51
|
Hemnani M, Rodrigues D, Santos N, Santos-Silva S, Figueiredo ME, Henriques P, Ferreira-e-Silva J, Rebelo H, Poeta P, Thompson G, Mesquita JR. Molecular Detection and Characterization of Coronaviruses in Migratory Ducks from Portugal Show the Circulation of Gammacoronavirus and Deltacoronavirus. Animals (Basel) 2022; 12:3283. [PMID: 36496804 PMCID: PMC9736399 DOI: 10.3390/ani12233283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Coronaviruses (CoVs) are part of the Coronaviridae family, and the genera Gamma (γ) and Delta (δ) are found mostly in birds. Migratory birds have an enormous potential for dispersing pathogenic microorganisms. Ducks (order Anseriformes) can host CoVs from birds, with pathogenic expression and high economic impact. This study aimed to identify and characterize the diversity of CoVs in migratory ducks from Portugal. Duck stool samples were collected using cloacal swabs from 72 individuals (Anas platyrhynchos, Anas acuta, and Anas crecca). Among the 72 samples tested, 24 showed amplicons of the expected size. Twenty-three were characterized as Gammacoronavirus and one as Deltacoronavirus (accession numbers ON368935-ON368954; ON721380-ON721383). The Gammacoronaviruses sequences showed greater similarities to those obtained in ducks (Anas platyrhynchos) from Finland and Poland, Anas crecca duck from the USA, and mute swans from Poland. Birds can occupy many habitats and therefore play diverse ecological roles in various ecosystems, especially given their ability to migrate exceptional distances, facilitating the dispersal of microorganisms with animal and/or human impact. There are a considerable number of studies that have detected CoVs in ducks, but none in Portugal. The present study assessed the circulation of CoVs in wild ducks from Portugal, being the first description of CoVs for these animals in Portugal.
Collapse
Affiliation(s)
- Mahima Hemnani
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
| | - David Rodrigues
- Coimbra College of Agriculture, Polytechnic of Coimbra, 3045-601 Coimbra, Portugal
- CEF, Forest Research Centre, Edifício Prof. Azevedo Gomes, ISA, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Nuno Santos
- Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Sergio Santos-Silva
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
| | - Maria Ester Figueiredo
- CEF, Forest Research Centre, Edifício Prof. Azevedo Gomes, ISA, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Pedro Henriques
- Coimbra College of Agriculture, Polytechnic of Coimbra, 3045-601 Coimbra, Portugal
| | | | - Hugo Rebelo
- Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4 Animals), Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gertrude Thompson
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
- Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
| |
Collapse
|
52
|
Ch’ng L, Tsang SM, Ong ZA, Low DH, Wiantoro S, Smith IL, Simmons NB, Su YC, Lohman DJ, Smith GJ, Mendenhall IH. Co-circulation of alpha- and beta-coronaviruses in Pteropus vampyrus flying foxes from Indonesia. Transbound Emerg Dis 2022; 69:3917-3925. [PMID: 36382687 PMCID: PMC9898127 DOI: 10.1111/tbed.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Bats are important reservoirs for alpha- and beta-coronaviruses. Coronaviruses (CoV) have been detected in pteropodid bats from several Southeast Asian countries, but little is known about coronaviruses in the Indonesian archipelago in proportion to its mammalian biodiversity. In this study, we screened pooled faecal samples from the Indonesian colonies of Pteropus vampyrus with unbiased next-generation sequencing. Bat CoVs related to Rousettus leschenaultii CoV HKU9 and Eidolon helvum CoV were detected. The 121 faecal samples were further screened using a conventional hemi-nested pan-coronavirus PCR assay. Three positive samples were successfully sequenced, and phylogenetic reconstruction revealed the presence of alpha- and beta-coronaviruses. CoVs belonging to the subgenera Nobecovirus, Decacovirus and Pedacovirus were detected in a single P. vampyrus roost. This study expands current knowledge of coronavirus diversity in Indonesian flying foxes, highlighting the need for longitudinal surveillance of colonies as continuing urbanization and deforestation heighten the risk of spillover events.
Collapse
Affiliation(s)
- Lena Ch’ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Susan M. Tsang
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Zoology Division, National Museum of Natural History, Manila 1000, Philippines
| | - Zoe A. Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Dolyce H.W. Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Sigit Wiantoro
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong, West Java 16911, Indonesia
| | - Ina L. Smith
- Health and Biosecurity, The Commonwealth Scientific and Industrial Research Organization, Black Mountain, ACT 2601, Australia
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Yvonne C.F. Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Zoology Division, National Museum of Natural History, Manila 1000, Philippines
| | - Gavin J.D. Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore
| |
Collapse
|
53
|
Al-Khalaifah H, Alotaibi M, Al-Nasser A. The relation between avian coronaviruses and SARS-CoV-2 coronavirus. Front Microbiol 2022; 13:976462. [PMID: 36312988 PMCID: PMC9608149 DOI: 10.3389/fmicb.2022.976462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023] Open
Abstract
The coronaviruses (CoVs) are a family of ribonucleic acid viruses that are present in both mammals and birds. SARS-CoV and MERS-CoV originated in bats, and there is a possibility that this could be the case for SARS-CoV-2 as well. There is already evidence that a probable intermediary host is responsible for the emergence of viruses in humans as was the case for SARS-CoVs and MERS-CoV. As the SARS-CoV-2 originated from a live animal market, there is always the question if domestic animals are susceptible to these viruses and the possible risk of zoonotic transmission with mammals, including humans. This uncertainty of the transmission of the COVID-19 virus between humans and animals is of great significance worldwide. Hence, this paper focuses on the avian CoVs and their possible relation and interaction with SARS-CoV-2.
Collapse
|
54
|
Valleriani F, Jurisic L, Di Pancrazio C, Irelli R, Ciarrocchi E, Martino M, Cocco A, Di Felice E, Colaianni ML, Decaro N, Bonfini B, Lorusso A, Di Teodoro G. A Deletion Encompassing the Furin Cleavage Site in the Spike Encoding Gene Does Not Alter SARS-CoV-2 Replication in Lung Tissues of Mink and Neutralization by Convalescent Human Serum Samples. Pathogens 2022; 11:1152. [PMID: 36297209 PMCID: PMC9609486 DOI: 10.3390/pathogens11101152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023] Open
Abstract
SARS-CoV-2 has been shown to lose the furin polybasic cleavage site (FCS) following adaptation on cell culture. Deletion occurring in this region, which may include also the FCS flanking regions, seem not to affect virus replication in vitro; however, a chimeric SARS-CoV-2 virus without the sole FCS motif has been associated with lower virulence in mice and lower neutralization values. Moreover, SARS-CoV-2 virus lacking the FCS was shed to lower titers from experimentally infected ferrets and was not transmitted to cohoused sentinel animals, unlike wild-type virus. In this study, we investigated the replication kinetics and cellular tropism of a SARS-CoV-2 isolate carrying a 10-amino acid deletion in the spike protein spanning the FCS in lung ex vivo organ cultures of mink. Furthermore, we tested the neutralization capabilities of human convalescent SARS-CoV-2 positive serum samples against this virus. We showed that this deletion did not significantly hamper neither ex vivo replication nor neutralization activity by convalescent serum samples. This study highlights the importance of the preliminary phenotypic characterization of emerging viruses in ex vivo models and demonstrates that mink lung tissues are permissive to the replication of a mutant form of SARS-CoV-2 showing a deletion spanning the FCS. Notably, we also highlight the need for sequencing viral stocks before any infection study as large deletions may occur leading to the misinterpretation of results.
Collapse
Affiliation(s)
- Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Lucija Jurisic
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Roberta Irelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Eugenia Ciarrocchi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Michele Martino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Elisabetta Di Felice
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, 70010 Bari, Italy
| | - Barbara Bonfini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy
| |
Collapse
|
55
|
Strobel HM, Stuart EC, Meyer JR. A Trait-Based Approach to Predicting Viral Host-Range Evolvability. Annu Rev Virol 2022; 9:139-156. [PMID: 36173699 DOI: 10.1146/annurev-virology-091919-092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.
Collapse
Affiliation(s)
- Hannah M Strobel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth C Stuart
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
56
|
Wernike K, Drewes S, Mehl C, Hesse C, Imholt C, Jacob J, Ulrich RG, Beer M. No Evidence for the Presence of SARS-CoV-2 in Bank Voles and Other Rodents in Germany, 2020–2022. Pathogens 2022; 11:pathogens11101112. [PMID: 36297169 PMCID: PMC9610409 DOI: 10.3390/pathogens11101112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Rodentia is the most speciose mammalian order, found across the globe, with some species occurring in close proximity to humans. Furthermore, rodents are known hosts for a variety of zoonotic pathogens. Among other animal species, rodents came into focus when the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spread through human populations across the globe, initially as laboratory animals to study the viral pathogenesis and to test countermeasures. Under experimental conditions, some rodent species including several cricetid species are susceptible to SARS-CoV-2 infection and a few of them can transmit the virus to conspecifics. To investigate whether SARS-CoV-2 is also spreading in wild rodent populations in Germany, we serologically tested samples of free-ranging bank voles (Myodes glareolus, n = 694), common voles (Microtus arvalis, n = 2), house mice (Mus musculus, n = 27), brown or Norway rats (Rattus norvegicus, n = 97) and Apodemus species (n = 8) for antibodies against the virus. The samples were collected from 2020 to 2022 in seven German federal states. All but one sample tested negative by a multispecies ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The remaining sample, from a common vole collected in 2021, was within the inconclusive range of the RBD-ELISA, but this result could not be confirmed by a surrogate virus neutralization test as the sample gave a negative result in this test. These results indicate that SARS-CoV-2 has not become highly prevalent in wild rodent populations in Germany.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Correspondence:
| | - Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Calvin Mehl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 17493 Greifswald-Insel Riems, Germany
| | - Christin Hesse
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Christian Imholt
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Jens Jacob
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
57
|
Workman AM, McDaneld TG, Harhay GP, Das S, Loy JD, Hause BM. Recent Emergence of Bovine Coronavirus Variants with Mutations in the Hemagglutinin-Esterase Receptor Binding Domain in U.S. Cattle. Viruses 2022; 14:2125. [PMID: 36298681 PMCID: PMC9607061 DOI: 10.3390/v14102125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bovine coronavirus (BCoV) has spilled over to many species, including humans, where the host range variant coronavirus OC43 is endemic. The balance of the opposing activities of the surface spike (S) and hemagglutinin-esterase (HE) glycoproteins controls BCoV avidity, which is critical for interspecies transmission and host adaptation. Here, 78 genomes were sequenced directly from clinical samples collected between 2013 and 2022 from cattle in 12 states, primarily in the Midwestern U.S. Relatively little genetic diversity was observed, with genomes having >98% nucleotide identity. Eleven isolates collected between 2020 and 2022 from four states (Nebraska, Colorado, California, and Wisconsin) contained a 12 nucleotide insertion in the receptor-binding domain (RBD) of the HE gene similar to one recently reported in China, and a single genome from Nebraska collected in 2020 contained a novel 12 nucleotide deletion in the HE gene RBD. Isogenic HE proteins containing either the insertion or deletion in the HE RBD maintained esterase activity and could bind bovine submaxillary mucin, a substrate enriched in the receptor 9-O-acetylated-sialic acid, despite modeling that predicted structural changes in the HE R3 loop critical for receptor binding. The emergence of BCoV with structural variants in the RBD raises the possibility of further interspecies transmission.
