51
|
Ren XL, Han P, Meng Y. Aflatoxin B1-Induced COX-2 Expression Promotes Mitophagy and Contributes to Lipid Accumulation in Hepatocytes In Vitro and In Vivo. Int J Toxicol 2020; 39:594-604. [PMID: 32687719 DOI: 10.1177/1091581820939081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Aflatoxin B1 (AFB1) is hepatotoxic. Numerous studies have shown that mitochondria play an essential role in AFB1-induced steatosis. However, the mechanisms of AFB1-induced steatosis via mitochondria are still obscure. The present study aimed to confirm that AFB1 causes hepatocyte steatosis regulated by cyclooxygenase-2 (COX-2)-induced mitophagy, both in vivo and in vitro. METHODS Adult male C57BL/6 mice were randomly divided into control group with the same volume of peanut oil and exposure group administered 0.6 mg/kg AFB1 once in 2 days for 1 month. HepG2 and Cas9-PTGS2 cells were treated with 5 μM AFB1 for 48 hours. Then, various indicators were evaluated. RESULTS Aflatoxin B1 causes liver injury and steatosis with increased alanine aminotransferase, aspartate aminotransferase, total cholesterol, total triglyceride levels in vivo and in vitro, and elevated lipid droplets in HepG2 cells. Cyclooxygenase-2 and mitophagy pathway were induced by AFB1 in both liver tissues and cultured HepG2 cells. Further studies have shown that knockout of COX-2 with the CRISPR/Cas9 system inhibited the AFB1-induced mitophagy and steatosis in HepG2 cells. Also, the inhibition of PTEN-induced putative kinase with RNA interference attenuated the AFB1-induced steatosis. CONCLUSIONS The results of the current study suggested that AFB1 increases the expression of COX-2, which, in turn, elevates the level of mitophagy, thereby disrupting the normal mitochondrial lipid metabolism and causing steatosis. Thus, this study implies that COX-2 may be a potential target for therapy against AFB1-induced steatosis.
Collapse
Affiliation(s)
- Xin-Lu Ren
- Queen Mary College of Nanchang University, Nanchang, China
| | - Peiyu Han
- Wuxi School of Medicine, 66374Jiangnan University, Wuxi, China
| | - Yiteng Meng
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
52
|
Sheik Abdul N, Marnewick JL. Fumonisin B 1 -induced mitochondrial toxicity and hepatoprotective potential of rooibos: An update. J Appl Toxicol 2020; 40:1602-1613. [PMID: 32667064 DOI: 10.1002/jat.4036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Fumonisins are a family of potentially carcinogenic mycotoxins produced by Fusarium verticillioides. Several fumonisins have been identified with fumonisin B1 (FB1 ) being the most toxic. The canonical mechanism of FB1 toxicity is centered on its structural resemblance with sphinganine and consequent competitive inhibition of ceramide synthase and disruption of lipidomic profiles. Recent and emerging evidence at the molecular level has identified the disruption of mitochondria and excessive generation of toxic reactive oxygen species (ROS) as alternative/additional mechanisms of toxicity. The understanding of how these pathways contribute to FB1 toxicity can lead to the identification of novel, effective approaches to protecting vulnerable populations. Natural compounds with antioxidant properties seem to protect against the induced toxic effects of FB1 . Rooibos (Aspalathus linearis), endemic to South Africa, has traditionally been used as a medicinal herbal tea with strong scientific evidence supporting its anecdotal claims. The unique composition of phytochemicals and combination of metabolic activators, adaptogens and antioxidants make rooibos an attractive yet underappreciated intervention for FB1 toxicoses. In the search for a means to address FB1 toxicoses as a food safety problem in developing countries, phytomedicine and traditional knowledge systems must play an integral part. This review aims to summarize the growing body of evidence succinctly, which highlights mitochondrial dysfunction as a secondary toxic effect responsible for the FB1 -induced generation of ROS. We further propose the potential of rooibos to combat this induced toxicity based on its integrated bioactive properties, as a socio-economically viable strategy to prevent and/or repair cellular damage caused by FB1 .
Collapse
Affiliation(s)
- Naeem Sheik Abdul
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville, South Africa
| | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
53
|
Abstract
Fungi produce mycotoxins in the presence of appropriate temperature, humidity, sufficient nutrients and if the density of the mushroom mass is favorable. Although all mycotoxins are of fungal origin, all toxic compounds produced by fungi are not called mycotoxins. The interest in mycotoxins first started in the 1960s, and today the interest in mycotoxin-induced diseases has increased. To date, 400 mycotoxins have been identified and the most important species producing mycotoxins belongs to Aspergillus, Penicillium, Alternaria and Fusarium genera. Mycotoxins are classified as hepatotoxins, nephrotoxins, neurotoxins, immunotoxins etc. In this review genotoxic and also other health effects of some major mycotoxin groups like Aflatoxins, Ochratoxins, Patulin, Fumonisins, Zearalenone, Trichothecenes and Ergot alkaloids were deeply analyzed.
Collapse
|
54
|
Zavala-Franco A, Arámbula-Villa G, Ramírez-Noguera P, Salazar AM, Sordo M, Marroquín-Cardona A, Figueroa-Cárdenas JDD, Méndez-Albores A. Aflatoxin detoxification in tortillas using an infrared radiation thermo-alkaline process: Cytotoxic and genotoxic evaluation. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
55
|
Sousa MCS, Galli GM, Bottari NB, Alba DF, Leal KW, Lopes TF, Druzian L, Schetinger MRC, Gloria EM, Mendes RE, Stefani LM, Da Silva AS. Fumonisin-(Fusarium verticillioides)-contaminated feed causes hepatic oxidative stress and negatively affects broiler performance in the early stage: Does supplementation with açai flour residues (Euterpe oleracea) minimize these problems? Microb Pathog 2020; 146:104237. [PMID: 32387391 DOI: 10.1016/j.micpath.2020.104237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
Fusarium verticillioides is often responsible for contamination of poultry feed with the mycotoxin fumonisin. The aim of this study was to determine whether oxidative stress caused by intake of fumonisin-contaminated feed affects broiler performance at an early stage of development, as well as to test whether the addition of açai residue flour to contaminated feed would minimize these negative effects of redox metabolism. Birds were divided into four groups, with four repetitions of five animals each: control (TC) - birds that received basal feed; TCA treatment - basal feed supplemented with 2% açai flour; TF treatment - feed experimentally contaminated with fumonisin (10 ppm); TFA treatment - fumonisin-contaminated feed (10 ppm) and supplemented with açai fluor (2%). The experiment lasted 20 days, that is, the first 20 days of the chicks' lives. At the end of the experiment, the birds were weighed, and blood, intestine and liver samples were collected. The TCA and TFA had greater body weights and weight gain than did TF. Further, TCA and TFA had lower feed conversion than did TF. Açai flour intake (TCA and TFA) stimulated albumin synthesis and reduced serum AST activity. Nitrate/nitrite (NOx) levels were higher in serum of fumonisin-challenged (TF) birds than in groups; NOx levels were also higher in the livers of all test groups (TF, TCA and TFA) than in TC. Serum glutathione S-transferase (GST) activity was lower in fumonisin-consuming groups (TF and TFA); this was different from what occurred in the liver, that is, higher GST activity in TF and lower activity in TFA than in TC. Catalase activity (CAT) was also higher in the fumonisin-challenged groups (TF and TFA) and the groups supplemented with açai flour (TCA) than in TC. Serum reactive species (RS) and TBARS (lipid peroxidation) levels in the liver were lower in birds supplemented with açai flour and exposed to fumonisin. These data suggest that the addition of açai flour in the feed of early chickens improves animal performance and minimizes the effects of hepatic oxidative stress in birds fed fumonisin-contaminated feed.
Collapse
Affiliation(s)
- Marcela C S Sousa
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil
| | - Gabriela M Galli
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil
| | - Nathieli B Bottari
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Brazil
| | - Davi F Alba
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil
| | - Karoline W Leal
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil
| | - Thalison F Lopes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Brazil
| | - Letícia Druzian
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Brazil
| | - Maria Rosa C Schetinger
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Brazil
| | | | - Ricardo E Mendes
- Laboratório de Patologia Veterinária, Instituto Federal Catarinense, Concórdia, Brazil
| | - Lenita M Stefani
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil
| | - Aleksandro S Da Silva
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Brazil.
| |
Collapse
|
56
|
Ben Salah-Abbès J, Belgacem H, Ezzdini K, Abdel-Wahhab MA, Abbès S. Zearalenone nephrotoxicity: DNA fragmentation, apoptotic gene expression and oxidative stress protected by Lactobacillus plantarum MON03. Toxicon 2020; 175:28-35. [PMID: 31830485 DOI: 10.1016/j.toxicon.2019.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 01/17/2023]
Abstract
The present study was conducted to determine the abilities of the living Lactobacillus plantarum MON03 cells to degrade Zearalenone (ZEN) in liquid medium, and to elucidate the preventive effect in ZEN-contaminated balb/c mice showing kidney damage. The DNA fragmentation, Bcl-2 and Bax gene expression, caspase-3 activity, mRNA level of inflammation-regulating cytokines and histology of kidney tissues were examined. Female Balb/c mice were divided into four groups (10/group) and treated daily for 2 wk by oral gavage with lactic acid bacteria (L. plantarum MON03) 2 × 109 CFU/L, ~2 mg/kg only, ZEN (40 mg/kg BW) only, ZEN (40 mg/kg BW) + lactic acid bacteria (L. plantarum MON03, 2 × 109 CFU/L, ~2 mg/kg). Control group received vehicle. At the end of experiment, the kidney was collected for the determination of DNA fragmentation, Bcl-2 and Bax gene expression,caspase-3 activity, Malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) content, as well as for any alterations in expression of total antioxidant activity (TAC) and mRNA levels of inflammation-regulating cytokines (e.g., IL-10, IL-6, TNF-alpha). The results indicated that, kidney cells exposure to ZEN led to increased caspase-3 activity, MDA, and IL-10, IL-6, TNF-alpha and Bax mRNA levels, but decreased TAC content and down-regulated expression of GSH-Px and CAT and Bcl-2 mRNA. Co-treatment with ZEN plus LP suppressed the levels of DNA fragmentation; normalized kidney MDA and increased CAT levels, up-regulated expression of GSH-Px and CAT, and normalized mRNA levels of the analyzed cytokines. It's concluded that ZEN might have toxic effects in kidney. Further, it can be seen that use of LP induced protective effects against the oxidative stress and kidney toxicity of ZEN in part through adhesion (and so likely diminished bioavailability).
Collapse
Affiliation(s)
- Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Khawla Ezzdini
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia.
| |
Collapse
|
57
|
Kövesi B, Cserháti M, Erdélyi M, Zándoki E, Mézes M, Balogh K. Lack of Dose- and Time-Dependent Effects of Aflatoxin B1 on Gene Expression and Enzymes Associated with Lipid Peroxidation and the Glutathione Redox System in Chicken. Toxins (Basel) 2020; 12:toxins12020084. [PMID: 31991868 PMCID: PMC7076774 DOI: 10.3390/toxins12020084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 11/16/2022] Open
Abstract
Effects of aflatoxin B1 (AFB1) on lipid peroxidation and glutathione system were investigated in chicken liver. In a three-week feeding trial, different doses (<1.0 μg/kg (control diet), 17.0 µg (diet A1), 92.0 µg (diet A2), and 182.0 µg (diet A3) AFB1 kg/feed) were used. Markers of lipid peroxidation, conjugated dienes and trienes showed higher values in A3, while amounts of thiobarbituric acid reactive substances were increased in the A1 group at day 21. Glutathione content was lower at day 14 in Group A2. Glutathione peroxidase 4 activity was increased at days 7 and 21 in the A3 group but reduced in the A2 and A3 groups at day 14. The GPX4 gene was downregulated at day 7 in the A2 group, but overregulated at days 14 and 21, and at day 14 in the A3 group. GSS was downregulated at day 14 in the A1 group but overregulated at day 21 in A1 and A2 groups. GSR was downregulated at days 7 and 21 in all treatment groups, but on day 14, induction was observed in the A3 group. The results indicated that AFB1 did not induce dose- or time-dependent effects on the glutathione redox system and its encoding genes at the dose range used, which means that oxidative stress is not the primary effect of AFB1 toxicity.
