51
|
Molinero N, Ruiz L, Sánchez B, Margolles A, Delgado S. Intestinal Bacteria Interplay With Bile and Cholesterol Metabolism: Implications on Host Physiology. Front Physiol 2019; 10:185. [PMID: 30923502 PMCID: PMC6426790 DOI: 10.3389/fphys.2019.00185] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Bile is a biological fluid synthesized in the liver, mainly constituted by bile acids and cholesterol, which functions as a biological detergent that emulsifies and solubilizes lipids, thereby playing an essential role in fat digestion. Besides, bile acids are important signaling molecules that regulate key functions at intestinal and systemic levels in the human body, affecting glucose and lipid metabolism, and immune homeostasis. Apart from this, due to their amphipathic nature, bile acids are toxic for bacterial cells and, thus, exert a strong selective pressure on the microbial populations inhabiting the human gut, decisively shaping the microbial profiles of our gut microbiota, which has been recognized as a metabolic organ playing a pivotal role in host health. Remarkably, bacteria in our gut also display a range of enzymatic activities capable of acting on bile acids and, to a lesser extent, cholesterol. These activities can have a direct impact on host physiology as they influence the composition of the intestinal and circulating bile acid pool in the host, affecting bile homeostasis. Given that bile acids are important signaling molecules in the human body, changes in the microbiota-residing bile biotransformation ability can significantly impact host physiology and health status. Elucidating ways to fine-tune microbiota-bile acids-host interplay are promising strategies to act on bile and cholesterol-related disorders. This manuscript summarizes the current knowledge on bile and cholesterol metabolism by intestinal bacteria, as well as its influence on host physiology, identifying knowledge gaps and opportunities to guide further advances in the field.
Collapse
Affiliation(s)
- Natalia Molinero
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
52
|
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that are involved in various biological processes including metabolism, reproduction, and development. Upon activation by their ligands, NRs bind to their specific DNA elements, exerting their biological functions by regulating their target gene expression. Bile acids are detergent-like molecules that are synthesized in the liver. They not only function as a facilitator for the digestion of lipids and fat-soluble vitamins but also serve as signaling molecules for several nuclear receptors to regulate diverse biological processes including lipid, glucose, and energy metabolism, detoxification and drug metabolism, liver regeneration, and cancer. The nuclear receptors including farnesoid X receptor (FXR), pregnane X receptor (PXR), constitutive androstane receptor (CAR), vitamin D receptor (VDR), and small heterodimer partner (SHP) constitute an integral part of the bile acid signaling. This chapter reviews the role of the NRs in bile acid homeostasis, highlighting the regulatory functions of the NRs in lipid and glucose metabolism in addition to bile acid metabolism.
Collapse
|
53
|
Gege C, Hambruch E, Hambruch N, Kinzel O, Kremoser C. Nonsteroidal FXR Ligands: Current Status and Clinical Applications. Handb Exp Pharmacol 2019; 256:167-205. [PMID: 31197565 DOI: 10.1007/164_2019_232] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
FXR agonists have demonstrated very promising clinical results in the treatment of liver disorders such as primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), and nonalcoholic steatohepatitis (NASH). NASH, in particular, is one of the last uncharted white territories in the pharma landscape, and there is a huge medical need and a large potential pharmaceutical market for a NASH pharmacotherapy. Clinical efficacy superior to most other treatment options was shown by FXR agonists such as obeticholic acid (OCA) as they improved various metabolic features including liver steatosis as well as liver inflammation and fibrosis. But OCA's clinical success comes with some major liabilities such as pruritus, high-density lipoprotein cholesterol (HDLc) lowering, low-density lipoprotein cholesterol (LDLc) increase, and a potential for drug-induced liver toxicity. Some of these effects can be attributed to on-target effects exerted by FXR, but with others it is not clear whether it is FXR- or OCA-related. Therefore a quest for novel, proprietary FXR agonists is ongoing with the aim to increase FXR potency and selectivity over other proteins and to overcome at least some of the OCA-associated clinical side effects through an improved pharmacology. In this chapter we will discuss the historical and ongoing efforts in the identification and development of nonsteroidal, which largely means non-bile acid-type, FXR agonists for clinical use.
Collapse
Affiliation(s)
- Christian Gege
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Eva Hambruch
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Nina Hambruch
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Olaf Kinzel
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Claus Kremoser
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany.
| |
Collapse
|
54
|
Ebrahimi M, Fathi R, Pirsaraei ZA, Talebi-Garakani E, Najafi M. Expression of the key metabolic regulators in the white adipose tissue of rats; the role of high-fat diet and aerobic training. COMPARATIVE EXERCISE PHYSIOLOGY 2018. [DOI: 10.3920/cep180008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipid metabolism, especially in the white adipose tissue as an active metabolic organ, is tightly regulated by the key transcription factors, such as the sterol regulatory element binding protein 1c (SREBP-1c) and the Farnesoid X Receptor (FXR). We have studied the expression of these genes in the white adipose tissue to see how a high fat diet (HFD) and two intensities of aerobic training change the lipogenic and lipolytic pathways. 44 male Wistar rats randomly divided into the normal (12% calories from fat) and HFD (56% calories from fat) groups. Each group included control (n=6), moderate trained (n=8, ~65% Vo2max) and high intensity trained (n=8, ~75% Vo2max) rats. After 8 weeks of training, the weight changes, plasma insulin and lipid profile levels and the relative gene expression of SREBP-1c and FXR in the adipose tissue was measured. Data were analysed by 2-way ANOVA (P<0.05). HFD fed rats showed higher levels of insulin and dyslipidemia that was correlated with the higher weight gain. Also, the adipose expression of SREBP-1c was higher in the HFD fed rats that it was strongly correlated with the lower FXR expression. Trained rats independent of the intensity of the training showed lower SREBP-1c and higher FXR expression, but no change was observed in the lipid profile levels. HFD-induced dyslipidemia could occur via SREBP-1c activation in the adipose tissue while the aerobic training activates FXR and inhibits the lipogenic pathways. Despite the activation of lipolytic pathways in the trained rats, it seems that diet has more effect on the lipid profile than the aerobic training.
Collapse
Affiliation(s)
- M. Ebrahimi
- Department of Exercise Biochemistry and Metabolism, University of Mazandaran, Babolsar, 1453754769, Iran
| | - R. Fathi
- Department of Exercise Biochemistry and Metabolism, University of Mazandaran, Babolsar, 1453754769, Iran
| | - Z. Ansari Pirsaraei
- Department of Animal Science and Fishery, Sari Agricultural Sciences and Natural Resources University, Sari, 1453754769, Iran
| | - E. Talebi-Garakani
- Department of Exercise Biochemistry and Metabolism, University of Mazandaran, Babolsar, 1453754769, Iran
| | - M. Najafi
- Department of Animal Science and Fishery, Sari Agricultural Sciences and Natural Resources University, Sari, 1453754769, Iran
| |
Collapse
|
55
|
Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC, Blanco-Vaca F. Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function. Int J Mol Sci 2018; 19:ijms19103228. [PMID: 30347638 PMCID: PMC6214130 DOI: 10.3390/ijms19103228] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Recent evidence, including massive gene-expression analysis and a wide-variety of other multi-omics approaches, demonstrates an interplay between gut microbiota and the regulation of plasma lipids. Gut microbial metabolism of choline and l-carnitine results in the formation of trimethylamine (TMA) and concomitant conversion into trimethylamine-N-oxide (TMAO) by liver flavin monooxygenase 3 (FMO3). The plasma level of TMAO is determined by the genetic variation, diet and composition of gut microbiota. Multiple studies have demonstrated an association between TMAO plasma levels and the risk of atherothrombotic cardiovascular disease (CVD). We aimed to review the molecular pathways by which TMAO production and FMO3 exert their proatherogenic effects. TMAO may promote foam cell formation by upregulating macrophage scavenger receptors, deregulating enterohepatic cholesterol and bile acid metabolism and impairing macrophage reverse cholesterol transport (RCT). Furthermore, FMO3 may promote dyslipidemia by regulating multiple genes involved in hepatic lipogenesis and gluconeogenesis. FMO3 also impairs multiple aspects of cholesterol homeostasis, including transintestinal cholesterol export and macrophage-specific RCT. At least part of these FMO3-mediated effects on lipid metabolism and atherogenesis seem to be independent of the TMA/TMAO formation. Overall, these findings have the potential to open a new era for the therapeutic manipulation of the gut microbiota to improve CVD risk.