Collapse
Affiliation(s)
- Aspen M. Workman
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Tara G. McDaneld
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Gregory P. Harhay
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Subha Das
- Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 East Campus Loop N, Lincoln, NE 68503, USA
| | - Benjamin M. Hause
- Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
58
|
Origin of New Lineages by Recombination and Mutation in Avian Infectious Bronchitis Virus from South America. Viruses 2022; 14:v14102095. [PMID: 36298650 PMCID: PMC9609748 DOI: 10.3390/v14102095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
The gammacoronavirus avian infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of primary economic importance to the global poultry industry. Two IBV lineages (GI-11 and GI-16) have been widely circulating for decades in South America. GI-11 is endemic to South America, and the GI-16 is globally distributed. We obtained full-length IBV genomes from Argentine and Uruguayan farms using Illumina sequencing. Genomes of the GI-11 and GI-16 lineages from Argentina and Uruguay differ in part of the spike coding region. The remaining genome regions are similar to the Chinese and Italian strains of the GI-16 lineage that emerged in Asia or Europe in the 1970s. Our findings support that the indigenous GI-11 strains recombine extensively with the invasive GI-16 strains. During the recombination process, GI-11 acquired most of the sequences of the GI-16, retaining the original S1 sequence. GI-11 strains with recombinant genomes are circulating forms that underwent further local evolution. The current IBV scenario in South America includes the GI-16 lineage, recombinant GI-11 strains sharing high similarity with GI-16 outside S1, and Brazilian GI-11 strains with a divergent genomic background. There is also sporadic recombinant in the GI-11 and GI-16 lineages among vaccine and field strains. Our findings exemplified the ability of IBV to generate emergent lineage by using the S gene in different genomic backgrounds. This unique example of recombinational microevolution underscores the genomic plasticity of IBV in South America.
Collapse
|
59
|
Evaluation of UVC Excimer Lamp (222 nm) Efficacy for Coronavirus Inactivation in an Animal Model. Viruses 2022; 14:v14092038. [PMID: 36146846 PMCID: PMC9503014 DOI: 10.3390/v14092038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The current pandemic caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has encouraged the evaluation of novel instruments for disinfection and lowering infectious pressure. Ultraviolet subtype C (UVC) excimer lamps with 222 nm wavelength have been tested on airborne pathogens on surfaces and the exposure to this wavelength has been considered safer than conventional UVC. To test the efficacy of UVC excimer lamps on coronaviruses, an animal model mimicking the infection dynamics was implemented. An attenuated vaccine based on infectious bronchitis virus (IBV) was nebulized and irradiated by 222 nm UVC rays before the exposure of a group of day-old chicks to evaluate the virus inactivation. A control group of chicks was exposed to the nebulized vaccine produced in the same conditions but not irradiated by the lamps. The animals of both groups were sampled daily and individually by choanal cleft swabs and tested usign a strain specific real time RT-PCR to evaluate the vaccine replication. Only the birds in the control group were positive, showing an active replication of the vaccine, revealing the efficacy of the lamps in inactivating the vaccine below the infectious dose in the other group.
Collapse
|
60
|
Colombo VC, Sluydts V, Mariën J, Vanden Broecke B, Van Houtte N, Leirs W, Jacobs L, Iserbyt A, Hubert M, Heyndrickx L, Goris H, Delputte P, De Roeck N, Elst J, Ariën KK, Leirs H, Gryseels S. SARS-CoV-2 surveillance in Norway rats (Rattus norvegicus) from Antwerp sewer system, Belgium. Transbound Emerg Dis 2022; 69:3016-3021. [PMID: 34224205 PMCID: PMC8447303 DOI: 10.1111/tbed.14219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 human-to-animal transmission can lead to the establishment of novel reservoirs and the evolution of new variants with the potential to start new outbreaks in humans. We tested Norway rats inhabiting the sewer system of Antwerp, Belgium, for the presence of SARS-CoV-2 following a local COVID-19 epidemic peak. In addition, we discuss the use and interpretation of SARS-CoV-2 serological tests on non-human samples. Between November and December 2020, Norway rat oral swabs, faeces and tissues from the sewer system of Antwerp were collected to be tested by RT-qPCR for the presence of SARS-CoV-2. Serum samples were screened for the presence of anti-SARS-CoV-2 IgG antibodies using a Luminex microsphere immunoassay (MIA). Samples considered positive were then checked for neutralizing antibodies using a conventional viral neutralization test (cVNT). The serum of 35 rats was tested by MIA showing three potentially positive sera that were later negative by cVNT. All tissue samples of 39 rats analysed tested negative for SARS-CoV-2 RNA. This is the first study that evaluates SARS-CoV-2 infection in urban rats. We can conclude that the sample of rats analysed had never been infected with SARS-CoV-2. However, monitoring activities should continue due to the emergence of new variants prone to infect Muridae rodents.
Collapse
Affiliation(s)
- Valeria Carolina Colombo
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Vincent Sluydts
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Joachim Mariën
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
- Virology UnitDepartment of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Bram Vanden Broecke
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Natalie Van Houtte
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Wannes Leirs
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Lotte Jacobs
- Laboratory for MicrobiologyParasitology and Hygiene (LMPH)University of AntwerpAntwerpBelgium
| | - Arne Iserbyt
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Marine Hubert
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Leo Heyndrickx
- Virology UnitDepartment of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Hanne Goris
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Peter Delputte
- Laboratory for MicrobiologyParasitology and Hygiene (LMPH)University of AntwerpAntwerpBelgium
| | - Naomi De Roeck
- Laboratory for MicrobiologyParasitology and Hygiene (LMPH)University of AntwerpAntwerpBelgium
| | - Joris Elst
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Kevin K. Ariën
- Virology UnitDepartment of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Herwig Leirs
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
| | - Sophie Gryseels
- Evolutionary Ecology GroupDepartment of BiologyUniversity of AntwerpAntwerpBelgium
- OD Taxonomy and PhylogenyRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| |
Collapse
|
61
|
Savard C, Provost C, Ariel O, Morin S, Fredrickson R, Gagnon CA, Broes A, Wang L. First report and genomic characterization of a bovine-like coronavirus causing enteric infection in an odd-toed non-ruminant species (Indonesian tapir, Acrocodia indica) during an outbreak of winter dysentery in a zoo. Transbound Emerg Dis 2022; 69:3056-3065. [PMID: 34427399 PMCID: PMC8943714 DOI: 10.1111/tbed.14300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 02/05/2023]
Abstract
Bovine coronavirus (BCoV) is associated with three distinct clinical syndromes in cattle that is, neonatal diarrhoea, haemorrhagic diarrhoea in adults (the so-called winter dysentery syndrome, WD) and respiratory infections in cattle of different ages. In addition, bovine-like CoVs have been detected in various species including domestic and wild ruminants. However, bovine-like CoVs have not been reported so far in odd-toed ungulates. We describe an outbreak of WD associated with a bovine-like CoV affecting several captive wild ungulates, including Indonesian tapirs (Acrocodia indica) an odd-toed ungulate species (Perissodactyla) which, with even-toed ungulates species (Artiodactyla) form the clade Euungulata. Genomic characterization of the CoV revealed that it was closely related to BCoVs previously reported in America. This case illustrates the adaptability of bovine-like CoVs to new species and the necessity of continued surveillance of bovine-like CoVs in various species.
Collapse
Affiliation(s)
| | - Chantale Provost
- Molecular diagnostic laboratory, Centre de diagnostic vétérinaire de l’Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | - Samuel Morin
- Bureau vétérinaire Iberville, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Richard Fredrickson
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Carl A. Gagnon
- Molecular diagnostic laboratory, Centre de diagnostic vétérinaire de l’Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - André Broes
- Biovet Inc., Saint-Hyacinthe, Québec, Canada
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
62
|
Orłowska A, Smreczak M, Thor K, Niedbalska M, Pawelec D, Trębas P, Rola J. The Genetic Characterization of the First Detected Bat Coronaviruses in Poland Revealed SARS-Related Types and Alphacoronaviruses. Viruses 2022; 14:v14091914. [PMID: 36146721 PMCID: PMC9501061 DOI: 10.3390/v14091914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Bats are a major global reservoir of alphacoronaviruses (alphaCoVs) and betaCoVs. Attempts to discover the causative agents of COVID-19 and SARS have revealed horseshoe bats (Rhinolophidae) to be the most probable source of the virus. We report the first detection of bat coronaviruses (BtCoVs) in insectivorous bats in Poland and highlight SARS-related coronaviruses found in Rhinolophidae bats. The study included 503 (397 oral swabs and 106 fecal) samples collected from 20 bat species. Genetically diverse BtCoVs (n = 20) of the Alpha- and Betacoronavirus genera were found in fecal samples of two bat species. SARS-related CoVs were in 18 out of 58 lesser horseshoe bat (Rhinolophus hipposideros) samples (31%, 95% CI 20.6–43.8), and alphaCoVs were in 2 out of 55 Daubenton’s bat (Myotis daubentonii) samples (3.6%, 95% CI 0.6–12.3). The overall BtCoV prevalence was 4.0% (95% CI 2.6–6.1). High identity was determined for BtCoVs isolated from European M. daubentonii and R. hipposideros bats. The detection of SARS-related and alphaCoVs in Polish bats with high phylogenetic relatedness to reference BtCoVs isolated in different European countries but from the same species confirms their high host restriction. Our data elucidate the molecular epidemiology, prevalence, and geographic distribution of coronaviruses and particularly SARS-related types in the bat population.