Collapse
Affiliation(s)
- Benjámin Kövesi
- Department of Nutrition, Szent István University, H-2103 Gödöllő, Hungary; (B.K.); (M.E.); (K.B.)
| | - Mátyás Cserháti
- Department of Environmental Safety and Ecotoxicology, Szent István University, H-2103 Gödöllő, Hungary;
| | - Márta Erdélyi
- Department of Nutrition, Szent István University, H-2103 Gödöllő, Hungary; (B.K.); (M.E.); (K.B.)
| | - Erika Zándoki
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, H-7400 Kaposvár, Hungary;
| | - Miklós Mézes
- Department of Nutrition, Szent István University, H-2103 Gödöllő, Hungary; (B.K.); (M.E.); (K.B.)
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, H-7400 Kaposvár, Hungary;
- Correspondence:
| | - Krisztián Balogh
- Department of Nutrition, Szent István University, H-2103 Gödöllő, Hungary; (B.K.); (M.E.); (K.B.)
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, H-7400 Kaposvár, Hungary;
| |
Collapse
|
58
|
Xu F, Wang P, Yao Q, Shao B, Yu H, Yu K, Li Y. Lycopene alleviates AFB 1-induced immunosuppression by inhibiting oxidative stress and apoptosis in the spleen of mice. Food Funct 2020; 10:3868-3879. [PMID: 31184641 DOI: 10.1039/c8fo02300j] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lycopene (LYC) has been reported to exhibit antioxidant and immunoprotective activities, and our previous studies confirmed that LYC can alleviate multiple tissue damage induced by aflatoxin B1 (AFB1). However, it is unclear whether LYC could relieve the AFB1-induced immunosuppression. Thus, forty-eight male mice were randomly allocated and treated with LYC (5 mg kg-1) and/or AFB1 (0.75 mg kg-1) by intragastric administration for 30 days. We found that LYC alleviated AFB1-induced immunosuppression by relieving splenic structure injury and increasing the spleen weight, spleen coefficient, T lymphocyte subsets, the contents of IL-2, IFN-γ and TNF-α in serum, as well as the mRNA expression of IL-2, IFN-γ and TNF-α in spleen. Furthermore, LYC inhibited oxidative stress induced by AFB1via decreasing the levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and malondialdehyde (MDA), while enhancing the total antioxidant capacity (T-AOC) and antioxidant enzyme activities. In addition, LYC also restrained splenic apoptosis through blocking mitochondria-mediated apoptosis in AFB1 intoxicated mice, presenting as the increase of mitochondrial membrane potential, and the decrease of cytoplasmic Cyt-c protein expression, cleaved Caspase-3 protein expression, Caspase-3/9 activities and mRNA expressions, as well as balancing the mitochondrial protein and mRNA expressions of Bax and Bcl-2. These results indicate that LYC can alleviate AFB1-induced immunosuppression by inhibiting oxidative stress and mitochondria-mediated apoptosis of mice spleen.
Collapse
Affiliation(s)
- Feibo Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. and Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Peiyan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. and Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Qiucheng Yao
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524000, China
| | - Bing Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Hongyan Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. and Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Kaiyuan Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. and Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. and Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
59
|
Xu Q, Shi W, Lv P, Meng W, Mao G, Gong C, Chen Y, Wei Y, He X, Zhao J, Han H, Sun M, Xiao K. Critical role of caveolin-1 in aflatoxin B1-induced hepatotoxicity via the regulation of oxidation and autophagy. Cell Death Dis 2020; 11:6. [PMID: 31919341 PMCID: PMC6952418 DOI: 10.1038/s41419-019-2197-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 01/29/2023]
Abstract
Aflatoxin B1 (AFB1) is a potent hepatocarcinogen in humans and exposure to AFB1 is known to cause both acute and chronic hepatocellular injury. As the liver is known to be the main target organ of aflatoxin, it is important to identify the key molecules that participate in AFB1-induced hepatotoxicity and to investigate their underlying mechanisms. In this study, the critical role of caveolin-1 in AFB1-induced hepatic cell apoptosis was examined. We found a decrease in cell viability and an increase in oxidation and apoptosis in human hepatocyte L02 cells after AFB1 exposure. In addition, the intracellular expression of caveolin-1 was increased in response to AFB1 treatment. Downregulation of caveolin-1 significantly alleviated AFB1-induced apoptosis and decreased cell viability, whereas overexpression of caveolin-1 reversed these effects. Further functional analysis showed that caveolin-1 participates in AFB1-induced oxidative stress through its interaction with Nrf2, leading to the downregulation of cellular antioxidant enzymes and the promotion of oxidative stress-induced apoptosis. In addition, caveolin-1 was found to regulate AFB1-induced autophagy. This finding was supported by the effect that caveolin-1 deficiency promoted autophagy after AFB1 treatment, leading to the inhibition of apoptosis, whereas overexpression of caveolin-1 inhibited autophagy and accelerated apoptosis. Interestingly, further investigation showed that caveolin-1 participates in AFB1-induced autophagy by regulating the EGFR/PI3K-AKT/mTOR signaling pathway. Taken together, our data reveal that caveolin-1 plays a crucial role in AFB1-induced hepatic cell apoptosis via the regulation of oxidation and autophagy, which provides a potential target for the development of novel treatments to combat AFB1 hepatotoxicity.
Collapse
Affiliation(s)
- Qingqiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wenwen Shi
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Pan Lv
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wenqi Meng
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Guanchao Mao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Chuchu Gong
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yongchun Chen
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Youheng Wei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaowen He
- Origincell Technology Group Co., Ltd, 1118 Halei Road, Shanghai, 201203, China
| | - Jie Zhao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Hua Han
- School of Medicine, Tongji University, 1239 Siping Road, Shanghai, China.
| | - Mingxue Sun
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Kai Xiao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
60
|
Zhou H, Wang J, Ma L, Chen L, Guo T, Zhang Y, Dai H, Yu Y. Oxidative DNA damage and multi-organ pathologies in male mice subchronically treated with aflatoxin B 1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109697. [PMID: 31629905 DOI: 10.1016/j.ecoenv.2019.109697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Although the acute and/or chronic exposure to AFB1 has been widely investigated, the study on the toxic effects resulted from the subchronic exposure of AFB1 which is more close to the real scenario in view of the regional and seasonal characters of aflatoxin-producing strains is still limited. To understand the subchronically toxic effects of AFB1, we studied the AFB1-induced oxidative damage, reproductive impairment as well as their potential correlations and mechanisms at the molecular level. Generally, our results showed that subchronic exposure of AFB1 gave rise to pathological and oxidative damages in mice, disrupted oxidation-reduction homeostasis, activated mitochondrial apoptotic and p53-regulated signaling pathways, induced DNA and chromosomal damages and increased the rate of sperm malformation. Importantly, reproductive toxic effects were detected in AFB1-treated mice under a subchronic exposure, which was evidenced by the ascended sperm malformation. Based on our pilot study, it's speculated that the partial mechanism of reproductive toxicity may be the oxidative damages, especially DNA damages directly induced by AFB1. In short, our study demonstrated that severe damages can be caused even by a subchronic exposure as well as hinted that reproductive toxicity also should be taken into consideration when conducting risk assessments of the subchronic exposure of AFB1.
Collapse
Affiliation(s)
- Hongyuan Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science, Southwest University, Chongqing, P.R. China
| | - Jiaman Wang
- Cspc Pharmaceutical Group of the Cause of Health Research and Development, Shijiazhuang, China
| | - Liang Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science, Southwest University, Chongqing, P.R. China.
| | - Lu Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science, Southwest University, Chongqing, P.R. China
| | - Ting Guo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science, Southwest University, Chongqing, P.R. China
| | - Yuhao Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science, Southwest University, Chongqing, P.R. China
| | - Hongjie Dai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science, Southwest University, Chongqing, P.R. China
| | - Yong Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Food Science, Southwest University, Chongqing, P.R. China
| |
Collapse
|
61
|
Mehrzad J, Fazel F, Pouyamehr N, Hosseinkhani S, Dehghani H. Naturally Occurring Level of Aflatoxin B 1 Injures Human, Canine and Bovine Leukocytes Through ATP Depletion and Caspase Activation. Int J Toxicol 2019; 39:30-38. [PMID: 31868052 DOI: 10.1177/1091581819892613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aflatoxin (AF) B1 is a potent hepatotoxic, mutagenic, teratogenic mycotoxin and may cause immune suppression/dysregulation in humans and animals. Toxic effects of AFB1 on key mammalian immune cells (ie, leukocytes) needs to be mechanistically elucidated. In this study, along with the determination of AFB1's LC50 for certain leukocytes, we analyzed the effect of naturally occurring levels of AFB1 on apoptosis/necrosis of neutrophils, lymphocytes, and monocytes from healthy young humans (20- to 25-year-old male), dogs (1- to 2-year-old Persian/herd breed), and cattle (1- to 2-year-old cattle). Leukocytes were incubated for approximately 24 hours with naturally occurring levels of AFB1 (10 ng/mL). Intracellular adenosine triphosphate (ATP) depletion and caspase-3/7 activity were then determined by luciferase-dependent bioluminescence (BL). Furthermore, the necrotic leukocytes were measured using propidium iodide (PI)-related flow cytometry. A significant decrease (24%-45%, 33.2% ± 2.7%) in intracellular ATP content was observed in AFB1-treated neutrophils, lymphocytes, and monocytes in all studied mammals. Also, with such a low level (10 ng/mL) of AFB1, BL-based caspase-3/7 activity (BL intensity) in all 3 tested mammalian leukocyte lineages was noticeably increased (∼>2-fold). Flow cytometry-based PI staining (for viability assay) of the AFB1-treated leukocytes showed slightly/insignificantly more increase of necrotic (PI+) neutrophils, lymphocytes, and monocytes in human, dogs, and cattle. Even though in vitro LC50s for AFB1' (∼20,000-40,000 ng/mL) were approximately 2,000 to 4,000 times higher than background, these studies demonstrate leukocytes from human and farm/companion animals are sensitive to naturally occurring levels of AFB1. The observed in vitro ATP depletion and caspase activation in AFB1-exposed leukocytes can partially explain the underlying mechanisms of AFB1-induced immune disorders in mammals.
Collapse
Affiliation(s)
- Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Fazel
- Department of Pathobiology, Faculty of Veterinary Medicine and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nazaninzeynam Pouyamehr
- Department of Pathobiology, Faculty of Veterinary Medicine and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
62
|
Wang X, Yan X, Yang Y, Yang W, Zhang Y, Wang J, Ye D, Wu Y, Ma P, Yan B. Dibutyl phthalate-mediated oxidative stress induces splenic injury in mice and the attenuating effects of vitamin E and curcumin. Food Chem Toxicol 2019; 136:110955. [PMID: 31712109 DOI: 10.1016/j.fct.2019.110955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
Dibutyl phthalate (DBP) is a ubiquitous environmental contaminant that at certain levels can be harmful to human health. Although DBP has been widely linked to immunotoxicity, any association between DBP exposure and splenic injury remains unknown. The purpose of this study was to investigate whether DBP exposure can induce splenic injury and the antagonistic effects of two antioxidants, vitamin E (VitE) and curcumin (Cur), on DBP-induced splenic injury. The levels of ROS, GSH, T-AOC, IL-1β, TNF-α, cytochrome C, caspase-8, caspase-9 and caspase-3 in the spleen homogenate of mice were measured. Any histopathological changes in the spleen were observed using H&E and toluidine blue staining. And the morphology of mitochondria was observed using Janus Green B staining. The results indicate that exposure to 50 mg/kg DBP could cause histopathological changes of the spleen and result in inflammation and apoptosis associated with oxidative stress, which may lead to splenic injury in mice. Moreover, both VitE and Cur could antagonize the oxidative stress induced by DBP to reduce splenic injury. These findings help to expand our understanding of DBP-mediated immunotoxicity, and to show that VitE and Cur can alleviate DBP-induced splenic injury and the possible DBP-associated decline in immune function.
