51
|
Hsu NJ, Jacobs M. The Use of Murine Infection Models to Investigate the Protective Role of TNF in Central Nervous System Tuberculosis. Methods Mol Biol 2021; 2248:211-220. [PMID: 33185878 DOI: 10.1007/978-1-0716-1130-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tuberculosis of the central nervous system (CNS-TB) is the most severe form of extra-pulmonary tuberculosis that is often associated with high mortality. Secretion of tumor necrosis factor (TNF) has important protective and immune modulatory functions for immune responses during CNS-TB. Therefore, by combining the approaches of aerosol and intracerebral infection in mice, this chapter describes the methods to investigate the contribution of TNF in protective immunity against CNS-TB infection.
Collapse
Affiliation(s)
- Nai-Jen Hsu
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Immunology of Infectious Disease Research Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
52
|
Shulman A, Wang W, Luo H, Bao S, Searchfield G, Zhang J. Neuroinflammation and Tinnitus. Curr Top Behav Neurosci 2021; 51:161-174. [PMID: 34282564 DOI: 10.1007/7854_2021_238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neuroinflammation is the central nervous system's response to: injury, infection, and abnormal neural activity. Inflammatory processes are known to mediate many diseases, and recently evidence indicates that neuroinflammation underlies hearing disorders such as presbyacusis, middle-ear disease, ototoxicity, noise-induced hearing loss, and tinnitus. This chapter provides a review of the role of neuroinflammation in the etiology and treatment of tinnitus. Specifically, our research team has demonstrated that both tumor necrosis factor alpha (TNF-α) and calpain signaling pathways are involved in noise-induced tinnitus and that blocking them yielded therapeutic effects on tinnitus. Other efforts such as controlling acute inflammatory response via specialized pro-resolving mediators may help provide insight into preventing and treating tinnitus-related inflammatory processes.
Collapse
Affiliation(s)
- Abraham Shulman
- Department of Otolaryngology, State University New York-Downstate, Brooklyn, NY, USA.
| | - Weihua Wang
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Hao Luo
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Grant Searchfield
- Section of Audiology, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Jinsheng Zhang
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Communication Sciences and Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, USA
| |
Collapse
|
53
|
Lenz M, Eichler A, Kruse P, Strehl A, Rodriguez-Rozada S, Goren I, Yogev N, Frank S, Waisman A, Deller T, Jung S, Maggio N, Vlachos A. Interleukin 10 Restores Lipopolysaccharide-Induced Alterations in Synaptic Plasticity Probed by Repetitive Magnetic Stimulation. Front Immunol 2020; 11:614509. [PMID: 33391287 PMCID: PMC7772211 DOI: 10.3389/fimmu.2020.614509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Systemic inflammation is associated with alterations in complex brain functions such as learning and memory. However, diagnostic approaches to functionally assess and quantify inflammation-associated alterations in synaptic plasticity are not well-established. In previous work, we demonstrated that bacterial lipopolysaccharide (LPS)-induced systemic inflammation alters the ability of hippocampal neurons to express synaptic plasticity, i.e., the long-term potentiation (LTP) of excitatory neurotransmission. Here, we tested whether synaptic plasticity induced by repetitive magnetic stimulation (rMS), a non-invasive brain stimulation technique used in clinical practice, is affected by LPS-induced inflammation. Specifically, we explored brain tissue cultures to learn more about the direct effects of LPS on neural tissue, and we tested for the plasticity-restoring effects of the anti-inflammatory cytokine interleukin 10 (IL10). As shown previously, 10 Hz repetitive magnetic stimulation (rMS) of organotypic entorhino-hippocampal tissue cultures induced a robust increase in excitatory neurotransmission onto CA1 pyramidal neurons. Furthermore, LPS-treated tissue cultures did not express rMS-induced synaptic plasticity. Live-cell microscopy in tissue cultures prepared from a novel transgenic reporter mouse line [C57BL/6-Tg(TNFa-eGFP)] confirms that ex vivo LPS administration triggers microglial tumor necrosis factor alpha (TNFα) expression, which is ameliorated in the presence of IL10. Consistent with this observation, IL10 hampers the LPS-induced increase in TNFα, IL6, IL1β, and IFNγ and restores the ability of neurons to express rMS-induced synaptic plasticity in the presence of LPS. These findings establish organotypic tissue cultures as a suitable model for studying inflammation-induced alterations in synaptic plasticity, thus providing a biological basis for the diagnostic use of transcranial magnetic stimulation in the context of brain inflammation.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Strehl
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Silvia Rodriguez-Rozada
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Itamar Goren
- Pharmazentrum Frankfurt/ZAFES, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Stefan Frank
- Pharmazentrum Frankfurt/ZAFES, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Maggio
- Department of Neurology and Sagol Center for Neurosciences, Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Tel HaShomer, Israel
- Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
54
|
Zinsmaier AK, Wang W, Zhang L, Hossainy NN, Bao S. Resistance to noise-induced gap detection impairment in FVB mice is correlated with reduced neuroinflammatory response and parvalbumin-positive neuron loss. Sci Rep 2020; 10:20445. [PMID: 33235216 PMCID: PMC7686384 DOI: 10.1038/s41598-020-75714-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
Exposure to loud noises results in neuroinflammatory responses in the central auditory pathway. Noise-induced neuroinflammation is implicated in auditory processing deficits such as impairment in gap detection. In this study, we examined whether strain differences between the FVB and C57BL/6 mice in noise-induced impairment in gap detection are correlated with strain differences in neuroinflammatory responses. We found that noise induced more robust TNF-α expression in C57BL/6 than in FVB mice. Noise-induced microglial deramification was observed in C57BL/6 mice, but not in FVB mice. Furthermore, noise exposure resulted in a reduction in parvalbumin-positive (PV+) neuron density in the C57BL/6 mice, but not in FVB mice. These results suggest that neuroinflammatory responses and loss of PV+ neurons may contribute to strain differences in noise-induced impairment in gap detection.
Collapse
Affiliation(s)
- Alexander K Zinsmaier
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Weihua Wang
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Li Zhang
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Nadia N Hossainy
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Shaowen Bao
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA.
| |
Collapse
|
55
|
Barros C, Fernandes A. Linking Cognitive Impairment to Neuroinflammation in Multiple Sclerosis using neuroimaging tools. Mult Scler Relat Disord 2020; 47:102622. [PMID: 33227630 DOI: 10.1016/j.msard.2020.102622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is a complex chronic immune disease in the central nervous system, causing neurological disability among young and middle-aged adults. Impaired cognition is now emerging as a major clinical symptom being present in more than 50% of MS patients. Recent data support that neuroinflammation mediated by glial cells plays a key part in MS course and, particularly, microglia is responsible for the pruning of synapses possibly impacting on vital neural networks maintenance. However, the knowledge of microglia-mediated mechanisms underlying cognitive impairment in MS is poor and unfortunately, there are no medicines to overcome this "invisible" symptom. Interestingly, the use of powerful diagnostic imaging tools as structural and functional MRI as well as PET brought new insights into some biological mechanisms, but no link between the possibility to use early visible alterations to predict cognitive deficits was clarified yet. In this review, we focus on the interplay between MS-related cognitive structures and neuroinflammation, specifically the presence of microglia and their reactivity. Moreover, we also discuss new imaging tools to assess cognitive impairment and to track microglia activation. Understanding the role of microglia in cognitive impairment and how it can be prevented may be a promising contribution to innovative therapeutic strategies that culminate in the improvement of MS patients' life quality.
Collapse
Affiliation(s)
- Catarina Barros
- Neuron-Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Adelaide Fernandes
- Neuron-Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
56
|
Penna E, Pizzella A, Cimmino F, Trinchese G, Cavaliere G, Catapano A, Allocca I, Chun JT, Campanozzi A, Messina G, Precenzano F, Lanzara V, Messina A, Monda V, Monda M, Perrone-Capano C, Mollica MP, Crispino M. Neurodevelopmental Disorders: Effect of High-Fat Diet on Synaptic Plasticity and Mitochondrial Functions. Brain Sci 2020; 10:brainsci10110805. [PMID: 33142719 PMCID: PMC7694125 DOI: 10.3390/brainsci10110805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) include diverse neuropathologies characterized by abnormal brain development leading to impaired cognition, communication and social skills. A common feature of NDDs is defective synaptic plasticity, but the underlying molecular mechanisms are only partially known. Several studies have indicated that people’s lifestyles such as diet pattern and physical exercise have significant influence on synaptic plasticity of the brain. Indeed, it has been reported that a high-fat diet (HFD, with 30–50% fat content), which leads to systemic low-grade inflammation, has also a detrimental effect on synaptic efficiency. Interestingly, metabolic alterations associated with obesity in pregnant woman may represent a risk factor for NDDs in the offspring. In this review, we have discussed the potential molecular mechanisms linking the HFD-induced metabolic dysfunctions to altered synaptic plasticity underlying NDDs, with a special emphasis on the roles played by synaptic protein synthesis and mitochondrial functions.
Collapse
Affiliation(s)
- Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Ivana Allocca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Angelo Campanozzi
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Francesco Precenzano
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Valentina Lanzara
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Vincenzo Monda
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Correspondence: ; Tel.: +39-081-679990; Fax: +39-081-679233
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| |
Collapse
|
57
|
Deng D, Wang W, Bao S. Diffusible Tumor Necrosis Factor-Alpha (TNF-α) Promotes Noise-Induced Parvalbumin-Positive (PV+) Neuron Loss and Auditory Processing Impairments. Front Neurosci 2020; 14:573047. [PMID: 33154715 PMCID: PMC7590827 DOI: 10.3389/fnins.2020.573047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation has been implicated in noise-induced auditory processing disorder and tinnitus. Certain non-auditory neurological disorders can also increase the levels of proinflammatory cytokines in the brain. To investigate the impact of increased brain proinflammatory cytokine levels on the central auditory pathway, we infused recombinant TNF-α into the right lateral cerebral ventricle, and examined auditory processing and cytoarchitecture of the auditory cortex. Microglial deramification was observed in the auditory cortex of mice that had received both TNF-α infusion and exposure to an 86-dB noise, but not in mice that had received either TNF-α infusion or noise exposure alone. In addition, we observed reduced cortical PV+ neuron density and impaired performances in gap detection and prepulse inhibition (PPI) only in mice that received both TNF-α infusion and the noise exposure. These results suggest that disease-related increase in brain proinflammatory cytokine release could be a risk factor for noise-induced auditory processing disorder and tinnitus.