Collapse
Affiliation(s)
- Anna Orłowska
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
- Correspondence: ; Tel.: +48-818-893-072; Fax: +48-818-862-595
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Katarzyna Thor
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland
| | - Magda Niedbalska
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Dominika Pawelec
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Paweł Trębas
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
63
|
Ghosh S, Al-Sharify ZT, Maleka MF, Onyeaka H, Maleke M, Maolloum A, Godoy L, Meskini M, Rami MR, Ahmadi S, Al-Najjar SZ, Al-Sharify NT, Ahmed SM, Dehghani MH. Propolis efficacy on SARS-COV viruses: a review on antimicrobial activities and molecular simulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58628-58647. [PMID: 35794320 PMCID: PMC9258455 DOI: 10.1007/s11356-022-21652-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses. Propolis has been utilized in medicinal products for centuries due to its excellent biological properties. These include anti-oxidant, immunomodulatory, anti-inflammatory, anti-viral, anti-fungal, and bactericidal activities. Furthermore, studies on molecular simulations show that flavonoids in propolis may reduce viral replication. While further research is needed to validate this theory, it has been observed that COVID-19 patients receiving propolis show earlier viral clearance, enhanced symptom recovery, quicker discharge from hospitals, and a reduced mortality rate relative to other patients. As a result, it appears that propolis could probably be useful in the treatment of SARS-CoV-2-infected patients. Therefore, this review sought to explore the natural properties of propolis and further evaluated past studies that investigated propolis as an alternative product for the treatment of COVID-19 symptoms. In addition, the review also highlights the possible mode of propolis action as well as molecular simulations of propolis compounds that may interact with the SARS-CoV-2 virus. The activity of propolis compounds in decreasing the impact of COVID-19-related comorbidities, the possible roles of such compounds as COVID-19 vaccine adjuvants, and the use of nutraceuticals in COVID-19 treatment, instead of pharmaceuticals, has also been discussed.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Zainab T Al-Sharify
- Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Bab-al-Mu'adhem, P.O. Box 14150, Baghdad, Iraq
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mathabatha Frank Maleka
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maleke Maleke
- Department of Life Science, Faculty of Health and Environmental Science, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Alhaji Maolloum
- Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa
| | - Liliana Godoy
- Department of Fruit and Oenology, Faculty of Agronomy and Forestry, Pontifical Catholic University of Chile, Santiago, Chile
| | - Maryam Meskini
- Microbiology Research Center, Pasteur Institute of Iran, Teheran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Teheran, Iran
| | - Mina Rezghi Rami
- Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Shabnam Ahmadi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahad Z Al-Najjar
- Chemical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Noor T Al-Sharify
- Medical Instrumentation Engineering Department, Al-Esraa University College, Baghdad, Iraq
| | - Sura M Ahmed
- Department of Electrical and Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
64
|
Hall JS, Hofmeister E, Ip HS, Nashold SW, Leon AE, Malavé CM, Falendysz EA, Rocke TE, Carossino M, Balasuriya U, Knowles S. Experimental infection of Mexican free-tailed bats ( Tadarida brasiliensis) with SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.18.500430. [PMID: 35898345 PMCID: PMC9327625 DOI: 10.1101/2022.07.18.500430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus originated in wild bats from Asia, and as the resulting pandemic continues into its third year, concerns have been raised that the virus will expand its host range and infect North American wildlife species, including bats. Mexican free-tailed bats ( Tadarida brasiliensis : TABR) live in large colonies in the southern United States, often in urban areas, and as such, could be exposed to the virus from infected humans. We experimentally challenged wild TABR with SARS-CoV-2 to determine the susceptibility, reservoir potential, and population impacts of infection in this species. Of nine bats oronasally inoculated with SARS-CoV-2, five became infected and orally excreted moderate amounts of virus for up to 18 days post inoculation. These five subjects all seroconverted and cleared the virus before the end of the study with no obvious clinical signs of disease. We additionally found no evidence of viral transmission to uninoculated subjects. These results indicate that while TABR are susceptible to SARS-CoV-2 infection, infection of wild populations of TABR would not likely cause mortality. However, the transmission of SARS-CoV-2 from TABR to or from humans, or to other animal species, is a distinct possibility requiring further investigation to better define.
Collapse
Affiliation(s)
- J S Hall
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin
| | - E Hofmeister
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin
| | - H S Ip
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin
| | - S W Nashold
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin
| | - A E Leon
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin
| | - C M Malavé
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin
| | - E A Falendysz
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin
| | - T E Rocke
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin
| | - M Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - U Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - S Knowles
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin
| |
Collapse
|
65
|
Oliveira A, Pereira MA, Mateus TL, Mesquita JR, Vala H. Seroprevalence of SARS-CoV-2 in Client-Owned Cats from Portugal. Vet Sci 2022; 9:363. [PMID: 35878380 PMCID: PMC9315516 DOI: 10.3390/vetsci9070363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The close contact between humans and domestic cats raises concerns about the potential risks of SARS-CoV-2 transmission. Thus, this study aims to investigate anti-SARS-CoV-2 seroprevalence in client-owned cats from Portugal and evaluate the infection risk of cats that maintain contact with human COVID-19 cases. A total of 176 cats, belonging to 94 households, were sampled. Cat owners answered an online questionnaire, and cats were screened for antibodies against SARS-CoV-2 using a commercial ELISA. Twenty (21.3%) households reported at least one confirmed human COVID-19 case. Forty cats (22.7%) belonged to a COVID-19-positive and 136 (77.3%) to a COVID-19-negative household. The seroprevalences of cats from COVID-19-positive and -negative households were 5.0% (2/40) and 0.7% (1/136). The two SARS-CoV-2-seropositive cats from COVID-19-positive households had an indoor lifestyle, and their owners stated that they maintained a close and frequent contact with them, even after being diagnosed with COVID-19, pointing towards human-to-cat transmission. The SARS-CoV-2-seropositive cat from the COVID-19-negative household had a mixed indoor/outdoor lifestyle and chronic diseases. Owners of the three SARS-CoV-2-seropositive cats did not notice clinical signs or behavior changes. This study highlights the low risk of SARS-CoV-2 transmission from COVID-19-positive human household members to domestic cats, even in a context of close and frequent human-animal contact.
Collapse
Affiliation(s)
- Andreia Oliveira
- Escola Superior Agrária de Ponte de Lima, Instituto Politécnico de Viana do Castelo, 4990-706 Ponte de Lima, Portugal;
- Hospital Veterinário de Gaia, 4415-369 Pedroso, Portugal
| | - Maria Aires Pereira
- Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu, 3500-606 Viseu, Portugal;
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal
- CERNAS-IPV Research Centre, Polytechnic Institute of Viseu, Campus Politécnico, 3504-510 Viseu, Portugal
| | - Teresa Letra Mateus
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal;
- EpiUnit-Instituto de Saúde Pública da Universidade do Porto, Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-091 Porto, Portugal;
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - João R. Mesquita
- EpiUnit-Instituto de Saúde Pública da Universidade do Porto, Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-091 Porto, Portugal;
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
| | - Helena Vala
- Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu, 3500-606 Viseu, Portugal;
- CERNAS-IPV Research Centre, Polytechnic Institute of Viseu, Campus Politécnico, 3504-510 Viseu, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
66
|
Komiyama M. Molecular Mechanisms of the Medicines for COVID-19. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
67
|
Kambayashi Y, Nemoto M, Tsujimura K, Ohta M, Bannai H. Serosurveillance of equine coronavirus infection among Thoroughbreds in Japan. Equine Vet J 2022; 55:481-486. [PMID: 35822940 DOI: 10.1111/evj.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Equine coronavirus (ECoV) causes fever, lethargy, anorexia and gastrointestinal signs in horses. There has been limited information about the prevalence and seasonality of ECoV among Thoroughbreds in Japan. OBJECTIVES To understand the epidemiology and to evaluate the potential risk of ECoV infection to the horse industry in Japan. STUDY DESIGN Longitudinal. METHODS The virus-neutralisation (VN) test was performed using sera collected three times a year at 4 months intervals from 161 yearlings and at 6-7 months intervals from 181 active racehorses in Japan in 2017-18, 2018-19 and 2019-20. VN titre ≥1:8 was defined as seropositive, and ≥ 4-fold increase in titres between paired sera was regarded as indicative of infection. RESULTS The VN test showed that 44.1% (71/161) of yearlings were seropositive in August, when they first entered the yearling farm. The infection rate was significantly higher between August and December (60.9%, 98/161) than between December and the following April (5.6%, 9/161; P = 0.002). Among the racehorses, it was significantly higher between November and the following May (15.5%, 28/181) than between the preceding April/May and November (0%; P = 0.02). The morbidity rates during the estimated periods of viral exposure were 39.2% in the yearlings and 4% in the racehorses. No horses showed any severe clinical signs. MAIN LIMITATIONS Clinical records did not cover the period during horses' absence from the training centre. CONCLUSIONS ECoV was substantially prevalent in Thoroughbred yearlings and racehorses in Japan, and there was a difference in epizootic pattern between these populations in terms of predominant periods of infection. ECoV infection was considered to be responsible for some of the pyretic cases in the yearlings. However, no diseased horses were severely affected in either population, suggesting that the potential risk of ECoV infection to the horse industry in Japan is low.
Collapse
Affiliation(s)
- Yoshinori Kambayashi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Manabu Nemoto
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Minoru Ohta
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| |
Collapse
|
68
|
Khan SA, Imtiaz MA, Islam MM, Tanzin AZ, Islam A, Hassan MM. Major bat-borne zoonotic viral epidemics in Asia and Africa: A systematic review and meta-analysis. Vet Med Sci 2022; 8:1787-1801. [PMID: 35537080 PMCID: PMC9297750 DOI: 10.1002/vms3.835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bats are the natural reservoir host for many pathogenic and non-pathogenic viruses, potentially spilling over to humans and domestic animals directly or via an intermediate host. The ongoing COVID-19 pandemic is the continuation of virus spillover events that have taken place over the last few decades, particularly in Asia and Africa. Therefore, these bat-associated epidemics provide a significant number of hints, including respiratory cellular tropism, more intense susceptibility to these cell types, and overall likely to become a pandemic for the next spillover. In this systematic review, we analysed data to insight, through bat-originated spillover in Asia and Africa. We used STATA/IC-13 software for descriptive statistics and meta-analysis. The random effect of meta-analysis showed that the pooled estimates of case fatality rates of bat-originated viral zoonotic diseases were higher in Africa (61.06%, 95%CI: 50.26 to 71.85, l2 % = 97.3, p < 0.001). Moreover, estimates of case fatality rates were higher in Ebola (61.06%; 95%CI: 50.26 to 71.85, l2 % = 97.3, p < 0.001) followed by Nipah (55.19%; 95%CI: 39.29 to 71.09, l2 % = 94.2, p < 0.001), MERS (18.49%; 95%CI: 8.19 to 28.76, l2 % = 95.4, p < 0.001) and SARS (10.86%; 95%CI: 6.02 to 15.71, l2 % = 85.7, p < 0.001) with the overall case fatality rates of 29.86 (95%CI: 29.97 to 48.58, l2 % = 99.0, p < 0.001). Bat-originated viruses have caused several outbreaks of deadly diseases, including Nipah, Ebola, SARS and MERS in Asia and Africa in a sequential fashion. Nipah virus emerged first in Malaysia, but later, periodic outbreaks were noticed in Bangladesh and India. Similarly, the Ebola virus was detected in the African continent with neurological disorders in humans, like Nipah, seen in the Asian region. Two important coronaviruses, MERS and SARS, were introduced, both with the potential to infect respiratory passages. This paper explores the dimension of spillover events within and/or between bat-human and the epidemiological risk factors, which may lead to another pandemic occurring. Further, these processes enhance the bat-originated virus, which utilises an intermediate host to jump into human species.
