51
|
Biological processes and signal transduction pathways regulated by the protein methyltransferase SETD7 and their significance in cancer. Signal Transduct Target Ther 2018; 3:19. [PMID: 30013796 PMCID: PMC6043541 DOI: 10.1038/s41392-018-0017-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/05/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Protein methyltransferases have been shown to methylate histone and non-histone proteins, leading to regulation of several biological processes that control cell homeostasis. Over the past few years, the histone-lysine N-methyltransferase SETD7 (SETD7; also known as SET7/9, KIAA1717, KMT7, SET7, SET9) has emerged as an important regulator of at least 30 non-histone proteins and a potential target for the treatment of several human diseases. This review discusses current knowledge of the structure and subcellular localization of SETD7, as well as its function as a histone and non-histone methyltransferase. This work also underlines the putative contribution of SETD7 to the regulation of gene expression, control of cell proliferation, differentiation and endoplasmic reticulum stress, which indicate that SETD7 is a candidate for novel targeted therapies with the aim of either stimulating or inhibiting its activity, depending on the cell signaling context.
Collapse
|
52
|
Horvat A, Vardjan N. Astroglial cAMP signalling in space and time. Neurosci Lett 2018; 689:5-10. [PMID: 29908259 DOI: 10.1016/j.neulet.2018.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 01/14/2023]
Abstract
To maintain a high level of specificity and normal cell function, the cyclic adenosine monophosphate (cAMP) pathway is tightly regulated in space and time. Recent advances in cAMP reporter technology have provided insights into spatio-temporal characteristics of cAMP signalling in individual living cells, including astrocytes. Astrocytes are glial cells in the central nervous system with many homeostatic functions. In contrast to neurons, astrocytes are electrically silent, but, in response to extracellular stimuli through activation of surface receptors, they can increase intracellular levels of secondary messengers, e.g. Ca2+ and cAMP. This enables them to communicate with neighbouring cells, such as neurons and endothelial cells of blood vessels. The dynamics of receptor-mediated Ca2+ signalling in astrocytes has been extensively studied in the past in contrast to cAMP signalling. Here, we present the first insights into the temporal dynamics of cAMP signalling in living astrocytes, which revealed that cAMP signals in astrocytes exhibit tonic dynamics and are slower than Ca2+ signals with phasic dynamics. We debate on the heterogeneity of basal cAMP levels in astrocytes and how hypotonicity-induced astrocyte swelling affects temporal dynamics of cAMP signalling. Understanding the spatio-temporal characteristics of cAMP signalling in astrocytes is of extreme importance because cAMP governs many important cellular processes and any malfunctions may lead to pathology.
Collapse
Affiliation(s)
- Anemari Horvat
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
53
|
Fulcher LJ, Bozatzi P, Tachie-Menson T, Wu KZL, Cummins TD, Bufton JC, Pinkas DM, Dunbar K, Shrestha S, Wood NT, Weidlich S, Macartney TJ, Varghese J, Gourlay R, Campbell DG, Dingwell KS, Smith JC, Bullock AN, Sapkota GP. The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms. Sci Signal 2018; 11:eaao2341. [PMID: 29789297 PMCID: PMC6025793 DOI: 10.1126/scisignal.aao2341] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the casein kinase 1 (CK1) family of serine-threonine protein kinases are implicated in the regulation of many cellular processes, including the cell cycle, circadian rhythms, and Wnt and Hedgehog signaling. Because these kinases exhibit constitutive activity in biochemical assays, it is likely that their activity in cells is controlled by subcellular localization, interactions with inhibitory proteins, targeted degradation, or combinations of these mechanisms. We identified members of the FAM83 family of proteins as partners of CK1 in cells. All eight members of the FAM83 family (FAM83A to FAM83H) interacted with the α and α-like isoforms of CK1; FAM83A, FAM83B, FAM83E, and FAM83H also interacted with the δ and ε isoforms of CK1. We detected no interaction between any FAM83 member and the related CK1γ1, CK1γ2, and CK1γ3 isoforms. Each FAM83 protein exhibited a distinct pattern of subcellular distribution and colocalized with the CK1 isoform(s) to which it bound. The interaction of FAM83 proteins with CK1 isoforms was mediated by the conserved domain of unknown function 1669 (DUF1669) that characterizes the FAM83 family. Mutations in FAM83 proteins that prevented them from binding to CK1 interfered with the proper subcellular localization and cellular functions of both the FAM83 proteins and their CK1 binding partners. On the basis of its function, we propose that DUF1669 be renamed the polypeptide anchor of CK1 domain.
Collapse
Affiliation(s)
- Luke J Fulcher
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Polyxeni Bozatzi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Theresa Tachie-Menson
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Kevin Z L Wu
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Timothy D Cummins
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Joshua C Bufton
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Daniel M Pinkas
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Karen Dunbar
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Sabin Shrestha
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Nicola T Wood
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Simone Weidlich
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Thomas J Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Joby Varghese
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - Robert Gourlay
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | - David G Campbell
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK
| | | | | | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, UK.
| |
Collapse
|
54
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
55
|
Porpora M, Sauchella S, Rinaldi L, Delle Donne R, Sepe M, Torres-Quesada O, Intartaglia D, Garbi C, Insabato L, Santoriello M, Bachmann VA, Synofzik M, Lindner HH, Conte I, Stefan E, Feliciello A. Counterregulation of cAMP-directed kinase activities controls ciliogenesis. Nat Commun 2018; 9:1224. [PMID: 29581457 PMCID: PMC5964327 DOI: 10.1038/s41467-018-03643-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/28/2018] [Indexed: 01/13/2023] Open
Abstract
The primary cilium emanates from the cell surface of growth-arrested cells and plays a central role in vertebrate development and tissue homeostasis. The mechanisms that control ciliogenesis have been extensively explored. However, the intersection between GPCR signaling and the ubiquitin pathway in the control of cilium stability are unknown. Here we observe that cAMP elevation promotes cilia resorption. At centriolar satellites, we identify a multimeric complex nucleated by PCM1 that includes two kinases, NEK10 and PKA, and the E3 ubiquitin ligase CHIP. We show that NEK10 is essential for ciliogenesis in mammals and for the development of medaka fish. PKA phosphorylation primes NEK10 for CHIP-mediated ubiquitination and proteolysis resulting in cilia resorption. Disarrangement of this control mechanism occurs in proliferative and genetic disorders. These findings unveil a pericentriolar kinase signalosome that efficiently links the cAMP cascade with the ubiquitin-proteasome system, thereby controlling essential aspects of ciliogenesis.
Collapse
Affiliation(s)
- Monia Porpora
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Simona Sauchella
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Maria Sepe
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Daniela Intartaglia
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), 80078, Italy
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University Federico II, Naples, 80131, Italy
| | - Margherita Santoriello
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy
| | - Verena A Bachmann
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Herbert H Lindner
- Division of Clinical Biochemistry, Biocenter Medical University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), 80078, Italy
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, University 'Federico II', Naples, 80131, Italy.
| |
Collapse
|
56
|
Li Y, Yu QH, Chu Y, Wu WM, Song JX, Zhu XB, Wang Q. Blockage of AKAP12 accelerates angiotensin II (Ang II)-induced cardiac injury in mice by regulating the transforming growth factor β1 (TGF-β1) pathway. Biochem Biophys Res Commun 2018; 499:128-135. [PMID: 29501491 DOI: 10.1016/j.bbrc.2018.02.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
Hypertension is a multifactorial chronic inflammatory disease that leads to cardiac remodeling. A-kinase anchor protein 12 (AKAP12) is a scaffolding protein that has multiple functions in various biological events, including the regulation of vessel integrity and differentiation of neural barriers in blood. However, the role of AKAP12 in angiotensin II (Ang II)-induced cardiac injury remains unclear. In the present study, Ang II infusion reduced AKAP12 expressions in the hearts of wild-type (WT) mice, and AKAP12 knockout (KO) enhanced the infiltration of inflammatory cells. In addition, AKAP12 deletion accelerated Ang II-induced cardiac histologic alterations and dysfunction. Further, AKAP12-/- aggravated heart failure by promoting the inflammation, oxidative stress, cellular apoptosis, and autophagy induced by Ang II. Furthermore, AKAP12 KO elevated Ang II-induced cardiac fibrosis, as indicated by the following: (1) Masson trichrome staining showed that Ang II infusion markedly increased fibrotic areas of the WT mouse heart, which was greatly accelerated in AKAP12-/- mice; (2) immunohistochemistry analysis showed increased expression of transforming growth factor β1 (TGF-β1) and α-smooth muscle actin (α-SMA) in the AKAP12-/- mouse heart; (3) reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) analysis showed increased expression of fibrosis-related molecules in the AKAP12-deficient mouse heart; and (4) Western blot analysis indicated significantly higher upregulation of p-SMAD2/3 in the AKAP12-/- mouse heart. In vitro, AKAP12 knockdown in HL-1 cells was responsible for TGF-β1-induced inflammation, the generation of reactive oxygen species (ROS), apoptosis, autophagy, and fibrosis. Furthermore, overexpression of AKAP12 reduced fibrosis triggered by TGF-β1 in cells. Overall, our study suggests that fibrosis induced by Ang II may be alleviated by AKAP12 expression through inactivation of the TGF-β1 pathway.