Collapse
Affiliation(s)
- Marina Canyelles
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
| | - Mireia Tondo
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
| | - Lídia Cedó
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
| | - Marta Farràs
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 08003 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
| | - Francisco Blanco-Vaca
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
56
|
Liu XJ, Duan NN, Liu C, Niu C, Liu XP, Wu J. Characterization of a murine nonalcoholic steatohepatitis model induced by high fat high calorie diet plus fructose and glucose in drinking water. J Transl Med 2018; 98:1184-1199. [PMID: 29959418 DOI: 10.1038/s41374-018-0074-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
There are varieties of murine models of nonalcoholic steatohepatitis (NASH) with different pathophysiologic characteristics. For preclinical assessment, a standardized model would allow comparisons of various pharmacotherapeutic candidates in efficacy, pharmacokinetics, pharmaco-metabolism, and adverse effects under a same system. The present study aims to characterize murine NASH models by comparing end-points of major abnormalities. NASH was induced by feeding high fructose/glucose in drinking water (HF/G), high-fat/calorie diet (HFCD), and in combination (HFCD-HF/G) in mice for 8 or 16 weeks. HF/G feeding caused a minimal fat accumulation and increase in free fatty acids (FFA). In contrast, HFCD-HF/G feeding resulted in a remarkable increase in body weight, subcutaneous and visceral adipose tissue, macrosteatosis with a nearly seven-fold increase in triglyceride and FFA content, accompanied with marked hepatocellular injury, inflammatory responses, fibrosis, and insulin resistance, and represented as typical NASH in histopathology, metabolic, and adipokine profiles in a progressive manner. Meanwhile, mice fed HFCD displayed significant steatosis, necroptosis, fibrosis, insulin resistance, metabolic, and adipokine profiles, and the extent is less than those fed HFCD-HF/G. Significant MCP-1, CCR-2, and NLRP-1/3 activation were found in mice fed HFCD and HFCD-HF/G for 16 weeks, whereas gene expression of CPT-1 and ACOX-1 was down-regulated in these two groups in comparison to the controls. Nuclear receptors, such as SREBP-1c, FXR, LXR-α, PPAR-α, and PPAR-γ, were strikingly elevated in the HFCD-HF/G group. In conclusion, feeding HFCD-HF/G resulted in a reliable NASH model in mice with remarkable necroptosis, steatosis, fibrosis, and insulin resistance as well as a disordered profile of lipid metabolism and adipokine, and HFCD caused significant NASH features in histopathology and metabolic profiles only at a late stage. Whereas HF/G feeding barely led to minimal fat accumulation, some changes at molecular levels and metabolic disturbance in mice.
Collapse
Affiliation(s)
- Xue-Jing Liu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Na-Na Duan
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Stomatological Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, 215005, China
| | - Chang Liu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen Niu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
57
|
Update on FXR Biology: Promising Therapeutic Target? Int J Mol Sci 2018; 19:ijms19072069. [PMID: 30013008 PMCID: PMC6073382 DOI: 10.3390/ijms19072069] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular the enterohepatic signaling pathway, through bile acids and fibroblast growth factor-15/19 (FGF-15/19). The metabolic effects of FXR are also involved in gut microbiota. In addition, FXR has various functions in the kidney, adipose tissue, pancreas, cardiovascular system, and tumorigenesis. Consequently, the deregulation of FXR may lead to abnormalities of specific organs and metabolic dysfunction, allowing the protein as an attractive therapeutic target for the management of liver and/or metabolic diseases. Indeed, many FXR agonists have been being developed and are under pre-clinical and clinical investigations. Although obeticholic acid (OCA) is one of the promising candidates, significant safety issues have remained. The effects of FXR modulation might be multifaceted according to tissue specificity, disease type, and/or energy status, suggesting the careful use of FXR agonists. This review summarizes the current knowledge of systemic FXR biology in various organs and the gut–liver axis, particularly regarding the recent advancement in these fields, and also provides pharmacological aspects of FXR modulation for rational therapeutic strategies and novel drug development.
Collapse
|
58
|
Ma J, Vella A. What Has Bariatric Surgery Taught Us About the Role of the Upper Gastrointestinal Tract in the Regulation of Postprandial Glucose Metabolism? Front Endocrinol (Lausanne) 2018; 9:324. [PMID: 29997575 PMCID: PMC6028568 DOI: 10.3389/fendo.2018.00324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
The interaction between the upper gastrointestinal tract and the endocrine system is important in the regulation of metabolism and of weight. The gastrointestinal tract has a heterogeneous cellular content and comprises a variety of cells that elaborate paracrine and endocrine mediators that collectively form the entero-endocrine system. The advent of therapy that utilizes these pathways as well as the association of bariatric surgery with diabetes remission has (re-)kindled interest in the role of the gastrointestinal tract in glucose homeostasis. In this review, we will use the changes wrought by bariatric surgery to provide insights into the various gut-pancreas interactions that maintain weight, regulate satiety, and limit glucose excursions after meal ingestion.
Collapse
Affiliation(s)
- Jing Ma
- Division of Endocrinology and Metabolism, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, NY, United States
| | - Adrian Vella
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, NY, United States
| |
Collapse
|
59
|
Davidson MD, Kukla DA, Khetani SR. Microengineered cultures containing human hepatic stellate cells and hepatocytes for drug development. Integr Biol (Camb) 2018; 9:662-677. [PMID: 28702667 DOI: 10.1039/c7ib00027h] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In non-alcoholic steatohepatitis (NASH), hepatic stellate cells (HSC) differentiate into myofibroblast-like cells that cause fibrosis, which predisposes patients to cirrhosis and hepatocellular carcinoma. Thus, modeling interactions between activated HSCs and hepatocytes in vitro can aid in the development of anti-NASH/fibrosis therapeutics and lead to a better understanding of disease progression. Species-specific differences in drug metabolism and disease pathways now necessitate the supplementation of animal studies with data acquired using human liver models; however, current models do not adequately model the negative effects of primary human activated HSCs on the phenotype of otherwise well-differentiated primary human hepatocytes (PHHs) as in vivo. Therefore, here we first determined the long-term effects of primary human activated HSCs on PHH phenotype in a micropatterned co-culture (MPCC) platform while using 3T3-J2 murine embryonic fibroblasts as the control cell type since it has been shown previously to stabilize PHH functions for 4-6 weeks. We found that HSCs were not able to stabilize the PHH phenotype to the same magnitude and longevity as the fibroblasts, which subsequently inspired the development of a micropatterned tri-culture (MPTC) platform in which (a) micropatterned PHHs were functionally stabilized using fibroblasts, and (b) the PHH phenotype was modulated by culturing HSCs within the fibroblast monolayer at physiologically-relevant ratios with PHHs. Transwell inserts containing HSCs were placed atop MPCCs containing fibroblasts to confirm the effects of paracrine signaling between PHHs and HSCs. We found that while albumin and urea secretions were relatively similar in MPTCs and MPCCs (suggesting well-differentiated PHHs), increasing HSC numbers within MPTCs downregulated hepatic cytochrome-P450 (2A6, 3A4) and transporter activities, and caused steatosis over 2 weeks. Furthermore, MPTCs secreted higher levels of pro-inflammatory interleukin-6 (IL-6) cytokine and C-reactive protein (CRP) than MPCCs. Treatment of MPCCs with HSC-conditioned culture medium confirmed that HSC secretions mediate the altered phenotype of PHHs observed in MPTCs, partly via IL-6 signaling. Lastly, we found that NADPH oxidase (NOX) inhibition and farnesoid X receptor (FXR) activation using clinically relevant drugs alleviated hepatic dysfunctions in MPTCs. In conclusion, MPTCs recapitulate symptoms of NASH- and early fibrosis-like dysfunctions in PHHs and have utility for drug discovery in this space.
Collapse
Affiliation(s)
- Matthew D Davidson
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | | | | |
Collapse
|
60
|
Ong HS, Yim HCH. Microbial Factors in Inflammatory Diseases and Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1024:153-174. [PMID: 28921469 DOI: 10.1007/978-981-10-5987-2_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The intestinal microbes form a symbiotic relationship with their human host to harvest energy for themselves and their host and to shape the immune system of their host. However, alteration of this relationship, which is named as a dysbiosis, has been associated with the development of different inflammatory diseases and cancers. It is found that metabolites, cellular components, and virulence factors derived from the gut microbiota interact with the host locally or systemically to modulate the dysbiosis and the development of these diseases. In this book chapter, we discuss the role of these microbial factors in regulating the host signaling pathways, the composition and load of the gut microbiota, the co-metabolism of the host and the microbiota, the host immune system, and physiology. In particular, we highlight how each microbial factor can contribute in the manifestation of many diseases such as cancers, Inflammatory Bowel Diseases, obesity, type-2 diabetes, non-alcoholic fatty liver diseases, nonalcoholic steatohepatitis, and cardiovascular diseases.
Collapse
Affiliation(s)
- Hong Sheng Ong
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Building 131, Garran Road, Acton, Canberra, 2601, ACT, Australia
| | - Howard Chi Ho Yim
- Department of Medicine, St George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Australia, Level 2 Clinical Sciences (WR Pitney) Building, St George Hospital, Short St, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
61
|
Supplementation with an insoluble fiber obtained from carob pod (Ceratonia siliqua L.) rich in polyphenols prevents dyslipidemia in rabbits through SIRT1/PGC-1α pathway. Eur J Nutr 2017; 58:357-366. [DOI: 10.1007/s00394-017-1599-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
|
62
|
Li D, Wang P, Wang P, Hu X, Chen F. Targeting the gut microbiota by dietary nutrients: A new avenue for human health. Crit Rev Food Sci Nutr 2017; 59:181-195. [DOI: 10.1080/10408398.2017.1363708] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daotong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Pan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Pengpu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
63
|
Selwa E, Elisée E, Zavala A, Iorga BI. Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations. J Comput Aided Mol Des 2017; 32:273-286. [DOI: 10.1007/s10822-017-0054-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022]
|
64
|
Dopico AM, Bukiya AN. Regulation of Ca 2+-Sensitive K + Channels by Cholesterol and Bile Acids via Distinct Channel Subunits and Sites. CURRENT TOPICS IN MEMBRANES 2017; 80:53-93. [PMID: 28863822 DOI: 10.1016/bs.ctm.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cholesterol (CLR) conversion into bile acids (BAs) in the liver constitutes the major pathway for CLR elimination from the body. Moreover, these steroids regulate each other's metabolism. While the roles of CLR and BAs in regulating metabolism and tissue function are well known, research of the last two decades revealed the existence of specific protein receptors for CLR or BAs in tissues with minor contribution to lipid metabolism, raising the possibility that these lipids serve as signaling molecules throughout the body. Among other lipids, CLR and BAs regulate ionic current mediated by the activity of voltage- and Ca2+-gated, K+ channels of large conductance (BK channels) and, thus, modulate cell physiology and participate in tissue pathophysiology. Initial work attributed modification of BK channel function by CLR or BAs to the capability of these steroids to directly interact with bilayer lipids and thus alter the physicochemical properties of the bilayer with eventual modification of BK channel function. Based on our own work and that of others, we now review evidence that supports direct interactions between CLR or BA and specific BK protein subunits, and the consequence of such interactions on channel activity and organ function, with a particular emphasis on arterial smooth muscle. For each steroid type, we will also briefly discuss several mechanisms that may underlie modification of channel steady-state activity. Finally, we will present novel computational data that provide a chemical basis for differential recognition of CLR vs lithocholic acid by distinct BK channel subunits and recognition sites.