Collapse
Affiliation(s)
- Shahneaz Ali Khan
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
| | - Mohammed Ashif Imtiaz
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
| | | | - Abu Zubayer Tanzin
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
| | - Ariful Islam
- EcoHealth AllianceNew YorkNew York
- Centre for Integrative EcologyDeakin UniversityGeelong CampusVictoriaAustralia
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and PharmacologyFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences UniversityKhulshiChattogramBangladesh
- Queensland Alliance for One Health SciencesSchool of Veterinary ScienceThe University of QueenslandQueenslandAustralia
| |
Collapse
|
69
|
Receptor binding domain of SARS-CoV-2 from Wuhan strain to Omicron B.1.1.529 attributes increased affinity to variable structures of human ACE2. J Infect Public Health 2022; 15:781-787. [PMID: 35738053 PMCID: PMC9212875 DOI: 10.1016/j.jiph.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background COVID-19 is an infectious disease declared as a global pandemic caused by SARS-CoV-2 virus. Genomic changes in the receptor binding domain (RBD) region of SARS‐CoV‐2 led to an increased, infectivity in humans through interaction with the angiotensin-converting enzyme2 (ACE2) receptor. Simultaneously, the genetic variants in ACE2 provide an opportunity for SARS‐CoV‐2 infection and severity. We demonstrate the binding efficiencies of RBDs of SARS‐CoV‐2 strain with ACE2 variants of the human host. Methodology A Total of 615 SARS‐CoV‐2 genomes were retrieved from repository. Eighteen variations were identified contributing to structural changes in RBD that are distributed in 615 isolates. An analyses of 285 single nucleotide variances at the coding region of the ACE2 receptor showed 34 to be pathogenic. Homology models of 34 ACE2 and 18 RBD structures were constructed with 34 and 18 structural variants, respectively. Protein docking of 612 (34 *18) ACE2-RBD complexes showed variable affinities compared to wildtype Wuhan's and other SARS‐CoV‐2 RBDs, including Omicron B.1.1.529. Finally, molecular dynamic simulation was performed to determine the stability of the complexes. Results Among 612, the top 3 complexes showing least binding energy were selected. The ACE2 with rs961360700 variant showed the least binding energy (−895.2 Kcal/mol) on binding with the RBD of Phe160Ser variant compared to Wuhan's RBD complex. Interestingly, the binding energy of RBD of Omicron B.1.1.529 with ACE2 (rs961360700) structure showed least binding energy of −1010 Kcal/mol. Additionally, molecular dynamics showed structure stability for all the analysed complexes with the RMSD (0.22–0.26 nm), RMSF (0.11–0.13 nm), and Rg (2.53–2.56 nm). Conclusion In conclusion, our investigation highlights the clinical variants contributing to structural variants in ACE2 receptors that lead to efficient binding of SARS‐CoV‐2. Therefore, screening of these ACE2 polymorphisms will help detect COVID‐19 risk population so as to provide additional care and for safe management.
Collapse
|
70
|
Kim EM, Cho HC, Shin SU, Park J, Choi KS. Prevalence and genetic characterization of bovine coronavirus identified from diarrheic pre-weaned native Korean calves from 2019 to 2021. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105263. [PMID: 35276339 DOI: 10.1016/j.meegid.2022.105263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Bovine coronavirus (BCoV) is associated with severe diarrhea in calves, winter dysentery in adult cattle, and respiratory diseases in cattle. However, there is currently limited information regarding its molecular characterization in the Republic of Korea (KOR). Therefore, this study investigated the prevalence of BCoV in diarrheic pre-weaned calves (aged ≤60 days) and compared BCoV genome sequences identified globally. A total of 846 fecal samples were collected from calves with diarrhea across 100 beef farms in the KOR. The samples were divided into three groups based on age as follows: 1-10 days (n = 490), 11-30 days (n = 277), and 31-60 days (n = 79). BCoV infection was detected in 50 calves by real-time RT-PCR analysis. The results showed that the prevalence of BCoV was associated with calf age (P = 0.028) and was significantly higher in calves aged 31-60 days (odds ratio: 2.69, 95% confidence interval: 1.24-5.85; P = 0.012) than in those aged 1-10 days. Our findings show that BCoV is an important etiological agent of diarrhea in calves aged 31-60 days. Fifteen full genome sequences (2019-2021 variants) of the spike, hemagglutinin/esterase, and nucleocapsid were obtained from the 50 BCoV-positive samples. Phylogenetic analysis of each gene revealed that BCoVs circulating worldwide might have no boundary between enteric and respiratory tropisms, demonstrating the presence of three BCoVs groups: the classical, Asia/USA, and European. Initially, Korean BCoVs were originated from the USA, but diverged since the 1980s and rapidly evolved independently, unlike in other Asian countries. In this study, Korean BCoVs are more recent BCoVs and present relatively high nucleotide substitution rates in all genes compared with other BCoVs. Our results showed that the 2019-2021 variants undergo continuous genetic evolution and that there are genetic differences among globally distributed BCoVs.
Collapse
Affiliation(s)
- Eun-Mi Kim
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Hyung-Chul Cho
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Seung-Uk Shin
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Jinho Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea.
| |
Collapse
|
71
|
Kambayashi Y, Kishi D, Ueno T, Ohta M, Bannai H, Tsujimura K, Kinoshita Y, Nemoto M. Distribution of equine coronavirus RNA in the intestinal and respiratory tracts of experimentally infected horses. Arch Virol 2022; 167:1611-1618. [PMID: 35639190 PMCID: PMC9152306 DOI: 10.1007/s00705-022-05488-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/15/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Yoshinori Kambayashi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Daiki Kishi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Takanori Ueno
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Minoru Ohta
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Yuta Kinoshita
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Manabu Nemoto
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
72
|
Alharbi NK, Al-Tawfiq JA, Alghnam S, Alwehaibe A, Alasmari A, Alsagaby SA, Alsubaie F, Alshomrani M, Farahat FM, Bosaeed M, Alharbi A, Aldibasi O, Assiri AM. Outcomes of single dose COVID-19 vaccines: Eight month follow-up of a large cohort in Saudi Arabia. J Infect Public Health 2022; 15:573-577. [PMID: 35472755 PMCID: PMC8986276 DOI: 10.1016/j.jiph.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Two vaccines for COVID-19 have been approved and administered in the Kingdom of Saudi Arabia (KSA); Pfizer-BioNtech BNT162b2 and AstraZeneca-Oxford AZD1222 vaccines. The purpose of this study was to describe the real-world data on the outcome of single dose of these COVID-19 vaccines in a large cohort in KSA and to analyse demographics and co-morbidities as risk factors for infection post one-dose vaccination. METHODS In this prospective cohort study, a total of 18,543 subjects received one dose of either of the vaccines at a vaccination centre in KSA, and were followed up for three to eight months. Data were collected from three sources; clinical data from medical records, adverse events (AEs) from a self-reporting system, and COVID-19 infection data from the national databases. The study was conducted during the pandemic restrictions on travel, mobility, and social interactions. RESULTS The median age of participants was 33 years with an average body mass index of 27.3. The majority were males (60.1%). Results showed that 92.17% of the subjects had no COVID-19 infection post-vaccination as infection post-vaccination was documented for 1452 (7.83%). Diabetes mellitus 03), organ transplantation (p = 0.02), and obesity (p < 0.01) were associated with infection post-vaccination. Unlike vaccine type, being Saudi, male, or obese was associated with the occurrence breakthrough infections more than other parameters. AEs included injection site pain, fatigue, fever, myalgia, headache and was reported by 5.8% of the subjects. CONCLUSION Single dose COVID-19 vaccines showed a protection rate of 92.17% up to eight months follow-up in this cohort. This rate in AZD1222 was higher than what have been previously reported in effectiveness studies and clinical trials. Obese, male, and Saudi were at higher risk of contracting the infection post-vaccination, Saudi and male might have more social interaction with the public when mobility and social interactions were limited during the pandemic. Side effects and AEs were within what has been reported in clinical trials.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia.
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suliman Alghnam
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
| | - Amal Alwehaibe
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Abrar Alasmari
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Faisal Alsubaie
- Assistant Agency for Preventive Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Majid Alshomrani
- King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia; King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Fayssal M Farahat
- King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia; King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Mohammad Bosaeed
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia; King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ahmad Alharbi
- King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Omar Aldibasi
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Assistant Agency for Preventive Health, Ministry of Health, Riyadh, Saudi Arabia
| |
Collapse
|
73
|
Pascucci I, Paniccià M, Giammarioli M, Biagetti M, Duranti A, Campomori P, Smilari V, Ancora M, Scialabba S, Secondini B, Cammà C, Lorusso A. SARS-CoV-2 Delta VOC in a Paucisymptomatic Dog, Italy. Pathogens 2022; 11:pathogens11050514. [PMID: 35631035 PMCID: PMC9143276 DOI: 10.3390/pathogens11050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Since the very beginning of the COVID-19 pandemic, SARS-CoV-2 detection has been described in several animal species. A total of 625 outbreaks in animals have been reported globally, affecting 17 species in 32 countries and the human source of infection has been recognized including pet owners, zookeepers, and farmers. In this report, we describe the case of a paucisymptomatic dog in Italy infected with SARS-CoV-2 from a household with three confirmed human cases of COVID-19 living in Pesaro (Marche region, Italy). The dog showed high viral RNA titers in the nasal and oropharyngeal swabs. In the nasal swab, SARS-CoV-2 RNA lasted for a least a week. By sequencing, the strain was assigned to the AY.23 lineage (PANGO), one of the sub-lineages of the major SARS-CoV-2 Delta variant of concern (VOC). Although we did not process the swabs of the three human cases, we strongly suspect a human origin for the dog infection. In this regard, AY.23 sequences, although never released thus far in the Marche region, were detected in the neighboring regions. Our findings highlight once more the need for a One Health approach for SARS-CoV-2 surveillance, management, and control, thus preventing viral spillover from animals to humans.
Collapse
Affiliation(s)
- Ilaria Pascucci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche—Togo Rosati, 06126 Perugia, Italy; (M.P.); (M.G.); (M.B.); (A.D.)