Collapse
Affiliation(s)
- Yong Li
- Department of Cardiology, Wujin People's Hospital of Changzhou, Changzhou 213017, China
| | - Qiu-Hua Yu
- Department of Cardio-Thoracic, Wujin People's Hospital of Changzhou, Changzhou 213017, China
| | - Ying Chu
- Central Laboratory, Wujin People's Hospital of Changzhou, Changzhou 213017, China
| | - Wei-Min Wu
- Department of Cardio-Thoracic, Wujin People's Hospital of Changzhou, Changzhou 213017, China
| | - Jian-Xiang Song
- Department of Cardiac Surgery, The Third Hospital of Yancheng, Yancheng 224000, China
| | - Xiao-Bo Zhu
- Department of Cardio-Thoracic, Wujin People's Hospital of Changzhou, Changzhou 213017, China
| | - Qiang Wang
- Department of Cardio-Thoracic, Wujin People's Hospital of Changzhou, Changzhou 213017, China.
| |
Collapse
|
57
|
Investigating PKA-RII specificity using analogs of the PKA:AKAP peptide inhibitor STAD-2. Bioorg Med Chem 2018; 26:1174-1178. [PMID: 29449124 DOI: 10.1016/j.bmc.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/20/2022]
Abstract
Generation of the second messenger molecule cAMP mediates a variety of cellular responses which are essential for critical cellular processes. In response to elevated cAMP levels, cAMP dependent protein kinase (PKA) phosphorylates serine and threonine residues on a wide variety of target substrates. In order to enhance the precision and directionality of these signaling events, PKA is localized to discrete locations within the cell by A-kinase anchoring proteins (AKAPs). The interaction between PKA and AKAPs is mediated via an amphipathic α-helix derived from AKAPs which binds to a stable hydrophobic groove formed in the dimerization/docking (D/D) domain of PKA-R in an isoform-specific fashion. Although numerous AKAP disruptors have previously been identified that can inhibit either RI- or RII-selective AKAPs, no AKAP disruptors have been identified that have isoform specificity for RIα versus RIβ or RIIα versus RIIβ. As a strategy to identify isoform-specific AKAP inhibitors, a library of chemically stapled protein-protein interaction (PPI) disruptors was developed based on the RII-selective AKAP disruptor, STAD-2. An alanine was substituted at each position in the sequence, and from this library it was possible to delineate the importance of longer aliphatic residues in the formation of a region which complements the hydrophobic cleft formed by the D/D domain. Interestingly, lysine residues that were added to both terminal ends of the peptide sequence to facilitate water solubility appear to contribute to isoform specificity for RIIα over RIIβ while having only weak interaction with RI. This work supports current hypotheses on the mechanisms of AKAP binding and highlights the significance of particular residue positions that aid in distinguishing between the RII isoforms and may provide insight into future design of isoform-selective AKAP disruptors.
Collapse
|
58
|
Diviani D, Osman H, Reggi E. A-Kinase Anchoring Protein-Lbc: A Molecular Scaffold Involved in Cardiac Protection. J Cardiovasc Dev Dis 2018; 5:E12. [PMID: 29419761 PMCID: PMC5872360 DOI: 10.3390/jcdd5010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a lethal disease that can develop after myocardial infarction, hypertension, or anticancer therapy. In the damaged heart, loss of function is mainly due to cardiomyocyte death and associated cardiac remodeling and fibrosis. In this context, A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that facilitate the spatiotemporal activation of the cyclic adenosine monophosphate (AMP)-dependent protein kinase (PKA) and other transduction enzymes involved in cardiac remodeling. AKAP-Lbc, a cardiac enriched anchoring protein, has been shown to act as a key coordinator of the activity of signaling pathways involved in cardiac protection and remodeling. This review will summarize and discuss recent advances highlighting the role of the AKAP-Lbc signalosome in orchestrating adaptive responses in the stressed heart.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Halima Osman
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Erica Reggi
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| |
Collapse
|
59
|
Bieluszewska A, Weglewska M, Bieluszewski T, Lesniewicz K, Poreba E. PKA
‐binding domain of
AKAP
8 is essential for direct interaction with
DPY
30 protein. FEBS J 2018; 285:947-964. [DOI: 10.1111/febs.14378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/01/2017] [Accepted: 12/22/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Anna Bieluszewska
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Martyna Weglewska
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Tomasz Bieluszewski
- Department of Genome Biology Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Elzbieta Poreba
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| |
Collapse
|
60
|
Chandrashekaran IR, Norton RS, Schmitz-Peiffer C. Characterisation of peptide interactions that regulate PKCε activation. FEBS Lett 2018; 592:179-189. [PMID: 29266266 DOI: 10.1002/1873-3468.12953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/13/2017] [Accepted: 12/10/2017] [Indexed: 11/09/2022]
Abstract
Targeting the interaction between PKC isoforms and their anchoring proteins can specifically regulate kinase activity. εV1-2 and pseudoεRACK peptides, derived from the PKCε C2 domain, modulate its association with receptor for activated C-kinase 2 (RACK2) and thus its function. Details of these interactions remain obscure, and we therefore investigated binding of these peptides using biophysical techniques. Surface plasmon resonance (SPR) indicated that the inhibitory εV1-2 peptide bound to RACK2, and inhibited PKCε binding as expected. In contrast, SPR and NMR demonstrated that the activating pseudoεRACK peptide and related sequences did not bind to PKCε, indicating that their mechanisms of action do not involve binding to the kinase as previously proposed. Our results clarify which interactions could be targeted in developing new therapeutics that inhibit PKCε-RACK2 interaction.
Collapse
Affiliation(s)
- Indu R Chandrashekaran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Carsten Schmitz-Peiffer
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
61
|
Gu Y, Xu W, Zhuang B, Fu W. Role of A-kinase anchoring protein 95 in the regulation of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in human ovarian granulosa cells. Reprod Fertil Dev 2018; 30:1128-1136. [DOI: 10.1071/rd17313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/02/2018] [Indexed: 11/23/2022] Open
Abstract
Irregular expression of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) is involved in the development of polycystic ovary syndrome (PCOS). Activation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway plays a crucial role in FSH regulation of CYP19A1 in human ovarian granulosa cells. A-Kinase anchor protein 95 (AKAP95) is known to confine PKA to the nucleus. However, it is unclear whether anchoring PKA to the nucleus is essential for the induction of CYP19A1 by FSH in human ovarian granulosa cells. Using the human granulosa cell line KGN and primary cultured human luteinised granulosa cells (hLGCs), we found that knockdown of AKAP8, the gene encoding AKAP95, or inhibition of AKAP95 reduced the amount of PKA anchored in the nucleus and attenuated the phosphorylation of CREB by either FSH or activation of the cAMP/PKA pathway. Moreover, knockdown of AKAP8 or inhibition of AKAP95 also significantly attenuated FSH-induced CYP19A1 expression and oestrogen synthesis. Furthermore, significant decreases in AKAP95 and CYP19A1 were observed in hLGCs obtained from PCOS patients. The results of the present study demonstrate a crucial role for AKAP95 in CYP19A1 expression and oestrogen synthesis in hLGCs, which implies that AKAP95 may be involved in the pathogenesis of PCOS.