Collapse
Affiliation(s)
- Alex M Dopico
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.
| | - Anna N Bukiya
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
65
|
Zhang Y, Jackson JP, St Claire RL, Freeman K, Brouwer KR, Edwards JE. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes. Pharmacol Res Perspect 2017; 5. [PMID: 28805978 PMCID: PMC5684861 DOI: 10.1002/prp2.329] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022] Open
Abstract
Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FXR agonist that is 100‐fold more potent than the endogenous ligand chenodeoxycholic acid (CDCA). The effects of OCA on genes involved in bile acid homeostasis were investigated using sandwich‐cultured human hepatocytes. Gene expression was determined by measuring mRNA levels. OCA dose‐dependently increased fibroblast growth factor‐19 (FGF‐19) and small heterodimer partner (SHP) which, in turn, suppress mRNA levels of cholesterol 7‐alpha‐hydroxylase (CYP7A1), the rate‐limiting enzyme for de novo synthesis of bile acids. Consistent with CYP7A1 suppression, total bile acid content was decreased by OCA (1 μmol/L) to 42.7 ± 20.5% relative to control. In addition to suppressing de novo bile acids synthesis, OCA significantly increased the mRNA levels of transporters involved in bile acid homeostasis. The bile salt excretory pump (BSEP), a canalicular efflux transporter, increased by 6.4 ± 0.8‐fold, and the basolateral efflux heterodimer transporters, organic solute transporter α (OSTα) and OSTβ increased by 6.4 ± 0.2‐fold and 42.9 ± 7.9‐fold, respectively. The upregulation of BSEP and OSTα and OSTβ, by OCA reduced the intracellular concentrations of d8‐TCA, a model bile acid, to 39.6 ± 8.9% relative to control. These data demonstrate that OCA does suppress bile acid synthesis and reduce hepatocellular bile acid levels, supporting the use of OCA to treat bile acid‐induced toxicity observed in cholestatic diseases.
Collapse
|
66
|
Zhuang S, Li Q, Cai L, Wang C, Lei X. Chemoproteomic Profiling of Bile Acid Interacting Proteins. ACS CENTRAL SCIENCE 2017; 3:501-509. [PMID: 28573213 PMCID: PMC5445530 DOI: 10.1021/acscentsci.7b00134] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 05/04/2023]
Abstract
Bile acids (BAs) are a family of endogenous metabolites synthesized from cholesterol in liver and modified by microbiota in gut. Being amphipathic molecules, the major function of BAs is to help with dietary lipid digestion. In addition, they also act as signaling molecules to regulate lipid and glucose metabolism as well as gut microbiota composition in the host. Remarkably, recent discoveries of the dedicated receptors for BAs such as FXR and TGR5 have uncovered a number of novel actions of BAs as signaling hormones which play significant roles in both physiological and pathological conditions. Disorders in BAs' metabolism are closely related to metabolic syndrome and intestinal and neurodegenerative diseases. Though BA-based therapies have been clinically implemented for decades, the regulatory mechanism of BA is still poorly understood and a comprehensive characterization of BA-interacting proteins in proteome remains elusive. We herein describe a chemoproteomic strategy that uses a number of structurally diverse, clickable, and photoreactive BA-based probes in combination with quantitative mass spectrometry to globally profile BA-interacting proteins in mammalian cells. Over 600 BA-interacting protein targets were identified, including known endogenous receptors and transporters of BA. Analysis of these novel BA-interacting proteins revealed that they are mainly enriched in functional pathways such as endoplasmic reticulum (ER) stress response and lipid metabolism, and are predicted with strong implications with Alzheimer's disease, non-alcoholic fatty liver disease, and diarrhea. Our findings will significantly improve the current understanding of BAs' regulatory roles in human physiology and diseases.
Collapse
Affiliation(s)
- Shentian Zhuang
- Synthetic
and Functional Biomolecules Center, Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and
Molecular Engineering of Ministry of Education, Department of Chemical Biology,
College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life
Sciences, Peking University, Beijing 100871, China
| | - Qiang Li
- Synthetic
and Functional Biomolecules Center, Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and
Molecular Engineering of Ministry of Education, Department of Chemical Biology,
College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life
Sciences, Peking University, Beijing 100871, China
| | - Lirong Cai
- Synthetic
and Functional Biomolecules Center, Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and
Molecular Engineering of Ministry of Education, Department of Chemical Biology,
College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life
Sciences, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic
and Functional Biomolecules Center, Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and
Molecular Engineering of Ministry of Education, Department of Chemical Biology,
College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life
Sciences, Peking University, Beijing 100871, China
- E-mail:
| | - Xiaoguang Lei
- Synthetic
and Functional Biomolecules Center, Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and
Molecular Engineering of Ministry of Education, Department of Chemical Biology,
College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life
Sciences, Peking University, Beijing 100871, China
- E-mail:
| |
Collapse
|
67
|
Massafra V, Milona A, Vos HR, Ramos RJJ, Gerrits J, Willemsen ECL, Ramos Pittol JM, Ijssennagger N, Houweling M, Prinsen HCMT, Verhoeven-Duif NM, Burgering BMT, van Mil SWC. Farnesoid X Receptor Activation Promotes Hepatic Amino Acid Catabolism and Ammonium Clearance in Mice. Gastroenterology 2017; 152:1462-1476.e10. [PMID: 28130067 DOI: 10.1053/j.gastro.2017.01.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The nuclear receptor subfamily 1 group H member 4 (NR1H4 or farnesoid X receptor [FXR]) regulates bile acid synthesis, transport, and catabolism. FXR also regulates postprandial lipid and glucose metabolism. We performed quantitative proteomic analyses of liver tissues from mice to evaluate these functions and investigate whether FXR regulates amino acid metabolism. METHODS To study the role of FXR in mouse liver, we used mice with a disruption of Nr1h4 (FXR-knockout mice) and compared them with floxed control mice. Mice were gavaged with the FXR agonist obeticholic acid or vehicle for 11 days. Proteome analyses, as well as targeted metabolomics and chromatin immunoprecipitation, were performed on the livers of these mice. Primary rat hepatocytes were used to validate the role of FXR in amino acid catabolism by gene expression and metabolomics studies. Finally, control mice and mice with liver-specific disruption of Nr1h4 (liver FXR-knockout mice) were re-fed with a high-protein diet after 6 hours fasting and gavaged a 15NH4Cl tracer. Gene expression and the metabolome were studied in the livers and plasma from these mice. RESULTS In livers of control mice and primary rat hepatocytes, activation of FXR with obeticholic acid increased expression of proteins that regulate amino acid degradation, ureagenesis, and glutamine synthesis. We found FXR to bind to regulatory sites of genes encoding these proteins in control livers. Liver tissues from FXR-knockout mice had reduced expression of urea cycle proteins, and accumulated precursors of ureagenesis, compared with control mice. In liver FXR-knockout mice on a high-protein diet, the plasma concentration of newly formed urea was significantly decreased compared with controls. In addition, liver FXR-knockout mice had reduced hepatic expression of enzymes that regulate ammonium detoxification compared with controls. In contrast, obeticholic acid increased expression of genes encoding enzymes involved in ureagenesis compared with vehicle in C57Bl/6 mice. CONCLUSIONS In livers of mice, FXR regulates amino acid catabolism and detoxification of ammonium via ureagenesis and glutamine synthesis. Failure of the urea cycle and hyperammonemia are common in patients with acute and chronic liver diseases; compounds that activate FXR might promote ammonium clearance in these patients.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Alexandra Milona
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Rúben J J Ramos
- Department of Genetics, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Johan Gerrits
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands; Department of Genetics, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Ellen C L Willemsen
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - José M Ramos Pittol
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Noortje Ijssennagger
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Martin Houweling
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Nanda M Verhoeven-Duif
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands; Department of Genetics, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
68
|
Haczeyni F, Poekes L, Wang H, Mridha AR, Barn V, Geoffrey Haigh W, Ioannou GN, Yeh MM, Leclercq IA, Teoh NC, Farrell GC. Obeticholic acid improves adipose morphometry and inflammation and reduces steatosis in dietary but not metabolic obesity in mice. Obesity (Silver Spring) 2017; 25:155-165. [PMID: 27804232 PMCID: PMC5849463 DOI: 10.1002/oby.21701] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/02/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Nonalcoholic steatohepatitis (NASH) is the outcome of interactions between overnutrition, energy metabolism, and adipose function. Obeticholic acid (OCA) improves steatosis in patients but for unknown reasons does not resolve NASH pathology. This study therefore investigated OCA effects in Wt mice, which develop obesity with atherogenic dietary feeding, and appetite-dysregulated, Alms1 mutant foz/foz mice fed the same diet, which develop metabolic obesity and diabetes. METHODS OCA (1 mg/kg) was administered orally to female foz/foz mice and Wt littermates from weaning until 28 weeks. Adipose indices, glucose tolerance, and fatty liver pathology were studied. Experiments were repeated with OCA 10 mg/kg. RESULTS OCA reduced body weight and hepatic lipids and improved glucose disposal only in Wt mice. OCA limited Wt adipose expansion, altered morphometry in favor of small adipocytes, enhanced expression of genes indicating adipose browning, and reduced crown-like structure number in visceral adipose tissue. foz/foz mice showed more crown-like structures in all compartments; OCA failed to alter adipose morphometry, browning, inflammation, or improve NASH severity, even at 10 mg/kg. CONCLUSIONS OCA improved adipose indices, glucose tolerance, and steatosis in a milder metabolic phenotype but failed to improve these factors in morbidly obese diabetic mice. These results help explain OCA's limited efficacy to reverse human NASH.