Collapse
Affiliation(s)
- Xianliang Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Xu Yan
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Yuyan Yang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Wenjing Yang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Yujing Zhang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Jiao Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Dan Ye
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Yang Wu
- Laboratory of Environment-immunological and Neurological Diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Ping Ma
- Laboratory of Environment-immunological and Neurological Diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Biao Yan
- Laboratory of Environment-immunological and Neurological Diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
63
|
Alsayyah A, ElMazoudy R, Al-Namshan M, Al-Jafary M, Alaqeel N. Chronic neurodegeneration by aflatoxin B1 depends on alterations of brain enzyme activity and immunoexpression of astrocyte in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109407. [PMID: 31279280 DOI: 10.1016/j.ecoenv.2019.109407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 poses the greatest risk among the mycotoxins to target-organisms particularly human, however, no studies addressed the neurotoxicity of chronic exposure of aflatoxin. The oral dose level 1/600th of LD50 for 30, 60, and 90 days was used for three aflatoxin groups, respective to negative and vehicle control groups. Activity levels of brain antioxidants viz: superoxide dismutase, catalase, glutathione, and glutathione peroxidase significantly decreased in the three experimental durations in time-dependent trend, in contrast, lipid peroxidation showed a significant increase compared to controls. Significantly, chronic-dependent increase trend was noticed in the AF60 and AF90 group for acid phosphatase (16.1%, 35.2%), alkaline phosphatase (32.1%, 50.8%), aspartate aminotransferase (38.7%, 120.0%) and lactate dehydrogenase (30.6%, 42.1%) activities, respectively. However, a significant 23.7% decrease in the brain creatine kinase activity following 90 days of AFB1administration. Chronic administration of aflatoxin also causes alterations in activities of protein carbonyl with a maximum increase (twofold) after 90 days. Further, histopathological and immunohistochemical results confirmed time-related vasodilation, necrosis and astrocytes gliosis by high glial fibrillary acidic protein immunostaining in response to AFB1. These findings infer that long-term exposure to AFB1 results in several pathophysiological circumstances in a duration-dependent manner concerning neurodegeneration especially Alzheimer's disease.
Collapse
Affiliation(s)
- Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box.2208, Dammam, 31441, Saudi Arabia
| | - Reda ElMazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Mashael Al-Namshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Meneerah Al-Jafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Nouf Alaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
64
|
Arenas-Huertero F, Zaragoza-Ojeda M, Sánchez-Alarcón J, Milić M, Šegvić Klarić M, Montiel-González JM, Valencia-Quintana R. Involvement of Ahr Pathway in Toxicity of Aflatoxins and Other Mycotoxins. Front Microbiol 2019; 10:2347. [PMID: 31681212 PMCID: PMC6798329 DOI: 10.3389/fmicb.2019.02347] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
The purpose of this review is to present information about the role of activation of aflatoxins and other mycotoxins, of the aryl hydrocarbon receptor (AhR) pathway. Aflatoxins and other mycotoxins are a diverse group of secondary metabolites that can be contaminants in a broad range of agricultural products and feeds. Some species of Aspergillus, Alternaria, Penicilium, and Fusarium are major producers of mycotoxins, some of which are toxic and carcinogenic. Several aflatoxins are planar molecules that can activate the AhR. AhR participates in the detoxification of several xenobiotic substances and activates phase I and phase II detoxification pathways. But it is important to recognize that AhR activation also affects differentiation, cell adhesion, proliferation, and immune response among others. Any examination of the effects of aflatoxins and other toxins that act as activators to AhR must consider the potential of the disruption of several cellular functions in order to extend the perception thus far about the toxic and carcinogenic effects of these toxins. There have been no Reviews of existing data between the relation of AhR and aflatoxins and this one attempts to give information precisely about this dichotomy.
Collapse
Affiliation(s)
- Francisco Arenas-Huertero
- Experimental Pathology Research Laboratory, Children’s Hospital of Mexico Federico Gómez, Mexico, Mexico
| | - Montserrat Zaragoza-Ojeda
- Experimental Pathology Research Laboratory, Children’s Hospital of Mexico Federico Gómez, Mexico, Mexico
| | - Juana Sánchez-Alarcón
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - José M. Montiel-González
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Rafael Valencia-Quintana
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
65
|
Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon 2019; 167:1-5. [DOI: 10.1016/j.toxicon.2019.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/02/2023]
|
66
|
Liu L, Chen F, Qin S, Ma J, Li L, Jin T, Zhao R. Effects of Selenium-Enriched Yeast Improved Aflatoxin B1-Induced Changes in Growth Performance, Antioxidation Capacity, IL-2 and IFN-γ Contents, and Gene Expression in Mice. Biol Trace Elem Res 2019; 191:183-188. [PMID: 30554384 DOI: 10.1007/s12011-018-1607-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/06/2018] [Indexed: 01/15/2023]
Abstract
Sixty Kunming mice were randomly assigned into three groups. Mice in a control group were fed a basal diet, while mice in AFB1 group and AFB1-Se group were fed the basal diet supplemented with 250 μg/kg AFB1 or the basal diet supplemented with 250 μg/kg AFB1 and 0.2 mg/kg selenium as selenium-enriched yeast, respectively. On day 30 of the experiment, growth performance, glutathione peroxidase (GSH-Px) activities, total antioxidant capacity (T-AOC) levels, and malondialdehyde (MDA) contents in liver, interleukin-2 (IL-2), and interferon-γ (IFN-γ) contents in serum, and cytochrome P3a11 (Cyp3a11), IL-2, IFN-γ, and GSH-Px1 mRNA levels in liver were determined. The results showed that final weights, weight gains, T-AOC levels, GSH-Px1, and IFN-γ mRNA levels in AFB1-Se group and control group were higher or significantly higher than those in AFB1 group (P < 0.05 or P < 0.01), respectively. Body length gains in AFB1 group were lower than those in the control group (P < 0.05), while there was no significant difference between the AFB1-Se and control groups (P > 0.05). IL-2 contents and liver IL-2 mRNA levels in AFB1-Se group were significantly higher than those in the AFB1 group and control group (P < 0.01), and IL-2 contents in the control group were also significantly higher than those in the AFB1 group (P < 0.01). IFN-γ contents in AFB1-Se group and AFB1 group were significantly higher than those in control group (P < 0.01), while IFN-γ contents in AFB1-Se group were significantly lower than those in AFB1 group (P < 0.01). Cyp3a11 mRNA levels in AFB1-Se group and AFB1 group were significantly higher than those in the control group (P < 0.01). The results indicated that selenium-enriched yeast could partly reduce the toxicity induced by AFB1 in mice, including improving growth performance, antioxidation capacity, IL-2 and IFN-γ contents, and enhancing IL-2, IFN-γ, and GSH-Px1 mRNA levels.
Collapse
Affiliation(s)
- Lina Liu
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Fu Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shunyi Qin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jifei Ma
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Liuan Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Tianming Jin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Ruili Zhao
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
67
|
Shen T, Miao Y, Ding C, Fan W, Liu S, Lv Y, Gao X, De Boevre M, Yan L, Okoth S, De Saeger S, Song S. Activation of the p38/MAPK pathway regulates autophagy in response to the CYPOR-dependent oxidative stress induced by zearalenone in porcine intestinal epithelial cells. Food Chem Toxicol 2019; 131:110527. [PMID: 31173817 DOI: 10.1016/j.fct.2019.05.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEA) can widely contaminate crops and agricultural products. The ingestion of ZEA-contaminated food or feed affects the integrity and functions of the intestines. In this study, we aimed to find the potential protective mechanism against ZEA ingestion. We found that ZEA induced cell death in IPEC-J2 cells. Meanwhile, the cytoprotective autophagy was activated in ZEA-treated cells. Further studies demonstrated that a p38/MAPK inhibitor down-regulated autophagy and increased cell death compared to those of the controls. Furthermore, ZEA could induce the accumulation of ROS, and eliminating ROS with NAC resulted in a decline in cell death, p38/MAPK phosphorylation, and the expression of LC3-II compared to those of ZEA-group. In addition, cytochrome P450 reductase (CYPOR) was significantly increased in ZEA-treated cells compared to that in the controls, and an inhibitor of CYPOR decreased ROS levels and mitigated cell death compared to those of the ZEA-group. More importantly, we found that blocking both p38/MAPK signalling and autophagy could enhance CYPOR expression and elevate ROS levels. Overall, our study indicated that the p38/MAPK pathway could activate protective autophagy in response to the CYPOR-dependent oxidative stress that was induced by ZEA in IPEC-J2 cells.
Collapse
Affiliation(s)
- Tongtong Shen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yufan Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanan Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
68
|
Zhao L, Feng Y, Deng J, Zhang NY, Zhang WP, Liu XL, Rajput SA, Qi DS, Sun LH. Selenium Deficiency Aggravates Aflatoxin B1-Induced Immunotoxicity in Chick Spleen by Regulating 6 Selenoprotein Genes and Redox/Inflammation/Apoptotic Signaling. J Nutr 2019; 149:894-901. [PMID: 31070734 DOI: 10.1093/jn/nxz019] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Selenium (Se) plays a protective role in aflatoxin B1 (AFB1)-induced splenic immunotoxicity in chicks. OBJECTIVE This study was designed to reveal the underlying mechanism of Se-mediated protection against AFB1-induced splenic injury in broilers. METHODS Four groups of 1-d-old Cobb male broilers (n = 5 cages/diet, 6 chicks/cage) were arranged in a 3-wk 2 × 2 factorial design trial whereby they were fed an Se-deficient, corn- and soy-based diet [base diet (BD), 36 μg Se/kg], BD plus 1.0 mg AFB1/kg, BD plus 0.3 mg Se/kg, or BD plus 1.0 mg AFB1/kg and 0.3 mg Se/kg (as 2-hydroxy-4-methylselenobutanoic acid). Serum and spleen were collected at week 3 to assay for cytokines, histology, redox status, selected inflammation- and apoptosis-related genes and proteins, and the selenogenome. RESULTS Dietary AFB1 induced growth retardation and spleen injury, decreasing (P < 0.05) body weight gain, feed intake, feed conversion efficiency, and serum interleukin-1β by 17.8-98.1% and increasing (P < 0.05) the spleen index and serum interleukin-6 by 37.6-113%. It also reduced the splenic lymphocyte number, the white pulp region, and histiocyte proliferation in Se-adequate groups. However, Se deficiency aggravated (P < 0.05) these AFB1-induced alterations by 16.2-103%. Moreover, Se deficiency decreased (P < 0.05) splenic glutathione peroxidase (GPX) activity and glutathione-S transferase and glutathione concentrations by 35.6-89.4% in AFB1-exposed groups. Furthermore, Se deficiency upregulated (P < 0.05) the apoptotic (Caspase 3 and Caspase 9) and antimicrobial (β defensin 1 and 2) genes, but downregulated (P < 0.05) antiapoptotic (B-cell lymphoma 2) and inflammatory (E3 ubiquitin-protein ligase CBL-B) genes at the mRNA and/or protein level in AFB1 supplementation groups. Additionally, Se deficiency downregulated (P < 0.05) GPX3, thioredoxin reductase 1 (TXNRD 1), GPX4, and selenoprotein (SELENO) S, and upregulated (P < 0.05) SELENOT and SELENOU in spleen in AFB1 administered groups. CONCLUSIONS Dietary Se deficiency exacerbated AFB1-induced spleen injury in chicks, partially through the regulation of oxidative stress, inflammatory and apoptotic signaling, and 6 selenoproteins.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Yue Feng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Jiang Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Ni-Ya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Wan-Po Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Li Liu
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology
| |
Collapse
|
69
|
Lingua MS, Theumer MG, Kruzynski P, Wunderlin DA, Baroni MV. Bioaccessibility of polyphenols and antioxidant properties of the white grape by simulated digestion and Caco-2 cell assays: Comparative study with its winemaking product. Food Res Int 2019; 122:496-505. [PMID: 31229105 DOI: 10.1016/j.foodres.2019.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022]
Abstract
The primary objective of this study was to assess the changes on phenolic composition and AC (antioxidant capacity) of white grape and its winemaking product, during in vitro gastrointestinal (GI) digestion. Phenolic compounds were evaluated by HPLC-MS/MS. The AC was measured by in vitro (FRAP, ABTS and DPPH) and cellular (Caco-2 cells) assays. Digestion had a reducing effect on phenolic content, being only 31% and 67% of native polyphenols from grapes and wines, respectively, potentially bioaccessible. At same polyphenol concentration, cellular AC of nondigested and digested foods was the same, indicating that changes in phenolic profile did not modify the bioactivity. Phenolic acids, in addition to quercetin, were the most resistant polyphenols to digestion, and would be the most relevant to explain the biological activity of digested foods. Results indicate that the changes occurred in the native phenolic profile of foods as a consequence of GI digestion, do not modify the bioactivity of white grapes and wines.