Collapse
Affiliation(s)
- Di Deng
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Weihua Wang
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Shaowen Bao
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
58
|
Marchese E, Valentini M, Di Sante G, Cesari E, Adinolfi A, Corvino V, Ria F, Sette C, Geloso MC. Alternative splicing of neurexins 1-3 is modulated by neuroinflammation in the prefrontal cortex of a murine model of multiple sclerosis. Exp Neurol 2020; 335:113497. [PMID: 33058888 DOI: 10.1016/j.expneurol.2020.113497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
Mounting evidence points to immune-mediated synaptopathy and impaired plasticity as early pathogenic events underlying cognitive decline (CD) in Multiple sclerosis (MS) and in the experimental autoimmune encephalomyelitis (EAE) mouse model of the disease. However, knowledge of the neurobiology of synaptic dysfunction is still incomplete. Splicing regulation represents a flexible and powerful mechanism involved in dynamic remodeling of the synapse, which allows the expression of synaptic protein variants that dynamically control the specificity of contacts between neurons. The pre-synaptic adhesion molecules neurexins (NRXNs) 1-3 play a relevant role in cognition and are alternatively spliced to yield variants that differentially cluster specific ligands in the postsynaptic compartment and modulate functional properties of the synaptic contact. Notably, mutations in these genes or disruption of their splicing program are associated with neuropsychiatric disorders. Herein, we have investigated how inflammatory changes imposed by EAE impact on alternative splicing of the Nrxn 1-3 mouse genes in the acute phase of disease. Due to its relevance in cognition, we focused on the prefrontal cortex (PFC) of SJL/J mice, in which EAE-induced inflammatory lesions extend to the rostral forebrain. We found that inclusion of the Nrxn 1-3 AS4 exon is significantly increased in the PFC of EAE mice and that splicing changes are correlated with local Il1β-expression levels. This correlation is sustained by the concomitant downregulation of SLM2, the main splicing factor involved in skipping of the AS4 exon, in EAE mice displaying high levels of Il1β- expression. We also observed that Il1β-expression levels correlate with changes in parvalbumin (PV)-positive interneuron connectivity. Moreover, exposure to environmental enrichment (EE), a condition known to stimulate neuronal connectivity and to improve cognitive functions in mice and humans, modified PFC phenotypes of EAE mice with respect to Il1β-, Slm2-expression, Nrxn AS4 splicing and PV-expression, by limiting changes associated with high levels of inflammation. Our results reveal that local inflammation results in early splicing modulation of key synaptic proteins and in remodeling of GABAergic circuitry in the PFC of SJL/J mice. We also suggest EE as a tool to counteract these inflammation-associated events, thus highlighting potential therapeutic targets for limiting the progressive CD occurring in MS.
Collapse
Affiliation(s)
- Elisa Marchese
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Mariagrazia Valentini
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Annalisa Adinolfi
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Valentina Corvino
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| |
Collapse
|
59
|
Talebi M, Talebi M, Farkhondeh T, Samarghandian S. Molecular mechanism-based therapeutic properties of honey. Biomed Pharmacother 2020; 130:110590. [PMID: 32768885 DOI: 10.1016/j.biopha.2020.110590] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Honey and its phenolic compounds specifically chrysin are focused as nutritional supplements and likewise as valued phytochemicals, nutraceuticals, and phytopharmaceuticals alone, or adjuvant with some conventional medications to cause synergistic therapeutic or cytotoxic effects. Through the verified beneficial strategies combat several disturbances, phenolic compounds play fundamental functions in the avoidance and treatment of disorders. Oxidative stress, inflammation, and apoptosis are the three most imperative physiological reactions in the prevalence of numerous ailments. Honey, chrysin, and other phenolic compounds detected in honey can modify clinical conditions via modulation of these contrivances and correlated signaling pathways. The current study desires to review the therapeutic effects of honey and its allied molecular mechanisms. Evidenced-base studies show that honey would represent therapeutic potential against various types of cancer and tumor proliferation (colorectal cancer, breast cancer, bladder cancer, leukemia, glioma, hepatocellular cancer, pancreatic cancer, and melanoma), wounds, diabetes mellitus, neurological (depression, Parkinson disease, and Alzheimer's disease), respiratory, gastrointestinal (peptic ulcer and ulcerative colitis), cardiovascular disorders, renal injuries, liver diseases and many other kinds of physiological dysfunctionalities through various molecular mechanisms contributed with oxidative stress, inflammatory process, and apoptosis.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19166, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, United States; Food Safety Net Services, San Antonio, TX 78216, United States
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
60
|
Dos Reis RS, Sant S, Keeney H, Wagner MCE, Ayyavoo V. Modeling HIV-1 neuropathogenesis using three-dimensional human brain organoids (hBORGs) with HIV-1 infected microglia. Sci Rep 2020; 10:15209. [PMID: 32938988 PMCID: PMC7494890 DOI: 10.1038/s41598-020-72214-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 associated neurocognitive disorder (HAND) is characterized by neuroinflammation and glial activation that, together with the release of viral proteins, trigger a pathogenic cascade resulting in synaptodendritic damage and neurodegeneration that lead to cognitive impairment. However, the molecular events underlying HIV neuropathogenesis remain elusive, mainly due to lack of brain-representative experimental systems to study HIV-CNS pathology. To fill this gap, we developed a three-dimensional (3D) human brain organoid (hBORG) model containing major cell types important for HIV-1 neuropathogenesis; neurons and astrocytes along with incorporation of HIV-infected microglia. Both infected and uninfected microglia infiltrated into hBORGs resulting in a triculture system (MG-hBORG) that mirrors the multicellular network observed in HIV-infected human brain. Moreover, the MG-hBORG model supported productive viral infection and exhibited increased inflammatory response by HIV-infected MG-hBORGs, releasing tumor necrosis factor (TNF-α) and interleukin-1 (IL-1β) and thereby mimicking the chronic neuroinflammatory environment observed in HIV-infected individuals. This model offers great promise for basic understanding of how HIV-1 infection alters the CNS compartment and induces pathological changes, paving the way for discovery of biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, McGowan Institute for Regenerative Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15261, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Hannah Keeney
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Marc C E Wagner
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
61
|
Age-related changes in cerebral congenital toxoplasmosis: Histopathological and immunohistochemical evaluation. J Neuroimmunol 2020; 348:577384. [PMID: 32919146 DOI: 10.1016/j.jneuroim.2020.577384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022]
Abstract
Congenital toxoplasmosis is a widespread worldwide disease producing varying degrees of damage to the fetus including ocular and neurological impairment. However, the underlying mechanisms are not yet clear. Therefore, the current study aimed to investigate the progress of congenital cerebral toxoplasmosis in experimentally infected offspring animal model at different age groups till become adults. To fulfill this aim, the offspring of Me49 T. gondii infected pregnant mice were divided into groups; embryo, infant, young and adult phases. Blood and brain samples were collected for further hormonal and histopathological studies and immunohistochemical staining of glial fibrillary acidic protein (GFAP) and synaptophysin (SYN). Our results showed several encephalitic changes in the infected groups ranging from gliosis to reduced cortical cell number and fibrinoid degeneration of the brain. We showed increased expression of GFAP and SYN indicating activation of astrocytes and modification of the synaptic function, respectively. These changes started intrauterine following congenital infection and increased progressively afterward. Moreover, infected mice had elevated corticosterone levels. In conclusion, the current study provided new evidences for the cellular changes especially in the infected embryo and highlighted the role of GFAP and SYN that may be used as indicators for T. gondii-related neuropathy.
Collapse
|
62
|
Pinto MV, Fernandes A. Microglial Phagocytosis-Rational but Challenging Therapeutic Target in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21175960. [PMID: 32825077 PMCID: PMC7504120 DOI: 10.3390/ijms21175960] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is the most common autoimmune and demyelinating disease of the central nervous system (CNS), characterized, in the majority of cases, by initial relapses that later evolve into progressive neurodegeneration, severely impacting patients’ motor and cognitive functions. Despite the availability of immunomodulatory therapies effective to reduce relapse rate and slow disease progression, they all failed to restore CNS myelin that is necessary for MS full recovery. Microglia are the primary inflammatory cells present in MS lesions, therefore strongly contributing to demyelination and lesion extension. Thus, many microglial-based therapeutic strategies have been focused on the suppression of microglial pro-inflammatory phenotype and neurodegenerative state to reduce disease severity. On the other hand, the contribution of myelin phagocytosis advocating the neuroprotective role of microglia in MS has been less explored. Indeed, despite the presence of functional oligodendrocyte precursor cells (OPCs), within lesioned areas, MS plaques fail to remyelinate as a result of the over-accumulation of myelin-toxic debris that must be cleared away by microglia. Dysregulation of this process has been associated with the impaired neuronal recovery and deficient remyelination. In line with this, here we provide a comprehensive review of microglial myelin phagocytosis and its involvement in MS development and repair. Alongside, we discuss the potential of phagocytic-mediated therapeutic approaches and encourage their modulation as a novel and rational approach to ameliorate MS-associated pathology.
Collapse
Affiliation(s)
- Maria V. Pinto
- Neuron-Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Adelaide Fernandes
- Neuron-Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217946400
| |
Collapse
|
63
|
Jesus AA, Passaglia P, Santos BM, Rodrigues-Santos I, Flores RA, Batalhão ME, Stabile AM, Cárnio EC. Chronic molecular hydrogen inhalation mitigates short and long-term memory loss in polymicrobial sepsis. Brain Res 2020; 1739:146857. [PMID: 32348775 DOI: 10.1016/j.brainres.2020.146857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/04/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023]
Abstract
The central nervous system (CNS) is one of the first physiological systems to be affected in sepsis. During the exacerbated systemic inflammatory response at the early stage of sepsis, circulatory inflammatory mediators are able to reach the CNS leading to neuroinflammation and, consequently, long-term impairment in learning and memory formation is observed. The acute treatment with molecular hydrogen (H2) exerts important antioxidative, antiapoptotic, and anti-inflammatory effects in sepsis, but little is known about the mechanism itself and the efficacy of chronic H2 inhalation in sepsis treatment. Thus, we tested two hypotheses. We first hypothesized that chronic H2 inhalation is also an effective therapy to treat memory impairment induced by sepsis. The second hypothesis is that H2 treatment decreases sepsis-induced neuroinflammation in the hippocampus and prefrontal cortex, important areas related to short and long-term memory processing. Our results indicate that (1) chronic exposure of hydrogen gas is a simple, safe and promising therapeutic strategy to prevent memory loss in patients with sepsis and (2) acute H2 inhalation decreases neuroinflammation in memory-related areas and increases total nuclear factor E2-related factor 2 (Nrf2), a transcription factorthat regulates a vast group of antioxidant and inflammatory agents expression in these areas of septic animals.