- Correspondence: ; Tel.:+39-0721-281677
| | - Marta Paniccià
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche—Togo Rosati, 06126 Perugia, Italy; (M.P.); (M.G.); (M.B.); (A.D.)
| | - Monica Giammarioli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche—Togo Rosati, 06126 Perugia, Italy; (M.P.); (M.G.); (M.B.); (A.D.)
| | - Massimo Biagetti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche—Togo Rosati, 06126 Perugia, Italy; (M.P.); (M.G.); (M.B.); (A.D.)
| | - Anna Duranti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche—Togo Rosati, 06126 Perugia, Italy; (M.P.); (M.G.); (M.B.); (A.D.)
| | - Pamela Campomori
- Servizio Veterinario Sanità Animale Area Vasta 1-ASUR Marche, 61121 Pesaro, Italy; (P.C.); (V.S.)
| | - Valerio Smilari
- Servizio Veterinario Sanità Animale Area Vasta 1-ASUR Marche, 61121 Pesaro, Italy; (P.C.); (V.S.)
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (M.A.); (S.S.); (B.S.); (C.C.); (A.L.)
| | - Silvia Scialabba
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (M.A.); (S.S.); (B.S.); (C.C.); (A.L.)
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (M.A.); (S.S.); (B.S.); (C.C.); (A.L.)
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (M.A.); (S.S.); (B.S.); (C.C.); (A.L.)
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (M.A.); (S.S.); (B.S.); (C.C.); (A.L.)
| |
Collapse
|
74
|
Long-Covid: What Awaits Us After Corona Infection? JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.1021549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
75
|
Bozidis P, Tsaousi ET, Kostoulas C, Sakaloglou P, Gouni A, Koumpouli D, Sakkas H, Georgiou I, Gartzonika K. Unusual N Gene Dropout and Ct Value Shift in Commercial Multiplex PCR Assays Caused by Mutated SARS-CoV-2 Strain. Diagnostics (Basel) 2022; 12:973. [PMID: 35454022 PMCID: PMC9029054 DOI: 10.3390/diagnostics12040973] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Several SARS-CoV-2 variants have emerged and early detection for monitoring their prevalence is crucial. Many identification strategies have been implemented in cases where sequencing data for confirmation is pending or not available. The presence of B.1.1.318 among prevalent variants was indicated by an unusual amplification pattern in various RT-qPCR commercial assays. Positive samples for SARS-CoV-2, as determined using the Allplex SARS-CoV-2 Assay, the Viasure SARS-CoV-2 Real Time Detection Kit and the GeneFinder COVID-19 Plus RealAmp Kit, presented a delay or failure in the amplification of the N gene, which was further investigated. Whole-genome sequencing was used for variant characterization. The differences between the mean Ct values for amplification of the N gene vs. other genes were calculated for each detection system and found to be at least 14 cycles. Sequencing by WGS revealed that all the N gene dropout samples contained the B.1.1.318 variant. All the isolates harbored three non-synonymous mutations in the N gene, which resulted in four amino acid changes (R203K, G204R, A208G, Met234I). Although caution should be taken when the identification of SARS-CoV-2 variants is based on viral gene amplification failure, such patterns could serve as a basis for rapid and cost-effective screening, functioning as indicators of community circulation of specific variants, requiring subsequent verification via sequencing.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
| | - Eleni T. Tsaousi
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Prodromos Sakaloglou
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| | - Despoina Koumpouli
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| | - Hercules Sakkas
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| |
Collapse
|
76
|
One Health and Cattle Genetic Resources: Mining More than 500 Cattle Genomes to Identify Variants in Candidate Genes Potentially Affecting Coronavirus Infections. Animals (Basel) 2022; 12:ani12070838. [PMID: 35405828 PMCID: PMC8997118 DOI: 10.3390/ani12070838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The conservation and exploitation of cattle genetic resources for selection and breeding purposes are important for the definition of sustainable livestock production sectors. One Health approaches should be integrated into these activities to reduce the risk posed by many zoonoses. Coronaviruses are emerging as important zoonotic agents, with the potential to easily cross species barriers, as also recently demonstrated by the COVID-19 pandemic derived by SARS-CoV-2. Genetic resistance to coronavirus infections can be determined by variants of the host (animal) genome segregating within species. In this study, we mined the genome of more than 500 cattle to identify variants that could be involved so as to define different levels of susceptibility and/or resistance to coronavirus diseases in this important livestock species. Using comparative analyses across species, we identified several single amino acid polymorphisms that might alter the function of key proteins involved in the basic biological mechanisms underlying the infection processes in cattle. This study provided new elements to consider genetic variability of the host (cattle) as a potential risk factor to be considered in One Health perspectives. Abstract Epidemiological and biological characteristics of coronaviruses and their ability to cross species barriers are a matter of increasing concerns for these zoonotic agents. To prevent their spread, One Health approaches should be designed to include the host (animal) genome variability as a potential risk factor that might confer genetic resistance or susceptibility to coronavirus infections. At present, there is no example that considers cattle genetic resources for this purpose. In this study, we investigated the variability of six genes (ACE2, ANPEP, CEACAM1 and DPP4 encoding for host receptors of coronaviruses; FURIN and TMPRSS2 encoding for host proteases involved in coronavirus infection) by mining whole genome sequencing datasets from more than 500 cattle of 34 Bos taurus breeds and three related species. We identified a total of 180 protein variants (44 already known from the ARS-UCD1.2 reference genome). Some of them determine altered protein functions or the virus–host interaction and the related virus entry processes. The results obtained in this study constitute a first step towards the definition of a One Health strategy that includes cattle genetic resources as reservoirs of host gene variability useful to design conservation and selection programs to increase resistance to coronavirus diseases.
Collapse
|
77
|
Palombieri A, Di Profio F, Fruci P, Sarchese V, Martella V, Marsilio F, Di Martino B. Emerging Respiratory Viruses of Cats. Viruses 2022; 14:663. [PMID: 35458393 PMCID: PMC9030917 DOI: 10.3390/v14040663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 12/07/2022] Open
Abstract
In recent years, advances in diagnostics and deep sequencing technologies have led to the identification and characterization of novel viruses in cats as protoparviruses and chaphamaparvoviruses, unveiling the diversity of the feline virome in the respiratory tract. Observational, epidemiological and experimental data are necessary to demonstrate firmly if some viruses are able to cause disease, as this information may be confounded by virus- or host-related factors. Also, in recent years, researchers were able to monitor multiple examples of transmission to felids of viruses with high pathogenic potential, such as the influenza virus strains H5N1, H1N1, H7N2, H5N6 and H3N2, and in the late 2019, the human hypervirulent coronavirus SARS-CoV-2. These findings suggest that the study of viral infections always requires a multi-disciplinary approach inspired by the One Health vision. By reviewing the literature, we provide herewith an update on the emerging viruses identified in cats and their potential association with respiratory disease.
Collapse
Affiliation(s)
- Andrea Palombieri
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Federica Di Profio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Paola Fruci
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Vittorio Sarchese
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Vito Martella
- Laboratory of Infectious Diseases, Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy;
| | - Fulvio Marsilio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Barbara Di Martino
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| |
Collapse
|
78
|
Zandi M, Fani M. Target genes used for biosensor development in COVID-19 diagnosis. Biosens Bioelectron 2022; 200:113924. [PMID: 34974265 PMCID: PMC8717705 DOI: 10.1016/j.bios.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/29/2021] [Accepted: 12/25/2021] [Indexed: 11/30/2022]
Abstract
In a published review entitled "COVID-19 diagnosis -A review of current methods", the authors considered hemagglutinin esterase as one of the structural proteins of SARS-CoV-2 and also they did not represent ORF3b, ORF9b, and ORF9c in SARS-CoV-2 genome structure. However, according to the scientific evidence, among coronaviruses only some betacoronaviruses (Embecovirus subgenera) contain HE, and the genome of most of the coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV lack the HE gene. In addition, the genome of SARS-CoV-2 contains several accessory proteins ORFs including ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c, and ORF10.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mona Fani
- Department of Pathobiology & Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
79
|
Qin Y, Feng T, Shi H, Zhang J, Zhang L, Feng S, Chen J, He Y, Zhang X, Chen Z, Liu J, Liu D, Shi D, Feng L. Identification and epitope mapping of swine acute diarrhea syndrome coronavirus accessory protein NS7a via monoclonal antibodies. Virus Res 2022; 313:198742. [PMID: 35283248 PMCID: PMC8912973 DOI: 10.1016/j.virusres.2022.198742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging swine enteric coronavirus that causes vomiting, severe diarrhea, dehydration and death in suckling piglets. NS7a is putative accessory protein that is predicted to be encoded by SADS-CoV, but still to be confirmed experimentally. In the present study, recombinant NS7a protein was expressed in a prokaryotic expression system and used as an antigen to prepare monoclonal antibodies (mAbs) specific to NS7a protein. We obtained two anti-NS7a mAbs, termed AH5 and EH3, that were shown by western blotting to react with the natural NS7a protein in Vero E6 cells infected with SADS-CoV. Using the produced mAbs, we observed by confocal microscopy that NS7a protein was expressed in the cytoplasm. Further studies revealed that the motif 31VNTWQEFA38 was the minimal unit of the linear B-cell epitope recognized by mAb AH5, and the motif 82FDLFERF88 was the minimal unit of the linear B-cell epitope recognized by mAb EH3. Alignment of amino acids showed that these two epitopes were highly conserved among different SADS-CoV strains and SADS-related coronaviruses from bats, but with one substitution in these two motifs in bat coronavirus HKU2. In summary, we generated and characterized two mAbs against SADS-CoV NS7a protein, and demonstrated NS7a expression in SADS-CoV-infected cells for the first time.
Collapse
Affiliation(s)
- Yibin Qin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Xixiangtang District, Youai North Road 51, Nanning, 530001, China
| | - Tingshuai Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Liaoyuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Shufeng Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Ying He
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Xixiangtang District, Youai North Road 51, Nanning, 530001, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Zhongwei Chen
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Xixiangtang District, Youai North Road 51, Nanning, 530001, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Dakai Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China.
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China.
| |
Collapse
|
80
|
Mukherjee S, Ray SK. Third waves of the COVID-19 pandemic: Prominence of initial public health Interference. Infect Disord Drug Targets 2022; 22:e080222200919. [PMID: 35135456 DOI: 10.2174/1871526522666220208115101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Since the first news of a coronavirus-related pneumonia outbreak in December 2019, the virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which causes COVID-19, has spread worldwide, with more than 100 million people infected in over 210 countries and two million people dying as of today. In the UK (B.1.1.7), South Africa (B.1.351), Brazil (P.1), and India (B.1.617), independent SARS-CoV-2 lineages have recently been established. The virus will access these variants via the angiotensin-converting enzyme-2 (ACE2) receptor due to several mutations in the immune-dominant spike protein. SARS-CoV-2 has caused substantial morbidity and mortality, as well as significant strain on public health systems and the global economy, due to the severity and intensity at which it has spread. COVID-19 vaccines have shown to be highly successful in clinical trials and can be used to fight the pandemic. The COVID-19 pandemic's environmental trends change at breakneck speed, making predictions based on traditional epidemiological knowledge particularly speculative. Following the first outbreak, the second wave of COVID-19 swept across the globe, infecting various countries. A third wave of coronavirus infection has already been experienced in a few countries. Many of us have said, "When this is over," but what exactly does that mean? Since the virus's first-, second-, and third-order effects manifest over various time periods, the pandemic will not be considered 'over' until the 'third phase' of the COVID-19 pandemic has passed. It is the best time to take preventative steps and immunize ourselves with vaccines in order to prepare for the predicted third wave of COVID-19 in some countries. To effectively suppress and monitor the COVID-19 pandemic, early and timely measures with improved social distancing policies should be enforced. We must continue critical public health efforts to suppress transmission and reduce mortality while working toward the rollout of a safe and efficient vaccine, and we must have the patience to listen, learn, improve, innovate, and evolve.