Collapse
Affiliation(s)
- Mariana S Lingua
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina
| | - Martín G Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula Kruzynski
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel A Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María V Baroni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
70
|
Wang F, Zuo Z, Chen K, Peng X, Fang J, Cui H, Shu G, He M, Tang L. Selenium Rescues Aflatoxin B 1-Inhibited T Cell Subsets and Cytokine Levels in Cecal Tonsil of Chickens. Biol Trace Elem Res 2019; 188:461-467. [PMID: 29923061 DOI: 10.1007/s12011-018-1412-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 01/02/2023]
Abstract
Cecal tonsil is the largest peripheral lymphoid organ of the gut-associated lymphoid tissue executing immune function. To evaluate the protective effect of selenium (Se) on the cecal tonsil of chicken exposed to aflatoxin B1 (AFB1), 144 1-day-old healthy Cobb chickens were randomly divided into four groups, and fed with basal diet (control group), 0.6 mg/kg AFB1 (AFB1 group), 0.4 mg/kg Se supplement (+Se group), and 0.6 mg/kg AFB1 + 0.4 mg/kg Se supplement (AFB1 + Se group) for 21 days, respectively. The results showed that AFB1 significantly decreased the percentages of CD3+, CD3+CD4+, CD3+CD8+ T cells, and the CD4+/CD8+ ratio, and suppressed the expressions of IL-2, IL-4, TNF-α, and IFN-γ mRNA in the cecal tonsil. However, Selenium (Se) supplied in the diets restored the percentages of T cell subsets, the CD4+/CD8+ ratio, and mRNA expressions of cytokines in the AFB1 group to be close to those in the control group, and did not exhibit obvious toxicity to the cecal tonsil. These results indicated that Se exerted protective effect against AFB1 on the functions of cecal tonsil, and also partially uncovered a new role of Se that could protect cecal tonsil of chickens from immunotoxicity of AFB1.
Collapse
Affiliation(s)
- Fengyuan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Xi Peng
- College of Life Sciences, China West Normal University, Nanchong, 637002, Sichuan, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Min He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Li Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
71
|
Zhou Y, Jin Y, Yu H, Shan A, Shen J, Zhou C, Zhao Y, Fang H, Wang X, Wang J, Fu Y, Wang R, Li R, Zhang J. Resveratrol inhibits aflatoxin B1-induced oxidative stress and apoptosis in bovine mammary epithelial cells and is involved the Nrf2 signaling pathway. Toxicon 2019; 164:10-15. [PMID: 30946912 DOI: 10.1016/j.toxicon.2019.03.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 12/22/2022]
Abstract
Aflatoxins are widely occurring food contaminants that are particularly harmful to dairy products and cows. The plant polyphenol resveratrol has been reported to have a good effect on increasing the resistance of cells toward toxins. Therefore, we measured the effects of aflatoxin B1 and resveratrol on the viability of the MAC-T cow mammary epithelial cell line. The appropriate treatment concentrations were assayed (12.81 μM aflatoxin B1 and 43.81 μM resveratrol) to verify the protective effect of resveratrol toward mammary epithelial cells. The results showed that resveratrol alleviates aflatoxin B1-induced cytotoxicity, including the increase in ROS and the decrease in mitochondrial membrane potential (MMP) and apoptosis in MAC-T cells. The expression of mRNA transcripts (including Nrf2, Keap1, NQO1, HO-1, SOD2 and HSP70) for components of the Nrf2 signaling pathway was evaluated by real-time fluorescent quantitative PCR, with resveratrol also exhibiting a good regulatory effect. Thus, resveratrol was shown to have an ameliorating effect on aflatoxin toxicity in MAC-T cells.
Collapse
Affiliation(s)
- Yongfeng Zhou
- College of Animal Science, Jilin University, Changchun, China
| | - Yongcheng Jin
- College of Animal Science, Jilin University, Changchun, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jinglin Shen
- College of Animal Science, Jilin University, Changchun, China
| | - Changhai Zhou
- College of Animal Science, Jilin University, Changchun, China
| | - Yun Zhao
- College of Animal Science, Jilin University, Changchun, China
| | - Hengtong Fang
- College of Animal Science, Jilin University, Changchun, China
| | - Xin Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Junmei Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Yurong Fu
- College of Animal Science, Jilin University, Changchun, China
| | - Rui Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Ruihua Li
- College of Animal Science, Jilin University, Changchun, China
| | - Jing Zhang
- College of Animal Science, Jilin University, Changchun, China.
| |
Collapse
|
72
|
Li H, Guan K, Zuo Z, Wang F, Peng X, Fang J, Cui H, Zhou Y, Ouyang P, Su G, Chen Z. Effects of aflatoxin B 1 on the cell cycle distribution of splenocytes in chickens. J Toxicol Pathol 2019; 32:27-36. [PMID: 30739993 PMCID: PMC6361662 DOI: 10.1293/tox.2018-0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
The purpose of the present study was to evaluate effects of aflatoxin B1 (AFB1) on the cell cycle and proliferation of splenic cells in chickens. A total of 144 one-day-old Cobb male chickens were randomly divided into 2 equal groups of 72 each and were fed on diets as follows: a control diet and a 0.6 mg/kg AFB1 diet for 21 days. The AFB1 diet reduced body weight, absolute weight and relative weight of the spleen in broilers. Histopathological lesions in AFB1 groups were characterized as slight congestion in red pulp and lymphocytic depletion in white pulp. Compared with the control group, the expression levels of ataxia-telangiectasia mutated (ATM), cyclin E1, cyclin-dependent kinases 6 (CDK6), CDK2, p53, p21 and cyclin B3 mRNA were significantly increased, while the mRNA expression levels of cyclin D1, cdc2 (CDK1), p16, p15 were significantly decreased in the AFB1 groups. Significantly decreased proliferating cell nuclear antigen (PCNA) expression and arrested G0G1 phases of the cell cycle were also seen in the AFB1 groups. In conclusion, dietary AFB1 could induce cell cycle blockage at G0G1 phase and impair the immune function of the spleen. Cyclin D1/CDK6 complex, which inhibits the activin/nodal signaling pathway, might play a significant role in the cell cycle arrest induced by AFB1.
Collapse
Affiliation(s)
- Hang Li
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Ke Guan
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Fengyuan Wang
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Xi Peng
- College of Life Sciences, China West Normal University, No.
1 Shida Road, Shunqing District, Nanchong, Sichuan 637002, P.R. China
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Yi Zhou
- Life science department, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Ya’an, Sichuan 625014, P.R. China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Gang Su
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| |
Collapse
|
73
|
Vahidi-Ferdowsi P, Mehrzad J, Malvandi A, Hosseinkhani S. Bioluminescence-based detection of astrocytes apoptosis and ATP depletion induced by biologically relevant level aflatoxin B1. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although brain accumulation of aflatoxin B1 (AFB1) suggests potential impact on brain cells, including astrocytes, there still exists a scarcity of research on this issue within the literature. This research investigates the apoptosis effect of AFB1 on primary mouse astrocytes. To this aim, a MTT colorimetric assay on astrocytes was performed to measure the toxicity/LC50 of various concentrations (0-320,000 nM) of AFB1 for 24 h. Further, the astrocytes were exposed to concentrations of 8, 16 and 32 nM of AFB1 for 24, 48 and 72 h. Concentration of intracellular ATP) and caspase-3/7 activity was then determined by luciferase-dependent bioluminescence. Furthermore, the percentage of apoptotic cells was obtained using flow cytometry (annexin V+/propidium iodide (PI)−; cytochrome c release from mitochondria, a hallmark of cell damage, was carried out by Western blot as well. MTT assay at post-exposure hours (PEH) 24 revealed that the LC50 of AFB1 was ~80,000 nM. Though at PEH 48 only 32 nM of AFB1 resulted in a significant diminished intracellular ATP content, at PEH 72 both 8 and 32 nM of AFB1 led to a significant ATP depletion in astrocytes. Similar patterns of changes were observed in bioluminescence intensity of AFB1-treated astrocytes. Flow cytometry-based annexin V and PI staining of astrocytes at PEH 24, 48 and 72 showed that 32 nM of AFB1 significantly and time dependently increased the percentage of apoptotic astrocytes (annexin V+/PI−). With 32 nM of AFB1, caspase-3/7 activity in astrocytes was increased ~4-fold at PEH 72. A remarkable release of cytochrome c was only detected in astrocytes exposed to 32 nM AFB1 for PEH 72. The results indicated that a biologically relevant level of AFB1 (32 nM) induces apoptosis in astrocytes through ATP depletion and caspases activation.
Collapse
Affiliation(s)
- P. Vahidi-Ferdowsi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, 14115-111 Tehran, Iran
| | - J. Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, 1419963111 Tehran, Iran
| | - A.M. Malvandi
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Giovanni Battista Grassi 74, 20157 Milan, Italy
| | - S. Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, 14115-111 Tehran, Iran
| |
Collapse
|
74
|
Szabó A, Szabó-Fodor J, Kachlek M, Mézes M, Balogh K, Glávits R, Ali O, Zeebone YY, Kovács M. Dose and Exposure Time-Dependent Renal and Hepatic Effects of Intraperitoneally Administered Fumonisin B₁ in Rats. Toxins (Basel) 2018; 10:E465. [PMID: 30424021 PMCID: PMC6265755 DOI: 10.3390/toxins10110465] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 01/09/2023] Open
Abstract
Male Wistar rats were treated intraperitoneally (i.p.) with fumonisin B₁ (FB₁; 0, 20, 50 and 100 mg/kg dietary dose equivalent) for 5 and 10 days (n = 24⁻24 in each setting) to gain dose- and time-dependent effects on antioxidant status and oxidative stress response, clinical chemical endpoints and liver, kidney and lung histopathology and lymphocyte damage (genotoxicity). FB₁ decreased feed intake, body weight gain and absolute liver weight, irrespective of the toxin dose. Relative kidney weight increased in the 10-day setting. Linear dose response was found for plasma aspartate aminotransferase, alanine aminotransferase, total cholesterol, urea and creatinine, and exposure time-dependence for plasma creatinine level. The latter was coupled with renal histopathological findings, tubular degeneration and necrosis and the detachment of tubular epithelial cells. The pronounced antioxidant response (reduced glutathione accretion, increasing glutathione peroxidase activity) referred to renal cortical response (5⁻10 days exposure at 50⁻100 ppm FB₁). Hepatic alterations were moderate, referring to initial phase lipid peroxidation (exposure time dependent difference of conjugated diene and triene concentrations), and slight functional disturbance (↑ total cholesterol). Lymphocyte DNA damage was moderate, supporting a mild genotoxic effect of FB₁.
