.
Collapse
Affiliation(s)
- William C Hines
- Life Sciences Division, Lawrence Berkeley National Laboratory, Mailstop 977R225A, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Laboratory, Mailstop 977R225A, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Mailstop 977R225A, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|
91
|
Knezevic J, Pfefferle AD, Petrovic I, Greene SB, Perou CM, Rosen JM. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene 2015; 34:5997-6006. [PMID: 25746005 PMCID: PMC4564359 DOI: 10.1038/onc.2015.48] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
Claudin-low tumors are a highly aggressive breast cancer subtype with no targeted treatments and a clinically documented resistance to chemotherapy. They are significantly enriched in cancer stem cells (CSCs), which makes claudin-low tumor models particularly attractive for studying CSC behavior and developing novel approaches to minimize CSC therapy resistance. One proposed mechanism by which CSCs arise is via an epithelial-mesenchymal transition (EMT), and reversal of this process may provide a potential therapeutic approach for increasing tumor chemosensitivity. Therefore, we investigated the role of known EMT regulators, miR-200 family of microRNAs in controlling the epithelial state, stem-like properties, and therapeutic response in an in vivo primary, syngeneic p53null claudin-low tumor model that is normally deficient in miR-200 expression. Using an inducible lentiviral approach, we expressed the miR-200c cluster in this model and found that it changed the epithelial state, and consequently, impeded CSC behavior in these mesenchymal tumors. Moreover, these state changes were accompanied by a decrease in proliferation and an increase in the differentiation status. miR-200c expression also forced a significant reorganization of tumor architecture, affecting important cellular processes involved in cell-cell contact, cell adhesion, and motility. Accordingly, induced miR200c expression significantly enhanced the chemosensitivity and decreased the metastatic potential of this p53null claudin-low tumor model. Collectively, our data suggest that miR-200c expression in claudin-low tumors offers a potential therapeutic application to disrupt the EMT program on multiple fronts in this mesenchymal tumor subtype, by altering tumor growth, chemosensitivity, and metastatic potential in vivo.
Collapse
Affiliation(s)
- J Knezevic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - A D Pfefferle
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - I Petrovic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - C M Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - J M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
92
|
Fritz AL, Adil MM, Mao SR, Schaffer DV. cAMP and EPAC Signaling Functionally Replace OCT4 During Induced Pluripotent Stem Cell Reprogramming. Mol Ther 2015; 23:952-963. [PMID: 25666918 DOI: 10.1038/mt.2015.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/03/2015] [Indexed: 12/17/2022] Open
Abstract
The advent of induced pluripotent stem cells--generated via the ectopic overexpression of reprogramming factors such as OCT4, SOX2, KLF4, and C-MYC (OSKM) in a differentiated cell type--has enabled groundbreaking research efforts in regenerative medicine, disease modeling, and drug discovery. Although initial studies have focused on the roles of nuclear factors, increasing evidence highlights the importance of signal transduction during reprogramming. By utilizing a quantitative, medium-throughput screen to initially identify signaling pathways that could potentially replace individual transcription factors during reprogramming, we initially found that several pathways--such as Notch, Smoothened, and cyclic AMP (cAMP) signaling--were capable of generating alkaline phosphatase positive colonies in the absence of OCT4, the most stringently required Yamanaka factor. After further investigation, we discovered that cAMP signal activation could functionally replace OCT4 to induce pluripotency, and results indicate that the downstream exchange protein directly activated by cAMP (EPAC) signaling pathway rather than protein kinase A (PKA) signaling is necessary and sufficient for this function. cAMP signaling may reduce barriers to reprogramming by contributing to downstream epithelial gene expression, decreasing mesenchymal gene expression, and increasing proliferation. Ultimately, these results elucidate mechanisms that could lead to new reprogramming methodologies and advance our understanding of stem cell biology.
Collapse
Affiliation(s)
- Ashley L Fritz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Maroof M Adil
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Sunnie R Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; Department of Bioengineering, University of California, Berkeley, California, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
93
|
Roarty K, Shore AN, Creighton CJ, Rosen JM. Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium. ACTA ACUST UNITED AC 2015; 208:351-66. [PMID: 25624393 PMCID: PMC4315251 DOI: 10.1083/jcb.201408058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intricate cross-talk between classical and alternative Wnt signaling pathways includes an essential role for Ror2 in mammary epithelial development and differentiation. Wnt signaling encompasses β-catenin–dependent and –independent networks. How receptor context provides Wnt specificity in vivo to assimilate multiple concurrent Wnt inputs throughout development remains unclear. Here, we identified a refined expression pattern of Wnt/receptor combinations associated with the Wnt/β-catenin–independent pathway in mammary epithelial subpopulations. Moreover, we elucidated the function of the alternative Wnt receptor Ror2 in mammary development and provided evidence for coordination of this pathway with Wnt/β-catenin–dependent signaling in the mammary epithelium. Lentiviral short hairpin RNA (shRNA)-mediated depletion of Ror2 in vivo increased branching and altered the differentiation of the mammary epithelium. Microarray analyses identified distinct gene level alterations within the epithelial compartments in the absence of Ror2, with marked changes observed in genes associated with the actin cytoskeleton. Modeling of branching morphogenesis in vitro defined specific defects in cytoskeletal dynamics accompanied by Rho pathway alterations downstream of Ror2 loss. The current study presents a model of Wnt signaling coordination in vivo and assigns an important role for Ror2 in mammary development.