Collapse
Affiliation(s)
- Fahrettin Haczeyni
- Liver Research Group, Australian National University Medical School at the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Laurence Poekes
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hans Wang
- Liver Research Group, Australian National University Medical School at the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Auvro R Mridha
- Liver Research Group, Australian National University Medical School at the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Vanessa Barn
- Liver Research Group, Australian National University Medical School at the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - W Geoffrey Haigh
- Department of Medicine, VA Medical Center, University of Washington, Seattle, Washington, USA
| | - George N Ioannou
- Department of Medicine, VA Medical Center, University of Washington, Seattle, Washington, USA
| | - Matthew M Yeh
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Narcissus C Teoh
- Liver Research Group, Australian National University Medical School at the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Geoffrey C Farrell
- Liver Research Group, Australian National University Medical School at the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
69
|
Zhang LQ, Zhao YY, Huang C, Chen KX, Li YM. Scrodentoids F–I, four C19-norditerpenoids from Scrophularia dentata. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
70
|
Teodoro JS, Rolo AP, Jarak I, Palmeira CM, Carvalho RA. The bile acid chenodeoxycholic acid directly modulates metabolic pathways in white adipose tissue in vitro: insight into how bile acids decrease obesity. NMR IN BIOMEDICINE 2016; 29:1391-1402. [PMID: 27488269 DOI: 10.1002/nbm.3583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Obesity is a worldwide epidemic, and associated pathologies, including type 2 diabetes and cardiovascular alterations, are increasingly escalating morbidity and mortality. Despite intensive study, no effective simple treatment for these conditions exists. As such, the need for go-to drugs is serious. Bile acids (BAs) present the possibility of reversing these problems, as various in vivo studies and clinical trials have shown significant effects with regard to weight and obesity reduction, insulin sensitivity restoration and cardiovascular improvements. However, the mechanism of action of BA-induced metabolic improvement has yet to be fully established. The currently most accepted model involves non-shivering thermogenesis for energy waste, but this is disputed. As such, we propose to determine whether the BA chenodeoxycholic acid (CDCA) can exert anti-obesogenic effects in vitro, independent of thermogenic brown adipose tissue activation. By exposing differentiated 3 T3-L1 adipocytes to high glucose and CDCA, we demonstrate that this BA has anti-obesity effects in vitro. Nuclear magnetic resonance spectroscopic analysis of metabolic pathways clearly indicates an improvement in metabolic status, as these cells become more oxidative rather than glycolytic, which may be associated with an increase in fatty acid oxidation. Our work demonstrates that CDCA-induced metabolic alterations occur in white and brown adipocytes and are not totally dependent on endocrine/nervous system signaling, as thought until now. Furthermore, future exploration of the mechanisms behind these effects will undoubtedly reveal interesting targets for clinical modulation.
Collapse
Affiliation(s)
- João Soeiro Teodoro
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- Center for Neurosciences and Cell Biology, Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Anabela Pinto Rolo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- Center for Neurosciences and Cell Biology, Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Ivana Jarak
- Center for Functional Ecology, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Carlos Marques Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
- Center for Neurosciences and Cell Biology, Department of Life Sciences of the University of Coimbra, Coimbra, Portugal.
| | - Rui Albuquerque Carvalho
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- Center for Functional Ecology, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
71
|
Jackson JP, Li L, Chamberlain ED, Wang H, Ferguson SS. Contextualizing Hepatocyte Functionality of Cryopreserved HepaRG Cell Cultures. Drug Metab Dispos 2016; 44:1463-79. [PMID: 27338863 PMCID: PMC4998578 DOI: 10.1124/dmd.116.069831] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/22/2016] [Indexed: 01/07/2023] Open
Abstract
Over the last decade HepaRG cells have emerged as a promising alternative to primary human hepatocytes (PHH) and have been featured in over 300 research publications. Most of these reports employed freshly differentiated HepaRG cells that require time-consuming culture (∼28 days) for full differentiation. Recently, a cryopreserved, predifferentiated format of HepaRG cells (termed here "cryo-HepaRG") has emerged as a new model that improves global availability and experimental flexibility; however, it is largely unknown whether HepaRG cells in this format fully retain their hepatic characteristics. Therefore, we systematically investigated the hepatocyte functionality of cryo-HepaRG cultures in context with the range of interindividual variation observed with PHH in both sandwich-culture and suspension formats. These evaluations uncovered a novel adaptation period for the cryo-HepaRG format and demonstrated the impact of extracellular matrix on cryo-HepaRG functionality. Pharmacologically important drug-metabolizing alleles were genotyped in HepaRG cells and poor metabolizer alleles for CYP2D6, CYP2C9, and CYP3A5 were identified and consistent with higher frequency alleles found in individuals of Caucasian decent. We observed liver enzyme inducibility with aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor activators comparable to that of sandwich-cultured PHH. Finally, we show for the first time that cryo-HepaRG supports proper CAR cytosolic sequestration and translocation to hepatocyte nuclei in response to phenobarbital treatment. Taken together, these data reveal important considerations for the use of this cell model and demonstrate that cryo-HepaRG are suitable for metabolism and toxicology screening.
Collapse
Affiliation(s)
- Jonathan P Jackson
- Life Technologies, Cell System Division, ADME/Tox, Durham, North Carolina (J.P.J., E.D., S.S.F.); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.W.)
| | - Linhou Li
- Life Technologies, Cell System Division, ADME/Tox, Durham, North Carolina (J.P.J., E.D., S.S.F.); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.W.)
| | - Erica D Chamberlain
- Life Technologies, Cell System Division, ADME/Tox, Durham, North Carolina (J.P.J., E.D., S.S.F.); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.W.)
| | - Hongbing Wang
- Life Technologies, Cell System Division, ADME/Tox, Durham, North Carolina (J.P.J., E.D., S.S.F.); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.W.)
| | - Stephen S Ferguson
- Life Technologies, Cell System Division, ADME/Tox, Durham, North Carolina (J.P.J., E.D., S.S.F.); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.W.)
| |
Collapse
|
72
|
Frikke-Schmidt H, O'Rourke RW, Lumeng CN, Sandoval DA, Seeley RJ. Does bariatric surgery improve adipose tissue function? Obes Rev 2016; 17:795-809. [PMID: 27272117 PMCID: PMC5328428 DOI: 10.1111/obr.12429] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/19/2022]
Abstract
Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity.
Collapse
Affiliation(s)
| | - R W O'Rourke
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - C N Lumeng
- Department of Pediatrics, University of Michigan, Ann Arbor, USA
| | - D A Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - R J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
73
|
Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab 2016; 24:41-50. [PMID: 27320064 DOI: 10.1016/j.cmet.2016.05.005] [Citation(s) in RCA: 1792] [Impact Index Per Article: 199.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids, is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host. Conversely, bile acids can modulate gut microbial composition both directly and indirectly through activation of innate immune genes in the small intestine. Thus, host metabolism can be affected through microbial modifications of bile acids, which lead to altered signaling via bile acid receptors, but also by altered microbiota composition.