Collapse
Affiliation(s)
- Aline A Jesus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Patrícia Passaglia
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Bruna M Santos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Isabelle Rodrigues-Santos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Rafael A Flores
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Marcelo E Batalhão
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Angelita M Stabile
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Evelin C Cárnio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil; Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil.
| |
Collapse
|
64
|
Sa de Almeida J, Vargas M, Fonseca-Gomes J, Tanqueiro SR, Belo RF, Miranda-Lourenço C, Sebastião AM, Diógenes MJ, Pais TF. Microglial Sirtuin 2 Shapes Long-Term Potentiation in Hippocampal Slices. Front Neurosci 2020; 14:614. [PMID: 32625056 PMCID: PMC7315392 DOI: 10.3389/fnins.2020.00614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/18/2020] [Indexed: 11/15/2022] Open
Abstract
Microglial cells have emerged as crucial players in synaptic plasticity during development and adulthood, and also in neurodegenerative and neuroinflammatory conditions. Here we found that decreased levels of Sirtuin 2 (Sirt2) deacetylase in microglia affects hippocampal synaptic plasticity under inflammatory conditions. The results show that long-term potentiation (LTP) magnitude recorded from hippocampal slices of wild type mice does not differ between those exposed to lipopolysaccharide (LPS), a pro-inflammatory stimulus, or BSA. However, LTP recorded from hippocampal slices of microglial-specific Sirt2 deficient (Sirt2–) mice was significantly impaired by LPS. Importantly, LTP values were restored by memantine, an antagonist of N-methyl-D-aspartate (NMDA) receptors. These results indicate that microglial Sirt2 prevents NMDA-mediated excitotoxicity in hippocampal slices in response to an inflammatory signal such as LPS. Overall, our data suggest a key-protective role for microglial Sirt2 in mnesic deficits associated with neuroinflammation.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana Vargas
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Ramalho Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita F Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
65
|
Benmakhlouf Y, Zian Z, Nourouti NG, Barakat A, Mechita MB. Potential Cytokine Biomarkers in Intellectual Disability. Endocr Metab Immune Disord Drug Targets 2020; 21:569-576. [PMID: 32600239 DOI: 10.2174/1871530320666200628024944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/22/2022]
Abstract
Intellectual disability (ID), previously called mental retardation, is the most common neurodevelopmental disorder characterized by life-long intellectual and adaptive functioning impairments that have an impact on individuals, families, and society. Its prevalence is estimated to 3% of the general population and its etiology is still insufficiently understood. Besides the involvement of genetic and environmental factors, immunological dysfunctions have been also suggested to contribute to the pathophysiology of ID. Over the years, immune biomarkers related to ID have gained significant attention and researchers have begun to look at possible cytokine profiles in individuals suffered from this disorder. In fact, in addition to playing crucial physiological roles in the majority of normal neurodevelopmental processes, cytokines exert an important role in neuroinflammation under pathological conditions, and interactions between the immune system and central nervous system have long been under investigation. Cytokine levels imbalance has been reported associated with some behavioral characteristics and the onset of some syndromic forms of ID. In this review, we will focus on immunological biomarkers, especially the cytokine profiles that have been identified in people with ID. Thus, data reported and discussed in the present paper may provide additional information to start further studies and to plan strategies for early identification and managing of ID.
Collapse
Affiliation(s)
- Yousra Benmakhlouf
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Naima G Nourouti
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amina Barakat
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mohcine B Mechita
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
66
|
Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death Dis 2020; 11:377. [PMID: 32415059 PMCID: PMC7229224 DOI: 10.1038/s41419-020-2565-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/15/2023]
Abstract
Multiple sclerosis (MS) is a chronic disease that is characterized by demyelination and axonal damage in the central nervous system. Cognitive deficits are recognized as one of the features of MS, and these deficits affect the patients’ quality of life. Increasing evidence from experimental autoimmune encephalomyelitis (EAE), the animal model of MS, has suggested that EAE mice exhibit hippocampal impairment and cognitive deficits. However, the underlying mechanisms are still unclear. The NLRP3 inflammasome is a key contributor to neuroinflammation and is involved in the development of MS and EAE. Activation of the NLRP3 inflammasome in microglia is fundamental for subsequent inflammatory events. Activated microglia can convert astrocytes to the neurotoxic A1 phenotype in a variety of neurological diseases. However, it remains unknown whether the NLRP3 inflammasome contributes to cognitive deficits and astrocyte phenotype alteration in EAE. In this study, we demonstrated that severe memory deficits occurred in the late phase of EAE, and cognitive deficits were ameliorated by treatment with MCC950, an inhibitor of the NLRP3 inflammasome. In addition, MCC950 alleviated hippocampal pathology and synapse loss. Astrocytes from EAE mice were converted to the neurotoxic A1 phenotype, and this conversion was prevented by MCC950 treatment. IL-18, which is the downstream of NLRP3 inflammasome, was sufficient to induce the conversion of astrocytes to the A1 phenotype through the NF-κB pathway. IL-18 induced A1 type reactive astrocytes impaired hippocampal neurons through the release of complement component 3 (C3). Altogether, our present data suggest that the NLRP3 inflammasome plays an important role in cognitive deficits in EAE, possibly via the alteration of astrocyte phenotypes. Our study provides a novel therapeutic strategy for hippocampal impairment in EAE and MS.
Collapse
|
67
|
Merino JJ, Muñetón-Gomez V, Muñetón-Gómez C, Pérez-Izquierdo MÁ, Loscertales M, Toledano Gasca A. Hippocampal CCR5/RANTES Elevations in a Rodent Model of Post-Traumatic Stress Disorder: Maraviroc (a CCR5 Antagonist) Increases Corticosterone Levels and Enhances Fear Memory Consolidation. Biomolecules 2020; 10:E212. [PMID: 32024104 PMCID: PMC7072246 DOI: 10.3390/biom10020212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Contextual fear conditioning (CFC) is a rodent model that induces a high and long-lasting level of conditioning associated with traumatic memory formation; this behavioral paradigm resembles many characteristics of posttraumatic stress disorder (PSTD). Chemokines (chemotactic cytokines) play a known role in neuronal migration and neurodegeneration but their role in cognition is not totally elucidated. AIM We ascertain whether CCR5/RANTES beta chemokines (hippocampus/prefrontal cortex) could play a role in fear memory consolidation (CFC paradigm). We also evaluated whether chronic stress restraint (21 days of restraint, 6-h/day) could regulate levels of these beta chemokines in CFC-trained rats; fear memory retention was determined taking the level of freezing (context and tone) by the animals as an index of fear memory consolidation 24 h after CFC training session; these chemokines (CCR5/RANTES) and IL-6 levels were measured in the hippocampus and prefrontal cortex of chronically stressed rats, 24 h after CFC post-training, and compared with undisturbed CFC-trained rats (Experiment 1). In Experiment 2, rats received 1 mA of footshock during the CFC training session and fear memory consolidation was evaluated at 12 and 24 h after CFC training sessions. We evaluated whether RANTES levels could be differentially regulated at 12 and 24 h after CFC training; in Experiment 3, maraviroc was administered to rats (i.m: 100 mg/Kg, a CCR5 antagonist) before CFC training. These rats were not subjected to chronic stress restraint. We evaluated whether CCR5 blockade before CFC training could increase corticosterone, RANTES, or IL-6 levels and affects fear memory consolidation in the rats 24-h post-testing compared with vehicle CFC-trained rats. RESULTS Elevations of CCR5/RANTES chemokine levels in the hippocampus could have contributed to fear memory consolidation (24 h post-training) and chronic stress restraint did not affect these chemokines in the hippocampus; there were no significant differences in CCR5/RANTES levels between stressed and control rats in the prefrontal cortex (Experiment 1). In Experiment 2, hippocampal CCR5/RANTES levels increased and enhanced fear memory consolidation was observed 12 and 24 h after CFC training sessions with 1 mA of footshock. Increased corticosterone and CCR5/RANTES levels, as well as a higher freezing percentage to the context, were found at 24 h CFC post-testing in maraviroc-treated rats as compared to vehicle-treated animals (experiment-3). Conversely, IL-6 is not affected by maraviroc treatment in CFC training. CONCLUSION Our findings suggest a role for a hippocampal CCR5/RANTES axis in contextual fear memory consolidation; in fact, RANTES levels increased at 12 and 24 h after CFC training. When CCR5 was blocked by maraviroc before CFC training, RANTES (hippocampus), corticosterone levels, and fear memory consolidation were greater than in vehicle CFC-trained rats 24 h after the CFC session.
Collapse
Affiliation(s)
- José Joaquín Merino
- Dpto. Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M). c/ Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Vilma Muñetón-Gomez
- Universidad de La Salle Center, Facultad de Ciencias Agropecuarias, Av. Carrera 7. # 179-03 (sede norte), Bogotá, Colombia; (V.M.-G.); (C.M.-G.)
| | - César Muñetón-Gómez
- Universidad de La Salle Center, Facultad de Ciencias Agropecuarias, Av. Carrera 7. # 179-03 (sede norte), Bogotá, Colombia; (V.M.-G.); (C.M.-G.)
| | | | - María Loscertales
- Harvard Medical School, MGH, Massachussets General Hospital, 185 Cambridge St, Boston, MA 02114, USA;
| | - Adolfo Toledano Gasca
- Department of Neuroanatomy, Instituto Cajal (CSIC), c/ Dr. Arce, 28.002 Madrid, Spain;
| |
Collapse
|
68
|
John A, Rusted J, Richards M, Gaysina D. Accumulation of affective symptoms and midlife cognitive function: The role of inflammation. Brain Behav Immun 2020; 84:164-172. [PMID: 31785399 DOI: 10.1016/j.bbi.2019.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/23/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of the present study was to test whether C-Reactive Protein (CRP), a proxy measure of inflammation, is elevated in people with higher childhood and adulthood affective symptoms and whether elevated CRP predicts midlife cognitive function. METHODS Data were used from the National Child Development Study (n = 6276). Measures of memory, verbal fluency, information processing speed and accuracy were available in midlife (age 50). Affective symptoms were assessed in childhood (ages 7, 11, 16) and in adulthood (ages 23, 33, 42, 50). The level of plasma CRP was measured at age 44. Pathway models, unadjusted and fully adjusted for sex, education, childhood socioeconomic position, childhood cognitive ability and affective symptoms at age 50, were fitted to test direct associations between affective symptoms and midlife cognitive function, and indirect associations via the inflammatory pathway (CRP level). RESULTS In a fully adjusted model, there were significant indirect associations between adulthood affective symptoms and immediate memory (β = -0.01, SE = 0.003, p = .03) and delayed memory (β = -0.01, SE = 0.004, p = .03) via CRP. In addition, there were significant indirect associations between affective symptoms in childhood and immediate memory (β = -0.001, SE = 0.00, p = .03) and delayed memory (β = -0.001, SE = 0.001, p = .03), via adulthood affective symptoms and associated CRP. Independent of CRP, there was a significant direct association between adulthood affective symptoms and information processing errors (β = 0.47, SE = 0.21, p = .02). There were no direct or indirect associations between affective symptoms and verbal fluency or information processing speed. CONCLUSIONS CRP at age 44 is elevated in people with higher affective symptoms from age 7 to 42, and elevated CRP is associated with poorer immediate and delayed memory at age 50.