Collapse
Affiliation(s)
- Sukhes Mukherjee
- Department of Biochemistry All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020. India
| | | |
Collapse
|
81
|
Saravanan UB, Namachivayam M, Jeewon R, Huang JD, Durairajan SSK. Animal models for SARS-CoV-2 and SARS-CoV-1 pathogenesis, transmission and therapeutic evaluation. World J Virol 2022; 11:40-56. [PMID: 35117970 PMCID: PMC8788210 DOI: 10.5501/wjv.v11.i1.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/22/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
There is a critical need to develop animal models to alleviate vaccine and drug development difficulties against zoonotic viral infections. The coronavirus family, which includes severe acute respiratory syndrome coronavirus 1 and severe acute respiratory syndrome coronavirus 2, crossed the species barrier and infected humans, causing a global outbreak in the 21st century. Because humans do not have pre-existing immunity against these viral infections and with ethics governing clinical trials, animal models are therefore being used in clinical studies to facilitate drug discovery and testing efficacy of vaccines. The ideal animal models should reflect the viral replication, clinical signs, and pathological responses observed in humans. Different animal species should be tested to establish an appropriate animal model to study the disease pathology, transmission and evaluation of novel vaccine and drug candidates to treat coronavirus disease 2019. In this context, the present review summarizes the recent progress in developing animal models for these two pathogenic viruses and highlights the utility of these models in studying SARS-associated coronavirus diseases.
Collapse
Affiliation(s)
- Udhaya Bharathy Saravanan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Mayurikaa Namachivayam
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | | |
Collapse
|
82
|
Emeribe AU, Abdullahi IN, Shuwa HA, Uzairue L, Musa S, Anka AU, Adekola HA, Bello ZM, Rogo LD, Aliyu D, Haruna S, Usman Y, Muhammad HY, Gwarzo AM, Nwofe JO, Chiwar HM, Okwume CC, Animasaun OS, Fasogbon SA, Olayemi L, Ogar C, Emeribe CH, Ghamba PE, Awoniyi LO, Musa BOP. Humoral immunological kinetics of severe acute respiratory syndrome coronavirus 2 infection and diagnostic performance of serological assays for coronavirus disease 2019: an analysis of global reports. Int Health 2022; 14:18-52. [PMID: 33620427 PMCID: PMC7928871 DOI: 10.1093/inthealth/ihab005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/23/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic continues to rise and second waves are reported in some countries, serological test kits and strips are being considered to scale up an adequate laboratory response. This study provides an update on the kinetics of humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and performance characteristics of serological protocols (lateral flow assay [LFA], chemiluminescence immunoassay [CLIA] and ELISA) used for evaluations of recent and past SARS-CoV-2 infection. A thorough and comprehensive review of suitable and eligible full-text articles was performed on PubMed, Scopus, Web of Science, Wordometer and medRxiv from 10 January to 16 July 2020. These articles were searched using the Medical Subject Headings terms 'COVID-19', 'Serological assay', 'Laboratory Diagnosis', 'Performance characteristics', 'POCT', 'LFA', 'CLIA', 'ELISA' and 'SARS-CoV-2'. Data from original research articles on SARS-CoV-2 antibody detection ≥second day postinfection were included in this study. In total, there were 7938 published articles on humoral immune response and laboratory diagnosis of COVID-19. Of these, 74 were included in this study. The detection, peak and decline period of blood anti-SARS-CoV-2 IgM, IgG and total antibodies for point-of-care testing (POCT), ELISA and CLIA vary widely. The most promising of these assays for POCT detected anti-SARS-CoV-2 at day 3 postinfection and peaked on the 15th day; ELISA products detected anti-SARS-CoV-2 IgM and IgG at days 2 and 6 then peaked on the eighth day; and the most promising CLIA product detected anti-SARS-CoV-2 at day 1 and peaked on the 30th day. The most promising LFA, ELISA and CLIA that had the best performance characteristics were those targeting total SARS-CoV-2 antibodies followed by those targeting anti-SARS-CoV-2 IgG then IgM. Essentially, the CLIA-based SARS-CoV-2 tests had the best performance characteristics, followed by ELISA then POCT. Given the varied performance characteristics of all the serological assays, there is a need to continuously improve their detection thresholds, as well as to monitor and re-evaluate their performances to assure their significance and applicability for COVID-19 clinical and epidemiological purposes.
Collapse
Affiliation(s)
- Anthony Uchenna Emeribe
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
| | - Idris Nasir Abdullahi
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Halima Ali Shuwa
- University Health Services, College of Health and Medical Sciences, Federal University, Dutse, Nigeria
| | - Leonard Uzairue
- Department of Microbiology, Federal University of Agriculture Abeokuta, Nigeria
| | - Sanusi Musa
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | - Zakariyya Muhammad Bello
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Lawal Dahiru Rogo
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano Nigeria
| | - Dorcas Aliyu
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
| | - Shamsuddeen Haruna
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yahaya Usman
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Habiba Yahaya Muhammad
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano Nigeria
| | | | | | - Hassan Musa Chiwar
- Department of Medical Laboratory Science, University of Maiduguri Maiduguri, Nigeria
| | - Chukwudi Crescent Okwume
- Department of Medical Laboratory Services, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | - Olawale Sunday Animasaun
- Nigeria Field Epidemiology and Laboratory Training Programme, African Field Epidemiology Network, Abuja, Nigeria
| | - Samuel Ayobami Fasogbon
- Public Health In-vitro Diagnostic Control Laboratory, Medical Laboratory Science Council of Nigeria, Lagos, Nigeria
| | - Lawal Olayemi
- School of Medicine, Faculty of Health Sciences, National University of Samoa, Apia, Samoa
| | - Christopher Ogar
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, P.M.B 1115, Calabar, Cross River State, Nigeria
| | - Chinenye Helen Emeribe
- Department of Family Medicine, University of Calabar Teaching Hospital, PMB 1278 Calabar, Cross River, Nigeria
| | - Peter Elisha Ghamba
- WHO National Polio Reference Laboratory, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria
| | - Luqman O Awoniyi
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, 20014 Turku, Finland
| | - Bolanle O P Musa
- Immunology Unit, Department of Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
83
|
Sriwilaijaroen N, Suzuki Y. Roles of Sialyl Glycans in HCoV-OC43, HCoV-HKU1, MERS-CoV and SARS-CoV-2 Infections. Methods Mol Biol 2022; 2556:243-271. [PMID: 36175638 DOI: 10.1007/978-1-0716-2635-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ongoing seasonal HCoV-OC43 and HCoV-HKU1 (common cold), an ongoing zoonotic infection of highly lethal MERS-CoV in humans (MERS disease), and an ongoing pandemic SARS-CoV-2 (COVID-19) with high mutability giving some variants causing severe illness and death have been reported to attach to sialyl receptors via their spike (S) glycoproteins and via additional short spikes, hemagglutinin-esterase (HE) glycoproteins, for HCoV-OC43 and HCoV-HKU1. There is lack of zoonotic viruses that are origins of HCoV-HKU1 and the first recorded pandemic CoV (SARS-CoV-2) for studies. In this chapter, we review current knowledge of the roles of sialyl glycans in infections with these viruses in distinct infection stages. Determination of the similarities and differences in roles of sialyl glycans in infections with these viruses could lead to a better understanding of the pathogenesis and transmission that is essential for combating infections with CoVs that recognize sialyl glycans.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
84
|
Abstract
Coronaviruses are a group of RNA viruses of different strains that possess unique morphology and affect mammals, reptiles, and birds. They were first discovered in 1931 when infectious bronchitis virus was implicated as the cause of severe acute respiratory syndrome in domesticated chicken. More recently, the outbreak of coronavirus disease (COVID-19) in 2019 which emerged from Wuhan, China, has become a global health concern and emergency. Their high pathogenicity and virulence have exacerbated respiratory infections leading to uncontrolled deaths. This chapter reveals of the nature, types, historical facts, and origin of coronavirus, what went wrong as regards the coronavirus outbreak, and future projection on the possible ways for the treatment of coronavirus disease.
Collapse
|
85
|
Fernández-Méndez C, Pathan S. Environmental stocks, CEO health risk and COVID-19. RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE 2022; 59:101509. [PMID: 34522059 PMCID: PMC8428483 DOI: 10.1016/j.ribaf.2021.101509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 05/03/2023]
Abstract
During the COVID-19 pandemic, we find that Australian firms with environmentally sustainable practices generated higher abnormal returns. Firms with CEOs who were exposed to significant health risks from COVID-19 experienced poorer stock market performance. Firms with low pre-COVID default risk and high pre-COVID liquidity performed better during the COVID-19 stock market crash. This research signifies the importance of environmental sustainability for Australian firms to endure pandemics such as COVID-19.
Collapse
Affiliation(s)
| | - Shams Pathan
- School of Economics, Finance and Property, Curtin University, Australia
| |
Collapse
|
86
|
Zeiss CJ, Compton S, Veenhuis RT. Animal Models of COVID-19. I. Comparative Virology and Disease Pathogenesis. ILAR J 2021; 62:35-47. [PMID: 33836527 PMCID: PMC8083356 DOI: 10.1093/ilar/ilab007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has fueled unprecedented development of animal models to understand disease pathogenesis, test therapeutics, and support vaccine development. Models previously developed to study severe acute respiratory syndrome coronavirus (SARS-CoV) have been rapidly deployed to study SARS-CoV-2. However, it has become clear that despite the common use of ACE2 as a receptor for both viruses, the host range of the 2 viruses does not entirely overlap. Distinct ACE2-interacting residues within the receptor binding domain of SARS-CoV and SARS-CoV-2, as well as species differences in additional proteases needed for activation and internalization of the virus, are likely sources of host differences between the 2 viruses. Spontaneous models include rhesus and cynomolgus macaques, African Green monkeys, hamsters, and ferrets. Viral shedding and transmission studies are more frequently reported in spontaneous models. Mice can be infected with SARS-CoV; however, mouse and rat ACE2 does not support SARS-CoV-2 infection. Murine models for COVID-19 are induced through genetic adaptation of SARS-CoV-2, creation of chimeric SARS-CoV and SARS-CoV-2 viruses, use of human ACE2 knock-in and transgenic mice, and viral transfection of wild-type mice with human ACE2. Core aspects of COVID-19 are faithfully reproduced across species and model. These include the acute nature and predominantly respiratory source of viral shedding, acute transient and nonfatal disease with a largely pulmonary phenotype, similar short-term immune responses, and age-enhanced disease. Severity of disease and tissue involvement (particularly brain) in transgenic mice varies by promoter. To date, these models have provided a remarkably consistent template on which to test therapeutics, understand immune responses, and test vaccine approaches. The role of comorbidity in disease severity and the range of severe organ-specific pathology in humans remains to be accurately modeled.