Collapse
Affiliation(s)
- András Szabó
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, Guba S. u. 40., 7400 Kaposvár, Hungary.
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., 7400 Kaposvár, Hungary.
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Diagnostical, Oncoradiological, Research and Educational Center, Guba S. u. 40., 7400 Kaposvár, Hungary.
| | - Judit Szabó-Fodor
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, Guba S. u. 40., 7400 Kaposvár, Hungary.
| | - Mariam Kachlek
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., 7400 Kaposvár, Hungary.
| | - Miklós Mézes
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, Guba S. u. 40., 7400 Kaposvár, Hungary.
- Faculty of Agricultural and Environmental Sciences, Department of Nutrition, Szent István University, Páter K. u. 1., 2013 Gödöllő, Hungary.
| | - Krisztián Balogh
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, Guba S. u. 40., 7400 Kaposvár, Hungary.
- Faculty of Agricultural and Environmental Sciences, Department of Nutrition, Szent István University, Páter K. u. 1., 2013 Gödöllő, Hungary.
| | | | - Omeralfaroug Ali
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., 7400 Kaposvár, Hungary.
| | - Yarsmin Yunus Zeebone
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., 7400 Kaposvár, Hungary.
| | - Melinda Kovács
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, Guba S. u. 40., 7400 Kaposvár, Hungary.
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Guba S. 40., 7400 Kaposvár, Hungary.
| |
Collapse
|
75
|
Arumugam T, Pillay Y, Ghazi T, Nagiah S, Abdul NS, Chuturgoon AA. Fumonisin B1-induced oxidative stress triggers Nrf2-mediated antioxidant response in human hepatocellular carcinoma (HepG2) cells. Mycotoxin Res 2018; 35:99-109. [DOI: 10.1007/s12550-018-0335-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
|
76
|
Hu P, Zuo Z, Wang F, Peng X, Guan K, Li H, Fang J, Cui H, Su G, Ouyang P, Zhou Y. The Protective Role of Selenium in AFB 1-Induced Tissue Damage and Cell Cycle Arrest in Chicken's Bursa of Fabricius. Biol Trace Elem Res 2018; 185:486-496. [PMID: 29512029 DOI: 10.1007/s12011-018-1273-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/13/2018] [Indexed: 01/09/2023]
Abstract
Aflatoxin B1 (AFB1) is a naturally occurring secondary metabolites of Aspergillus flavus and Aspergillus parasiticus, and is the most toxic form of aflatoxins. Selenium (Se) with antioxidant and detoxification functions is one of the essential trace elements for human beings and animals. This study aims to evaluate the protective effects of Se on AFB1-induced tissue damage and cell cycle arrest in bursa of Fabricius (BF) of chickens. The results showed that a dietary supplement of 0.4 mg·kg-1 Se alleviated the histological lesions induced by AFB1, as demonstrated by decreasing vacuoles and nuclear debris, and relieving oxidative stress. Furthermore, flow cytometry studies showed that a Se supplement protected AFB1-induced G2M phase arrest at 7 days and G0G1 phase arrest at 14 and 21 days. Moreover, the mRNA expression results of ATM, Chk2, p53, p21, cdc25, PCNA, cyclin D1, cyclin E1, cyclin B3, CDK6, CDK2, and cdc2 indicated that Se supplement could restore these parameters to be close to those in the control group. It is concluded that a dietary supplement of 0.4 mg kg-1 Se could diminish AFB1-induced immune toxicity in chicken's BF by alleviating oxidative damage and cell cycle arrest through an ATM-Chk2-cdc25 route and the ATM-Chk2-p21 pathway.
Collapse
Affiliation(s)
- Ping Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Fengyuan Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xi Peng
- College of Life Sciences, China West Normal University, Nanchong, 637002, Sichuan, People's Republic of China.
| | - Ke Guan
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Hang Li
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Gang Su
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Ping Ouyang
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yi Zhou
- Life Science Department, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| |
Collapse
|
77
|
Zheng N, Zhang H, Li S, Wang J, Liu J, Ren H, Gao Y. Lactoferrin inhibits aflatoxin B1- and aflatoxin M1-induced cytotoxicity and DNA damage in Caco-2, HEK, Hep-G2, and SK-N-SH cells. Toxicon 2018; 150:77-85. [PMID: 29753785 DOI: 10.1016/j.toxicon.2018.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/02/2018] [Accepted: 04/22/2018] [Indexed: 11/16/2022]
Abstract
Aflatoxins, including aflatoxin B1 (AFB1) and M1 (AFM1), are natural potent carcinogens produced by Aspergillus spp. These compounds, which can often be detected in dairy foods, can cause diseases in human beings. However, the molecular mechanisms involved in cytotoxicity, as well as methods for intervention, remain largely unexplored. For example, it is unclear whether lactoferrin (LF), a major antioxidant in milk, can inhibit the cytotoxicity of AFB1 and AFM1. In this study, we assessed AFB1- and AFM1-induced cell toxicity by measuring cell viability, membrane permeability, and genotoxicity, and then investigated the ability of LF to protect cells against AFB1 and AFM1. In Caco-2, HEK, Hep-G2, and SK-N-SH cells, 4 μg/mL AFB1 or AFM1 significantly inhibited cell growth, increased the level of lactate dehydrogenase, induced genetic damage, and increased the levels of signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) (p < 0.05). AFB1 was more genotoxic than AFM1 in all four cell lines, especially in Hep-G2. In Caco-2, Hep-G2, and SK-N-SH, incubation of AF-treated cells with 1000 μg/mL LF significantly decreased cytotoxicity, oxidation level, DNA damage, and levels of ERK1/2 and JNK (p < 0.05). Our data demonstrate that AFB1 or AFM1 induced cytotoxicity and DNA damage in these four cell lines, and that LF alleviated toxicity by decreasing oxidative stress mediated by mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Huan Zhang
- Department of Food Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Songli Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jia Liu
- China National Research Institute of Food and Fermentation Industries, Beijing 100027, PR China
| | - Hui Ren
- Department of Food Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
78
|
Li Y, Wang T, Wu J, Zhang X, Xu Y, Qian Y. Multi-parameter analysis of combined hepatotoxicity induced by mycotoxin mixtures in HepG2 cells. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evaluation of combined toxicity and exploring the corresponding mechanism is of great significance in characterising the interactions of mixed mycotoxins. This study used high content analysis and multiple evaluation models to estimate combined toxic hepatotoxicity in HepG2 cells, due to aflatoxin B1, zearalenone and deoxynivalenol, which are often detected simultaneously in the same grain sample. All mycotoxins induced cell loss in HepG2 cells in a concentration dependent manner. The combined toxic effects observed by multiple evaluation models (CA, IA and CI) suggested a similar mechanism and dominant synergistic effects for binary and ternary combinations. Based on reactive oxygen species, intracellular glutathione (GSH), and mitochondrial transmembrane potential (MMP) assessment, the synergistic mechanisms may be associated with mitochondrial damage by reducing GSH and MMP.
Collapse
Affiliation(s)
- Y. Li
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122 Jiangsu, China P.R
| | - T.Q. Wang
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
| | - J. Wu
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
| | - X.L. Zhang
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
| | - Y.Y. Xu
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
| | - Y.Z. Qian
- Key Laboratory of Agro-products Safety and Quality of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, 100081 Beijing, China P.R
| |
Collapse
|
79
|
Erdélyi M, Balogh K, Pelyhe C, Kövesi B, Nakade M, Zándoki E, Mézes M, Kovács B. Changes in the regulation and activity of glutathione redox system, and lipid peroxidation processes in short-term aflatoxin B1 exposure in liver of laying hens. J Anim Physiol Anim Nutr (Berl) 2018; 102:947-952. [PMID: 29604131 DOI: 10.1111/jpn.12896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/06/2018] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to investigate the short-term (48 hr) effects of feeding aflatoxin contaminated diet (170.3 μg/kg AFB1) in 49-week-old laying hens. Liver samples were taken at 12-hr intervals. Feed intake, body weight, absolute and relative liver weight were the same in groups. However, there was no feed intake during both dark periods (between 12nd to 24th and 36th to 48th hours of the experiment); therefore, aflatoxin intake was also negligible. Markers of initial phase of lipid peroxidation, conjugated dienes and trienes did not change as effect of aflatoxin, but terminal marker, malondialdehyde content was significantly higher at 12 hr as effect of aflatoxin. No significant difference was found in reduced glutathione concentration and glutathione peroxidase activity between the groups. Expression of glutathione peroxidase 4 gene (GPX4) was significantly reduced due to aflatoxin treatment at 12 and 24 hr, but induced later, while glutathione reductase gene (GSR) expression was significantly lower at 24 hr and glutathione synthetase gene (GSS) in aflatoxin-treated group at 12 hr. The results suggest that aflatoxin induced oxygen-free radical formation, but it did not reach critical level during this short period of time to cause activation of the expression of glutathione system.
Collapse
Affiliation(s)
- M Erdélyi
- Faculty of Agricultural and Environmental Sciences, Department of Nutrition, Szent István University, Gödöllő, Hungary
| | - K Balogh
- Faculty of Agricultural and Environmental Sciences, Department of Nutrition, Szent István University, Gödöllő, Hungary.,MTA-KE Mycotoxins in the Food Chain Research Group, Kaposvár University, Kaposvár, Hungary
| | - C Pelyhe
- MTA-KE Mycotoxins in the Food Chain Research Group, Kaposvár University, Kaposvár, Hungary
| | - B Kövesi
- Faculty of Agricultural and Environmental Sciences, Department of Nutrition, Szent István University, Gödöllő, Hungary
| | - M Nakade
- Faculty of Agricultural and Environmental Sciences, Department of Nutrition, Szent István University, Gödöllő, Hungary
| | - E Zándoki
- MTA-KE Mycotoxins in the Food Chain Research Group, Kaposvár University, Kaposvár, Hungary
| | - M Mézes
- Faculty of Agricultural and Environmental Sciences, Department of Nutrition, Szent István University, Gödöllő, Hungary.,MTA-KE Mycotoxins in the Food Chain Research Group, Kaposvár University, Kaposvár, Hungary
| | - B Kovács
- Faculty of Agricultural and Environmental Sciences, Department of Aquaculture, Szent István University, Gödöllő, Hungary
| |
Collapse
|
80
|
Hosseini A, Hosseinzadeh H. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. Biomed Pharmacother 2018; 99:411-421. [DOI: 10.1016/j.biopha.2018.01.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/19/2022] Open
|
81
|
Zhang C, Dou X, Zhang L, Sun M, Zhao M, OuYang Z, Kong D, Antonio FL, Yang M. A Rapid Label-Free Fluorescent Aptasensor PicoGreen-Based Strategy for Aflatoxin B₁ Detection in Traditional Chinese Medicines. Toxins (Basel) 2018; 10:toxins10030101. [PMID: 29495577 PMCID: PMC5869389 DOI: 10.3390/toxins10030101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a very hazardous carcinogen, readily contaminating foodstuffs and traditional Chinese medicines (TCMs) that has inspired increasing health concerns due to dietary exposure. Colloidal nanocrystals have been proposed as optical labels for aptasensor assembly, but these typically require tedious multistep conjugation and suffer from unsatisfactory robustness when used for complex matrices. In the present study, we report a rapid and sensitive method for screening for trace AFB1 levels in TCMs using a label-free fluorescent aptasensor PicoGreen dye-based strategy. Using PicoGreen to selectively measure complementary double-stranded DNA, fluorescence enhancement due to dsDNA is ‘turned off’ in the presence of AFB1 due binding of aptamer target over complementary sequence. Self-assembly of a label-free fluorescent aptasensor based on AFB1 aptamer and PicoGreen dye was performed. Due to competition between the complementary sequence and AFB1 target, this rapid method was capable of highly sensitive and selective screening for AFB1 in five types of TCMs. This proposed approach had a limit of detection as low as 0.1 μg·L−1 and good linearity with a range of 0.1–10 μg·L−1 (0.1–10 ppb). Among the 20 samples tested, 6 batches were found to be contaminated with AFB1 using this method, which was confirmed using sophisticated liquid chromatography-electrospray ionization-tandem mass spectrometry/mass spectrometry analysis. The results of this study indicate the developed method has the potential to be a simple, quick, and sensitive tool for detecting AFB1 in TCMs.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (C.Z.); (X.D.); (L.Z.); (M.S.); (D.K.)