Collapse
Affiliation(s)
- Amber John
- EDGE Lab, School of Psychology, University of Sussex, Brighton, United Kingdom.
| | - Jennifer Rusted
- School of Psychology, University of Sussex, Brighton, United Kingdom
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, London, United Kingdom
| | - Darya Gaysina
- EDGE Lab, School of Psychology, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
69
|
Lainez NM, Coss D. Obesity, Neuroinflammation, and Reproductive Function. Endocrinology 2019; 160:2719-2736. [PMID: 31513269 PMCID: PMC6806266 DOI: 10.1210/en.2019-00487] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
The increasing occurrence of obesity has become a significant public health concern. Individuals with obesity have higher prevalence of heart disease, stroke, osteoarthritis, diabetes, and reproductive disorders. Reproductive problems include menstrual irregularities, pregnancy complications, and infertility due to anovulation, in women, and lower testosterone and diminished sperm count, in men. In particular, women with obesity have reduced levels of both gonadotropin hormones, and, in obese men, lower testosterone is accompanied by diminished LH. Taken together, these findings indicate central dysregulation of the hypothalamic-pituitary-gonadal axis, specifically at the level of the GnRH neuron function, which is the final brain output for the regulation of reproduction. Obesity is a state of hyperinsulinemia, hyperlipidemia, hyperleptinemia, and chronic inflammation. Herein, we review recent advances in our understanding of how these metabolic and immune changes affect hypothalamic function and regulation of GnRH neurons. In the latter part, we focus on neuroinflammation as a major consequence of obesity and discuss findings that reveal that GnRH neurons are uniquely positioned to respond to inflammatory changes.
Collapse
Affiliation(s)
- Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
- Correspondence: Djurdjica Coss, PhD, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 303 SOM Research Building, 900 University Avenue, Riverside, California 92521. E-mail:
| |
Collapse
|
70
|
Sun X, Han R, Cheng T, Zheng Y, Xiao J, So KF, Zhang L. Corticosterone-mediated microglia activation affects dendritic spine plasticity and motor learning functions in minimal hepatic encephalopathy. Brain Behav Immun 2019; 82:178-187. [PMID: 31437533 DOI: 10.1016/j.bbi.2019.08.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 01/20/2023] Open
Abstract
Minimal hepatic encephalopathy (MHE) is characterized as cognitive deficits including memory and learning dysfunctions after liver injuries or hepatic diseases. Our understandings of neurological mechanisms of MHE-associated cognitive syndromes, however, are far from complete. In the current study we generated a mouse MHE model by repetitive administrations of thioacetamide (TAA), which induced hyperammonemia plus elevated proinflammatory cytokines in both the general circulation and motor cortex. MHE mice presented prominent motor learning deficits, which were associated with excess dendritic spine pruning in the motor cortex under 2-photon in vivo microscopy. The pharmaceutical blockade of glucocorticoid receptor or suppression of its biosynthesis further rescued motor learning deficits and synaptic protein loss. Moreover, MHE mice presented microglial activation, which can be alleviated after glucocorticoid pathway inhibition. In sum, our data demonstrates corticosterone-induced microglial activation, synaptic over-pruning and motor learning impairments in MHE, providing new insights for MHE pathogenesis and potential targets of clinical interventions.
Collapse
Affiliation(s)
- Xiaoming Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Rui Han
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Tong Cheng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Yuhan Zheng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Jia Xiao
- Laboratory of Neuroendocrinology, College of Life Sciences, Fujian Normal University, Fuzhou, PR China; Institute of Clinical Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, PR China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macau Greater Bay Area, Guangzhou, PR China.
| | - Li Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macau Greater Bay Area, Guangzhou, PR China.
| |
Collapse
|
71
|
Abstract
Cognitive impairment is increasingly recognized to be a core feature of multiple sclerosis (MS), with important implications for the everyday life of individuals with MS and for disease management. Unfortunately, the exact mechanisms that underlie this cognitive impairment are poorly understood and there are no effective therapeutic options for this aspect of the disease. During MS, focal brain inflammatory lesions, together with pathological changes of both CNS grey matter and normal-appearing white matter, can interfere with cognitive functions. Moreover, inflammation may alter the crosstalk between the immune and the nervous systems, modulating the induction of synaptic plasticity and neurotransmission. In this Review, we examine the CNS structures and cognitive domains that are affected by the disease, with a specific focus on hippocampal involvement in MS and experimental autoimmune encephalomyelitis, an experimental model of MS. We also discuss the hypothesis that, during MS, immune-mediated alterations of synapses' ability to express long-term plastic changes may contribute to the pathogenesis of cognitive impairment by interfering with the dynamics of neuronal networks.
Collapse
|
72
|
Wang W, Zhang LS, Zinsmaier AK, Patterson G, Leptich EJ, Shoemaker SL, Yatskievych TA, Gibboni R, Pace E, Luo H, Zhang J, Yang S, Bao S. Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biol 2019; 17:e3000307. [PMID: 31211773 PMCID: PMC6581239 DOI: 10.1371/journal.pbio.3000307] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Hearing loss is a major risk factor for tinnitus, hyperacusis, and central auditory processing disorder. Although recent studies indicate that hearing loss causes neuroinflammation in the auditory pathway, the mechanisms underlying hearing loss–related pathologies are still poorly understood. We examined neuroinflammation in the auditory cortex following noise-induced hearing loss (NIHL) and its role in tinnitus in rodent models. Our results indicate that NIHL is associated with elevated expression of proinflammatory cytokines and microglial activation—two defining features of neuroinflammatory responses—in the primary auditory cortex (AI). Genetic knockout of tumor necrosis factor alpha (TNF-α) or pharmacologically blocking TNF-α expression prevented neuroinflammation and ameliorated the behavioral phenotype associated with tinnitus in mice with NIHL. Conversely, infusion of TNF-α into AI resulted in behavioral signs of tinnitus in both wild-type and TNF-α knockout mice with normal hearing. Pharmacological depletion of microglia also prevented tinnitus in mice with NIHL. At the synaptic level, the frequency of miniature excitatory synaptic currents (mEPSCs) increased and that of miniature inhibitory synaptic currents (mIPSCs) decreased in AI pyramidal neurons in animals with NIHL. This excitatory-to-inhibitory synaptic imbalance was completely prevented by pharmacological blockade of TNF-α expression. These results implicate neuroinflammation as a therapeutic target for treating tinnitus and other hearing loss–related disorders. Prolonged exposure to loud noises causes neuronal hyperexcitability and increases the risk of tinnitus. This study reveals that this type of tinnitus is mediated by noise-induced neuroinflammation; blockade of neuroinflammatory responses prevents noise-induced neuronal excitation/inhibition imbalance and tinnitus.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Li. S. Zhang
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Alexander K. Zinsmaier
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Genevieve Patterson
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Emily Jean Leptich
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Savannah L. Shoemaker
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Tatiana A. Yatskievych
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Robert Gibboni
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Edward Pace
- Department of Otolaryngology, Wayne State University, Detroit, Michigan, United States of America
| | - Hao Luo
- Department of Otolaryngology, Wayne State University, Detroit, Michigan, United States of America
| | - Jinsheng Zhang
- Department of Otolaryngology, Wayne State University, Detroit, Michigan, United States of America
- Department of Communication Sciences and Disorders, Wayne State University, Detroit, Michigan, United States of America
| | - Sungchil Yang
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
73
|
The differential impact of acute microglia activation on the excitability of cholinergic neurons in the mouse medial septum. Brain Struct Funct 2019; 224:2297-2309. [DOI: 10.1007/s00429-019-01905-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
|
74
|
Petsas N, De Giglio L, González-Quintanilla V, Giuliani M, De Angelis F, Tona F, Carmellini M, Mainero C, Pozzilli C, Pantano P. Functional Connectivity Changes After Initial Treatment With Fingolimod in Multiple Sclerosis. Front Neurol 2019; 10:153. [PMID: 30967828 PMCID: PMC6438876 DOI: 10.3389/fneur.2019.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/05/2019] [Indexed: 11/27/2022] Open
Abstract
On the basis of recent functional MRI studies, Multiple Sclerosis (MS) has been interpreted as a multisystem disconnection syndrome. Compared to normal subjects, MS patients show alterations in functional connectivity (FC). However, the mechanisms underlying these alterations are still debated. The aim of the study is to investigate resting state (RS) FC changes after initial treatment with fingolimod, a proven anti-inflammatory and immunomodulating agent for MS. We studied 32 right-handed relapsing-remitting MS patients (median Expanded Disability Status Scale: 2.0, mean disease duration: 8.8 years) who underwent both functional and conventional MRI with a 3 Tesla magnet. All assessments were performed 3 weeks before starting fingolimod, then, at therapy-initiation stage and at month 6. Each imaging session included scans at baseline (run1) and after (run2) a 25-min, within-session, motor-practice task, consisting of a paced right-thumb flexion. FC was assessed using a seed on the left primary motor cortex to obtain parametric maps at run1 and task-induced FC change (run2-run1). Comparison between 3-week before- and fingolimod start sessions accounted for a test-retest effect. The main outcome was the changes in both baseline and task-induced changes in FC, between initiation and 6 months. MRI contrast enhancement was detected in 14 patients at initiation and only in 3 at month 6. There was a significant improvement (p < 0.05) in cognitive function, as measured by the Paced Auditory Serial Addition Task, at month 6 compared to initiation. After accounting for test-retest effect, baseline FC significantly decreased at month 6, with respect to initiation (p < 0.05, family-wise error corrected) in bilateral occipito-parietal areas and cerebellum. A task-induced change in FC at month 6 showed a significant increment in all examined sessions, involving not only areas of the sensorimotor network, but also posterior cortical areas (cuneus and precuneus) and areas of the prefrontal and temporal cortices (p < 0.05, family-wise error corrected). Cognitive improvement at month 6 was significantly (p < 0.05) related to baseline FC reduction in posterior cortical areas. This study shows significant changes in functional connectivity, both at baseline and after the execution of a simple motor task following 6 months of fingolimod therapy.