Collapse
|
62
|
Yang D, Zhang W, Liang J, Ma K, Chen P, Lu D, Hao W. Single cell whole genome sequencing reveals that NFKB1 mutation affects radiotherapy sensitivity in cervical cancer. Oncotarget 2017; 9:7332-7340. [PMID: 29484114 PMCID: PMC5800906 DOI: 10.18632/oncotarget.23587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is the third most common cancer in women. Radiotherapy resistance remains a major obstacle for patients with cervical cancer. Somatic alterations in human genomes are responsible for radiotherapy resistance. Here, we performed single cell whole genome sequencing on 13 cells before radiotherapy and 12 cells after radiotherapy from a Chinese woman patient with cervical carcinoma. We identified one damaging mutation in NFKB1 (G430E), which showed significantly increased mutant allele frequency after radiotherapy than that before radiotherapy. Further functional assays showed that NFKB1 was a tumour suppressor in cervical cancer by inhibiting cell proliferation, colony formation and migration, while the mutation in NFKB1 could weaken the tumour suppressing functions of NFKB1. NFKB1 enhanced the sensitivity of cervical cancer cells to the effects of irradiation, and the mutation in NFKB1 weakened this effect. These results suggested that NFKB1 may be a potential molecular target in cervical cancer radiation therapy in the future.
Collapse
Affiliation(s)
- Dong Yang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Weiyuan Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - JunQing Liang
- Peking University People's Hospital, Beijing 100044, China
| | - Kexin Ma
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Peng Chen
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Danni Lu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Wenjing Hao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| |
Collapse
|
63
|
Lu J, Wang W, Mi Y, Zhang C, Ying H, Wang L, Wang Y, Myatt L, Sun K. AKAP95-mediated nuclear anchoring of PKA mediates cortisol-induced PTGS2 expression in human amnion fibroblasts. Sci Signal 2017; 10:eaac6160. [PMID: 29162743 DOI: 10.1126/scisignal.aac6160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphorylation of the transcription factors cyclic adenosine monophosphate response element-binding protein (CREB) and signal transducer and activator of transcription 3 (STAT3) by protein kinase A (PKA) is required for the cortisol-induced production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in human amnion fibroblasts, which critically mediates human parturition (labor). We found that PKA was confined in the nucleus by A-kinase-anchoring protein 95 (AKAP95) in amnion fibroblasts and that this localization was key to the cortisol-induced expression of PTGS2, the gene encoding COX-2. Cortisol increased the abundance of nuclear PKA by stimulating the expression of the gene encoding AKAP95. Knockdown of AKAP95 not only reduced the amounts of nuclear PKA and phosphorylated CREB but also attenuated the induction of PTGS2 expression in primary human amnion fibroblasts treated with cortisol, whereas the phosphorylation of STAT3 in response to cortisol was not affected. The abundances of AKAP95, phosphorylated CREB, and COX-2 were markedly increased in human amnion tissue after labor compared to those in amnion tissues from cesarean sections without labor. These results highlight an essential role for PKA that is anchored in the nucleus by AKAP95 in the phosphorylation of CREB and the consequent induction of COX-2 expression by cortisol in amnion fibroblasts, which may be important in human parturition.
Collapse
Affiliation(s)
- Jiangwen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Yabing Mi
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P. R. China
| | - Luyao Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P. R. China
| | - Yawei Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P. R. China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| |
Collapse
|
64
|
Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease. Handb Exp Pharmacol 2017; 243:249-269. [PMID: 27787716 DOI: 10.1007/164_2016_82] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An important hallmark of cardiac failure is abnormal second messenger signaling due to impaired synthesis and catabolism of cyclic adenosine 3',5'- monophosphate (cAMP) and cyclic guanosine 3',5'- monophosphate (cGMP). Their dysregulation, altered intracellular targeting, and blunted responsiveness to stimulating pathways all contribute to pathological remodeling, muscle dysfunction, reduced cell survival and metabolism, and other abnormalities. Therapeutic enhancement of either cyclic nucleotides can be achieved by stimulating their synthesis and/or by suppressing members of the family of cyclic nucleotide phosphodiesterases (PDEs). The heart expresses seven of the eleven major PDE subtypes - PDE1, 2, 3, 4, 5, 8, and 9. Their differential control over cAMP and cGMP signaling in various cell types, including cardiomyocytes, provides intriguing therapeutic opportunities to counter heart disease. This review examines the roles of these PDEs in the failing and hypertrophied heart and summarizes experimental and clinical data that have explored the utility of targeted PDE inhibition.
Collapse
|
65
|
Kjaergaard M, Kragelund BB. Functions of intrinsic disorder in transmembrane proteins. Cell Mol Life Sci 2017; 74:3205-3224. [PMID: 28601983 PMCID: PMC11107515 DOI: 10.1007/s00018-017-2562-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane proteins, and address why the flexibility afforded by disorder is mechanistically important. Intrinsically disordered regions are present in many common classes of membrane proteins including ion channels and transporters; G-protein coupled receptors (GPCRs), receptor tyrosine kinases and cytokine receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding protein disorder.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
- The Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
66
|
Akabane S, Uno M, Tani N, Shimazaki S, Ebara N, Kato H, Kosako H, Oka T. PKA Regulates PINK1 Stability and Parkin Recruitment to Damaged Mitochondria through Phosphorylation of MIC60. Mol Cell 2017; 62:371-384. [PMID: 27153535 DOI: 10.1016/j.molcel.2016.03.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 01/09/2023]
Abstract
A mitochondrial kinase, PTEN-induced putative kinase 1 (PINK1), selectively recruits the ubiquitin ligase Parkin to damaged mitochondria, which modifies mitochondria by polyubiquitination, leading to mitochondrial autophagy. Here, we report that treatment with an adenylate cyclase agonist or expression of protein kinase A (PKA) impairs Parkin recruitment to damaged mitochondria and decreases PINK1 protein levels. We identified a mitochondrial membrane protein, MIC60 (also known as mitofilin), as a PKA substrate. Mutational and mass spectrometric analyses revealed that the Ser528 residue of MIC60 undergoes PKA-dependent phosphorylation. MIC60 transiently interacts with PINK1, and MIC60 downregulation leads to a reduction in PINK1 and mislocalization of Parkin. Phosphorylation-mimic mutants of MIC60 fail to restore the defect in Parkin recruitment in MIC60-knocked down cells, whereas a phosphorylation-deficient MIC60 mutant facilitates the mitochondrial localization of Parkin. Our findings indicate that PKA-mediated phosphorylation of MIC60 negatively regulates mitochondrial clearance that is initiated by PINK1 and Parkin.
Collapse
Affiliation(s)
- Shiori Akabane
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Midori Uno
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shunta Shimazaki
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Natsumi Ebara
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Hiroki Kato
- Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan.