Collapse
Affiliation(s)
- Annika Wahlström
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Sama I Sayin
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research and Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
74
|
|
75
|
Zhang HM, Wang X, Wu ZH, Liu HL, Chen W, Zhang ZZ, Chen D, Zeng TS. Beneficial effect of farnesoid X receptor activation on metabolism in a diabetic rat model. Mol Med Rep 2016; 13:2135-42. [PMID: 26782298 DOI: 10.3892/mmr.2016.4761] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 11/17/2015] [Indexed: 11/06/2022] Open
Abstract
Farnesoid X receptor (FXR) is an important regulator of glucose and lipid homeostasis. However, the exact role of FXR in diabetes remains to be fully elucidated. The present study examined the effects of chenodeoxycholic acid (CDCA), an agonist of FXR, on metabolism profile in a rat model of type 2 diabetes mellitus (T2DM). Male Wistar rats (8‑week‑old; n=40) were randomized into the following four groups (n=10): Untreated control, CDCA‑treated, T2DM, and CDCA‑treated T2DM. To establish the T2DM model, the rats were fed a high‑fat diet (HFD) for 4 weeks and received a single low‑dose intraperitoneal injection of streptozotocin (30 mg/kg), followed by an additional 4 weeks of HFD feeding. CDCA was administrated (10 mg/kg/d) intraperitoneally for 10 days. Reverse transcription‑quantitative polymerase chain reaction and western blotting assays were performed to determine the RNA and protein expression of FXR, phosphoenolpyruvate carboxykinase, G6Pase, proliferator‑activated receptor‑γ coactivator‑1 and short heterodimer partner in rat liver tissue. The results revealed that FXR activation by CDCA did not reduce body weight, but it lowered the plasma levels of fasting glucose, insulin and triglycerides in the T2DM rats. CDCA administration reversed the downregulation of the mRNA and protein expression of FXR in the T2DM rat liver tissue samples. Furthermore, treatment with CDCA reduced the mRNA and protein expression levels of phosphoenolpyruvate carboxykinase, glucose 6‑phosphatase and peroxisome proliferator‑activated receptor‑γ coactivator‑1 in the liver tissue samples of the T2DM rats. By contrast, CDCA treatment increased the mRNA and protein expression levels of short heterodimer partner in the liver tissue samples of the T2DM rats. In conclusion, FXR agonist treatment induces beneficial effects on metabolism in the rat T2DM model. In conclusion, the present study indicated that the FXR agonist may be useful for the treatment of T2DM and hypertriglyceridemia.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Xuan Wang
- Department of Clinical Teaching and Research, College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan, Hubei 430015, P.R. China
| | - Zhao-Hong Wu
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Hui-Ling Liu
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Wei Chen
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Zhong-Zhi Zhang
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Dan Chen
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, Hubei 430015, P.R. China
| | - Tian-Shu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
76
|
He ZX, Chen XW, Zhou ZW, Zhou SF. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 2015; 47:470-519. [PMID: 26574146 DOI: 10.3109/03602532.2015.1101131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With only 1.3-4.3% in total hepatic CYP content, human CYP2D6 can metabolize more than 160 drugs. It is a highly polymorphic enzyme and subject to marked inhibition by a number of drugs, causing a large interindividual variability in drug clearance and drug response and drug-drug interactions. The expression and activity of CYP2D6 are regulated by a number of physiological, pathological and environmental factors at transcriptional, post-transcriptional, translational and epigenetic levels. DNA hypermethylation and histone modifications can repress the expression of CYP2D6. Hepatocyte nuclear factor-4α binds to a directly repeated element in the promoter of CYP2D6 and thus regulates the expression of CYP2D6. Small heterodimer partner represses hepatocyte nuclear factor-4α-mediated transactivation of CYP2D6. GW4064, a farnesoid X receptor agonist, decreases hepatic CYP2D6 expression and activity while increasing small heterodimer partner expression and its recruitment to the CYP2D6 promoter. The genotypes are key determinants of interindividual variability in CYP2D6 expression and activity. Recent genome-wide association studies have identified a large number of genes that can regulate CYP2D6. Pregnancy induces CYP2D6 via unknown mechanisms. Renal or liver diseases, smoking and alcohol use have minor to moderate effects only on CYP2D6 activity. Unlike CYP1 and 3 and other CYP2 members, CYP2D6 is resistant to typical inducers such as rifampin, phenobarbital and dexamethasone. Post-translational modifications such as phosphorylation of CYP2D6 Ser135 have been observed, but the functional impact is unknown. Further functional and validation studies are needed to clarify the role of nuclear receptors, epigenetic factors and other factors in the regulation of CYP2D6.
Collapse
Affiliation(s)
- Zhi-Xu He
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China
| | - Xiao-Wu Chen
- b Department of General Surgery , The First People's Hospital of Shunde, Southern Medical University , Shunde , Foshan , Guangdong , China , and
| | - Zhi-Wei Zhou
- c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| | - Shu-Feng Zhou
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China .,c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| |
Collapse
|
77
|
Kärst S, Arends D, Heise S, Trost J, Yaspo ML, Amstislavskiy V, Risch T, Lehrach H, Brockmann GA. The direction of cross affects [corrected] obesity after puberty in male but not female offspring. BMC Genomics 2015; 16:904. [PMID: 26546267 PMCID: PMC4636810 DOI: 10.1186/s12864-015-2164-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/29/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND We investigated parent-of-origin and allele-specific expression effects on obesity and hepatic gene expression in reciprocal crosses between the Berlin Fat Mouse Inbred line (BFMI) and C57Bl/6NCrl (B6N). RESULTS We found that F1-males with a BFMI mother developed 1.8 times more fat mass on a high fat diet at 10 weeks than F1-males of a BFMI father. The phenotype was detectable from six weeks on and was preserved after cross-fostering. RNA-seq data of liver provided evidence for higher biosynthesis and elongation of fatty acids (p = 0.00635) in obese male offspring of a BFMI mother versus lean offspring of a BFMI father. Furthermore, fatty acid degradation (p = 0.00198) and the peroxisome pathway were impaired (p = 0.00094). The circadian rhythm was affected as well (p = 0.00087). Among the highest up-regulated protein coding genes in obese males were Acot4 (1.82 fold, p = 0.022), Cyp4a10 (1.35 fold, p = 0.026) and Cyp4a14 (1.32 fold, p = 0.012), which hydroxylize fatty acids and which are known to be increased in liver steatosis. Obese males showed lower expression of the genetically imprinted and paternally expressed 3 (Peg3) gene (0.31 fold, p = 0.046) and higher expression of the androgen receptor (Ar) gene (2.38 fold, p = 0.068). Allelic imbalance was found for expression of ATP-binding cassette transporter gene Abca8b. Several of the differentially expressed genes contain estrogen response elements. CONCLUSIONS Parent-of-origin effects during gametogenesis and/or fetal development in an obese mother epigenetically modify the transcription of genes that lead to enhanced fatty acid synthesis and impair β-oxidation in the liver of male, but not female F1 offspring. Down-regulation of Peg3 could contribute to trigger this metabolic setting. At puberty, higher amounts of the androgen receptor and altered access to estrogen response elements in affected genes are likely responsible for male specific expression of genes that were epigenetically triggered. A suggestive lack of estrogen binding motifs was found for highly down-regulated genes in adult hepatocytes of obese F1 males (p = 0.074).
Collapse
Affiliation(s)
- Stefan Kärst
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Danny Arends
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Sebastian Heise
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Jan Trost
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Gene Regulation and Systems Biology of Cancer, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Vyacheslav Amstislavskiy
- Max Planck Institute for Molecular Genetics, Gene Regulation and Systems Biology of Cancer, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Thomas Risch
- Max Planck Institute for Molecular Genetics, Gene Regulation and Systems Biology of Cancer, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Gene Regulation and Systems Biology of Cancer, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany.
| |
Collapse
|
78
|
Abstract
Bile acids are well known for their effects on cholesterol homeostasis and lipid digestion. Since the discovery of bile acid receptors, of which there are farnesoid X receptor (FXR), a nuclear receptor, and the plasma membrane G-protein receptor, as well as Takeda G-protein coupled receptor clone 5, further roles have been elucidated for bile acids including glucose and lipid metabolism as well as inflammation. Additionally, treatment with bile acid receptor agonists has shown a decrease in the amount of atherosclerosis plaque formation and decreased portal vascular resistance and portal hypotension in animal models. Furthermore, rodent models have demonstrated antifibrotic activity using bile acid receptor agonists. Early human data using a FXR agonist, obeticholic acid, have shown promising results with improvement of histological activity and even a reduction of fibrosis. Human studies are ongoing and will provide further information on bile acid receptor agonist therapies. Thus, bile acids and their derivatives have the potential for management of liver diseases and potentially other disease states including diabetes and the metabolic syndrome.
Collapse
|
79
|
Discovery and SAR study of 3-(tert-butyl)-4-hydroxyphenyl benzoate and benzamide derivatives as novel farnesoid X receptor (FXR) antagonists. Bioorg Med Chem 2015; 23:6427-36. [PMID: 26337021 DOI: 10.1016/j.bmc.2015.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/12/2022]
Abstract
3-(tert-Butyl)-4-hydroxyphenyl 2,4-dichlorobenzoate (1) was discovered in our in-house high throughput screening as a moderate FXR antagonist. To improve the potency and the stability of the hit 1, forty derivatives were synthesized and SAR was systematically explored. The results turn out that replacing the 2,4-dichlorophenyl with 2,6-dichloro-4-amidophenyl shows great improvement in potency, replacing the benzoate with benzamide shows improvement in stability and slight declining of potency and 3-(tert-butyl)-4-hydroxyphenyl unit is essential in obtaining the FXR antagonistic activity.
Collapse
|
80
|
|
81
|
Chen Y, Vasilenko A, Song X, Valanejad L, Verma R, You S, Yan B, Shiffka S, Hargreaves L, Nadolny C, Deng R. Estrogen and Estrogen Receptor-α-Mediated Transrepression of Bile Salt Export Pump. Mol Endocrinol 2015; 29:613-26. [PMID: 25675114 DOI: 10.1210/me.2015-1014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among diseases unique to pregnancy, intrahepatic cholestasis of pregnancy is the most prevalent disorder with elevated serum bile acid levels. We have previously shown that estrogen 17β-estradiol (E2) transrepresses bile salt export pump (BSEP) through an interaction between estrogen receptor (ER)-α and farnesoid X receptor (FXR) and transrepression of BSEP by E2/ERα is an etiological contributing factor to intrahepatic cholestasis of pregnancy. Currently the mechanistic insights into such transrepression are not fully understood. In this study, the dynamics of coregulator recruitment to BSEP promoter after FXR activation and E2 treatment were established with quantitative chromatin immunoprecipitation assays. Coactivator peroxisome proliferator-activated receptor-γ coactivator-1 was predominantly recruited to the BSEP promoter upon FXR activation, and its recruitment was decreased by E2 treatment. Meanwhile, recruitment of nuclear receptor corepressor was markedly increased upon E2 treatment. Functional evaluation of ERα and ERβ chimeras revealed that domains AC of ERα are the determinants for ERα-specific transrepression on BSEP. Further studies with various truncated ERα proteins identified the domains in ERα responsible for ligand-dependent and ligand-independent transrepression. Truncated ERα-AD exhibited potent ligand-independent transrepressive activity, whereas ERα-CF was fully capable of transrepressing BSEP ligand dependently in vitro in Huh 7 cells and in vivo in mice. Both ERα-AD and ERα-CF proteins were associated with FXR in the coimmunoprecipitation assays. In conclusion, E2 repressed BSEP expression through diminishing peroxisome proliferator-activated receptor-γ coactivator-1 recruitment with a concurrent increase in nuclear receptor corepressor recruitment to the BSEP promoter. Domains AD and CF in ERα mediated ligand-independent and ligand-dependent transrepression on BSEP, respectively, through interacting with FXR.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Koutsounas I, Theocharis S, Delladetsima I, Patsouris E, Giaginis C. Farnesoid x receptor in human metabolism and disease: the interplay between gene polymorphisms, clinical phenotypes and disease susceptibility. Expert Opin Drug Metab Toxicol 2015; 11:523-32. [PMID: 25553772 DOI: 10.1517/17425255.2014.999664] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Farnesoid x receptor (FXR) belongs to the group of nuclear receptors (NRs), which regulate the expression of various genes by binding to DNA either as a monomer or a heterodimer with retinoid x receptor. AREAS COVERED FXR affects several metabolic pathways through its specific target genes, regulating bile acid (BA) synthesis and homeostasis, glucose and lipid metabolism, also exhibiting a crucial role in intestinal bacterial growth and liver regeneration. Additionally, FXR is involved in the pathogenesis of different cholestatic diseases, as well as non-alcoholic fatty liver disease, inflammatory bowel disease (IBD) and primary idiopathic BA malabsorption. EXPERT OPINION Analyses of certain FXR polymorphisms revealed associations with clinical phenotypes and susceptibility to various human diseases. FXR single-nucleotide polymorphisms seem to be correlated with differences in glucose homeostasis, gallstone formation, intrahepatic cholestasis of pregnancy, IBD and therapeutic response to hypolipidemic therapy, among studied populations. Unfortunately, little data are still available and more studies remain to be done to determine the contribution of FXR polymorphisms in estimating risk factors and clinical outcomes for several diseases.