Collapse
Affiliation(s)
| | - Laura De Giglio
- Multiple Sclerosis Centre, Azienda Ospedaliera Sant'Andrea, Rome, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Manuela Giuliani
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Floriana De Angelis
- Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Francesca Tona
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Carlo Pozzilli
- Multiple Sclerosis Centre, Azienda Ospedaliera Sant'Andrea, Rome, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Radiology, IRCCS NEUROMED, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
75
|
Souchet B, Audrain M, Billard JM, Dairou J, Fol R, Orefice NS, Tada S, Gu Y, Dufayet-Chaffaud G, Limanton E, Carreaux F, Bazureau JP, Alves S, Meijer L, Janel N, Braudeau J, Cartier N. Inhibition of DYRK1A proteolysis modifies its kinase specificity and rescues Alzheimer phenotype in APP/PS1 mice. Acta Neuropathol Commun 2019; 7:46. [PMID: 30885273 PMCID: PMC6421685 DOI: 10.1186/s40478-019-0678-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/14/2019] [Indexed: 01/19/2023] Open
Abstract
Recent evidences suggest the involvement of DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1 A) in Alzheimer's disease (AD). Here we showed that DYRK1A undergoes a proteolytic processing in AD patients hippocampus without consequences on its kinase activity. Resulting truncated forms accumulate in astrocytes and exhibit increased affinity towards STAT3ɑ, a regulator of inflammatory process. These findings were confirmed in APP/PS1 mice, an amyloid model of AD, suggesting that this DYRK1A cleavage is a consequence of the amyloid pathology. We identified in vitro the Leucettine L41 as a compound able to prevent DYRK1A proteolysis in both human and mouse protein extracts. We then showed that intraperitoneal injections of L41 in aged APP/PS1 mice inhibit STAT3ɑ phosphorylation and reduce pro-inflammatory cytokines levels (IL1- β, TNF-ɑ and IL-12) associated to an increased microglial recruitment around amyloid plaques and decreased amyloid-β plaque burden. Importantly, L41 treatment improved synaptic plasticity and rescued memory functions in APP/PS1 mice. Collectively, our results suggest that DYRK1A may contribute to AD pathology through its proteolytic process, reducing its kinase specificity. Further evaluation of inhibitors of DYRK1A truncation promises a new therapeutic approach for AD.
Collapse
Affiliation(s)
- Benoît Souchet
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France.
- Université Paris Saclay, Saclay, France.
| | | | - Jean Marie Billard
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julien Dairou
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, 75270, Paris, France
| | - Romain Fol
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France
| | | | - Satoru Tada
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France
| | - Yuchen Gu
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Emmanuelle Limanton
- Laboratoire Sciences Chimique de Rennes, UMR CNRS 6226, Groupe ICMV, Université de Rennes 1, 35042, Rennes, France
| | - François Carreaux
- Laboratoire Sciences Chimique de Rennes, UMR CNRS 6226, Groupe ICMV, Université de Rennes 1, 35042, Rennes, France
| | - Jean-Pierre Bazureau
- Laboratoire Sciences Chimique de Rennes, UMR CNRS 6226, Groupe ICMV, Université de Rennes 1, 35042, Rennes, France
| | - Sandro Alves
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France
| | - Laurent Meijer
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Nathalie Janel
- Sorbonne Paris Cité, Adaptive Functional Biology, Université Paris-Diderot, UMR CNRS, 8251, Paris, France
| | - Jérôme Braudeau
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France.
- CEA, DRF Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France.
| | - Nathalie Cartier
- INSERM UMR1169, 92265, Fontenay-aux-Roses, France.
- Université Paris Saclay, Saclay, France.
- Institute for Brain and Spine (ICM) Hôpital Pitié -Salpêtrière, Université Paris Sorbonne, 47 boulevard de l'Hôpital 75013, Paris, France.
| |
Collapse
|
76
|
Tangestani Fard M, Stough C. A Review and Hypothesized Model of the Mechanisms That Underpin the Relationship Between Inflammation and Cognition in the Elderly. Front Aging Neurosci 2019; 11:56. [PMID: 30930767 PMCID: PMC6425084 DOI: 10.3389/fnagi.2019.00056] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Age is associated with increased risk for several disorders including dementias, cardiovascular disease, atherosclerosis, obesity, and diabetes. Age is also associated with cognitive decline particularly in cognitive domains associated with memory and processing speed. With increasing life expectancies in many countries, the number of people experiencing age-associated cognitive impairment is increasing and therefore from both economic and social terms the amelioration or slowing of cognitive aging is an important target for future research. However, the biological causes of age associated cognitive decline are not yet, well understood. In the current review, we outline the role of inflammation in cognitive aging and describe the role of several inflammatory processes, including inflamm-aging, vascular inflammation, and neuroinflammation which have both direct effect on brain function and indirect effects on brain function via changes in cardiovascular function.
Collapse
Affiliation(s)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
77
|
Mizuno T, Matsumoto H, Mita K, Kogauchi S, Kiyono Y, Kosaka H, Omata N. Psychosis is an extension of mood swings from the perspective of neuronal plasticity impairments. Med Hypotheses 2019; 124:37-39. [PMID: 30798913 DOI: 10.1016/j.mehy.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/04/2019] [Accepted: 02/01/2019] [Indexed: 12/27/2022]
Abstract
We previously hypothesized that depressive and manic states may be consecutive presentations of the same underlying neuronal plasticity, and that moderate impairments in neuronal plasticity cause depressive states while further impairment to neuronal plasticity causes manic states. Psychopathological or biological relationships between bipolar disorder and schizophrenia have also been revealed. Therefore, in addition to depressive and manic states, psychosis may also be considered a manifestation resulting from additional impairments to neuronal plasticity. In the present manuscript, we hypothesize that moderate and more severe impairments to neuronal plasticity cause depressive and manic states, respectively, and that more serious impairments to neuronal plasticity cause psychosis. Many studies have suggested that impairments in neuronal plasticity contribute to schizophrenia and other mental disorders with psychotic features, and that the impairment of neuronal plasticity in schizophrenia is more severe than that in bipolar disorder. Therefore, we hypothesize more specifically that impairments in neuronal plasticity may be more severe in the order of the cases featuring psychosis, mania, and depression. This progression notably overlaps with the arrangement of schizophrenia, bipolar disorder, and depressive disorder in the DSM-5. Psychotic symptoms are thought to appear further towards the base of the psychopathological hierarchy than are manic or depressive symptoms. If impairments to neuronal plasticity contribute to this psychopathological hierarchy, as we contest that they do, our hypothesis may serve as a bridge between clinical psychopathology, diagnosis, and biological psychiatry.
Collapse
Affiliation(s)
- T Mizuno
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - H Matsumoto
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; Psychiatric Medical Center, Fukui Prefectural Hospital, 2-8-1 Yotsui, Fukui-City, Fukui 910-8526, Japan
| | - K Mita
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - S Kogauchi
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Y Kiyono
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - H Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - N Omata
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; Department of Nursing, Faculty of Health Science, Fukui Health Science University, 55 Egami-cho 13-1, Fukui-City, Fukui 910-3190, Japan.
| |
Collapse
|
78
|
Xiang X, Yu Y, Tang X, Chen M, Zheng Y, Zhu S. Transcriptome Profile in Hippocampus During Acute Inflammatory Response to Surgery: Toward Early Stage of PND. Front Immunol 2019; 10:149. [PMID: 30804943 PMCID: PMC6370675 DOI: 10.3389/fimmu.2019.00149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/17/2019] [Indexed: 01/08/2023] Open
Abstract
Perioperative neurocognitive disorders (PND) are common complications observed in surgical patients, but there are no effective treatments and the detailed mechanisms remain largely unknown. In this study, transcriptome analysis was performed to investigate the hippocampal changes after surgery and underlying molecular mechanisms of PND. Tibial fracture surgery was performed in 3–4 months old C57BL/6J mice to mimic human orthopedic surgery. We demonstrated that memory consolidation of the hippocampal-dependent trace-fear conditioning task was significantly impaired. By using ELISA, a significant elevated IL-6 was observed both in circulating system and central nervous system and peaked at 6 h post-surgery, but transiently returned to baseline thereafter. Hippocampus were collected at 6 h post-surgery then processed for RNA-Seq. A total of 268 genes were screened differentially expressed between the Surgery and Control group, including 170 up-regulated genes and 98 down-regulated genes. By functional enrichment analysis of differently expressed genes, several KEGG pathways involved in inflammatory mediator regulation of TRP channels, neuroactive ligand-receptor interaction and cholinergic synapse were overrepresented. Quantitative real-time PCR confirmed 15 dysregulated genes of interest. These results provide a comprehensive insight into global gene expression changes during the acute presence of hippocampal inflammation and a better understanding on early stage of PND.
Collapse
Affiliation(s)
- Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Yu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodong Tang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Manli Chen
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
79
|
Jodoin M, Rouleau D, Larson-Dupuis C, Gosselin N, De Beaumont L. The clinical utility of repetitive transcranial magnetic stimulation in reducing the risks of transitioning from acute to chronic pain in traumatically injured patients. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:322-331. [PMID: 28694022 DOI: 10.1016/j.pnpbp.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Pain is a multifaceted condition and a major ongoing challenge for healthcare professionals having to treat patients in whom pain put them at risk of developing other conditions. Significant efforts have been invested in both clinical and research settings in an attempt to demystify the mechanisms at stake and develop optimal treatments as well as to reduce individual and societal costs. It is now universally accepted that neuroinflammation and central sensitization are two key underlying factors causing pain chronification as they result from maladaptive central nervous system plasticity. Recent research has shown that the mechanisms of action of repetitive transcranial magnetic stimulation (rTMS) make it a particularly promising avenue in treating various pain conditions. This review will first discuss the contribution of neuroinflammation and central sensitization in the transition from acute to chronic pain in traumatically injured patients. A detailed discussion on how rTMS may allow the restoration from maladaptive plasticity in addition to breaking down the chain of events leading to pain chronification will follow. Lastly, this review will provide a theoretical framework of what might constitute optimal rTMS modalities in dealing with pain symptoms in traumatically injured patients based on an integrated perspective of the physiopathological mechanisms underlying pain.