Collapse
Affiliation(s)
- Caroline J Zeiss
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Susan Compton
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
87
|
Zhou H, Yang J, Zhou C, Chen B, Fang H, Chen S, Zhang X, Wang L, Zhang L. A Review of SARS-CoV2: Compared With SARS-CoV and MERS-CoV. Front Med (Lausanne) 2021; 8:628370. [PMID: 34950674 PMCID: PMC8688360 DOI: 10.3389/fmed.2021.628370] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has been spreading rapidly in China and the Chinese government took a series of policies to control the epidemic. Studies found that severe COVID-19 is characterized by pneumonia, lymphopenia, exhausted lymphocytes and a cytokine storm. Studies have showen that SARS-CoV2 has significant genomic similarity to the severe acute respiratory syndrome (SARS-CoV), which was a pandemic in 2002. More importantly, some diligent measures were used to limit its spread according to the evidence of hospital spread. Therefore, the Public Health Emergency of International Concern (PHEIC) has been established by the World Health Organization (WHO) with strategic objectives for public health to curtail its impact on global health and economy. The purpose of this paper is to review the transmission patterns of the three pneumonia: SARS-CoV2, SARS-CoV, and MERS-CoV. We compare the new characteristics of COVID-19 with those of SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
- Huan Zhou
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Pharmacy, Bengbu Medical College, Bengbu, China.,School of Public Foundation, Bengbu Medical University, Bengbu, China
| | - Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Chang Zhou
- Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Fang
- Department of Pharmacology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuo Chen
- Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xianzheng Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Linding Wang
- Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
88
|
Capozza P, Pratelli A, Camero M, Lanave G, Greco G, Pellegrini F, Tempesta M. Feline Coronavirus and Alpha-Herpesvirus Infections: Innate Immune Response and Immune Escape Mechanisms. Animals (Basel) 2021; 11:3548. [PMID: 34944324 PMCID: PMC8698202 DOI: 10.3390/ani11123548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022] Open
Abstract
Over time, feline viruses have acquired elaborateopportunistic properties, making their infections particularly difficult to prevent and treat. Feline coronavirus (FCoV) and feline herpesvirus-1 (FeHV-1), due to the involvement of host genetic factors and immune mechanisms in the development of the disease and more severe forms, are important examples of immune evasion of the host's innate immune response by feline viruses.It is widely accepted that the innate immune system, which providesan initial universal form of the mammalian host protection from infectious diseases without pre-exposure, plays an essential role in determining the outcome of viral infection.The main components of this immune systembranchare represented by the internal sensors of the host cells that are able to perceive the presence of viral component, including nucleic acids, to start and trigger the production of first type interferon and to activate the cytotoxicity by Natural Killercells, often exploited by viruses for immune evasion.In this brief review, we providea general overview of the principal tools of innate immunity, focusing on the immunologic escape implemented byFCoVand FeHV-1 duringinfection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (P.C.); (A.P.); (M.C.); (G.L.); (G.G.); (F.P.)
| |
Collapse
|
89
|
Zoccola R, Beltramo C, Magris G, Peletto S, Acutis P, Bozzetta E, Radovic S, Zappulla F, Porzio AM, Gennero MS, Dondo A, Pasqualini C, Griglio B, Ferrari A, Ru G, Goria M. First detection of an Italian human-to-cat outbreak of SARS-CoV-2 Alpha variant - lineage B.1.1.7. One Health 2021; 13:100295. [PMID: 34316508 PMCID: PMC8299139 DOI: 10.1016/j.onehlt.2021.100295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of new SARS-CoV-2 variants and their rapid spread pose a threat to both human and animal health and may conceal unknown risks. This report describes an Italian human-to-cat outbreak of SARS-CoV-2 lineage B.1.1.7 (the Alpha variant) . On March 7th, 2021, approximately ten days after COVID-19 appeared in the family, the onset of respiratory signs in a cat by COVID-19-affected owners led to an in-depth diagnostic investigation, combining clinical and serological data with rt-qPCR-based virus detection and whole genome sequencing. The Alpha variant was confirmed first in the owners and a few days later in the cat that was then monitored weekly: the course was similar with one-week lag time in the cat. In addition, based on comparative analysis of genome sequences from our study and from 200 random Italian cases of Alpha variant, the familial cluster was confirmed. The temporal sequence along with the genomic data support a human-to-animal transmission. Such an event emphasizes the importance of studying the circulation and dynamics of SARS-CoV-2 variants in humans and animals to better understand and prevent potential spillover risks or unwarranted alerts involving our pet populations.
Collapse
Affiliation(s)
- Roberto Zoccola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Chiara Beltramo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Gabriele Magris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
- Istituto di Genomica Applicata, Udine I-33100, Italy
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Pierluigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | | | - Francesco Zappulla
- Regione Piemonte - Local Health Unit Novara - Department of Prevention, Health Service - Veterinary Services, Arona (No), I-28041, Italy
| | | | - Maria Silvia Gennero
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Alessandro Dondo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Chiara Pasqualini
- Regione Piemonte - Regional Service for Surveillance and Control of Infectious Diseases (SEREMI), I-15121 Alessandria, Italy
| | | | - Angelo Ferrari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Giuseppe Ru
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Maria Goria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| |
Collapse
|
90
|
Amato L, Jurisic L, Puglia I, Di Lollo V, Curini V, Torzi G, Di Girolamo A, Mangone I, Mancinelli A, Decaro N, Calistri P, Di Giallonardo F, Lorusso A, D’Alterio N. Multiple detection and spread of novel strains of the SARS-CoV-2 B.1.177 (B.1.177.75) lineage that test negative by a commercially available nucleocapsid gene real-time RT-PCR. Emerg Microbes Infect 2021; 10:1148-1155. [PMID: 34019466 PMCID: PMC8205086 DOI: 10.1080/22221751.2021.1933609] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 01/24/2023]
Abstract
Several lineages of SARS-CoV-2 are currently circulating worldwide. During SARS-CoV-2 diagnostic activities performed in Abruzzo region (central Italy) several strains belonging to the B.1.177.75 lineage tested negative for the N gene but positive for the ORF1ab and S genes (+/+/- pattern) by the TaqPath COVID-19 CE-IVD RT-PCR Kit manufactured by Thermofisher. By sequencing, a unique mutation, synonymous 28948C > T, was found in the N-negative B.1.177.75 strains. Although we do not have any knowledge upon the nucleotide sequences of the primers and probe adopted by this kit, it is likely that N gene dropout only occurs when 28948C > T is coupled with 28932C > T, this latter present, in turn, in all B.1.177.75 sequences available on public databases. Furthermore, epidemiological analysis was also performed. The majority of the N-negative B.1.177.75 cases belonged to two clusters apparently unrelated to each other and both clusters involved young people. However, the phylogeny for sequences containing the +/+/- pattern strongly supports a genetic connection and one common source for both clusters. Though, genetic comparison suggests a connection rather than indicating the independent emergence of the same mutation in two apparently unrelated clusters. This study highlights once more the importance of sharing genomic data to link apparently unrelated epidemiological clusters and to, remarkably, update molecular tests.
Collapse
Affiliation(s)
- Laura Amato
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Lucija Jurisic
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), Teramo, Italy
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Giuseppe Torzi
- Azienda Sanitaria Locale, Lanciano-Vasto-Chieti, Chieti, Italy
| | | | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), Teramo, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano (Bari), Italy
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), Teramo, Italy
| | | | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Nicola D’Alterio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), Teramo, Italy
| |
Collapse
|
91
|
Bakhtazad A, Garmabi B, Joghataei MT. Neurological manifestations of coronavirus infections, before and after COVID-19: a review of animal studies. J Neurovirol 2021; 27:864-884. [PMID: 34727365 PMCID: PMC8561685 DOI: 10.1007/s13365-021-01014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus, which was first identified in December 2019 in China, has resulted in a yet ongoing viral pandemic. Coronaviridae could potentially cause several disorders in a wide range of hosts such as birds and mammals. Although infections caused by this family of viruses are predominantly limited to the respiratory tract, Betacoronaviruses are potentially able to invade the central nervous system (CNS) as well as many other organs, thereby inducing neurological damage ranging from mild to lethal in both animals and humans. Over the past two decades, three novel CoVs, SARS-CoV-1, MERS-CoV, and SARS-CoV-2, emerging from animal reservoirs have exhibited neurotropic properties causing severe and even fatal neurological diseases. The pathobiology of these neuroinvasive viruses has yet to be fully known. Both clinical features of the previous CoV epidemics (SARS-CoV-1 and MERS-CoV) and lessons from animal models used in studying neurotropic CoVs, especially SARS and MERS, constitute beneficial tools in comprehending the exact mechanisms of virus implantation and in illustrating pathogenesis and virus dissemination pathways in the CNS. Here, we review the animal research which assessed CNS infections with previous more studied neurotropic CoVs to demonstrate how experimental studies with appliable animal models can provide scientists with a roadmap in the CNS impacts of SARS-CoV-2. Indeed, animal studies can finally help us discover the underlying mechanisms of damage to the nervous system in COVID-19 patients and find novel therapeutic agents in order to reduce mortality and morbidity associated with neurological complications of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, 1449614535 Tehran, Iran
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Haft-Tir Sq, University Blv, 3614773947 Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, 1449614535 Tehran, Iran
| |
Collapse
|
92
|
Machado AS, Castelo PM, Capela E Silva F, Lamy E. Covid-19: Signs and symptoms related to the feeding behavior. Physiol Behav 2021; 242:113605. [PMID: 34600920 PMCID: PMC8482655 DOI: 10.1016/j.physbeh.2021.113605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 reached pandemic level in March 2020 and the number of confirmed cases continued to increase worldwide. The clinical course of the disease has not yet been fully characterized, and some specific symptoms related to smell, taste, and feeding behavior require further examination. The present study aimed to assess the presence of symptoms related to the feeding behavior occurred during and/or after COVID-19 in adults residing in Portugal and to link them to disease severity using a multivariate approach. Data were collected from May to September 2020, through a questionnaire answered online containing questions about general and specific symptoms before, during and after COVID-19. 362 participants were included: 201 were symptomatic, being 15 hospitalized and 186 non-hospitalized. Cluster analysis grouped the symptomatic non-hospitalized participants as mild and severe cases. For these patients, the most frequent symptoms related to the feeding process were smell disorders in 40% and 62%, taste disorders in 37% and 60%, and dry mouth, in 23% and 48% of the mild and severe cases, respectively. Dry mouth was significantly associated with difficulty to swallow, pain during swallow, choking when eating or drinking, and preference for mushy/pasty foods (p < 0.01; Chi-squared test). Among the severe cases, the incidence of coughing during the meal (31%), difficulty (19%) and pain during swallow (17%), preference for mushy/pasty foods (10%) and choking when eating or drinking (6%) were clinically relevant and may indicate the presence of swallowing disorders. This group also showed a higher frequency of general symptoms, such as fever, headache, abdominal pain, tiredness, diarrhea, nausea, and shortness of breath (p < 0.05; Chi-squared test). Smell disorders, taste disorders and dry mouth were the most frequent symptoms related to the feeding behavior for both mild and severe cases. Dry mouth was significantly associated with swallowing difficulties and future research should investigate it as a frequent symptom and as a predictive of the presence of eating and swallowing disorders in COVID-19 cases.