Collapse
Affiliation(s)
- Kevin Roarty
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Amy N Shore
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Chad J Creighton
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
94
|
Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci U S A 2015; 112:E566-75. [PMID: 25624500 DOI: 10.1073/pnas.1424927112] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Expansion of myeloid cells associated with solid tumor development is a key contributor to neoplastic progression. Despite their clinical relevance, the mechanisms controlling myeloid cell production and activity in cancer remains poorly understood. Using a multistage mouse model of breast cancer, we show that production of atypical T cell-suppressive neutrophils occurs during early tumor progression, at the onset of malignant conversion, and that these cells preferentially accumulate in peripheral tissues but not in the primary tumor. Production of these cells results from activation of a myeloid differentiation program in bone marrow (BM) by a novel mechanism in which tumor-derived granulocyte-colony stimulating factor (G-CSF) directs expansion and differentiation of hematopoietic stem cells to skew hematopoiesis toward the myeloid lineage. Chronic skewing of myeloid production occurred in parallel to a decrease in erythropoiesis in BM in mice with progressive disease. Significantly, we reveal that prolonged G-CSF stimulation is both necessary and sufficient for the distinguishing characteristics of tumor-induced immunosuppressive neutrophils. These results demonstrate that prolonged G-CSF may be responsible for both the development and activity of immunosuppressive neutrophils in cancer.
Collapse
|
95
|
Isobe T, Hisamori S, Hogan DJ, Zabala M, Hendrickson DG, Dalerba P, Cai S, Scheeren F, Kuo AH, Sikandar SS, Lam JS, Qian D, Dirbas FM, Somlo G, Lao K, Brown PO, Clarke MF, Shimono Y. miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. eLife 2014; 3. [PMID: 25406066 PMCID: PMC4235011 DOI: 10.7554/elife.01977] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 10/16/2014] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of stem and progenitor cell functions. We previously reported that miR-142 and miR-150 are upregulated in human breast cancer stem cells (BCSCs) as compared to the non-tumorigenic breast cancer cells. In this study, we report that miR-142 efficiently recruits the APC mRNA to an RNA-induced silencing complex, activates the canonical WNT signaling pathway in an APC-suppression dependent manner, and activates the expression of miR-150. Enforced expression of miR-142 or miR-150 in normal mouse mammary stem cells resulted in the regeneration of hyperproliferative mammary glands in vivo. Knockdown of endogenous miR-142 effectively suppressed organoid formation by BCSCs and slowed tumor growth initiated by human BCSCs in vivo. These results suggest that in some tumors, miR-142 regulates the properties of BCSCs at least in part by activating the WNT signaling pathway and miR-150 expression.
Collapse
Affiliation(s)
- Taichi Isobe
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Shigeo Hisamori
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Daniel J Hogan
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Maider Zabala
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - David G Hendrickson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Piero Dalerba
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Shang Cai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Ferenc Scheeren
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Angera H Kuo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Shaheen S Sikandar
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Jessica S Lam
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Frederick M Dirbas
- Department of Surgery, Stanford University School of Medicine, Stanford, United States
| | - George Somlo
- City of Hope Cancer Center, Duarte, United States
| | - Kaiqin Lao
- Applied Biosystems, Foster City, United States
| | - Patrick O Brown
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Michael F Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Yohei Shimono
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| |
Collapse
|
96
|
Abstract
Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin-Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry.
Collapse
|
97
|
Basham KJ, Leonard CJ, Kieffer C, Shelton DN, McDowell ME, Bhonde VR, Looper RE, Welm BE. Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor. Toxicol Sci 2014; 143:36-45. [PMID: 25265996 DOI: 10.1093/toxsci/kfu203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In mammals, lactation is a rich source of nutrients and antibodies for newborn animals. However, millions of mothers each year experience an inability to breastfeed. Exposure to several environmental toxicants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been strongly implicated in impaired mammary differentiation and lactation. TCDD and related polyhalogenated aromatic hydrocarbons are widespread industrial pollutants that activate the aryl hydrocarbon receptor (AHR). Despite many epidemiological and animal studies, the molecular mechanism through which AHR signaling blocks lactation remains unclear. We employed in vitro models of mammary differentiation to recapitulate lactogenesis in the presence of toxicants. We demonstrate AHR agonists directly block milk production in isolated mammary epithelial cells. Moreover, we define a novel role for the aryl hydrocarbon receptor repressor (AHRR) in mediating this response. Our mechanistic studies suggest AHRR is sufficient to block transcription of the milk gene β-casein. As TCDD is a prevalent environmental pollutant that affects women worldwide, our results have important public health implications for newborn nutrition.