Collapse
Affiliation(s)
- Marianne Jodoin
- Montreal Sacred Heart Hospital Research Centre, Montreal, Quebec, Canada; Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Dominique Rouleau
- Montreal Sacred Heart Hospital Research Centre, Montreal, Quebec, Canada; Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Camille Larson-Dupuis
- Montreal Sacred Heart Hospital Research Centre, Montreal, Quebec, Canada; Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Nadia Gosselin
- Montreal Sacred Heart Hospital Research Centre, Montreal, Quebec, Canada; Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Montreal Sacred Heart Hospital Research Centre, Montreal, Quebec, Canada; Department of Surgery, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
80
|
Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M, Muhammad T, Saeed K, Badshah H, Kim MO. Neuroprotective Effect of Quercetin Against the Detrimental Effects of LPS in the Adult Mouse Brain. Front Pharmacol 2018; 9:1383. [PMID: 30618732 PMCID: PMC6297180 DOI: 10.3389/fphar.2018.01383] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic neuroinflammation is responsible for multiple neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Lipopolysaccharide (LPS) is an essential component of the gram-negative bacterial cell wall and acts as a potent stimulator of neuroinflammation that mediates neurodegeneration. Quercetin is a natural flavonoid that is abundantly found in fruits and vegetables and has been shown to possess multiple forms of desirable biological activity including anti-inflammatory and antioxidant properties. This study aimed to evaluate the neuroprotective effect of quercetin against the detrimental effects of LPS, such as neuroinflammation-mediated neurodegeneration and synaptic/memory dysfunction, in adult mice. LPS [0.25 mg/kg/day, intraperitoneally (I.P.) injections for 1 week]-induced glial activation causes the secretion of cytokines/chemokines and other inflammatory mediators, which further activate the mitochondrial apoptotic pathway and neuronal degeneration. Compared to LPS alone, quercetin (30 mg/kg/day, I.P.) for 2 weeks (1 week prior to the LPS and 1 week cotreated with LPS) significantly reduced activated gliosis and various inflammatory markers and prevented neuroinflammation in the cortex and hippocampus of adult mice. Furthermore, quercetin rescued the mitochondrial apoptotic pathway and neuronal degeneration by regulating Bax/Bcl2, and decreasing activated cytochrome c, caspase-3 activity and cleaving PARP-1 in the cortical and hippocampal regions of the mouse brain. The quercetin treatment significantly reversed the LPS-induced synaptic loss in the cortex and hippocampus of the adult mouse brain and improved the memory performance of the LPS-treated mice. In summary, our results demonstrate that natural flavonoids such as quercetin can be beneficial against LPS-induced neurotoxicity in adult mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
81
|
Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 2018; 129:55-93. [DOI: 10.1080/00207454.2018.1486837] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Asmat Ullah Khan
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, The University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation and Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Hunan University, Changsha, China
| | - Rida Zainab
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| |
Collapse
|
82
|
Altered hippocampal gene expression and structure in transgenic mice overexpressing neuregulin 1 (Nrg1) type I. Transl Psychiatry 2018; 8:229. [PMID: 30348978 PMCID: PMC6197224 DOI: 10.1038/s41398-018-0288-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 11/26/2022] Open
Abstract
Transgenic mice overexpressing the type I isoform of neuregulin 1 (Nrg1; NRG1) have alterations in hippocampal gamma oscillations and an age-emergent deficit in hippocampus-dependent spatial working memory. Here, we examined the molecular and morphological correlates of these findings. Microarrays showed over 100 hippocampal transcripts differentially expressed in Nrg1tg-type I mice, with enrichment of genes related to neuromodulation and, in older mice, of genes involved in inflammation and immunity. Nrg1tg-type I mice had an enlarged hippocampus with a widened dentate gyrus. The results show that Nrg1 type I impacts on hippocampal gene expression and structure in a multifaceted and partly age-related way, complementing the evidence implicating Nrg1 signaling in aspects of hippocampal function. The findings are also relevant to the possible role of NRG1 signaling in the pathophysiology of schizophrenia or other disorders affecting this brain region.
Collapse
|
83
|
Wang H, Gaur U, Xiao J, Xu B, Xu J, Zheng W. Targeting phosphodiesterase 4 as a potential therapeutic strategy for enhancing neuroplasticity following ischemic stroke. Int J Biol Sci 2018; 14:1745-1754. [PMID: 30416389 PMCID: PMC6216030 DOI: 10.7150/ijbs.26230] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
Sensorimotor recovery following ischemic stroke is highly related with structural modification and functional reorganization of residual brain tissues. Manipulations, such as treatment with small molecules, have been shown to enhance the synaptic plasticity and contribute to the recovery. Activation of the cAMP/CREB pathway is one of the pivotal approaches stimulating neuroplasticity. Phosphodiesterase 4 (PDE4) is a major enzyme controlling the hydrolysis of cAMP in the brain. Accumulating evidences have shown that inhibition of PDE4 is beneficial for the functional recovery after cerebral ischemia; i. subtype D of PDE4 (PDE4D) is viewed as a risk factor for ischemic stroke; ii. inhibition of PDE4 enhances neurological behaviors, such as learning and memory, after stroke in rodents; iii.PDE4 inhibition increases dendritic density, synaptic plasticity and neurogenesis; iv. activation of cAMP/CREB signaling by PDE4 inhibition causes an endogenous increase of BDNF, which is a potent modulator of neuroplasticity; v. PDE4 inhibition is believed to restrict neuroinflammation during ischemic stroke. Cumulatively, these findings provide a link between PDE4 inhibition and neuroplasticity after cerebral ischemia. Here, we summarized the possible roles of PDE4 inhibition in the recovery of cerebral stroke with an emphasis on neuroplasticity. We also made some recommendations for future research.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Uma Gaur
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiao Xiao
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingtian Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
84
|
Yang L, Jin P, Wang X, Zhou Q, Lin X, Xi S. Fluoride activates microglia, secretes inflammatory factors and influences synaptic neuron plasticity in the hippocampus of rats. Neurotoxicology 2018; 69:108-120. [PMID: 30273629 DOI: 10.1016/j.neuro.2018.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/16/2018] [Accepted: 09/24/2018] [Indexed: 11/18/2022]
Abstract
Epidemiological studies have reported that highly fluoridated drinking water may significantly decrease the Intelligence Quotient (IQ) of exposed children. It is thought that synaptic plasticity is the basis of learning and memory skills in developing children. However, the effect on synaptic plasticity by activated microglia induced via fluoride treatment is less clear. Our previous research showed that fluoride ions activated microglia which then released pro-inflammatory cytokines. In this study, hippocampal-dependent memory status was evaluated in rat models sub-chronically exposed to fluoride in their drinking water. Microglial activation in the hippocampus was examined using immunofluorescence staining and the expression of synaptophysin (SYP) and postsynaptic density protein 95 (PSD-95), Long-term potentiation (LTP) and the expression of Amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA) receptor subunit GluR2 as well as N-methyl-d-aspartate (NMDA) receptor subunit NMDAR2β of exposed rats. We found that fluoride exposure activated microglia and increased the expression of DAP12 and TREM2, as well as promoted pro-inflammatory cytokines secretion via ERK/MAPK and P38/MAPK signal pathways. Furthermore fluoride depressed LTP and decreased PSD-95 protein levels as well as expression of ionotropic glutamate receptors GluR2 and NMDAR2β. We concluded that the role of fluoride on synaptic plasticity may be associated with neuroinflammation induced by microglia.
Collapse
Affiliation(s)
- Li Yang
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China.
| | - Peiyu Jin
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China.
| | - Xiaoyan Wang
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China.
| | - Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China.
| | - Xiaoli Lin
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China.
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China.
| |
Collapse
|
85
|
Musella A, Gentile A, Rizzo FR, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F, Centonze D, Mandolesi G. Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Front Aging Neurosci 2018; 10:238. [PMID: 30135651 PMCID: PMC6092506 DOI: 10.3389/fnagi.2018.00238] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Aging is one of the main risk factors for the development of many neurodegenerative diseases. Emerging evidence has acknowledged neuroinflammation as potential trigger of the functional changes occurring during normal and pathological aging. Two main determinants have been recognized to cogently contribute to neuroinflammation in the aging brain, i.e., the systemic chronic low-grade inflammation and the decline in the regulation of adaptive and innate immune systems (immunosenescence, ISC). The persistence of the inflammatory status in the brain in turn may cause synaptopathy and synaptic plasticity impairments that underlie both motor and cognitive dysfunctions. Interestingly, such inflammation-dependent synaptic dysfunctions have been recently involved in the pathophysiology of multiple sclerosis (MS). MS is an autoimmune neurodegenerative disease, typically affecting young adults that cause an early and progressive deterioration of both cognitive and motor functions. Of note, recent controlled studies have clearly shown that age at onset modifies prognosis and exerts a significant effect on presenting phenotype, suggesting that aging is a significant factor associated to the clinical course of MS. Moreover, some lines of evidence point to the different impact of age on motor disability and cognitive deficits, being the former most affected than the latter. The precise contribution of aging-related factors to MS neurological disability and the underlying molecular and cellular mechanisms are still unclear. In the present review article, we first emphasize the importance of the neuroinflammatory dependent mechanisms, such as synaptopathy and synaptic plasticity impairments, suggesting their potential exacerbation or acceleration with advancing age in the MS disease. Lastly, we provide an overview of clinical and experimental studies highlighting the different impact of age on motor disability and cognitive decline in MS, raising challenging questions on the putative age-related mechanisms involved.
Collapse
Affiliation(s)
- Alessandra Musella
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| | - Antonietta Gentile
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Francesca Romana Rizzo
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca De Vito
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Vanni
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Livia Guadalupi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Fabio Buttari
- Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Diego Centonze
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Georgia Mandolesi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| |
Collapse
|
86
|
Hocker AD, Huxtable AG. IL-1 receptor activation undermines respiratory motor plasticity after systemic inflammation. J Appl Physiol (1985) 2018; 125:504-512. [PMID: 29565772 PMCID: PMC11774498 DOI: 10.1152/japplphysiol.01051.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammation undermines respiratory motor plasticity, yet we are just beginning to understand the inflammatory signaling involved. Because interleukin-1 (IL-1) signaling promotes or inhibits plasticity in other central nervous system regions, we tested the following hypotheses: 1) IL-1 receptor (IL-1R) activation after systemic inflammation is necessary to undermine phrenic long-term facilitation (pLTF), a model of respiratory motor plasticity induced by acute intermittent hypoxia (AIH), and 2) spinal IL-1β is sufficient to undermine pLTF. pLTF is significantly reduced 24 h after lipopolysaccharide (LPS; 100 μg/kg ip, 12 ± 18%, n = 5) compared with control (57 ± 25%, n = 6) and restored by peripheral IL-1R antagonism (63 ± 13%, n = 5, AF-12198, 0.5 mg/kg ip, 24 h). Furthermore, acute, spinal IL-1R antagonism (1 mM AF-12198, 15 μl it) restored pLTF (53 ± 15%, n = 4) compared with LPS-treated rats (11 ± 10%; n = 5), demonstrating IL-1R activation is necessary to undermine pLTF after systemic inflammation. However, in healthy animals, pLTF persisted after spinal, exogenous recombinant rat IL-1β (rIL-1β) (1 ng ± AIH; 66 ± 26%, n = 3, 10 ng ± AIH; 102 ± 49%, n = 4, 100 ng + AIH; 93 ± 51%, n = 3, 300 ng ± AIH; 37 ± 40%, n = 3; P < 0.05 from baseline). In the absence of AIH, spinal rIL-1β induced progressive, dose-dependent phrenic amplitude facilitation (1 ng; -3 ± 5%, n = 3, 10 ng; 8 ± 22%, n = 3, 100 ng; 31 ± 12%, P < 0.05, n = 4, 300 ng; 51 ± 17%, P < 0.01 from baseline, n = 4). In sum, IL-1R activation, both systemically and spinally, undermines pLTF after LPS-induced systemic inflammation, but IL-1R activation is not sufficient to abolish plasticity. Understanding the inflammatory signaling inhibiting respiratory plasticity is crucial to developing treatment strategies utilizing respiratory plasticity to promote breathing during ventilatory control disorders. NEW & NOTEWORTHY This study gives novel insights concerning mechanisms by which systemic inflammation undermines respiratory motor plasticity. We demonstrate that interleukin-1 signaling, both peripherally and centrally, undermines respiratory motor plasticity. However, acute, exogenous interleukin-1 signaling is not sufficient to undermine respiratory motor plasticity.