- School of Pharmacy JiangSu University, Zhenjiang 212013, China; (M.Z.); (Z.O.Y.)
| | - Xiaowen Dou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (C.Z.); (X.D.); (L.Z.); (M.S.); (D.K.)
| | - Lei Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (C.Z.); (X.D.); (L.Z.); (M.S.); (D.K.)
| | - Meifeng Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (C.Z.); (X.D.); (L.Z.); (M.S.); (D.K.)
- School of Pharmacy JiangSu University, Zhenjiang 212013, China; (M.Z.); (Z.O.Y.)
| | - Ming Zhao
- School of Pharmacy JiangSu University, Zhenjiang 212013, China; (M.Z.); (Z.O.Y.)
| | - Zhen OuYang
- School of Pharmacy JiangSu University, Zhenjiang 212013, China; (M.Z.); (Z.O.Y.)
| | - Dandan Kong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (C.Z.); (X.D.); (L.Z.); (M.S.); (D.K.)
| | - F. Logrieco Antonio
- National Research Council of Italy, CNR-ISPA, Via G. Amendola, 122/O, I-70126 Bari, Italy;
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (C.Z.); (X.D.); (L.Z.); (M.S.); (D.K.)
- Correspondence: .; Tel.: +86-010-5783-3277
| |
Collapse
|
82
|
Yuan S, Wu B, Yu Z, Fang J, Liang N, Zhou M, Huang C, Peng X. The mitochondrial and endoplasmic reticulum pathways involved in the apoptosis of bursa of Fabricius cells in broilers exposed to dietary aflatoxin B1. Oncotarget 2018; 7:65295-65306. [PMID: 27542244 PMCID: PMC5323156 DOI: 10.18632/oncotarget.11321] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1), a toxic metabolite produced by some fungi, exerts well-known hepatocarcinogenic and immunosuppressive effects, the latter can increase the apoptotic immune cells in vitro. However, it is largely unknown that which signaling pathways contribute to excessive apoptosis of immune cells which induced by AFB1. In this study, we investigated the roles of the mitochondria, endoplasmic reticulum (ER) and death receptor activated apoptotic pathways in the bursal of Fabricius (BF) cells in the broilers exposed to AFB1 diet. We found that (1) AFB1 diet induced morphological changes in the BF. (2) FCM and TUNEL methods showed that excessive apoptosis could be resulted from AFB1 intake. (3) AFB1-induced apoptosis of bursal cells involved mitochondrial pathway (increase of Bax, Bak, cytC, caspase-9, Apaf-1, caspase-3 and decrease of Bcl-2 and Bcl-xL) and ER pathway (increase of Grp78/Bip, Grp94 and CaM). (4) Oxidative stress was confirmed in the BF of chicken fed on AFB1 diet. Overall, this work is the first to demonstrate that the activation of mitochondria and ER apoptosis pathways can lead to excessive apoptosis in BF cells, and oxidative stress is a crucial driver during AFB1 exposure.
Collapse
Affiliation(s)
- Shibin Yuan
- Department of Wild Animal Disease, College of Life Science, China West Normal University, Nanchong 637009, Sichuan, The People's Republic of China.,Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong 637009, Sichuan, The People's Republic of China
| | - Bangyuan Wu
- Department of Wild Animal Disease, College of Life Science, China West Normal University, Nanchong 637009, Sichuan, The People's Republic of China.,Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong 637009, Sichuan, The People's Republic of China
| | - Zhengqiang Yu
- Department of Animal Pathlogy, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, Sichuan, The People's Republic of China
| | - Jing Fang
- Department of Animal Pathlogy, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, Sichuan, The People's Republic of China
| | - Na Liang
- Department of Animal Pathlogy, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, Sichuan, The People's Republic of China
| | - Mingqiang Zhou
- Department of Wild Animal Disease, College of Life Science, China West Normal University, Nanchong 637009, Sichuan, The People's Republic of China.,Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong 637009, Sichuan, The People's Republic of China
| | - Cheng Huang
- Department of Wild Animal Disease, College of Life Science, China West Normal University, Nanchong 637009, Sichuan, The People's Republic of China.,Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong 637009, Sichuan, The People's Republic of China
| | - Xi Peng
- Department of Wild Animal Disease, College of Life Science, China West Normal University, Nanchong 637009, Sichuan, The People's Republic of China.,Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong 637009, Sichuan, The People's Republic of China
| |
Collapse
|
83
|
Abstract
Mycotoxins are the most common contaminants of food and feed worldwide and are considered an important risk factor for human and animal health. Oxidative stress occurs in cells when the concentration of reactive oxygen species exceeds the cell’s antioxidant capacity. Oxidative stress causes DNA damage, enhances lipid peroxidation, protein damage and cell death. This review addresses the toxicity of the major mycotoxins, especially aflatoxin B1, deoxynivalenol, nivalenol, T-2 toxin, fumonisin B1, ochratoxin, patulin and zearalenone, in relation to oxidative stress. It summarises the data associated with oxidative stress as a plausible mechanism for mycotoxin-induced toxicity. Given the contamination caused by mycotoxins worldwide, the protective effects of a variety of natural compounds due to their antioxidant capacities have been evaluated. We review data on the ability of vitamins, flavonoids, crocin, curcumin, green tea, lycopene, phytic acid, L-carnitine, melatonin, minerals and mixtures of anti-oxidants to mitigate the toxic effect of mycotoxins associated with oxidative stress.
Collapse
Affiliation(s)
- E.O. da Silva
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - A.P.F.L. Bracarense
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - I.P. Oswald
- Université de Toulouse, Toxalim, Research Center in Food Toxicology, INRA, UMR 1331 ENVT, INP-PURPAN, 31076 Toulouse, France
| |
Collapse
|
84
|
Fan W, Lv Y, Ren S, Shao M, Shen T, Huang K, Zhou J, Yan L, Song S. Zearalenone (ZEA)-induced intestinal inflammation is mediated by the NLRP3 inflammasome. CHEMOSPHERE 2018; 190:272-279. [PMID: 28992480 DOI: 10.1016/j.chemosphere.2017.09.145] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
To ascertain whether zearalenone (ZEA) could induce intestinal inflammation and investigate its possible mechanism, we investigated inflammatory cytokine release and the activation of the NLRP3 inflammasome after ZEA treatment both in vitro or in vivo. First, intestinal porcine enterocyte cell line (IPEC-J2) cells and mouse peritoneal macrophages were treated with ZEA to detect NLRP3 inflammasome activation, and the role of reactive oxygen species (ROS) in ZEA-induced inflammation was investigated. Then, Balb/c mice were fed a gavage of ZEA, and the disease activity indices (DAIs) and histological analysis were used to assess intestinal inflammation. Our study showed that the mRNA expression of NLRP3 inflammasome, pro-interleukin-1β (pro-IL-1β), and pro-interleukin-18 (pro-IL-18) was up-regulated 0.5- to 1-fold and that the release of IL-1β and IL-18 increased from 48 pg mL-1 to 55 pg mL-1 and 110 pg mL-1 to 145 pg mL-1, respectively. However, ROS inhibitor N-acetyl-l-cysteine (NAC) reduced IL-1β and IL-18 release to 45 pg mL-1 and 108 pg mL-1. Moreover, the same phenomenon was observed in intestinal tissues of ZEA-treated mice. In addition, clinical parameters of treated mice showed stools became loose and contained mucous. In addition, the presence of gross blood stool was found in the last 2 d. Histological analysis showed obvious inflammatory cell infiltration and tissue damage in the colon. These findings uncovered a possible mechanism of intestinal mucosal innate immunity in response to mycotoxin ZEA that ZEA could activate the ROS-mediated NLRP3 inflammasome and, in turn, contribute to the caspase-1-dependent activation of the inflammatory cytokines IL-1β and IL-18.
Collapse
Affiliation(s)
- Wentao Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yanan Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shuai Ren
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Manyu Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Tongtong Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jiyong Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Liping Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Suquan Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
85
|
Zhang W, Zhang S, Zhang M, Yang L, Cheng B, Li J, Shan A. Individual and combined effects of Fusarium toxins on apoptosis in PK15 cells and the protective role of N -acetylcysteine. Food Chem Toxicol 2018; 111:27-43. [DOI: 10.1016/j.fct.2017.10.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 11/27/2022]
|
86
|
The mitochondrial and death receptor pathways involved in the thymocytes apoptosis induced by aflatoxin B1. Oncotarget 2017; 7:12222-34. [PMID: 26933817 PMCID: PMC4914280 DOI: 10.18632/oncotarget.7731] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/05/2016] [Indexed: 01/05/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a potent immunosuppressive agent in endotherms, which can be related to the up-regulated apoptosis of immune organs. In this study, we investigated the roles of the mitochondrial, death receptor, and endoplasmic reticulum pathways in Aflatoxin B1 induced thymocytes apoptosis. Chickens were fed an aflatoxin B1 containing diet (0.6 mg/kg AFB1) for 3 weeks. Our results showed that (1) AFB1 diet induced the decrease of T-cell subsets, morphological changes, and excessive apoptosis of thymus. (2) The excessive apoptosis involved the mitochondrial pathway (up-regulation of Bax, Bak, cytC and down-regulation of Bcl-2 and Bcl-xL) and death receptor pathway (up-regulation of FasL, Fas and FADD). (3) Oxidative stress, an apoptosis inducer, was confirmed in the thymus. In conclusion, this is the first study to demonstrate that mitochondrial and death receptor pathways involved in AFB1 induced thymocytes apoptosis in broilers.
Collapse
|
87
|
Khan RB, Phulukdaree A, Chuturgoon AA. Fumonisin B 1 induces oxidative stress in oesophageal (SNO) cancer cells. Toxicon 2017; 141:104-111. [PMID: 29233736 DOI: 10.1016/j.toxicon.2017.12.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
Abstract
Fumonisin B1 (FB1) is a ubiquitous contaminant of maize that is epidemiologically linked to oesophageal cancer (OC) in South Africa. FB1-induced oxidative stress mediates toxicity in animals and human cell lines, but the effects relating to OC are limited. Given the species-specific effects of FB1, this study investigated FB1-mediated toxicity and oxidative stress in spindle-shaped N-cadherin (+) CD45 (-) osteoblastic (SNO) cells. Following exposure to FB1 (0-20 μM) for 48 h, mitochondrial membrane potential and intracellular reactive oxygen species (iROS) were measured (flow cytometry). Malondialdehyde concentration (lipid peroxidation) was determined spectrophotometrically. ATP and reduced glutathione (GSH) concentrations were quantified using luminometry, gene expression of SOD2 by qPCR and protein expression of SOD2, GPx1, Nrf2 and HSP70 by western blotting. Mitochondrial depolarization increased at 10 μM and 20 μM FB1, with a concomitant reduction in ATP, iROS and GSH at both concentrations. Lipid peroxidation increased at 10 μM FB1 exposure. While transcript levels of SOD2 were significantly increased, protein levels decreased. Protein expression of GPx1, Nrf2 and HSP70 increased. In contrast to the 10 μM and 20 μM FB1 treatment, mitochondrial depolarization decreased at 1.25 μM FB1. Intracellular ROS and ATP were decreased and lipid peroxidation increased. Decreased GSH was accompanied by a decrease in GPx1 protein levels, and increased HSP70 and Nrf2. SOD2 expression and protein levels were significantly increased. Overall these results indicate that FB1 caused increased ROS that were counteracted by engaging the antioxidant defense. Furthermore, the peculiar response at 1.25 μM FB1 is noteworthy, as compared to the other two concentrations tested.