| |
Collapse
|
67
|
Torres-Quesada O, Mayrhofer JE, Stefan E. The many faces of compartmentalized PKA signalosomes. Cell Signal 2017; 37:1-11. [PMID: 28528970 DOI: 10.1016/j.cellsig.2017.05.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023]
Abstract
Cellular signal transmission requires the dynamic formation of spatiotemporally controlled molecular interactions. At the cell surface information is received by receptor complexes and relayed through intracellular signaling platforms which organize the actions of functionally interacting signaling enzymes and substrates. The list of hormone or neurotransmitter pathways that utilize the ubiquitous cAMP-sensing protein kinase A (PKA) system is expansive. This requires that the specificity, duration, and intensity of PKA responses are spatially and temporally restricted. Hereby, scaffolding proteins take the center stage for ensuring proper signal transmission. They unite second messenger sensors, activators, effectors, and kinase substrates within cellular micro-domains to precisely control and route signal propagation. A-kinase anchoring proteins (AKAPs) organize such subcellular signalosomes by tethering the PKA holoenzyme to distinct cell compartments. AKAPs differ in their modular organization showing pathway specific arrangements of interaction motifs or domains. This enables the cell- and compartment- guided assembly of signalosomes with unique enzyme composition and function. The AKAP-mediated clustering of cAMP and other second messenger sensing and interacting signaling components along with functional successive enzymes facilitates the rapid and precise dissemination of incoming signals. This review article delineates examples for different means of PKA regulation and for snapshots of compartmentalized PKA signalosomes.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johanna E Mayrhofer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
68
|
Wilson LS, Guo M, Umana MB, Maurice DH. Distinct phosphodiesterase 5A-containing compartments allow selective regulation of cGMP-dependent signalling in human arterial smooth muscle cells. Cell Signal 2017; 36:204-211. [PMID: 28506928 DOI: 10.1016/j.cellsig.2017.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Cyclic GMP (cGMP) translates and integrates much of the information encoded by nitric oxide (NO·) and several natriuretic peptides, including the atrial natriuretic peptide (ANP). Previously, we reported that integration of a cGMP-specific cyclic nucleotide phosphodiesterase, namely phosphodiesterase 5A (PDE5A), into a protein kinase G (PKG)- and inositol-1,4,5-trisphosphate receptor (IP3R)-containing endoplasmic reticulum (ER) signalosome allows localized control of PDE5A activity and of PKG-dependent inhibition of IP3-mediated release of ER Ca2+ in human platelets. Herein, we report that PDE5A integrates into an analogous signalosome in human arterial smooth muscle cells (HASMC), wherein it regulates muscarinic agonist-dependent Ca2+ release and is activated selectively by PKG-dependent phosphorylation. In addition, we report that PDE5A also regulates HASMC functions via events independent of PKG, but rather through actions coordinated by competitive cGMP-mediated inhibition of cAMP hydrolysis by the so-called cGMP-inhibited cAMP PDE, namely phosphodiesterase 3A (PDE3A). Indeed, we show that ANP increases both cGMP and cAMP levels in HASMC and promotes phosphorylation of vasodilator-stimulated phospho-protein (VASP) at each the PKG and PKA phospho-acceptor sites. Since selective inhibition of PDE5 decreased DNA synthesis and chemotaxis of HASMC, and that PDE3A knockdown obviated these effects, our findings are consistent with a role for a PDE5A-PDE3A-PKA axis in their regulation. Our findings provide insight into the existence of distinct "pools" of PDE5A in HASMC and support the idea that these discrete compartments regulate distinct cGMP-dependent events. As a corollary, we suggest that it may be possible to target these distinct PDE5A-regulated pools and in so-doing differentially impact selected cGMP-regulated functions in these cells.
Collapse
Affiliation(s)
- Lindsay S Wilson
- Department of Pathology & Molecular Medicine (LSW, DHM), Queen's University, Kingston, ON K7L 3N6, Canada; Department of Biomedical and Molecular Sciences (MBU, MG, DHM), Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Manhong Guo
- Department of Pathology & Molecular Medicine (LSW, DHM), Queen's University, Kingston, ON K7L 3N6, Canada; Department of Biomedical and Molecular Sciences (MBU, MG, DHM), Queen's University, Kingston, ON K7L 3N6, Canada
| | - M Bibiana Umana
- Department of Pathology & Molecular Medicine (LSW, DHM), Queen's University, Kingston, ON K7L 3N6, Canada; Department of Biomedical and Molecular Sciences (MBU, MG, DHM), Queen's University, Kingston, ON K7L 3N6, Canada
| | - Donald H Maurice
- Department of Pathology & Molecular Medicine (LSW, DHM), Queen's University, Kingston, ON K7L 3N6, Canada; Department of Biomedical and Molecular Sciences (MBU, MG, DHM), Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
69
|
Di Benedetto G, Gerbino A, Lefkimmiatis K. Shaping mitochondrial dynamics: The role of cAMP signalling. Biochem Biophys Res Commun 2017; 500:65-74. [PMID: 28501614 DOI: 10.1016/j.bbrc.2017.05.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 12/25/2022]
Abstract
In recent years, our idea of mitochondria evolved from "mere" energy and metabolite producers to key regulators of many cellular functions. In order to preserve and protect their functional status, these organelles engage a number of dynamic processes that allow them to decrease accumulated burden and maintain their homeostasis. Indeed, mitochondria can unite (fusion), divide (fission), position themselves strategically in the cell (motility/trafficking) and if irreversibly damaged or dysfunctional eliminated (mitophagy). These dynamic processes can be controlled both by mitochondrial and cellular signalling pathways, hence allowing mitochondria to tune their function to the cellular needs. Among the regulatory mechanisms, reversible phosphorylation downstream the cyclic AMP (cAMP) signalling cascade was shown to deeply influence mitochondrial dynamics. This review explores the emerging evidence suggesting that cAMP is a key player in the orchestration of mitochondrial fusion/fission, motility and mitophagy, extending the repertoire of this second messenger, which is now recognised as a major regulator of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, Italian National Research Council (CNR), Venetian Institute of Molecular Medicine, 35131, Padova, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, Italian National Research Council (CNR), Venetian Institute of Molecular Medicine, 35131, Padova, Italy.
| |
Collapse
|
70
|
Petersen OH, Courjaret R, Machaca K. Ca 2+ tunnelling through the ER lumen as a mechanism for delivering Ca 2+ entering via store-operated Ca 2+ channels to specific target sites. J Physiol 2017; 595:2999-3014. [PMID: 28181236 PMCID: PMC5430212 DOI: 10.1113/jp272772] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 01/02/2023] Open
Abstract
Ca2+ signalling is perhaps the most universal and versatile mechanism regulating a wide range of cellular processes. Because of the many different calcium‐binding proteins distributed throughout cells, signalling precision requires localized rises in the cytosolic Ca2+ concentration. In electrically non‐excitable cells, for example epithelial cells, this is achieved by primary release of Ca2+ from the endoplasmic reticulum via Ca2+ release channels placed close to the physiological target. Because any rise in the cytosolic Ca2+ concentration activates Ca2+ extrusion, and in order for cells not to run out of Ca2+, there is a need for compensatory Ca2+ uptake from the extracellular fluid. This Ca2+ uptake occurs through a process known as store‐operated Ca2+ entry. Ideally Ca2+ entering the cell should not diffuse to the target site through the cytosol, as this would potentially activate undesirable processes. Ca2+ tunnelling through the lumen of the endoplasmic reticulum is a mechanism for delivering Ca2+ entering via store‐operated Ca2+ channels to specific target sites, and this process has been described in considerable detail in pancreatic acinar cells and oocytes. Here we review the most important evidence and present a generalized concept.
![]()
Collapse
Affiliation(s)
- Ole H Petersen
- MRC Group, School of Biosciences and Systems Immunity Research Institute, Cardiff University, Cardiff, CF10 3AX, UK
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| |
Collapse
|
71
|
Gorshkov K, Mehta S, Ramamurthy S, Ronnett GV, Zhou FQ, Zhang J. AKAP-mediated feedback control of cAMP gradients in developing hippocampal neurons. Nat Chem Biol 2017; 13:425-431. [PMID: 28192412 PMCID: PMC5362298 DOI: 10.1038/nchembio.2298] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 01/06/2023]
Abstract
Cyclic AMP (cAMP) and protein kinase A (PKA), classical examples of spatially compartmentalized signaling molecules, are critical axon determinants that regulate neuronal polarity and axon formation, yet little is known about micro-compartmentalization of cAMP and PKA signaling and its role in developing neurons. Here, we revealed that cAMP forms a gradient in developing hippocampal neurons, with higher cAMP levels in more distal regions of the axon compared to other regions of the cell. Interestingly, this cAMP gradient changed according to the developmental stage and depended on proper anchoring of PKA by A-kinase anchoring proteins (AKAPs). Disrupting PKA anchoring to AKAPs increased the cAMP gradient in early-stage neurons and led to enhanced axon elongation. Our results provide new evidence for a local negative feedback loop, assembled by AKAPs, for the precise control of a growth-stage-dependent cAMP gradient to ensure proper axon growth.