Collapse
Affiliation(s)
- Kaitlin J Basham
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Christopher J Leonard
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Collin Kieffer
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Dawne N Shelton
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Maria E McDowell
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Vasudev R Bhonde
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Ryan E Looper
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Bryan E Welm
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112 *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
98
|
Cai C, Yu QC, Jiang W, Liu W, Song W, Yu H, Zhang L, Yang Y, Zeng YA. R-spondin1 is a novel hormone mediator for mammary stem cell self-renewal. Genes Dev 2014; 28:2205-18. [PMID: 25260709 PMCID: PMC4201283 DOI: 10.1101/gad.245142.114] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cai et al. find that Rspo1 cooperates with another hormonal mediator, Wnt4, to promote mammary stem cell (MaSC) self-renewal through Wnt/β-catenin signaling. Hormonal treatment that stimulates the expression of both Rspo1 and Wnt4 can completely substitute for exogenous Wnt proteins, potently expand MaSCs, and maintain their full development potential in transplantation. This study shows that hormones can induce a collaborative local niche environment for stem cells. Signals from the niche play pivotal roles in regulating adult stem cell self-renewal. Previous studies indicated that the steroid hormones can expand mammary stem cells (MaSCs) in vivo. However, the facilitating local niche factors that directly contribute to the MaSC expansion remain unclear. Here we identify R-spondin1 (Rspo1) as a novel hormonal mediator in the mammary gland. Pregnancy and hormonal treatment up-regulate Rspo1 expression. Rspo1 cooperates with another hormonal mediator, Wnt4, to promote MaSC self-renewal through Wnt/β-catenin signaling. Knockdown of Rspo1 and Wnt4 simultaneously abolishes the stem cell reconstitution ability. In culture, hormonal treatment that stimulates the expression of both Rspo1 and Wnt4 can completely substitute for exogenous Wnt proteins, potently expand MaSCs, and maintain their full development potential in transplantation. Our data unveil the intriguing concept that hormones induce a collaborative local niche environment for stem cells.
Collapse
Affiliation(s)
- Cheguo Cai
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing Cissy Yu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weimin Jiang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Liu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqian Song
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Yu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Yang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Arial Zeng
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
99
|
Fritz AL, Mao SR, West MG, Schaffer DV. A medium-throughput analysis of signaling pathways involved in early stages of stem cell reprogramming. Biotechnol Bioeng 2014; 112:209-19. [PMID: 25065366 DOI: 10.1002/bit.25336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/28/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
The induction of pluripotency from adult cells has enormous potential in regenerative medicine. While initial efforts to study mechanisms and improve efficiency of induced pluripotent stem cell (iPSC) reprogramming focused on the direct roles of transcriptional regulators, increasing evidence indicates that cellular signal transduction pathways can modulate this process. Here, we present a medium-throughput system to study the effect of signaling pathways on the early stages of reprogramming. We generated a set of lentiviral vectors encoding 38 genes that upregulate or downregulate major signal transduction pathways and quantified each signaling factor's effect on reprogramming. This approach confirmed the role of several factors previously implicated in reprogramming, as well as identified several GTPases-factors that to date have not been largely studied in reprogramming-that improve or hinder iPSC reprogramming. In addition, this methodology is useful in determining new targets for enhancing pluripotency reprogramming, lineage reprogramming, and/or cell differentiation.
Collapse
Affiliation(s)
- Ashley L Fritz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, 94720
| | | | | | | |
Collapse
|
100
|
Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, Roman-Roman S, Seoane J, Trusolino L, Villanueva A. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 2014; 4:998-1013. [PMID: 25185190 PMCID: PMC4167608 DOI: 10.1158/2159-8290.cd-14-0001] [Citation(s) in RCA: 1237] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED Recently, there has been an increasing interest in the development and characterization of patient-derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histologic and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biologic studies, and personalized medicine strategies. This article summarizes the current state of the art in this field, including methodologic issues, available collections, practical applications, challenges and shortcomings, and future directions, and introduces a European consortium of PDX models. SIGNIFICANCE PDX models are increasingly used in translational cancer research. These models are useful for drug screening, biomarker development, and the preclinical evaluation of personalized medicine strategies. This review provides a timely overview of the key characteristics of PDX models and a detailed discussion of future directions in the field.
Collapse
Affiliation(s)
| | | | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow
| | | | | | | | - Robert B Clarke
- Breakthrough Breast Cancer Unit, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Jos Jonkers
- The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS; and Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Alberto Villanueva
- Catalan Institute of Oncology-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|