Collapse
Affiliation(s)
- René B Khan
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Alisa Phulukdaree
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
88
|
Eraslan G, Sarıca ZS, Bayram LÇ, Tekeli MY, Kanbur M, Karabacak M. The effects of diosmin on aflatoxin-induced liver and kidney damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27931-27941. [PMID: 28988357 DOI: 10.1007/s11356-017-0232-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Aflatoxin is among the natural toxins that cause serious side effects on living things. Diosmin is also one of the compounds with broad pharmacological effects. In this study, the effects on the oxidant/antioxidant system of 50 mg/kg body weight/day dose of diosmin, aflatoxin (500 μg/kg body weight/day), and combined aflatoxin (500 μg/kg body weight/day) plus diosmin (50 mg/kg body weight/day) given to the stomach via catheter female adult Wistar Albino rats is examined. Forty rats were used in the experiment, and these animals were randomly allocated to four equal groups. The test phase lasted 21 days, and blood samples and tissue (liver and kidney) samples were taken after this period was over. Some biochemical parameters (glucose, triglyceride, cholesterol, blood urea nitrogen, creatinine, uric acid, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total protein, albumin) and levels of malondialdehyde, nitric oxide, and 4-hydroxynonenal and activities of superoxide dismutase, catalase, and glutathione peroxidase were analyzed in the samples. The aflatoxin administered over the period indicated a significant increase in levels of malondialdehyde (MDA), nitric oxide (NO), and 4-hydroxynonenal (4-HNE) in all tissues and blood samples. Therewithal, the activity of antioxidant enzymes showed a change in the decreasing direction. Biochemical parameters of the group in which aflatoxin were administered alone changed unfavorably. Parallel effects were also observed in the histopathological findings of this group. The results showed that aflatoxin changed antioxidant/oxidant balance in favor of oxidant and eventually led to lipid peroxidation. Diosmin administration to aflatoxin-treated animals resulted in positive changes in antioxidant enzyme activities while the levels of MDA, NO, and 4-HNE were reduced in all tissues and blood samples examined. Diosmin alleviates the oxidative stress caused by aflatoxin. Similar improvement was observed in biochemical parameters of this group as well as in liver and kidney histopathology. No significant change was observed in the group treated with diosmin alone in terms of the parameters examined and histologic findings. As a result, diosmin may be included in compounds that can be used as a therapeutic and prophylactic agent in the event of the formation of aflatoxin exposure and poisoning in animals.
Collapse
Affiliation(s)
- Gökhan Eraslan
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey.
| | - Zeynep Soyer Sarıca
- Experimental Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Latife Çakır Bayram
- Faculty of Veterinary Medicine, Department of Pathology, Erciyes University, Kayseri, Turkey
| | - Muhammet Yasin Tekeli
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey
| | - Murat Kanbur
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey
| | - Mürsel Karabacak
- Safiye Çıkrıkçıoğlu Vocational Collage, Department of Animal Health, Erciyes University, Kayseri, Turkey
| |
Collapse
|
89
|
Xu F, Yu K, Yu H, Wang P, Song M, Xiu C, Li Y. Lycopene relieves AFB 1 -induced liver injury through enhancing hepatic antioxidation and detoxification potential with Nrf2 activation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
90
|
Deepthi BV, Somashekaraiah R, Poornachandra Rao K, Deepa N, Dharanesha NK, Girish KS, Sreenivasa MY. Lactobacillus plantarum MYS6 Ameliorates Fumonisin B1-Induced Hepatorenal Damage in Broilers. Front Microbiol 2017; 8:2317. [PMID: 29213265 PMCID: PMC5702784 DOI: 10.3389/fmicb.2017.02317] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/09/2017] [Indexed: 11/23/2022] Open
Abstract
Fumonisin B1 (FB1), a mycotoxin produced by Fusarium species is a predominant Group 2B carcinogen occurring in maize and maize-based poultry feeds. It is shown to be nephrotoxic, hepatotoxic, neurotoxic, and immunosuppressing in animals. In this study, we report the ameliorating effects of a probiotic strain, Lactobacillus plantarum MYS6 on FB1-induced toxicity and oxidative damage in broilers. A 6-week dietary experiment consisting of 48 broilers was performed in six treatment groups. Probiotic treatment (109 cells/mL) involved pre-colonization of broilers with L. plantarum MYS6 while co-administration treatment involved supplementation of probiotic and FB1-contaminated diet (200 mg/Kg feed) simultaneously. At the end of the treatment period, growth performance, hematology, serum biochemistry, and markers of oxidative stress in serum and tissue homogenates were evaluated in all the broilers. The histopathological changes in hepatic and renal tissues were further studied. The results demonstrated that administration of L. plantarum MYS6 efficiently improved the feed intake, body weight and feed conversion ratio in broilers. It mitigated the altered levels of hematological indices such as complete blood count, hemoglobin, and hematocrit. Serum parameters such as serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, creatinine, cholesterol, triglycerides, and albumin were significantly restored after administering the probiotic in FB1-intoxicated broilers. Additionally, L. plantarum MYS6 alleviated the levels of oxidative stress markers in serum and tissue homogenate of liver. The histopathological data of liver and kidney further substantiated the overall protection offered by L. plantarum MYS6 against FB1-induced cellular toxicity and organ damage in broilers. Our results indicated that co-administration of probiotic along with the toxin had better effect in detoxification compared to its pre-colonization in broilers. Collectively, our study signifies the protective role of L. plantarum MYS6 in ameliorating the FB1-induced toxicity in the vital organs and subsequent oxidative stress in broilers. The probiotic L. plantarum MYS6 can further be formulated into a functional feed owing to its anti-fumonisin attributes and role in mitigating FB1-induced hepatorenal damage.
Collapse
Affiliation(s)
- B V Deepthi
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | | | | | - N Deepa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | - N K Dharanesha
- Animal Disease Diagnostic Laboratory and Information Centre, Institute of Animal Health and Veterinary Biologicals, Karnataka Veterinary, Animal and Fisheries Sciences University (KVAFSU), Mysuru, India
| | - K S Girish
- Department of Studies and Research in Biochemistry, Tumkur Universty, Tumkur, India
| | - M Y Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| |
Collapse
|
91
|
Weng MW, Lee HW, Choi B, Wang HT, Hu Y, Mehta M, Desai D, Amin S, Zheng Y, Tang MS. AFB1 hepatocarcinogenesis is via lipid peroxidation that inhibits DNA repair, sensitizes mutation susceptibility and induces aldehyde-DNA adducts at p53 mutational hotspot codon 249. Oncotarget 2017; 8:18213-18226. [PMID: 28212554 PMCID: PMC5392321 DOI: 10.18632/oncotarget.15313] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/01/2016] [Indexed: 12/27/2022] Open
Abstract
Aflatoxin B1 (AFB1) contamination in the food chain is a major cause of hepatocellular carcinoma (HCC). More than 60% of AFB1 related HCC carry p53 codon 249 mutations but the causal mechanism remains unclear. We found that 1) AFB1 induces two types of DNA adducts in human hepatocytes, AFB1-8,9-epoxide-deoxyguanosine (AFB1-E-dG) induced by AFB1-E and cyclic α-methyl-γ-hydroxy-1,N2-propano-dG (meth-OH-PdG) induced by lipid peroxidation generated acetaldehyde (Acet) and crotonaldehyde (Cro); 2) the level of meth-OH-PdG is >30 fold higher than the level of AFB1-E-dG; 3) AFB1, Acet, and Cro, but not AFB1-E, preferentially induce DNA damage at codon 249; 4) methylation at -CpG- sites enhances meth-OH-PdG formation at codon 249; and 5) repair of meth-OH-PdG at codon 249 is poor. AFB1, Acet, and Cro can also inhibit DNA repair and enhance hepatocyte mutational sensitivity. We propose that AFB1-induced lipid peroxidation generated aldehydes contribute greatly to hepatocarcinogenesis and that sequence specificity of meth-OH-PdG formation and repair shape the codon 249 mutational hotspot.
Collapse
Affiliation(s)
- Mao-Wen Weng
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Hyun-Wook Lee
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Bongkun Choi
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Hsiang-Tsui Wang
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Yu Hu
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Manju Mehta
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Dhimant Desai
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Shantu Amin
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Yi Zheng
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Moon-Shong Tang
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| |
Collapse
|
92
|
Lee HJ, Ryu D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-occurrence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7034-7051. [PMID: 27976878 DOI: 10.1021/acs.jafc.6b04847] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cereal grains and their processed food products are frequently contaminated with mycotoxins. Among many, five major mycotoxins of aflatoxins, ochratoxins, fumonisins, deoxynivalenol, and zearalenone are of significant public health concern as they can cause adverse effects in humans. Being airborne or soilborne, the cosmopolitan nature of mycotoxigenic fungi contribute to the worldwide occurrence of mycotoxins. On the basis of the global occurrence data reported during the past 10 years, the incidences and maximum levels in raw cereal grains were 55% and 1642 μg/kg for aflatoxins, 29% and 1164 μg/kg for ochratoxin A, 61% and 71,121 μg/kg for fumonisins, 58% and 41,157 μg/kg, for deoxynivalenol, and 46% and 3049 μg/kg for zearalenone. The concentrations of mycotoxins tend to be lower in processed food products; the incidences varied depending on the individual mycotoxins, possibly due to the varying stability during processing and distribution of mycotoxins. It should be noted that more than one mycotoxin, produced by a single or several fungal species, may occur in various combinations in a given sample or food. Most studies reported additive or synergistic effects, suggesting that these mixtures may pose a significant threat to public health, particularly to infants and young children. Therefore, information on the co-occurrence of mycotoxins and their interactive toxicity is summarized in this paper.
Collapse
Affiliation(s)
- Hyun Jung Lee
- School of Food Science, University of Idaho , 875 Perimeter Drive MS 2312, Moscow, Idaho 83844, United States
| | - Dojin Ryu
- School of Food Science, University of Idaho , 875 Perimeter Drive MS 2312, Moscow, Idaho 83844, United States
| |
Collapse
|
93
|
El-Nekeety AA, Salman AS, Hathout AS, Sabry BA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Evaluation of the bioactive extract of actinomyces isolated from the Egyptian environment against aflatoxin B 1-induce cytotoxicity, genotoxicity and oxidative stress in the liver of rats. Food Chem Toxicol 2017; 105:241-255. [PMID: 28442411 DOI: 10.1016/j.fct.2017.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 01/15/2023]
Abstract
This study aimed to determine the bioactive compounds of actinomyces (ACT) isolated from the Egyptian environment (D-EGY) and to evaluate their protective activity against AFB1 in female Sprague-Dawley rats. Six groups of animals were treated orally for 3 weeks included: C, the control group, T1, AFB1-treated group (80 μg/kg b.w), T2 and T3, the groups received ACT extract at low (25 mg/kg b.w) or high (50 mg/kg b.w) doses, T4 and T5, the groups received AFB1 plus the low or high dose of ACT extract. Blood, bone marrow and tissue samples were collected for different analyses and histological examination. The results revealed the identification of 40 components, representing 99.98%. Treatment with AFB1 disturbs liver function parameters, oxidative stress markers, antioxidant gene expressions, DNA fragmentation and induced severe histological changes. ACT extract at the low or high doses did not induce significant changes in all the tested parameters or histological picture of the liver. Moreover, ACT extract succeeded to induce a significant protection against the toxicity of AFB1. It could be concluded that the bioactive compounds in ACT are promise candidate for the development of food additive or drugs for the protection and treatment of liver disorders in the endemic area.