Collapse
Affiliation(s)
- Ioannis Koutsounas
- National and Kapodistrian University of Athens, First Department of Pathology, Medical School , Athens , Greece
| | | | | | | | | |
Collapse
|
83
|
Abstract
The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
84
|
Song X, Vasilenko A, Chen Y, Valanejad L, Verma R, Yan B, Deng R. Transcriptional dynamics of bile salt export pump during pregnancy: mechanisms and implications in intrahepatic cholestasis of pregnancy. Hepatology 2014; 60:1993-2007. [PMID: 24729004 PMCID: PMC4194188 DOI: 10.1002/hep.27171] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Bile salt export pump (BSEP) is responsible for biliary secretion of bile acids, a rate-limiting step in the enterohepatic circulation of bile acids and transactivated by nuclear receptor farnesoid X receptor (FXR). Intrahepatic cholestasis of pregnancy (ICP) is the most prevalent disorder among diseases unique to pregnancy and primarily occurs in the third trimester of pregnancy, with a hallmark of elevated serum bile acids. Currently, the transcriptional regulation of BSEP during pregnancy and its underlying mechanisms and involvement in ICP are not fully understood. In this study the dynamics of BSEP transcription in vivo in the same group of pregnant mice before, during, and after gestation were established with an in vivo imaging system (IVIS). BSEP transcription was markedly repressed in the later stages of pregnancy and immediately recovered after parturition, resembling the clinical course of ICP in human. The transcriptional dynamics of BSEP was inversely correlated with serum 17β-estradiol (E2) levels before, during, and after gestation. Further studies showed that E2 repressed BSEP expression in human primary hepatocytes, Huh 7 cells, and in vivo in mice. Such transrepression of BSEP by E2 in vitro and in vivo required estrogen receptor α (ERα). Mechanistic studies with chromatin immunoprecipitation (ChIP), protein coimmunoprecipitation (Co-IP), and bimolecular fluorescence complementation (BiFC) assays demonstrated that ERα directly interacted with FXR in living cells and in vivo in mice. CONCLUSION BSEP expression was repressed by E2 in the late stages of pregnancy through a nonclassical E2/ERα transrepressive pathway, directly interacting with FXR. E2-mediated repression of BSEP expression represents an etiological contributing factor to ICP and therapies targeting the ERα/FXR interaction may be developed for prevention and treatment of ICP.
Collapse
Affiliation(s)
| | | | - Yuan Chen
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Leila Valanejad
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Ruchi Verma
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| |
Collapse
|
85
|
Quantitative profiling of bile acids in blood, adipose tissue, intestine, and gall bladder samples using ultra high performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2014; 406:7799-815. [PMID: 25384335 DOI: 10.1007/s00216-014-8230-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/28/2014] [Accepted: 10/01/2014] [Indexed: 01/17/2023]
Abstract
An ultra high performance liquid chromatography tandem mass spectrometry method (UHPLC-MS/MS) was developed for the determination of 33 target and 28 unknown bile acids (BAs) in biological samples. Sixty-one BAs could be measured in 20 min using only a small amount of sample and with a simple sample preparation. The method proved to be very sensitive (limit of detection 5-350 pg/mL, lower limit of quantitation 0.1-2.6 ng/mL), linear (R(2) > 0.99) and reproducible (typically CV <15 % in biological matrixes). The method was used to analyze human adipose tissue, plasma, and serum (from same subjects) and mouse serum, gall bladder, small intestine, and colon samples (from same animals). Cholic acid, ursodeoxycholic acid, and chenodeoxycholic acid, deoxycholic acid, and their conjugates (mainly glycine, but also taurine conjugates) were the main metabolites in human samples, and cholic acid, glycine cholic acid, and several taurine conjugates in mouse samples. Using the method, 28 unknown BAs could also be detected. UHPLC-MS/MS spectra, accurate mass, and tissue distribution suggested that nine of the unknown bile acids were taurine conjugates, 13 were glycine conjugates, and six were intact BAs, respectively. To our knowledge, this was the first time BAs were detected in adipose tissue. Results showed that 17 targeted BAs were found at ng/g level in human adipose tissue. Our findings give a novel insight of the endogenous role of BAs in adipose tissue and their role as biomarkers (e.g., in metabolic diseases).
Collapse
|
86
|
Pok EH, Lee WJ. Gastrointestinal metabolic surgery for the treatment of type 2 diabetes mellitus. World J Gastroenterol 2014; 20:14315-28. [PMID: 25339819 PMCID: PMC4202361 DOI: 10.3748/wjg.v20.i39.14315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/07/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Medical therapy for type 2 diabetes mellitus is ineffective in the long term due to the progressive nature of the disease, which requires increasing medication doses and polypharmacy. Conversely, bariatric surgery has emerged as a cost-effective strategy for obese diabetic individuals; it has low complication rates and results in durable weight loss, glycemic control and improvements in the quality of life, obesity-related co-morbidity and overall survival. The finding that glucose homeostasis can be achieved with a weight loss-independent mechanism immediately after bariatric surgery, especially gastric bypass, has led to the paradigm of metabolic surgery. However, the primary focus of metabolic surgery is the alteration of the physio-anatomy of the gastrointestinal tract to achieve glycemic control, metabolic control and cardio-metabolic risk reduction. To date, metabolic surgery is still not well defined, as it is used most frequently for less obese patients with poorly controlled diabetes. The mechanism of glycemic control is still incompletely understood. Published research findings on metabolic surgery are promising, but many aspects still need to be defined. This paper examines the proposed mechanism of diabetes remission, the efficacy of different types of metabolic procedures, the durability of glucose control, and the risks and complications associated with this procedure. We propose a tailored approach for the selection of the ideal metabolic procedure for different groups of patients, considering the indications and prognostic factors for diabetes remission.
Collapse
|
87
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological change characterized by the accumulation of triglycerides in hepatocytes and has frequently been associated with obesity, type 2 diabetes mellitus, hyperlipidemia, and insulin resistance. It is an increasingly recognized condition that has become the most common liver disorder in developed countries, affecting over one-third of the population and is associated with increased cardiovascular- and liver-related mortality. NAFLD is a spectrum of disorders, beginning as simple steatosis. In about 15% of all NAFLD cases, simple steatosis can evolve into non-alcoholic steatohepatitis, a medley of inflammation, hepatocellular injury, and fibrosis, often resulting in cirrhosis and even hepatocellular cancer. However, the molecular mechanism underlying NAFLD progression is not completely understood. Its pathogenesis has often been interpreted by the “double-hit” hypothesis. The primary insult or the “first hit” includes lipid accumulation in the liver, followed by a “second hit” in which proinflammatory mediators induce inflammation, hepatocellular injury, and fibrosis. Nowadays, a more complex model suggests that fatty acids (FAs) and their metabolites may be the true lipotoxic agents that contribute to NAFLD progression; a multiple parallel hits hypothesis has also been suggested. In NAFLD patients, insulin resistance leads to hepatic steatosis via multiple mechanisms. Despite the excess hepatic accumulation of FAs in NAFLD, it has been described that not only de novo FA synthesis is increased, but FAs are also taken up from the serum. Furthermore, a decrease in mitochondrial FA oxidation and secretion of very-low-density lipoproteins has been reported. This review discusses the molecular mechanisms that underlie the pathophysiological changes of hepatic lipid metabolism that contribute to NAFLD.