Collapse
Affiliation(s)
- Austin D Hocker
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | | |
Collapse
|
87
|
Morris G, Reiche EMV, Murru A, Carvalho AF, Maes M, Berk M, Puri BK. Multiple Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways Explain the Frequent Presence of Depression in Multiple Sclerosis. Mol Neurobiol 2018; 55:6282-6306. [PMID: 29294244 PMCID: PMC6061180 DOI: 10.1007/s12035-017-0843-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Patients with a diagnosis of multiple sclerosis (MS) or major depressive disorder (MDD) share a wide array of biological abnormalities which are increasingly considered to play a contributory role in the pathogenesis and pathophysiology of both illnesses. Shared abnormalities include peripheral inflammation, neuroinflammation, chronic oxidative and nitrosative stress, mitochondrial dysfunction, gut dysbiosis, increased intestinal barrier permeability with bacterial translocation into the systemic circulation, neuroendocrine abnormalities and microglial pathology. Patients with MS and MDD also display a wide range of neuroimaging abnormalities and patients with MS who display symptoms of depression present with different neuroimaging profiles compared with MS patients who are depression-free. The precise details of such pathology are markedly different however. The recruitment of activated encephalitogenic Th17 T cells and subsequent bidirectional interaction leading to classically activated microglia is now considered to lie at the core of MS-specific pathology. The presence of activated microglia is common to both illnesses although the pattern of such action throughout the brain appears to be different. Upregulation of miRNAs also appears to be involved in microglial neurotoxicity and indeed T cell pathology in MS but does not appear to play a major role in MDD. It is suggested that the antidepressant lofepramine, and in particular its active metabolite desipramine, may be beneficial not only for depressive symptomatology but also for the neurological symptoms of MS. One clinical trial has been carried out thus far with, in particular, promising MRI findings.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Andrea Murru
- Bipolar Disorders Program, Hospital Clínic Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil
- Revitalis, Waalre, The Netherlands
- Orygen - The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
88
|
Trusel M, Baldrighi M, Marotta R, Gatto F, Pesce M, Frasconi M, Catelani T, Papaleo F, Pompa PP, Tonini R, Giordani S. Internalization of Carbon Nano-onions by Hippocampal Cells Preserves Neuronal Circuit Function and Recognition Memory. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16952-16963. [PMID: 29669213 DOI: 10.1021/acsami.7b17827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One area where nanomedicine may offer superior performances and efficacy compared to current strategies is in the diagnosis and treatment of central nervous system (CNS) diseases. However, the application of nanomaterials in such complex arenas is still in its infancy and an optimal vector for the therapy of CNS diseases has not been identified. Graphitic carbon nano-onions (CNOs) represent a class of carbon nanomaterials that shows promising potential for biomedical purposes. To probe the possible applications of graphitic CNOs as a platform for therapeutic and diagnostic interventions on CNS diseases, fluorescently labeled CNOs were stereotaxically injected in vivo in mice hippocampus. Their diffusion within brain tissues and their cellular localization were analyzed ex vivo by confocal microscopy, electron microscopy, and correlative light-electron microscopy techniques. The subsequent fluorescent staining of hippocampal cells populations indicates they efficiently internalize the nanomaterial. Furthermore, the inflammatory potential of the CNOs injection was found comparable to sterile vehicle infusion, and it did not result in manifest neurophysiological and behavioral alterations of hippocampal-mediated functions. These results clearly demonstrate that CNOs can interface effectively with several cell types, which encourages further their development as possible brain disease-targeted diagnostics or therapeutics nanocarriers.
Collapse
Affiliation(s)
- Massimo Trusel
- Neuroscience and Brain Technology , Istituto Italiano di Tecnologia , via Morego 30 , Genova , Italy
| | - Michele Baldrighi
- Nano Carbon Materials , Istituto Italiano di Tecnologia , via Morego 30 , Genova , Italy
| | - Roberto Marotta
- Electron Microscopy Laboratory , Istituto Italiano di Tecnologia , via Morego 30 , Genova , Italy
| | - Francesca Gatto
- Nanobiointeractions & Nanodiagnostics , Istituto Italiano di Tecnologia , via Morego 30 , Genova , Italy
- Department of Engineering for Innovation , University of Salento , Via per Monteroni , Lecce , Italy
| | - Mattia Pesce
- Neuroscience and Brain Technology , Istituto Italiano di Tecnologia , via Morego 30 , Genova , Italy
| | - Marco Frasconi
- Nano Carbon Materials , Istituto Italiano di Tecnologia , via Morego 30 , Genova , Italy
| | - Tiziano Catelani
- Electron Microscopy Laboratory , Istituto Italiano di Tecnologia , via Morego 30 , Genova , Italy
| | - Francesco Papaleo
- Neuroscience and Brain Technology , Istituto Italiano di Tecnologia , via Morego 30 , Genova , Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics , Istituto Italiano di Tecnologia , via Morego 30 , Genova , Italy
| | - Raffaella Tonini
- Neuroscience and Brain Technology , Istituto Italiano di Tecnologia , via Morego 30 , Genova , Italy
| | - Silvia Giordani
- Nano Carbon Materials , Istituto Italiano di Tecnologia , via Morego 30 , Genova , Italy
- Department of Chemistry , University of Turin , Via Giuria 7 , Turin , Italy
| |
Collapse
|
89
|
Deoxyelephantopin ameliorates lipopolysaccharides (LPS)-induced memory impairments in rats: Evidence for its anti-neuroinflammatory properties. Life Sci 2018; 206:45-60. [PMID: 29792878 DOI: 10.1016/j.lfs.2018.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023]
Abstract
AIM Neuroinflammation is a critical pathogenic mechanism of most neurodegenerative disorders especially, Alzheimer's disease (AD). Lipopolysaccharides (LPS) are known to induce neuroinflammation which is evident from significant upsurge of pro-inflammatory mediators in in vitro BV-2 microglial cells and in vivo animal models. In present study, we investigated anti-neuroinflammatory properties of deoxyelephantopin (DET) isolated from Elephantopus scaber in LPS-induced neuroinflammatory rat model. MATERIALS AND METHODS In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group. KEY FINDINGS DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3. SIGNIFICANCE Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD.
Collapse
|
90
|
Tumor Necrosis Factor and Interleukin-1 β Modulate Synaptic Plasticity during Neuroinflammation. Neural Plast 2018; 2018:8430123. [PMID: 29861718 PMCID: PMC5976900 DOI: 10.1155/2018/8430123] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Cytokines are constitutively released in the healthy brain by resident myeloid cells to keep proper synaptic plasticity, either in the form of Hebbian synaptic plasticity or of homeostatic plasticity. However, when cytokines dramatically increase, establishing a status of neuroinflammation, the synaptic action of such molecules remarkably interferes with brain circuits of learning and cognition and contributes to excitotoxicity and neurodegeneration. Among others, interleukin-1β (IL-1β) and tumor necrosis factor (TNF) are the best studied proinflammatory cytokines in both physiological and pathological conditions and have been invariably associated with long-term potentiation (LTP) (Hebbian synaptic plasticity) and synaptic scaling (homeostatic plasticity), respectively. Multiple sclerosis (MS) is the prototypical neuroinflammatory disease, in which inflammation triggers excitotoxic mechanisms contributing to neurodegeneration. IL-β and TNF are increased in the brain of MS patients and contribute to induce the changes in synaptic plasticity occurring in MS patients and its animal model, the experimental autoimmune encephalomyelitis (EAE). This review will introduce and discuss current evidence of the role of IL-1β and TNF in the regulation of synaptic strength at both physiological and pathological levels, in particular speculating on their involvement in the synaptic plasticity changes observed in the EAE brain.
Collapse
|
91
|
Agosto-Marlin IM, Nichols NL, Mitchell GS. Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling. J Neurophysiol 2018. [PMID: 29513151 DOI: 10.1152/jn.00378.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although systemic inflammation induced by even a low dose of lipopolysaccharide (LPS, 100 μg/kg) impairs respiratory motor plasticity, little is known concerning cellular mechanisms giving rise to this inhibition. Phrenic motor facilitation (pMF) is a form of respiratory motor plasticity elicited by pharmacological agents applied to the cervical spinal cord, or by acute intermittent hypoxia (AIH; 3, 5-min hypoxic episodes); when elicited by AIH, pMF is known as phrenic long-term facilitation (pLTF). AIH consisting of moderate hypoxic episodes (mAIH, arterial Po2 = 35-55 mmHg) elicits pLTF via the Q pathway to pMF, a mechanism that requires spinal serotonin (5HT2) receptor activation and new brain-derived neurotrophic factor (BDNF) protein synthesis. Although mild systemic inflammation attenuates mAIH-induced pLTF via spinal p38 MAP kinase activation, little is known concerning how p38 MAP kinase activity inhibits the Q pathway. Here, we confirmed that 24 h after a low LPS dose (100 μg/kg ip), mAIH-induced pLTF is greatly attenuated. Similarly, pMF elicited by intrathecal cervical injections of 5HT2A (DOI; 100 μM; 3 × 6 μl) or 5HT2B receptor agonists (BW723C86; 100 μM; 3 × 6 μl) is blocked 24 h post-LPS. When pMF was elicited by intrathecal BDNF (100 ng, 12 μl), pMF was actually enhanced 24 h post-LPS. Thus 5HT2A/2B receptor-induced pMF is impaired downstream from 5HT2 receptor activation, but upstream from BDNF/TrkB signaling. Mechanisms whereby LPS augments BDNF-induced pMF are not yet known. NEW & NOTEWORTHY These experiments give novel insights concerning mechanisms whereby systemic inflammation undermines serotonin-dependent, spinal respiratory motor plasticity, yet enhances brain-derived neurotrophic factor (BDNF)/TrkB signaling in phrenic motor neurons. These insights may guide development of new strategies to elicit functional recovery of breathing capacity in patients with respiratory impairment by reducing (or bypassing) the impact of systemic inflammation characteristic of clinical disorders that compromise breathing.