Collapse
Affiliation(s)
- Kirill Gorshkov
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Santosh Ramamurthy
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabriele V Ronnett
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Neurology and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Feng-Quan Zhou
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
72
|
Perrino C, Trimarco B. Akap-mediated signalling: the importance of being in the right place at the right time. Cardiovasc Res 2016; 113:115-117. [DOI: 10.1093/cvr/cvw254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
73
|
Zhang J, Carver CM, Choveau FS, Shapiro MS. Clustering and Functional Coupling of Diverse Ion Channels and Signaling Proteins Revealed by Super-resolution STORM Microscopy in Neurons. Neuron 2016; 92:461-478. [PMID: 27693258 DOI: 10.1016/j.neuron.2016.09.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/24/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022]
Abstract
The fidelity of neuronal signaling requires organization of signaling molecules into macromolecular complexes, whose components are in intimate proximity. The intrinsic diffraction limit of light makes visualization of individual signaling complexes using visible light extremely difficult. However, using super-resolution stochastic optical reconstruction microscopy (STORM), we observed intimate association of individual molecules within signaling complexes containing ion channels (M-type K+, L-type Ca2+, or TRPV1 channels) and G protein-coupled receptors coupled by the scaffolding protein A-kinase-anchoring protein (AKAP)79/150. Some channels assembled as multi-channel supercomplexes. Surprisingly, we identified novel layers of interplay within macromolecular complexes containing diverse channel types at the single-complex level in sensory neurons, dependent on AKAP79/150. Electrophysiological studies revealed that such ion channels are functionally coupled as well. Our findings illustrate the novel role of AKAP79/150 as a molecular coupler of different channels that conveys crosstalk between channel activities within single microdomains in tuning the physiological response of neurons.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Chase M Carver
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Frank S Choveau
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mark S Shapiro
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
74
|
Moorer MC, Buo AM, Garcia-Pelagio KP, Stains JP, Bloch RJ. Deficiency of the intermediate filament synemin reduces bone mass in vivo. Am J Physiol Cell Physiol 2016; 311:C839-C845. [PMID: 27605453 DOI: 10.1152/ajpcell.00218.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022]
Abstract
While the type IV intermediate filament protein, synemin, has been shown to play a role in striated muscle and neuronal tissue, its presence and function have not been described in skeletal tissue. Here, we report that genetic ablation of synemin in 14-wk-old male mice results in osteopenia that includes a more than 2-fold reduction in the trabecular bone fraction in the distal femur and a reduction in the cross-sectional area at the femoral middiaphysis due to an attendant reduction in both the periosteal and endosteal perimeter. Analysis of serum markers of bone formation and static histomorphometry revealed a statistically significant defect in osteoblast activity and osteoblast number in vivo. Interestingly, primary osteoblasts isolated from synemin-null mice demonstrate markedly enhanced osteogenic capacity with a concomitant reduction in cyclin D1 mRNA expression, which may explain the loss of osteoblast number observed in vivo. In total, these data suggest an important, previously unknown role for synemin in bone physiology.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Karla P Garcia-Pelagio
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
75
|
Dema A, Schröter MF, Perets E, Skroblin P, Moutty MC, Deàk VA, Birchmeier W, Klussmann E. The A-Kinase Anchoring Protein (AKAP) Glycogen Synthase Kinase 3β Interaction Protein (GSKIP) Regulates β-Catenin through Its Interactions with Both Protein Kinase A (PKA) and GSK3β. J Biol Chem 2016; 291:19618-30. [PMID: 27484798 DOI: 10.1074/jbc.m116.738047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 01/24/2023] Open
Abstract
The A-kinase anchoring protein (AKAP) GSK3β interaction protein (GSKIP) is a cytosolic scaffolding protein binding protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Here we show that both the AKAP function of GSKIP, i.e. its direct interaction with PKA, and its direct interaction with GSK3β are required for the regulation of β-catenin and thus Wnt signaling. A cytoplasmic destruction complex targets β-catenin for degradation and thus prevents Wnt signaling. Wnt signals cause β-catenin accumulation and translocation into the nucleus, where it induces Wnt target gene expression. GSKIP facilitates control of the β-catenin stabilizing phosphorylation at Ser-675 by PKA. Its interaction with GSK3β facilitates control of the destabilizing phosphorylation of β-catenin at Ser-33/Ser-37/Thr-41. The influence of GSKIP on β-catenin is explained by its scavenger function; it recruits the kinases away from the destruction complex without forming a complex with β-catenin. The regulation of β-catenin by GSKIP is specific for this AKAP as AKAP220, which also binds PKA and GSK3β, did not affect Wnt signaling. We find that the binding domain of AKAP220 for GSK3β is a conserved GSK3β interaction domain (GID), which is also present in GSKIP. Our findings highlight an essential compartmentalization of both PKA and GSK3β by GSKIP, and ascribe a function to a cytosolic AKAP-PKA interaction as a regulatory factor in the control of canonical Wnt signaling. Wnt signaling controls different biological processes, including embryonic development, cell cycle progression, glycogen metabolism, and immune regulation; deregulation is associated with diseases such as cancer, type 2 diabetes, inflammatory, and Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Alessandro Dema
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Micha Friedemann Schröter
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Ekaterina Perets
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Philipp Skroblin
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Marie Christine Moutty
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Veronika Anita Deàk
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Walter Birchmeier
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Enno Klussmann
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and the DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Oudenarder Strasse 16, 13347 Berlin, Germany
| |
Collapse
|
76
|
Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol 2016; 57:R93-R108. [PMID: 27194812 DOI: 10.1530/jme-15-0316] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022]
Abstract
In mammals, cyclic adenosine monophosphate (cAMP) is an intracellular second messenger that is usually elicited by binding of hormones and neurotransmitters to G protein-coupled receptors (GPCRs). cAMP exerts many of its physiological effects by activating cAMP-dependent protein kinase (PKA), which in turn phosphorylates and regulates the functions of downstream protein targets including ion channels, enzymes, and transcription factors. cAMP/PKA signaling pathway regulates glucose homeostasis at multiple levels including insulin and glucagon secretion, glucose uptake, glycogen synthesis and breakdown, gluconeogenesis, and neural control of glucose homeostasis. This review summarizes recent genetic and pharmacological studies concerning the regulation of glucose homeostasis by cAMP/PKA in pancreas, liver, skeletal muscle, adipose tissues, and brain. We also discuss the strategies for targeting cAMP/PKA pathway for research and potential therapeutic treatment of type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Haihua Yang
- Division of EndocrinologyZhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Linghai Yang
- Department of PharmacologyUniversity of Washington, Seattle, Washington, USA
| |
Collapse
|
77
|
Riggle KM, Turnham R, Scott JD, Yeung RS, Riehle KJ. Fibrolamellar Hepatocellular Carcinoma: Mechanistic Distinction From Adult Hepatocellular Carcinoma. Pediatr Blood Cancer 2016; 63:1163-7. [PMID: 26990031 PMCID: PMC4877189 DOI: 10.1002/pbc.25970] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
Abstract
Fibrolamellar hepatocellular carcinoma (FL-HCC) has historically been classified as a rare subtype of HCC. However, unlike "classic" HCC, it occurs in children and young adults without underlying liver disease. The recent discovery of a deletion mutation in all FL-HCCs represented a major advancement in understanding the pathogenesis of this disease. This deletion results in the fusion of the genes encoding a heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PKA, PRKACA), and overexpression of PRKACA and enhanced cAMP-dependent PKA activity. This review summarizes recent advancements in FL-HCC pathogenesis and characteristics of the HSP40-PKA C protein.
Collapse
Affiliation(s)
- Kevin M. Riggle
- Department of SurgeryUniversity of WashingtonSeattleWashington,Division of General and Thoracic SurgerySeattle Children's HospitalSeattleWashington
| | - Rigney Turnham
- Howard Hughes Medical InstituteUniversity of WashingtonSeattleWashington,Department of PharmacologyUniversity of WashingtonSeattleWashington
| | - John D. Scott
- Howard Hughes Medical InstituteUniversity of WashingtonSeattleWashington,Department of PharmacologyUniversity of WashingtonSeattleWashington
| | - Raymond S. Yeung
- Department of SurgeryUniversity of WashingtonSeattleWashington,Northwest Liver Research ProgramUniversity of WashingtonSeattleWashington
| | - Kimberly J. Riehle
- Department of SurgeryUniversity of WashingtonSeattleWashington,Division of General and Thoracic SurgerySeattle Children's HospitalSeattleWashington,Northwest Liver Research ProgramUniversity of WashingtonSeattleWashington,Department of PathologyUniversity of WashingtonSeattleWashington
| |
Collapse
|
78
|
Extracellular Calcium Has Multiple Targets to Control Cell Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:133-56. [DOI: 10.1007/978-3-319-26974-0_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
79
|
Ding CL, Xu G, Tang HL, Zhu SY, Zhao LJ, Ren H, Zhao P, Qi ZT, Wang W. Anchoring of both PKA-RIIα and 14-3-3θ regulates retinoic acid induced 16 mediated phosphorylation of heat shock protein 70. Oncotarget 2016; 6:15540-50. [PMID: 25900241 PMCID: PMC4558169 DOI: 10.18632/oncotarget.3702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
Our previous study reported that retinoic acid induced 16 (RAI16) could enhance tumorigenesis in hepatocellular carcinoma (HCC). However, the cellular functions of RAI16 are still unclear. In this study, by immunoprecipitation and tandem (MS/MS) mass spectrometry analysis, we identified that RAI16 interacted with the type II regulatory subunit of PKA (PKA-RIIα), acting as a novel protein kinase A anchoring protein (AKAP). In addition, RAI16 also interacted with heat shock protein 70 (HSP70) and 14-3-3θ. Further studies indicated that RAI16 mediated PKA phosphorylation of HSP70 at serine 486, resulting in anti-apoptosis events. RAI16 was also phosphorylated by the anchored PKA at serine 325, which promoted the recruitment of 14-3-3θ, which, in turn, inhibited RAI16 mediated PKA phosphorylation of HSP70. These findings offer mechanism insight into RAI16 mediated anti-apoptosis signaling in HCC.