Collapse
Affiliation(s)
- Alba Berlanga
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Esther Guiu-Jurado
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - José Antonio Porras
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain ; Department of Internal Medicine, Hospital Universitari Joan XXIII Tarragona, Tarragona, Spain
| | - Teresa Auguet
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain ; Department of Internal Medicine, Hospital Universitari Joan XXIII Tarragona, Tarragona, Spain
| |
Collapse
|
88
|
Skipworth JRA, Timms JF, Pereira SP. Novel diagnostic and prognostic biomarkers in biliary tract cancer. ACTA ACUST UNITED AC 2014; 7:487-99. [PMID: 23971898 DOI: 10.1517/17530059.2013.826646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The worldwide incidence of biliary tract carcinoma (BTC, tumours of the bile ducts and gall-bladder) continues to rise, with the only potentially curative treatment remaining surgical resection or transplantation, possible in only a minority of patients. Late presentation and a paucity of effective treatments mandate the development of techniques for early lesion detection. AREAS COVERED This article reviews currently available biomarkers for the diagnosis and prognosis of BTC, as well as recently published studies describing novel serum, bile and urinary biomarkers. EXPERT OPINION The incorporation of novel analysis techniques, such as digital image analysis and fluorescence in situ hybridization, into existing management algorithms enhances the accuracy of brush cytology taken at the time of therapeutic endoscopy. However, a key goal is the discovery of reliable non-invasive biomarkers with high sensitivity and specificity. Recent advances in gene sequencing and expression, clonal evolution and tumour heterogeneity in other cancers should advance understanding of BTC tumour biology and facilitate biomarker discovery.
Collapse
Affiliation(s)
- James R A Skipworth
- University College London, Division of Surgery and Interventional Science, 4th Floor, 74 Huntley Street, London, WC1E6AU, UK
| | | | | |
Collapse
|
89
|
Cross-talk between liver and intestine in control of cholesterol and energy homeostasis. Mol Aspects Med 2014; 37:77-88. [PMID: 24560594 DOI: 10.1016/j.mam.2014.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/04/2013] [Accepted: 02/10/2014] [Indexed: 12/19/2022]
Abstract
A major hurdle for organisms to dispose of cholesterol is the inability to degrade the sterol nucleus which constitutes the central part of the molecule. Synthesis of the sterol nucleus requires a complex, energy costly, metabolic pathway but also generates a diverse array of intermediates serving crucial roles in cellular energy metabolism and signal transduction. This may be the reason why this complex pathway has survived evolutionary pressure. The only way to get rid of substantial amounts of cholesterol is conversion into bile acid or direct excretion of the sterol in the feces. The lack of versatility in disposal mechanisms causes a lack of flexibility to regulate cholesterol homeostasis which may underlie the considerable human pathology linked to cholesterol removal from the body. Export of cholesterol from the body requires an intricate communication between intestine and the liver. The last decade this inter-organ cross talk has been focus of intense research leading to considerable new insight. This novel information on particular the cross-talk between liver and intestine and role of bile acids as signal transducing molecules forms the focus of this review.
Collapse
|
90
|
Liu P, Xu X, Chen L, Ma L, Shen X, Hu L. Discovery and SAR study of hydroxyacetophenone derivatives as potent, non-steroidal farnesoid X receptor (FXR) antagonists. Bioorg Med Chem 2014; 22:1596-607. [PMID: 24513188 DOI: 10.1016/j.bmc.2014.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 11/26/2022]
Abstract
Compound 1 (IC50=35.2 ± 7.2 μM), a moderate FXR antagonist was discovered via high-throughput screening. Structure-activity relationship studies indicated that the shape and the lipophilicity of the substituents of the aromatic ring affect the activity dramatically, increasing the shape and the lipophilicity of the substituents of the aromatic ring enhances the potency of FXR antagonists. Especially, when the OH at C2 position of the aromatic ring was replaced by the OBn substituent (analog 2b), its activity could be improved to IC50=1.1 ± 0.1μM. Besides, the length of the linker and the tetrazole structure are essential for retaining the activity.
Collapse
Affiliation(s)
- Peng Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xing Xu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Lili Chen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xu Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Lihong Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| |
Collapse
|
91
|
Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice. Int J Obes (Lond) 2013; 38:1027-34. [PMID: 24310401 DOI: 10.1038/ijo.2013.230] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/11/2013] [Accepted: 11/24/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Besides their role in lipid absorption, bile acids (BAs) can act as signalling molecules. Cholic acid was shown to counteract obesity and associated metabolic disorders in high-fat-diet (cHF)-fed mice while enhancing energy expenditure through induction of mitochondrial uncoupling protein 1 (UCP1) and activation of non-shivering thermogenesis in brown adipose tissue (BAT). In this study, the effects of another natural BA, chenodeoxycholic acid (CDCA), on dietary obesity, UCP1 in both interscapular BAT and in white adipose tissue (brite cells in WAT), were characterized in dietary-obese mice. RESEARCH DESIGN To induce obesity and associated metabolic disorders, male 2-month-old C57BL/6J mice were fed cHF (35% lipid wt wt(-1), mainly corn oil) for 4 months. Mice were then fed either (i) for 8 weeks with cHF or with cHF with two different doses (0.5%, 1%; wt wt(-1)) of CDCA (8-week reversion); or (ii) for 3 weeks with cHF or with cHF with 1% CDCA, or pair-fed (PF) to match calorie intake of the CDCA mice fed ad libitum; mice on standard chow diet were also used (3-week reversion). RESULTS In the 8-week reversion, the CDCA intervention resulted in a dose-dependent reduction of obesity, dyslipidaemia and glucose intolerance, which could be largely explained by a transient decrease in food intake. The 3-week reversion revealed mild CDCA-dependent and food intake-independent induction of UCP1-mediated thermogenesis in interscapular BAT, negligible increase of UCP1 in subcutaneous WAT and a shift from carbohydrate to lipid oxidation. CONCLUSIONS CDCA could reverse obesity in cHF-fed mice, mainly in response to the reduction in food intake, an effect probably occuring but neglected in previous studies using cholic acid. Nevertheless, CDCA-dependent and food intake-independent induction of UCP1 in BAT (but not in WAT) could contribute to the reduction in adiposity and to the stabilization of the lean phenotype.
Collapse
|
92
|
Parolini C, Manzini S, Busnelli M, Rigamonti E, Marchesi M, Diani E, Sirtori CR, Chiesa G. Effect of the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in rats. Br J Nutr 2013; 110:1394-401. [PMID: 23458494 DOI: 10.1017/s0007114513000639] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many functional foods and dietary supplements have been reported to be beneficial for the management of dyslipidaemia, one of the major risk factors for CVD. Soluble fibres and legume proteins are known to be a safe and practical approach for cholesterol reduction. The present study aimed at investigating the hypocholesterolaemic effect of the combinations of these bioactive vegetable ingredients and their possible effects on the expression of genes regulating cholesterol homeostasis. A total of six groups of twelve rats each were fed, for 28 d, Nath's hypercholesterolaemic diets, differing in protein and fibre sources, being, respectively, casein and cellulose (control), pea proteins and cellulose (pea), casein and oat fibres (oat), casein and apple pectin (pectin), pea proteins and oat fibres (pea+oat) and pea proteins and apple pectin (pea+pectin). Administration of each vegetable-containing diet was associated with lower total cholesterol concentrations compared with the control. The combinations (pea+oat and pea+pectin) were more efficacious than fibres alone in modulating cholesterolaemia ( - 53 and - 54%, respectively, at 28 d; P< 0·005). In rats fed the diets containing oat fibres or apple pectin, alone or in combination with pea proteins, a lower hepatic cholesterol content (P< 0·005) and higher hepatic mRNA concentrations of CYP7A1 and NTCP were found when compared with the control rats (P< 0·05). In summary, the dietary combinations of pea proteins and oat fibres or apple pectin are extremely effective in lowering plasma cholesterol concentrations in rats and affect cellular cholesterol homeostasis by up-regulating genes involved in hepatic cholesterol turnover.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Farnesoid x receptor (FXR) is a ligand-dependent nuclear transcription factor, belonging to the nuclear receptor superfamily. It is activated by bile acids (BAs) and is expressed in the liver, intestine, kidney, and adrenal gland. Upon activation by endogenous ligand (BAs), FXR can regulate triglyceride (TG) metabolism by modulating the activity of related enzymes, lipoprotein and receptors, and maintaining the balance between the contents of TG in the liver and circulation. This review aims to elucidate the regulation of triglyceride metabolism by FXR.
Collapse
|
94
|
Zhu Y, Li G, Dong Y, Zhou HH, Kong B, Aleksunes LM, Richardson JR, Li F, Guo GL. Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver. Toxicol Appl Pharmacol 2012. [PMID: 23178280 DOI: 10.1016/j.taap.2012.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR deficiency in mice results in cholestasis, metabolic disorders, and tumorigenesis in liver and intestine. FXR is known to contribute to pathogenesis by regulating gene transcription; however, changes in the post-transcriptional modification of proteins associated with FXR modulation have not been determined. In the current study, proteomic analysis of the livers of wild-type (WT) and FXR knockout (FXR-KO) mice treated with a FXR synthetic ligand or vehicle was performed. The results identified five proteins as novel FXR targets. Since FXR deficiency in mice leads to liver tumorigenesis, poly (ADP-ribose) polymerase family, member 1 (Parp1) that is important for DNA repair, was validated in the current study by quantitative real-time PCR, and 1- and 2-dimensional gel electrophoresis/western blot. The results showed that Parp1 mRNA levels were not altered by FXR genetic status or by agonist treatment. However, total Parp1 protein levels were increased in FXR-KO mice as early as 3 month old. Interestingly, total Parp1 protein levels were increased in WT mice in an age-dependent manner (from 3 to 18 months), but not in FXR-KO mice. Finally, activation of FXR in WT mice resulted in reduction of phosporylated Parp1 protein in the liver without affecting total Parp1 protein levels. In conclusion, this study reveals that FXR genetic status and agonist treatment affects basal levels and phosphorylation state of Parp1, respectively. These alterations, in turn, may be associated with the hepatobiliary alterations observed in FXR-KO mice and participate in FXR agonist-induced protection in the liver.