Collapse
Affiliation(s)
- Ibis M Agosto-Marlin
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin
| | - Nicole L Nichols
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
92
|
Higo N, Sato A, Yamamoto T, Oishi T, Nishimura Y, Murata Y, Onoe H, Isa T, Kojima T. Comprehensive analysis of area‐specific and time‐dependent changes in gene expression in the motor cortex of macaque monkeys during recovery from spinal cord injury. J Comp Neurol 2018; 526:1110-1130. [DOI: 10.1002/cne.24396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Noriyuki Higo
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Ibaraki Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Precursory Research for Embryonic Science and Technology (PRESTO)Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
| | - Akira Sato
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Computational Systems Biology Research Group, Advanced Science Institute, RIKENYokohama Kanagawa Japan
| | - Tatsuya Yamamoto
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Ibaraki Japan
- Department of Physical Therapy, Faculty of Medical and Health SciencesTsukuba International UniversityTsuchiura Ibaraki Japan
| | - Takao Oishi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Systems Neuroscience SectionPrimate Research Institute, Kyoto University, KanrinInuyama Aichi Japan
| | - Yukio Nishimura
- Precursory Research for Embryonic Science and Technology (PRESTO)Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Department of Developmental PhysiologyNational Institute for Physiological Sciences (NIPS), National Institutes of Natural SciencesOkazaki Aichi Japan
- The Graduate University for Advanced Studies (SOKENDAI)Hayama Kanagawa Japan
| | - Yumi Murata
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Ibaraki Japan
| | - Hirotaka Onoe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Division of Bio‐function Dynamics ImagingCenter for Life Science Technologies (CLST), RIKENKobe Hyogo Japan
| | - Tadashi Isa
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Department of Developmental PhysiologyNational Institute for Physiological Sciences (NIPS), National Institutes of Natural SciencesOkazaki Aichi Japan
- The Graduate University for Advanced Studies (SOKENDAI)Hayama Kanagawa Japan
| | - Toshio Kojima
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Computational Systems Biology Research Group, Advanced Science Institute, RIKENYokohama Kanagawa Japan
- Health Care CenterToyohashi University of TechnologyToyohashi Aichi Japan
| |
Collapse
|
93
|
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Via S. Costanzo, 06126 Perugia, Italy. Tel.: ; Fax: ; E-mail:
| |
Collapse
|
94
|
Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, Marriott A, Moore EM, Morris G, Page RS, Gray L. Post-Operative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev 2017; 84:116-133. [PMID: 29180259 DOI: 10.1016/j.neubiorev.2017.11.011] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Post-Operative Cognitive Dysfunction (POCD) is a highly prevalent condition with significant clinical, social and financial impacts for patients and their communities. The underlying pathophysiology is becoming increasingly understood, with the role of neuroinflammation and oxidative stress secondary to surgery and anaesthesia strongly implicated. This review aims to describe the putative mechanisms by which surgery-induced inflammation produces cognitive sequelae, with a focus on identifying potential novel therapies based upon their ability to modify these pathways.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia.
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Seetal Dodd
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Eileen M Moore
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | | | - Richard S Page
- Deakin University, School of Medicine, Geelong, Australia; Department of Orthopaedics, Barwon Health, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
95
|
Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 2017; 79:119-133. [DOI: 10.1016/j.neubiorev.2017.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
|
96
|
Nisticò R, Salter E, Nicolas C, Feligioni M, Mango D, Bortolotto ZA, Gressens P, Collingridge GL, Peineau S. Synaptoimmunology - roles in health and disease. Mol Brain 2017. [PMID: 28637489 PMCID: PMC5480158 DOI: 10.1186/s13041-017-0308-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence suggests that the nervous and immune systems are intricately linked. Many proteins first identified in the immune system have since been detected at synapses, playing different roles in normal and pathological situations. In addition, novel immunological functions are emerging for proteins typically expressed at synapses. Under normal conditions, release of inflammatory mediators generally represents an adaptive and regulated response of the brain to immune signals. On the other hand, when immune challenge becomes prolonged and/or uncontrolled, the consequent inflammatory response leads to maladaptive synaptic plasticity and brain disorders. In this review, we will first provide a summary of the cell signaling pathways in neurons and immune cells. We will then examine how immunological mechanisms might influence synaptic function, and in particular synaptic plasticity, in the healthy and pathological CNS. A better understanding of neuro-immune system interactions in brain circuitries relevant to neuropsychiatric and neurological disorders should provide specific biomarkers to measure the status of the neuroimmunological response and help design novel neuroimmune-targeted therapeutics.
Collapse
Affiliation(s)
- Robert Nisticò
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy. .,Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy.
| | - Eric Salter
- Department of Physiology, University of Toronto, and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Celine Nicolas
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Marco Feligioni
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy
| | - Dalila Mango
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, King's College, St Thomas' Campus, London, UK
| | - Graham L Collingridge
- Department of Physiology, University of Toronto, and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Stephane Peineau
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. .,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,INSERM-ERi 24 (GRAP), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| |
Collapse
|
97
|
Mancini A, Gaetani L, Di Gregorio M, Tozzi A, Ghiglieri V, Calabresi P, Di Filippo M. Hippocampal neuroplasticity and inflammation: relevance for multiple sclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40893-017-0019-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
98
|
Hocker AD, Stokes JA, Powell FL, Huxtable AG. The impact of inflammation on respiratory plasticity. Exp Neurol 2017; 287:243-253. [PMID: 27476100 PMCID: PMC5121034 DOI: 10.1016/j.expneurol.2016.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023]
Abstract
Breathing is a vital homeostatic behavior and must be precisely regulated throughout life. Clinical conditions commonly associated with inflammation, undermine respiratory function may involve plasticity in respiratory control circuits to compensate and maintain adequate ventilation. Alternatively, other clinical conditions may evoke maladaptive plasticity. Yet, we have only recently begun to understand the effects of inflammation on respiratory plasticity. Here, we review some of common models used to investigate the effects of inflammation and discuss the impact of inflammation on nociception, chemosensory plasticity, medullary respiratory centers, motor plasticity in motor neurons and respiratory frequency, and adaptation to high altitude. We provide new data suggesting glial cells contribute to CNS inflammatory gene expression after 24h of sustained hypoxia and inflammation induced by 8h of intermittent hypoxia inhibits long-term facilitation of respiratory frequency. We also discuss how inflammation can have opposite effects on the capacity for plasticity, whereby it is necessary for increases in the hypoxic ventilatory response with sustained hypoxia, but inhibits phrenic long term facilitation after intermittent hypoxia. This review highlights gaps in our knowledge about the effects of inflammation on respiratory control (development, age, and sex differences). In summary, data to date suggest plasticity can be either adaptive or maladaptive and understanding how inflammation alters the respiratory system is crucial for development of better therapeutic interventions to promote breathing and for utilization of plasticity as a clinical treatment.
Collapse
Affiliation(s)
- Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jennifer A Stokes
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Frank L Powell
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States.
| |
Collapse
|
99
|
Del Rey A, Verdenhalven M, Lörwald AC, Meyer C, Hernangómez M, Randolf A, Roggero E, König AM, Heverhagen JT, Guaza C, Besedovsky HO. Brain-borne IL-1 adjusts glucoregulation and provides fuel support to astrocytes and neurons in an autocrine/paracrine manner. Mol Psychiatry 2016; 21:1309-20. [PMID: 26643538 DOI: 10.1038/mp.2015.174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022]
Abstract
It is still controversial which mediators regulate energy provision to activated neural cells, as insulin does in peripheral tissues. Interleukin-1β (IL-1β) may mediate this effect as it can affect glucoregulation, it is overexpressed in the 'healthy' brain during increased neuronal activity, and it supports high-energy demanding processes such as long-term potentiation, memory and learning. Furthermore, the absence of sustained neuroendocrine and behavioral counterregulation suggests that brain glucose-sensing neurons do not perceive IL-1β-induced hypoglycemia. Here, we show that IL-1β adjusts glucoregulation by inducing its own production in the brain, and that IL-1β-induced hypoglycemia is myeloid differentiation primary response 88 protein (MyD88)-dependent and only partially counteracted by Kir6.2-mediated sensing signaling. Furthermore, we found that, opposite to insulin, IL-1β stimulates brain metabolism. This effect is absent in MyD88-deficient mice, which have neurobehavioral alterations associated to disorders in glucose homeostasis, as during several psychiatric diseases. IL-1β effects on brain metabolism are most likely maintained by IL-1β auto-induction and may reflect a compensatory increase in fuel supply to neural cells. We explore this possibility by directly blocking IL-1 receptors in neural cells. The results showed that, in an activity-dependent and paracrine/autocrine manner, endogenous IL-1 produced by neurons and astrocytes facilitates glucose uptake by these cells. This effect is exacerbated following glutamatergic stimulation and can be passively transferred between cell types. We conclude that the capacity of IL-1β to provide fuel to neural cells underlies its physiological effects on glucoregulation, synaptic plasticity, learning and memory. However, deregulation of IL-1β production could contribute to the alterations in brain glucose metabolism that are detected in several neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- A Del Rey
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - M Verdenhalven
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - A C Lörwald
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - C Meyer
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - M Hernangómez
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain
| | - A Randolf
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - E Roggero
- Instituto de Inmunologia, Facultad de Medicina, Universidad Nacional de Rosario and Universidad Abierta Interamericana, Rosario, Argentina
| | - A M König
- Centre of Imaging Research (ZebiF), University Institute of Diagnostic and Interventional Radiology, Marburg, Germany
| | - J T Heverhagen
- University Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
| | - C Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain
| | - H O Besedovsky
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| |
Collapse
|
100
|
Bouvier DS, Jones EV, Quesseveur G, Davoli MA, A Ferreira T, Quirion R, Mechawar N, Murai KK. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep 2016; 6:24544. [PMID: 27090093 PMCID: PMC4835751 DOI: 10.1038/srep24544] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/31/2016] [Indexed: 12/13/2022] Open
Abstract
Fixed human brain samples in tissue repositories hold great potential for unlocking complexities of the brain and its alteration with disease. However, current methodology for simultaneously resolving complex three-dimensional (3D) cellular anatomy and organization, as well as, intricate details of human brain cells in tissue has been limited due to weak labeling characteristics of the tissue and high background levels. To expose the potential of these samples, we developed a method to overcome these major limitations. This approach offers an unprecedented view of cytoarchitecture and subcellular detail of human brain cells, from cellular networks to individual synapses. Applying the method to AD samples, we expose complex features of microglial cells and astrocytes in the disease. Through this methodology, we show that these cells form specialized 3D structures in AD that we refer to as reactive glial nets (RGNs). RGNs are areas of concentrated neuronal injury, inflammation, and tauopathy and display unique features around β-amyloid plaque types. RGNs have conserved properties in an AD mouse model and display a developmental pattern coinciding with the progressive accumulation of neuropathology. The method provided here will help reveal novel features of the healthy and diseased human brain, and aid experimental design in translational brain research.
Collapse
Affiliation(s)
- David S Bouvier
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Emma V Jones
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Gaël Quesseveur
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Maria Antonietta Davoli
- Douglas Mental Health University Institute, Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - Tiago A Ferreira
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Rémi Quirion
- Douglas Mental Health University Institute, Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| |
Collapse
|