Collapse
Affiliation(s)
- Cui-Ling Ding
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Gang Xu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Hai-Lin Tang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Shi-Ying Zhu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Lan-Juan Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Hao Ren
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Zhong-Tian Qi
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Wen Wang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| |
Collapse
|
80
|
Belleville-Rolland T, Sassi Y, Decouture B, Dreano E, Hulot JS, Gaussem P, Bachelot-Loza C. MRP4 (ABCC4) as a potential pharmacologic target for cardiovascular disease. Pharmacol Res 2016; 107:381-389. [PMID: 27063943 DOI: 10.1016/j.phrs.2016.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 01/13/2023]
Abstract
This review focuses on multidrug resistance protein 4 (MRP4 or ABCC4) that has recently been shown to play a role in cAMP homeostasis, a key-pathway in vascular biology and in platelet functions. In vascular system, recent data provide evidence that inhibition of MRP4 prevents human coronary artery smooth muscle cell proliferation in vitro and in vivo, as well as human pulmonary artery smooth muscle cell proliferation in vitro and pulmonary hypertension in mice in vivo. In the heart, MRP4 silencing in adult rat ventricular myocytes results in an increase in intracellular cAMP levels leading to enhanced cardiomyocyte contractility. However, a prolonged inhibition of MRP4 can promote cardiac hypertrophy. In addition, secreted cAMP, through its metabolite adenosine, prevents adrenergically induced cardiac hypertrophy and fibrosis. Finally, MRP4 inhibition in platelets induces a moderate thrombopathy. The localization of MRP4 underlines the emerging concept of cAMP compartmentalization in platelets, which is a major regulatory mechanism in other cells. cAMP storage in platelet dense granules might limit the cAMP cytosolic concentration upon adenylate cyclase activation, a necessary step to induce platelet activation. In this review, we discuss the therapeutic potential of direct pharmacological inhibition of MRP4 in atherothrombotic disease, via its vasodilating and antiplatelet effects.
Collapse
Affiliation(s)
- Tiphaine Belleville-Rolland
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; AP-HP, Hôpital Européen Georges Pompidou, Service dhématologie biologique, Paris, France
| | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benoit Decouture
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Elise Dreano
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Sébastien Hulot
- AP-HP, Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, F-75013 Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, France
| | - Pascale Gaussem
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; AP-HP, Hôpital Européen Georges Pompidou, Service dhématologie biologique, Paris, France
| | - Christilla Bachelot-Loza
- Inserm UMR-S1140, Faculté de Pharmacie, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
81
|
de Oliveira PSL, Ferraz FAN, Pena DA, Pramio DT, Morais FA, Schechtman D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci Signal 2016; 9:re3. [PMID: 27016527 DOI: 10.1126/scisignal.aad4016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.
Collapse
Affiliation(s)
- Paulo Sérgio L de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Felipe Augusto N Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Darlene A Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Dimitrius T Pramio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe A Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|
82
|
Calabokis M, González Y, Merchán A, Escalona JL, Araujo NA, Sanz-Rodríguez CE, Cywiak C, Spencer LM, Martínez JC, Bubis J. Immunological identification of a cAMP-dependent protein kinase regulatory subunit-like protein from theTrypanosoma equiperdumTeAp-N/D1 isolate. J Immunoassay Immunochem 2016; 37:485-514. [DOI: 10.1080/15321819.2016.1162799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
83
|
Beach A, Richard VR, Bourque S, Boukh-Viner T, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Feldman R, Leonov A, Piano A, Svistkova V, Titorenko VI. Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome. Cell Cycle 2016; 14:1643-56. [PMID: 25839782 DOI: 10.1080/15384101.2015.1026493] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.
Collapse
Key Words
- D, diauxic growth phase
- DMSO, dimethyl sulfoxide
- ER, endoplasmic reticulum
- ETC, electron transport chain
- ISC, iron-sulfur clusters
- LCA, lithocholic acid
- MAM, mitochondria-associated membrane
- OS, oxidative stress
- PD, post-diauxic growth phase
- PMD, partial mitochondrial dysfunction
- ROS, reactive oxygen species
- ST, stationary growth phase
- TCA, tricarboxylic acid
- WT, wild type
- anti-aging compounds
- cell metabolism
- cellular aging
- lithocholic bile acid
- longevity
- mitochondria
- mitochondrial proteome
- mitochondrial signaling
- signal transduction
- yeast
Collapse
Affiliation(s)
- Adam Beach
- a Department of Biology; Concordia University ; Montreal , QC , Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
MiR-103 regulates hepatocellular carcinoma growth by targeting AKAP12. Int J Biochem Cell Biol 2016; 71:1-11. [DOI: 10.1016/j.biocel.2015.11.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 11/20/2015] [Accepted: 11/26/2015] [Indexed: 01/23/2023]
|
85
|
Schächterle C, Christian F, Fernandes JMP, Klussmann E. Screening for small molecule disruptors of AKAP-PKA interactions. Methods Mol Biol 2015; 1294:151-66. [PMID: 25783884 DOI: 10.1007/978-1-4939-2537-7_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Protein-protein interactions (PPIs) are highly specific and diverse. Their selective inhibition with peptides, peptidomimetics, or small molecules allows determination of functions of individual PPIs. Moreover, inhibition of disease-associated PPIs may lead to new concepts for the treatment of diseases with an unmet medical need. Protein kinase A (PKA) is an ubiquitously expressed protein kinase that controls a plethora of cellular functions. A-kinase anchoring proteins (AKAPs) are multivalent scaffolding proteins that directly interact with PKA. AKAPs spatially and temporally restrict PKA activity to defined cellular compartments and thereby contribute to the specificity of PKA signaling. However, it is largely unknown which of the plethora of PKA-dependent signaling events involve interactions of PKA with AKAPs. Moreover, AKAP-PKA interactions appear to play a role in a variety of cardiovascular, neuronal, and inflammatory diseases, but it is unclear whether these interactions are suitable drug targets. Here we describe an enzyme-linked immunosorbent assay (ELISA) for the screening of small molecule libraries for inhibitors of AKAP-PKA interactions. In addition, we describe a homogenous time-resolved fluorescence (HTRF) assay for use in secondary validation screens. Small molecule inhibitors are invaluable molecular tools for elucidating the functions of AKAP-PKA interactions and may eventually lead to new concepts for the treatment of diseases where AKAP-PKA interactions represent potential drug targets.
Collapse
Affiliation(s)
- Carolin Schächterle
- Max Delbruck Center for Molecular Medicine (MDC) Berlin-Buch, Robert-Rössle-Str. 10, Berlin, 13125, Germany
| | | | | | | |
Collapse
|
86
|
Turnham RE, Scott JD. Protein kinase A catalytic subunit isoform PRKACA; History, function and physiology. Gene 2015; 577:101-8. [PMID: 26687711 DOI: 10.1016/j.gene.2015.11.052] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 01/01/2023]
Abstract
Our appreciation of the scope and influence of second messenger signaling has its origins in pioneering work on the cAMP-dependent protein kinase. Also called protein kinase A (PKA), this holoenzyme exists as a tetramer comprised of a regulatory (R) subunit dimer and two catalytic (C) subunits. Upon binding of two molecules of the second messenger cAMP to each R subunit, a conformational change in the PKA holoenzyme occurs to release the C subunits. These active kinases phosphorylate downstream targets to propagate cAMP responsive cell signaling events. This article focuses on the discovery, structure, cellular location and physiological effects of the catalytic subunit alpha of protein kinase A (encoded by the gene PRKACA). We also explore the potential role of this essential gene as a molecular mediator of certain disease states.