Collapse
Affiliation(s)
- Yan Zhu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Munoz-Garrido P, Fernandez-Barrena MG, Hijona E, Carracedo M, Marín JJG, Bujanda L, Banales JM. MicroRNAs in biliary diseases. World J Gastroenterol 2012; 18:6189-6196. [PMID: 23180938 PMCID: PMC3501766 DOI: 10.3748/wjg.v18.i43.6189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/05/2012] [Accepted: 08/14/2012] [Indexed: 02/06/2023] Open
Abstract
Cholangiopathies are a group of diseases primarily or secondarily affecting bile duct cells, and result in cholangiocyte proliferation, regression, and/or transformation. Their etiopathogenesis may be associated with a broad variety of causes of different nature, which includes genetic, neoplastic, immune-associated, infectious, vascular, and drug-induced alterations, or being idiopathic. miRNAs, small non-coding endogenous RNAs that post-transcriptionally regulate gene expression, have been associated with pathophysiological processes in different organs and cell types, and are postulated as potential targets for diagnosis and therapy. In the current manuscript, knowledge regarding the role of miRNAs in the development and/or progression of cholangiopathies has been reviewed and the most relevant findings in this promising field of hepatology have been highlighted.
Collapse
|
96
|
Düfer M, Hörth K, Krippeit-Drews P, Drews G. The significance of the nuclear farnesoid X receptor (FXR) in β cell function. Islets 2012; 4:333-8. [PMID: 23073079 PMCID: PMC3524139 DOI: 10.4161/isl.22383] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bile acids (BAs) are important signaling molecules that are involved in the regulation of their own metabolism, lipid metabolism, energy expenditure and glucose homeostasis. The nuclear farnesoid X receptor (FXR) and the G-protein-coupled TGR-5 are the most prominent BA receptors. FXR is highly expressed in liver and activation of liver FXR profoundly affects glucose homeostasis. Strikingly, the effect of FXR activation on glucose metabolism seems to depend on the nutritional status of the organism, i.e., slimness or obesity. Recently, it became evident that FXR is present in pancreatic β cells and that activation of β cell FXR contributes to the regulation of glucose homeostasis. Interestingly, FXR activation increases glucose-induced insulin secretion by non-genomic effects on stimulus-secretion coupling. The first chapter of this review shortly introduces the role of liver FXR in glucose metabolism, the second part focuses on the impact of FXR in lean and obese animals, and the third chapter highlights the significance of FXR in β cells.
Collapse
Affiliation(s)
- Martina Düfer
- Institute of Pharmacy; Department of Pharmacology; University of Tübingen; Tübingen, Germany
- Institute of Pharmaceutical and Medical Chemistry; Department of Pharmacology; University of Münster; Münster, Germany
| | - Katrin Hörth
- Institute of Pharmacy; Department of Pharmacology; University of Tübingen; Tübingen, Germany
| | - Peter Krippeit-Drews
- Institute of Pharmacy; Department of Pharmacology; University of Tübingen; Tübingen, Germany
| | - Gisela Drews
- Institute of Pharmacy; Department of Pharmacology; University of Tübingen; Tübingen, Germany
- Correspondence to: Gisela Drews,
| |
Collapse
|
97
|
Abstract
The regenerative capacity of the liver is well known, and it can regenerate itself by a compensatory regrowth in response to partial hepatectomy or injury. Farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Bile acids are FXR physiological ligands. As a metabolic regulator, FXR plays key roles in regulating metabolism of bile acids, lipids and glucose. Recently, activation of intercellular signal transduction has been shown to play an important role in liver regeneration by binding of bile acids to their receptor FXR. Bile acid/FXR signaling pathway is required for normal liver regeneration. Furthermore, FXR promotes liver repair after injury, and activation of FXR is able to alleviate age-related defective liver regeneration. These novel findings suggest that FXR-mediated bile acid signaling is an important component of normal liver regeneration and highlight the potential use of FXR ligands to promote liver regeneration after segmental liver transplantation or resection of liver tumors. This review summarizes the recent progress in understanding the role of FXR in promoting liver regeneration.
Collapse
|
98
|
Humbert L, Maubert MA, Wolf C, Duboc H, Mahé M, Farabos D, Seksik P, Mallet JM, Trugnan G, Masliah J, Rainteau D. Bile acid profiling in human biological samples: comparison of extraction procedures and application to normal and cholestatic patients. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 899:135-45. [PMID: 22664055 DOI: 10.1016/j.jchromb.2012.05.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/30/2012] [Accepted: 05/09/2012] [Indexed: 02/08/2023]
Abstract
The role of bile acids in cell metabolism, membrane biology and cell signaling is increasingly recognized, thus making necessary a robust and versatile technique to extract, separate and quantify a large concentration range of these numerous molecular species. HPLC-MS/MS analysis provides the highest sensitivity to detect and identify bile acids. However, due to their large chemical diversity, extraction methods are critical and quite difficult to optimize, as shown by a survey of the literature. This paper compares the performances of four bile acid extraction protocols applied to either liquid (serum, urine, bile) or solid (stool) samples. Acetonitrile was found to be the best solvent for deproteinizing liquid samples and NaOH the best one for stool extraction. These optimized extraction procedures allowed us to quantitate as much as 27 distinct bile acids including sulfated species in a unique 30 min HPLC run, including both hydrophilic and hydrophobic species with a high efficiency. Tandem MS provided a non ambiguous identification of each metabolite with a good sensitivity (LOQ below 20 nmol/l except for THDCA and TLCA). After validation, these methods, successfully applied to a group of 39 control patients, detected 14 different species in serum in the range of 30-800 nmol/l, 11 species in urine in the range of 20-200 nmol/l and 25 species in stool in the range of 0.4-2000 nmol/g. The clinical interest of this method has been then validated on cholestatic patients. The proposed protocols seem suitable for profiling bile acids in routine analysis.
Collapse
Affiliation(s)
- Lydie Humbert
- ERL INSERM U 1057/UMR 7203, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Hu M, Lui SSH, Tam LS, Li EK, Tomlinson B. The farnesoid X receptor -1G>T polymorphism influences the lipid response to rosuvastatin. J Lipid Res 2012; 53:1384-9. [PMID: 22534644 DOI: 10.1194/jlr.m026054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The bile acid-activated nuclear receptor farnesoid X receptor (FXR) plays an important role in lipid and glucose metabolism, and in addition, it regulates multiple drug transporters involved in statin disposition. We examined whether a functional single nucleotide polymorphism (SNP) in FXR (-1G>T) influenced the lipid-lowering effect of rosuvastatin. In 385 Chinese patients with hyperlipidemia who had been treated with rosuvastatin 10 mg daily for at least 4 weeks, the association between the FXR -1G>T SNP and lipid response to rosuvastatin was analyzed. The FXR -1G>T SNP was not associated with baseline lipids but was significantly associated with the LDL cholesterol (LDL-C) and total cholesterol response to rosuvastatin. Carriers of the T-variant allele (GT+TT = 68+3) had 4.4% (95% CI: 1.2, 7.5%, P = 0.006) and 2.6% (95% CI: 0.3, 5.0%; P < 0.05) greater reductions in LDL-C and total cholesterol, respectively, compared with those with homozygous wild-type alleles. The association between the FXR polymorphism and the LDL-C response to rosuvastatin remained significant after adjusting for other covariants. This association of the variant allele of the FXR -1G>T polymorphism with a greater LDL-C response to rosuvastatin may suggest that this polymorphism influences the expression of the hepatic efflux transporters involved in biliary excretion of rosuvastatin.
Collapse
Affiliation(s)
- Miao Hu
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | | | | | | | | |
Collapse
|
100
|
Li G, Thomas AM, Williams JA, Kong B, Liu J, Inaba Y, Xie W, Guo GL. Farnesoid X receptor induces murine scavenger receptor Class B type I via intron binding. PLoS One 2012; 7:e35895. [PMID: 22540009 PMCID: PMC3335076 DOI: 10.1371/journal.pone.0035895] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 03/23/2012] [Indexed: 12/22/2022] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor and a key regulator of liver cholesterol and triglyceride homeostasis. Scavenger receptor class B type I (SR-BI) is critical for reverse cholesterol transport (RCT) by transporting high-density lipoprotein (HDL) into liver. FXR induces SR-BI, however, the underlying molecular mechanism of this induction is not known. The current study confirmed induction of SR-BI mRNA by activated FXR in mouse livers, a human hepatoma cell line, and primary human hepatocytes. Genome-wide FXR binding analysis in mouse livers identified 4 putative FXR response elements in the form of inverse repeat separated by one nucleotide (IR1) at the first intron and 1 IR1 at the downstream of the mouse Sr-bi gene. ChIP-qPCR analysis revealed FXR binding to only the intronic IR1s, but not the downstream one. Luciferase assays and site-directed mutagenesis further showed that 3 out of 4 IR1s were able to activate gene transcription. A 16-week high-fat diet (HFD) feeding in mice increased hepatic Sr-bi gene expression in a FXR-dependent manner. In addition, FXR bound to the 3 bona fide IR1s in vivo, which was increased following HFD feeding. Serum total and HDL cholesterol levels were increased in FXR knockout mice fed the HFD, compared to wild-type mice. In conclusion, the Sr-bi/SR-BI gene is confirmed as a FXR target gene in both mice and humans, and at least in mice, induction of Sr-bi by FXR is via binding to intronic IR1s. This study suggests that FXR may serve as a promising molecular target for increasing reverse cholesterol transport.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Cholesterol/metabolism
- Diet, High-Fat
- Female
- Hep G2 Cells
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Introns
- Isoxazoles/pharmacology
- Lipoproteins, HDL/metabolism
- Liver/drug effects
- Liver/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
Collapse
Affiliation(s)
- Guodong Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Abdominal Surgery, Cancer Treatment Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Ann M. Thomas
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jessica A. Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Bo Kong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jie Liu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Yuka Inaba
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Grace L. Guo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|