Collapse
Affiliation(s)
- Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Asmaa S Salman
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Amal S Hathout
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Bassem A Sabry
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
94
|
Yin S, Liu X, Fan L, Hu H. Mechanisms of cell death induction by food-borne mycotoxins. Crit Rev Food Sci Nutr 2017; 58:1406-1417. [DOI: 10.1080/10408398.2016.1260526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| | - Xiaoyi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| |
Collapse
|
95
|
Mary VS, Arias SL, Otaiza SN, Velez PA, Rubinstein HR, Theumer MG. The aflatoxin B 1 -fumonisin B 1 toxicity in BRL-3A hepatocytes is associated to induction of cytochrome P450 activity and arachidonic acid metabolism. ENVIRONMENTAL TOXICOLOGY 2017; 32:1711-1724. [PMID: 28181396 DOI: 10.1002/tox.22395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Human oral exposure to aflatoxin B1 (AFB1 ) and fumonisin B1 (FB1 ) is associated with increased hepatocellular carcinoma. Although evidence suggested interactive AFB1 -FB1 hepatotoxicity, the underlying mechanisms remain mostly unidentified. This work was aimed at evaluating the possible AFB1 -FB1 interplay to induce genetic and cell cycle toxicities in BRL-3A rat hepatocytes, reactive oxygen species (ROS) involvement, and the AFB1 metabolizing pathways cytochrome P450 (CYP) and arachidonic acid (ArAc) metabolism as ROS contributors. Flow cytometry of stained BRL-3A hepatocytes was used to study the cell cycle (propidium iodide), ROS intracellular production (DCFH-DA, HE, DAF-2 DA), and phospholipase A activity (staining with bis-BODIPY FL C11-PC). The CYP1A activity was assessed by the 7-ethoxyresorufin-O-deethylase (EROD) assay. Despite a 48-h exposure to FB1 (30 μM) not being genotoxic, the AFB1 (20 μM)-induced micronucleus frequency was overcome by the AFB1 -FB1 mixture (MIX), presumably showing toxin interaction. The mycotoxins blocked G1/S-phase, but only MIX caused cell death. Overall, the oxidative stress led these alterations as the pretreatment with N-acetyl-l-cysteine reduced such toxic effects. While AFB1 had a major input to the MIX pro-oxidant activity, with CYP and ArAc metabolism being ROS contributors, these pathways were not involved in the FB1 -elicited weak oxidative stress. The MIX-induced micronucleus frequency in N-acetyl-l-cysteine pretreated cells was greater than that caused by AFB1 without antioxidants, suggesting enhanced AFB1 direct genotoxicity probably owing to the higher CYP activity and ArAc metabolism found in MIX. The metabolic pathways modulation by AFB1 -FB1 mixtures could raise its hepatocarcinogenic properties.
Collapse
Affiliation(s)
- Verónica S Mary
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Córdoba, X5000HUA, Argentina
| | - Silvina L Arias
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Córdoba, X5000HUA, Argentina
| | - Santiago N Otaiza
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Córdoba, X5000HUA, Argentina
| | - Pilar A Velez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Córdoba, X5000HUA, Argentina
| | - Héctor R Rubinstein
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Córdoba, X5000HUA, Argentina
| | - Martín G Theumer
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Córdoba, X5000HUA, Argentina
| |
Collapse
|
96
|
Adhikari M, Negi B, Kaushik N, Adhikari A, Al-Khedhairy AA, Kaushik NK, Choi EH. T-2 mycotoxin: toxicological effects and decontamination strategies. Oncotarget 2017; 8:33933-33952. [PMID: 28430618 PMCID: PMC5464924 DOI: 10.18632/oncotarget.15422] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/08/2017] [Indexed: 01/19/2023] Open
Abstract
Mycotoxins are highly diverse secondary metabolites produced in nature by a wide variety of fungus which causes food contamination, resulting in mycotoxicosis in animals and humans. In particular, trichothecenes mycotoxin produced by genus fusarium is agriculturally more important worldwide due to the potential health hazards they pose. It is mainly metabolized and eliminated after ingestion, yielding more than 20 metabolites with the hydroxy trichothecenes-2 toxin being the major metabolite. Trichothecene is hazardously intoxicating due to their additional potential to be topically absorbed, and their metabolites affect the gastrointestinal tract, skin, kidney, liver, and immune and hematopoietic progenitor cellular systems. Sensitivity to this type of toxin varying from dairy cattle to pigs, with the most sensitive endpoints being neural, reproductive, immunological and hematological effects. The mechanism of action mainly consists of the inhibition of protein synthesis and oxidative damage to cells followed by the disruption of nucleic acid synthesis and ensuing apoptosis. In this review, the possible hazards, historical significance, toxicokinetics, and the genotoxic and cytotoxic effects along with regulatory guidelines and recommendations pertaining to the trichothecene mycotoxin are discussed. Furthermore, various techniques utilized for toxin determination, pathophysiology, prophylaxis and treatment using herbal antioxidant compounds and regulatory guidelines and recommendations are reviewed. The prospects of the trichothecene as potential hazardous agents, decontamination strategies and future perspectives along with plausible therapeutic uses are comprehensively described.
Collapse
Affiliation(s)
- Manish Adhikari
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| | - Bhawana Negi
- Department of Molecular Biology and Genetic Engineering, G B Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Neha Kaushik
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Anupriya Adhikari
- Department of Chemistry, Kanya Gurukul Campus, Gurukul Kangri Vishwavidyalaya, Haridwar, India
| | | | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
97
|
Eftekhari A, Ahmadian E, Panahi-Azar V, Hosseini H, Tabibiazar M, Maleki Dizaj S. Hepatoprotective and free radical scavenging actions of quercetin nanoparticles on aflatoxin B1-induced liver damage: in vitro/in vivo studies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:411-420. [PMID: 28423950 DOI: 10.1080/21691401.2017.1315427] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The objective of present study was in vitro and in vivo evaluation of hepatoprotective and antioxidant activity of Quercetin nanoparticles (Q NPs) against toxicity induced by aflatoxin B1. The Q NPs were prepared using precipitation method. Hepatocytes were prepared by the method of collagenase enzyme perfusion via portal vein. The NPs were characterized in terms of size and morphology using dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The level of parameters, such as cell death, ROS formation, lipid peroxidation, mitochondrial membrane potential and cellular glutathione (GSH) content, in the aflatoxin B1-treated and non-treated hepatocytes were determined and the mentioned markers were assessed in the presence of Q NPs. The prepared NPs showed particle size of 52.70 nm with polydispersity index (PDI) of 0.18. In contrast to free Q, the administration of Q NPs more efficiently decreased the rate of ROS formation, lipid peroxidation and improved cell viability, mitochondrial membrane potential and glutathione level and showed a significant hepatoprotective efiect by reducing levels of aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase. It is suggested that the Q NPs is a promising candidate for drug delivery, which enhances the hepatoprotective effect of Q against the cytotoxic effects of aflatoxin B1.
Collapse
Affiliation(s)
- Aziz Eftekhari
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Pharmacology and Toxicology Department , School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Elham Ahmadian
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Pharmacology and Toxicology Department , School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran.,c Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Vahid Panahi-Azar
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hedayat Hosseini
- d Department of Food Science and Technology , National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mahnaz Tabibiazar
- e Department of Food Science and Technology, Faculty of Nutrition and food science , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Solmaz Maleki Dizaj
- b Pharmacology and Toxicology Department , School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran.,c Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
98
|
Wang WJ, Xu ZL, Yu C, Xu XH. Effects of aflatoxin B1 on mitochondrial respiration, ROS generation and apoptosis in broiler cardiomyocytes. Anim Sci J 2017; 88:1561-1568. [PMID: 28401999 DOI: 10.1111/asj.12796] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Wen-Jun Wang
- College of Life Sciences; South-Central University for Nationalities; Wuhan China
| | - Zhi-Liang Xu
- The People's Hospital of Hanchuan City; Hanchuan China
| | - Cheng Yu
- College of Life Sciences; South-Central University for Nationalities; Wuhan China
| | - Xiao-Hong Xu
- The People's Hospital of Hanchuan City; Hanchuan China
| |
Collapse
|
99
|
Manzini L, Halwachs S, Girolami F, Badino P, Honscha W, Nebbia C. Interaction of mammary bovine ABCG2 with AFB1 and its metabolites and regulation by PCB 126 in a MDCKII in vitro model. J Vet Pharmacol Ther 2017; 40:591-598. [PMID: 28198024 DOI: 10.1111/jvp.12397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/23/2016] [Indexed: 12/27/2022]
Abstract
The ATP-binding cassette efflux transporter ABCG2 plays a key role in the mammary excretion of drugs and toxins in humans and animals. Aflatoxins (AF) are worldwide contaminants of food and feed commodities, while PCB 126 is a dioxin-like PCB which may contaminate milk and dairy products. Both compounds are known human carcinogens. The interactions between AF and bovine ABCG2 (bABCG2) as well as the effects of PCB 126 on its efflux activity have been investigated by means of the Hoechst H33342 transport assay in MDCKII cells stably expressing mammary bABCG2. Both AFB1 and its main milk metabolite AFM1 showed interaction with bABCG2 even at concentrations approaching the legal limits in feed and food commodities. Moreover, PCB 126 significantly enhanced bABCG2 functional activity. Specific inhibitors of either AhR (CH233191) or ABCG2 (Ko143) were able to reverse the PCB 126-induced increase in bABCG2 transport activity, showing the specific upregulation of the efflux protein by the AhR pathway. The incubation of PCB 126-pretreated cells with AFM1 was able to substantially reverse such effect, with still unknown mechanism(s). Overall, results from this study point to AFB1 and AFM1 as likely bABCG2 substrates. The PCB 126-dependent increased activity of the transporter could enhance the ABCG2-mediated excretion into dairy milk of chemicals (i.e., drugs and toxins) potentially harmful to neonates and consumers.
Collapse
Affiliation(s)
- L Manzini
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - S Halwachs
- Institute of Veterinary Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - F Girolami
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - P Badino
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - W Honscha
- Institute of Veterinary Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - C Nebbia
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|
100
|
Sanmarco LM, Ponce NE, Visconti LM, Eberhardt N, Theumer MG, Minguez ÁR, Aoki MP. IL-6 promotes M2 macrophage polarization by modulating purinergic signaling and regulates the lethal release of nitric oxide during Trypanosoma cruzi infection. Biochim Biophys Acta Mol Basis Dis 2017; 1863:857-869. [PMID: 28087471 DOI: 10.1016/j.bbadis.2017.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023]
Abstract
The production of nitric oxide (NO) is a key defense mechanism against intracellular pathogens but it must be tightly controlled in order to avoid excessive detrimental oxidative stress. In this study we described a novel mechanism through which interleukin (IL)-6 mediates the regulation of NO release induced in response to Trypanosoma cruzi infection. Using a murine model of Chagas disease, we found that, in contrast to C57BL/6 wild type (WT) mice, IL-6-deficient (IL6KO) mice exhibited a dramatic increase in plasma NO levels concomitant with a significantly higher amount of circulating IL-1β and inflammatory monocytes. Studies on mouse macrophages and human monocytes, revealed that IL-6 decreased LPS-induced NO production but this effect was abrogated in the presence of anti-IL-1β and in macrophages deficient in the NLRP3 inflammasome. In accordance, while infected WT myocardium exhibited an early shift from microbicidal/M1 to anti-inflammatory/M2 macrophage phenotype, IL6KO cardiac tissue never displayed a dominant M2 macrophage profile that correlated with decreased expression of ATP metabolic machinery and a lower cardiac parasite burden. The deleterious effects of high NO production-induced oxidative stress were evidenced by enhanced cardiac malondialdehyde levels, myocardial cell death and mortality. The survival rate was improved by the treatment of IL-6-deficient mice with a NO production-specific inhibitor. Our data revealed that IL-6 regulates the excessive release of NO through IL-1β inhibition and determines the establishment of an M2 macrophage profile within infected heart tissue.
Collapse
Affiliation(s)
- Liliana M Sanmarco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Nicolás E Ponce
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Laura M Visconti
- Hospital Nuestra Señora de la Misericordia del Nuevo Siglo, Córdoba, Argentina.
| | - Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Martin G Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Ángel R Minguez
- Hospital Nuestra Señora de la Misericordia del Nuevo Siglo, Córdoba, Argentina.
| | - Maria P Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|