Collapse
Affiliation(s)
- Rigney E Turnham
- Howard Hughes Medical Institute, Department of Pharmacology, Box 357750, University of Washington School of Medicine, 1959 Pacific St. NE, Seattle, WA 98195, United States
| | - John D Scott
- Howard Hughes Medical Institute, Department of Pharmacology, Box 357750, University of Washington School of Medicine, 1959 Pacific St. NE, Seattle, WA 98195, United States.
| |
Collapse
|
87
|
Diviani D, Reggi E, Arambasic M, Caso S, Maric D. Emerging roles of A-kinase anchoring proteins in cardiovascular pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1926-36. [PMID: 26643253 DOI: 10.1016/j.bbamcr.2015.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Heart and blood vessels ensure adequate perfusion of peripheral organs with blood and nutrients. Alteration of the homeostatic functions of the cardiovascular system can cause hypertension, atherosclerosis, and coronary artery disease leading to heart injury and failure. A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that are crucially involved in modulating the function of the cardiovascular system both under physiological and pathological conditions. AKAPs assemble multifunctional signaling complexes that ensure correct targeting of the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to precise subcellular compartments. This allows local regulation of specific effector proteins that control the function of vascular and cardiac cells. This review will focus on recent advances illustrating the role of AKAPs in cardiovascular pathophysiology. The accent will be mainly placed on the molecular events linked to the control of vascular integrity and blood pressure as well as on the cardiac remodeling process associated with heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Erica Reggi
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Miroslav Arambasic
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Stefania Caso
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Darko Maric
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| |
Collapse
|
88
|
Martin TJ. Comment on: Wnt Signaling Inhibits Osteoclast Differentiation by Activating Canonical and Non-Canonical cAMP/PKA Pathways. J Bone Miner Res 2015; 30:2133-4. [PMID: 26307950 DOI: 10.1002/jbmr.2695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 08/24/2015] [Indexed: 11/10/2022]
Affiliation(s)
- T John Martin
- St Vincent's Institute of Medical Research, Fitzroy, Australia.,St Vincent's Hospital, University of Melbourne Department of Medicine, Fitzroy, Australia
| |
Collapse
|
89
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
90
|
|
91
|
Dema A, Perets E, Schulz MS, Deák VA, Klussmann E. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 2015; 27:2474-87. [PMID: 26386412 DOI: 10.1016/j.cellsig.2015.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Alessandro Dema
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ekaterina Perets
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Maike Svenja Schulz
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Veronika Anita Deák
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Oudenarder Straße 16, 13347 Berlin, Germany.
| |
Collapse
|
92
|
Calejo AI, Taskén K. Targeting protein-protein interactions in complexes organized by A kinase anchoring proteins. Front Pharmacol 2015; 6:192. [PMID: 26441649 PMCID: PMC4562273 DOI: 10.3389/fphar.2015.00192] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/24/2015] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP is a ubiquitous intracellular second messenger involved in the regulation of a wide variety of cellular processes, a majority of which act through the cAMP – protein kinase A (PKA) signaling pathway and involve PKA phosphorylation of specific substrates. PKA phosphorylation events are typically spatially restricted and temporally well controlled. A-kinase anchoring proteins (AKAPs) directly bind PKA and recruit it to specific subcellular loci targeting the kinase activity toward particular substrates, and thereby provide discrete spatiotemporal control of downstream phosphorylation events. AKAPs also scaffold other signaling molecules into multi-protein complexes that function as crossroads between different signaling pathways. Targeting AKAP coordinated protein complexes with high-affinity peptidomimetics or small molecules to tease apart distinct protein–protein interactions (PPIs) therefore offers important means to disrupt binding of specific components of the complex to better understand the molecular mechanisms involved in the function of individual signalosomes and their pathophysiological role. Furthermore, development of novel classes of small molecules involved in displacement of AKAP-bound signal molecules is now emerging. Here, we will focus on mechanisms for targeting PPI, disruptors that modulate downstream cAMP signaling and their role, especially in the heart.
Collapse
Affiliation(s)
- Ana I Calejo
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Kjetil Taskén
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| |
Collapse
|
93
|
Abstract
Cell division relies on coordinated regulation of the cell cycle. A process including a well-defined series of strictly regulated molecular mechanisms involving cyclin-dependent kinases, retinoblastoma protein, and polo-like kinases. Dysfunctions in cell cycle regulation are associated with disease such as cancer, diabetes, and neurodegeneration. Compartmentalization of cellular signaling is a common strategy used to ensure the accuracy and efficiency of cellular responses. Compartmentalization of intracellular signaling is maintained by scaffolding proteins, such as A-kinase anchoring proteins (AKAPs). AKAPs are characterized by their ability to anchor the regulatory subunits of protein kinase A (PKA), and thereby achieve guidance to different cellular locations via various targeting domains. Next to PKA, AKAPs also associate with several other signaling elements including receptors, ion channels, protein kinases, phosphatases, small GTPases, and phosphodiesterases. Taking the amount of possible AKAP signaling complexes and their diverse localization into account, it is rational to believe that such AKAP-based complexes regulate several critical cellular events of the cell cycle. In fact, several AKAPs are assigned as tumor suppressors due to their vital roles in cell cycle regulation. Here, we first briefly discuss the most important players of cell cycle progression. After that, we will review our recent knowledge of AKAPs linked to the regulation and progression of the cell cycle, with special focus on AKAP12, AKAP8, and Ezrin. At last, we will discuss this specific AKAP subset in relation to diseases with focus on a diverse subset of cancer.
Collapse
Affiliation(s)
- B Han
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands. .,Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands.
| | - W J Poppinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - M Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| |
Collapse
|
94
|
Wang Y, Ho TG, Franz E, Hermann JS, Smith FD, Hehnly H, Esseltine JL, Hanold LE, Murph MM, Bertinetti D, Scott JD, Herberg FW, Kennedy EJ. PKA-type I selective constrained peptide disruptors of AKAP complexes. ACS Chem Biol 2015; 10:1502-10. [PMID: 25765284 DOI: 10.1021/acschembio.5b00009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A-Kinase Anchoring Proteins (AKAPs) coordinate complex signaling events by serving as spatiotemporal modulators of cAMP-dependent protein kinase activity in cells. Although AKAPs organize a plethora of diverse pathways, their cellular roles are often elusive due to the dynamic nature of these signaling complexes. AKAPs can interact with the type I or type II PKA holoenzymes by virtue of high-affinity interactions with the R-subunits. As a means to delineate AKAP-mediated PKA signaling in cells, we sought to develop isoform-selective disruptors of AKAP signaling. Here, we report the development of conformationally constrained peptides named RI-STapled Anchoring Disruptors (RI-STADs) that target the docking/dimerization domain of the type 1 regulatory subunit of PKA. These high-affinity peptides are isoform-selective for the RI isoforms, can outcompete binding by the classical AKAP disruptor Ht31, and can selectively displace RIα, but not RIIα, from binding the dual-specific AKAP149 complex. Importantly, these peptides are cell-permeable and disrupt Type I PKA-mediated phosphorylation events in the context of live cells. Hence, RI-STAD peptides are versatile cellular tools to selectively probe anchored type I PKA signaling events.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Tienhuei G. Ho
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Eugen Franz
- Department
of Biochemistry, University of Kassel, 34132 Kassel, Germany
| | | | - F. Donelson Smith
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Heidi Hehnly
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Jessica L. Esseltine
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Laura E. Hanold
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mandi M. Murph
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | | | - John D. Scott
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | | | - Eileen J. Kennedy
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
95
|
Abstract
Epacs (exchange proteins directly activated by cAMP) act as guanine-nucleotide-exchange factors for the Ras-like small G-proteins Rap1 and Rap2, and are now recognized as incontrovertible factors leading to complex and diversified cAMP signalling pathways. Given the critical role of cAMP in the regulation of cardiac function, several studies have investigated the functional role of Epacs in the heart, providing evidence that Epacs modulate intracellular Ca2+ and are involved in several cardiac pathologies such as cardiac hypertrophy and arrhythmia. The present review summarizes recent data on the Epac signalling pathway and its role in cardiac pathophysiology. We also discuss recent advances in the discovery of novel pharmacological modulators of Epacs that were identified by high-throughput screening and their therapeutic potential for the treatment of cardiac disorders.
Collapse
|
96
|
Neurobeachin Regulates Glutamate- and GABA-Receptor Targeting to Synapses via Distinct Pathways. Mol Neurobiol 2015; 53:2112-23. [PMID: 25934101 PMCID: PMC4823379 DOI: 10.1007/s12035-015-9164-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/27/2015] [Indexed: 01/25/2023]
Abstract
Neurotransmission and synaptic strength depend on expression of post-synaptic receptors on the cell surface. Post-translational modification of receptors, trafficking to the synapse through the secretory pathway, and subsequent insertion into the synapse involves interaction of the receptor with A-kinase anchor proteins (AKAPs) and scaffolding proteins. Neurobeachin (Nbea), a brain specific AKAP, is required for synaptic surface expression of both glutamate and GABA receptors. Here, we investigated the role of Nbea-dependent targeting of postsynaptic receptors by studying Nbea interaction with synapse-associated protein 102 (SAP102/Dlg3) and protein kinase A subunit II (PKA II). A Nbea mutant lacking the PKA binding domain showed a similar distribution as wild-type Nbea in Nbea null neurons and partially restored GABA receptor surface expression. To understand the relevance of Nbea interaction with SAP102, we analysed SAP102 null mutant mice. Nbea levels were reduced by ~80 % in SAP102 null mice, but glutamatergic receptor expression was normal. A single-point mutation in the pleckstrin homology domain of Nbea (E2218R) resulted in loss of binding with SAP102. When expressed in Nbea null neurons, this mutant fully restored GABA receptor surface expression, but not glutamate receptor expression. Our results suggest that the PKA-binding domain is not essential for Nbea’s role in receptor targeting and that Nbea targets glutamate and GABA receptors to the synapse via distinct molecular pathways by interacting with specific effector proteins.
Collapse
|
97
|
Zhang J, Shapiro MS. Mechanisms and dynamics of AKAP79/150-orchestrated multi-protein signalling complexes in brain and peripheral nerve. J Physiol 2015; 594:31-7. [PMID: 25653013 DOI: 10.1113/jphysiol.2014.287698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/30/2015] [Indexed: 01/24/2023] Open
Abstract
A-kinase anchoring proteins (AKAPs) have emerged as a converging point of diverse signals to achieve spatiotemporal resolution of directed cellular regulation. With the extensive studies of AKAP79/150 in regulation of ion channel activity, the major questions to be posed centre on the mechanism and functional role of synergistic regulation of ion channels by such signalling proteins. In this review, we summarize recent discoveries of AKAP79/150-mediated modulation of voltage-gated neuronal M-type (KCNQ, Kv7) K(+) channels and L-type CaV 1 Ca(2+) channels, on both short- and longer-term time scales, highlighting the dynamics of the macromolecular signalling complexes in brain and peripheral nerve We also discuss several models for the possible mechanisms of these multi-protein assemblies and how they serve the agenda of the neurons in which they occur.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Physiology, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Mark S Shapiro
- Department of Physiology, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| |
Collapse
|
98
|
Mechanisms by which different functional states of mitochondria define yeast longevity. Int J Mol Sci 2015; 16:5528-54. [PMID: 25768339 PMCID: PMC4394491 DOI: 10.3390/ijms16035528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial functionality is vital to organismal physiology. A body of evidence supports the notion that an age-related progressive decline in mitochondrial function is a hallmark of cellular and organismal aging in evolutionarily distant eukaryotes. Studies of the baker’s yeast Saccharomyces cerevisiae, a unicellular eukaryote, have led to discoveries of genes, signaling pathways and chemical compounds that modulate longevity-defining cellular processes in eukaryotic organisms across phyla. These studies have provided deep insights into mechanistic links that exist between different traits of mitochondrial functionality and cellular aging. The molecular mechanisms underlying the essential role of mitochondria as signaling organelles in yeast aging have begun to emerge. In this review, we discuss recent progress in understanding mechanisms by which different functional states of mitochondria define yeast longevity, outline the most important unanswered questions and suggest directions for future research.
Collapse
|
99
|
Aghazadeh Y, Zirkin BR, Papadopoulos V. Pharmacological regulation of the cholesterol transport machinery in steroidogenic cells of the testis. VITAMINS AND HORMONES 2015; 98:189-227. [PMID: 25817870 DOI: 10.1016/bs.vh.2014.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reduced serum testosterone (T), or hypogonadism, is estimated to affect about 5 million American men, including both aging and young men. Low serum T has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass and bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Administering exogenous T, known as T-replacement therapy (TRT), reverses many of the symptoms of low T levels. However, this treatment can result in luteinizing hormone suppression which, in turn, can lead to reduced sperm numbers and infertility, making TRT inappropriate for men who wish to father children. Additionally, TRT may result in supraphysiologic T levels, skin irritation, and T transfer to others upon contact; and there may be increased risk of prostate cancer and cardiovascular disease, particularly in aging men. Therefore, the development of alternate therapies for treating hypogonadism would be highly desirable. To do so requires greater understanding of the series of steps leading to T formation and how they are regulated, and the identification of key steps that are amenable to pharmacological modulation so as to induce T production. We review herein our current understanding of mechanisms underlying the pharmacological induction of T formation in hypogonadal testis.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
100
|
Poppinga WJ, Heijink IH, Holtzer LJ, Skroblin P, Klussmann E, Halayko AJ, Timens W, Maarsingh H, Schmidt M. A-kinase-anchoring proteins coordinate inflammatory responses to cigarette smoke in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2015; 308:L766-75. [PMID: 25637608 DOI: 10.1152/ajplung.00301.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/29/2015] [Indexed: 01/13/2023] Open
Abstract
β2-Agonist inhibitors can relieve chronic obstructive pulmonary disease (COPD) symptoms by stimulating cyclic AMP (cAMP) signaling. A-kinase-anchoring proteins (AKAPs) compartmentalize cAMP signaling by establishing protein complexes. We previously reported that the β2-agonist fenoterol, direct activation of protein kinase A (PKA), and exchange factor directly activated by cAMP decrease cigarette smoke extract (CSE)-induced release of neutrophil attractant interleukin-8 (IL-8) from human airway smooth muscle (ASM) cells. In the present study, we tested the role of AKAPs in CSE-induced IL-8 release from ASM cells and assessed the effect of CSE on the expression levels of different AKAPs. We also studied mRNA and protein expression of AKAPs in lung tissue from patients with COPD. Our data show that CSE exposure of ASM cells decreases AKAP5 and AKAP12, both capable of interacting with β2-adrenoceptors. In lung tissue of patients with COPD, mRNA levels of AKAP5 and AKAP12 were decreased compared with lung tissue from controls. Using immunohistochemistry, we detected less AKAP5 protein in ASM of patients with COPD Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage II compared with control subjects. St-Ht31, which disrupts AKAP-PKA interactions, augmented CSE-induced IL-8 release from ASM cells and diminished its suppression by fenoterol, an effect mediated by disturbed ERK signaling. The modulatory role of AKAP-PKA interactions in the anti-inflammatory effects of fenoterol in ASM cells and the decrease in expression of AKAP5 and AKAP12 in response to cigarette smoke and in lungs of patients with COPD suggest that cigarette smoke-induced changes in AKAP5 and AKAP12 in patients with COPD may affect efficacy of pharmacotherapy.
Collapse
Affiliation(s)
- Wilfred J Poppinga
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands; Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany;
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Laura J Holtzer
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands; Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | - Enno Klussmann
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Andrew J Halayko
- University of Manitoba, Departments of Physiology and Pathophysiology, and Internal Medicine, Winnipeg, Manitoba, Canada
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Harm Maarsingh
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands; Palm Beach Atlantic University, Lloyd L. Gregory School of Pharmacy, Department of Pharmaceutical Sciences, West Palm Beach, Florida
| | - Martina Schmidt
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| |
Collapse
|