Collapse
Affiliation(s)
| | - Paula Midori Castelo
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, University Federal de São Paulo (UNIFESP), Brazil
| | - Fernando Capela E Silva
- MED - Mediterranean Institute for Agriculture, Environment and Development, IIFA - Instituto de Investigação e Formação Avançada, University of Évora, Portugal; Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Évora, Portugal
| | - Elsa Lamy
- MED - Mediterranean Institute for Agriculture, Environment and Development, IIFA - Instituto de Investigação e Formação Avançada, University of Évora, Portugal.
| |
Collapse
|
93
|
Laidoudi Y, Sereme Y, Medkour H, Watier-Grillot S, Scandola P, Ginesta J, Andréo V, Labarde C, Comtet L, Pourquier P, Raoult D, Marié JL, Davoust B. SARS-CoV-2 antibodies seroprevalence in dogs from France using ELISA and an automated western blotting assay. One Health 2021; 13:100293. [PMID: 34377760 PMCID: PMC8327341 DOI: 10.1016/j.onehlt.2021.100293] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
Dogs are occasionally susceptible to SARS-CoV-2, developing few or no clinical signs. Epidemiological surveillance of SARS-CoV-2 in dogs requires testing to distinguish it from other canine coronaviruses. In the last year, significant advances have been made in the diagnosis of SARS-CoV-2, allowing its surveillance in both human and animal populations. Here, using ELISA and automated western blotting (AWB) assays, we performed a longitudinal study on 809 apparently healthy dogs from different regions of France to investigate anti-SARS-CoV-2 antibodies. There were three main groups: (i) 356 dogs sampled once before the pandemic, (ii) 235 dogs sampled once during the pandemic, and (iii) 218 dogs, including 82 dogs sampled twice (before and during the pandemic), 125 dogs sampled twice during the pandemic and 11 dogs sampled three times (once before and twice during the pandemic). Using ELISA, seroprevalence was significantly higher during the pandemic [5.5% (25/453)] than during the pre-pandemic period [1.1% (5/449)]. Among the 218 dogs sampled twice, at least 8 ELISA-seroconversions were observed. ELISA positive pre-pandemic sera were not confirmed in serial tests by AWB, indicating possible ELISA cross-reactivity, probably with other canine coronaviruses. A significant difference was observed between these two serological tests (Q = 88, p = 0.008). A clear correlation was observed between SARS-CoV-2 seroprevalence in dogs and the incidence of SARS-CoV-2 infection in human population from the same area. AWB could be used as a second line assay to confirm the doubtful and discrepant ELISA results in dogs. Our results confirm the previous experimental models regarding the susceptibility of dogs to SARS-CoV-2, suggesting that viral transmission from and between dogs is weak or absent. However, the new variants with multiple mutations could adapt to dogs; this hypothesis cannot be ruled out in the absence of genomic data on SARS-CoV-2 from dogs.
Collapse
Affiliation(s)
- Younes Laidoudi
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Youssouf Sereme
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Hacène Medkour
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Stéphanie Watier-Grillot
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- French Army Center for Epidemiology and Public Health, Marseille, France
| | - Pierre Scandola
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- 1 Veterinary Group, Toulon, France
| | | | | | - Claire Labarde
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- 1 Veterinary Group, Toulon, France
| | | | | | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Jean-Lou Marié
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
| | - Bernard Davoust
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- 1 Veterinary Group, Toulon, France
| |
Collapse
|
94
|
Global Pandemic as a Result of Severe Acute Respiratory Syndrome Coronavirus 2 Outbreak: A Biomedical Perspective. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In December 2019, a novel coronavirus had emerged in Wuhan city, China that led to an outbreak resulting in a global pandemic, taking thousands of lives. The infectious virus was later classified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Individuals infected by this novel virus initially exhibit nonspecific symptoms such as dry cough, fever, dizziness and many more bodily complications. From the “public health emergency of international concern” declaration by the World Health Organisation (WHO), several countries have taken steps in controlling the transmission and many researchers share their knowledge on the SARS-COV-2 characteristics and viral life cycle, that may aid in pharmaceutical and biopharmaceutical companies to develop SARS-CoV-2 vaccine and antiviral drugs that interfere with the viral life cycle. In this literature review the origin, classification, aetiology, life cycle, clinical manifestations, laboratory diagnosis and treatment are all reviewed.
Collapse
|
95
|
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13:eabd5758. [PMID: 34818055 DOI: 10.1126/scitranslmed.abd5758] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Angelica Van Goor
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Taylor Hailstock
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Jasmine Franklin
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Chaohui Dai
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
96
|
Almutairi MM, Sivandzade F, Albekairi TH, Alqahtani F, Cucullo L. Neuroinflammation and Its Impact on the Pathogenesis of COVID-19. Front Med (Lausanne) 2021; 8:745789. [PMID: 34901061 PMCID: PMC8652056 DOI: 10.3389/fmed.2021.745789] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical manifestations of COVID-19 include dry cough, difficult breathing, fever, fatigue, and may lead to pneumonia and respiratory failure. There are significant gaps in the current understanding of whether SARS-CoV-2 attacks the CNS directly or through activation of the peripheral immune system and immune cell infiltration. Although the modality of neurological impairments associated with COVID-19 has not been thoroughly investigated, the latest studies have observed that SARS-CoV-2 induces neuroinflammation and may have severe long-term consequences. Here we review the literature on possible cellular and molecular mechanisms of SARS-CoV-2 induced-neuroinflammation. Activation of the innate immune system is associated with increased cytokine levels, chemokines, and free radicals in the SARS-CoV-2-induced pathogenic response at the blood-brain barrier (BBB). BBB disruption allows immune/inflammatory cell infiltration into the CNS activating immune resident cells (such as microglia and astrocytes). This review highlights the molecular and cellular mechanisms involved in COVID-19-induced neuroinflammation, which may lead to neuronal death. A better understanding of these mechanisms will help gain substantial knowledge about the potential role of SARS-CoV-2 in neurological changes and plan possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
97
|
Pratelli A, Tempesta M, Elia G, Martella V, Decaro N, Buonavoglia C. The knotty biology of canine coronavirus: A worrying model of coronaviruses' danger. Res Vet Sci 2021; 144:190-195. [PMID: 34838321 PMCID: PMC8605815 DOI: 10.1016/j.rvsc.2021.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Severe clinical diseases associated to αCoronavirus (αCoV) infections were recently demonstrated for the first time in humans and a closely related but distinct canine CoV (CCoV) variant was identified in the nasopharyngeal swabs of children with pneumonia hospitalized in Malaysia, in 2017-2018. The complete genome sequence analysis demonstrated that the isolated strain, CCoV-HuPn-2018, was a novel canine-feline-like recombinant virus with a unique nucleoprotein. The occurrence of three human epidemics/pandemic caused by CoVs in the recent years and the detection of CCoV-HuPn-2018, raises questions about the ability of these viruses to overcome species barriers from their reservoirs jumping to humans. Interestingly, in this perspective, it is interesting to consider the report concerning new CCoV strains with a potential dual recombinant origin through partial S-gene exchange with porcine transmissible gastroenteritis virus (TGEV) identified in pups died with acute gastroenteritis in 2009. The significance of the ability of CCoVs to evolve is still unclear, but several questions arisen on the biology of these viruses, focusing important epidemiological outcomes in the field, in terms of both virus evolution and prophylaxis. The new CCoV-Hupn-2018 should lead researchers to pay more attention to the mechanisms of recombination among CoVs, rather than to the onset of variants as a result of mutations, suggesting a continuous monitoring of these viruses and in particular of SARS-CoV-2.
Collapse
Affiliation(s)
- Annamaria Pratelli
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima Km 3, 70010 Valenzano, BA, Italy.
| | - Maria Tempesta
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University Aldo Moro of Bari, Strada per Casamassima Km 3, 70010 Valenzano, BA, Italy
| |
Collapse
|
98
|
Di Pasquale A, Radomski N, Mangone I, Calistri P, Lorusso A, Cammà C. SARS-CoV-2 surveillance in Italy through phylogenomic inferences based on Hamming distances derived from pan-SNPs, -MNPs and -InDels. BMC Genomics 2021; 22:782. [PMID: 34717546 PMCID: PMC8556844 DOI: 10.1186/s12864-021-08112-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Faced with the ongoing global pandemic of coronavirus disease, the 'National Reference Centre for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis' (GENPAT) formally established at the 'Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise' (IZSAM) in Teramo (Italy) is in charge of the SARS-CoV-2 surveillance at the genomic scale. In a context of SARS-CoV-2 surveillance requiring correct and fast assessment of epidemiological clusters from substantial amount of samples, the present study proposes an analytical workflow for identifying accurately the PANGO lineages of SARS-CoV-2 samples and building of discriminant minimum spanning trees (MST) bypassing the usual time consuming phylogenomic inferences based on multiple sequence alignment (MSA) and substitution model. RESULTS GENPAT constituted two collections of SARS-CoV-2 samples. The first collection consisted of SARS-CoV-2 positive swabs collected by IZSAM from the Abruzzo region (Italy), then sequenced by next generation sequencing (NGS) and analyzed in GENPAT (n = 1592), while the second collection included samples from several Italian provinces and retrieved from the reference Global Initiative on Sharing All Influenza Data (GISAID) (n = 17,201). The main results of the present work showed that (i) GENPAT and GISAID detected the same PANGO lineages, (ii) the PANGO lineages B.1.177 (i.e. historical in Italy) and B.1.1.7 (i.e. 'UK variant') are major concerns today in several Italian provinces, and the new MST-based method (iii) clusters most of the PANGO lineages together, (iv) with a higher dicriminatory power than PANGO lineages, (v) and faster that the usual phylogenomic methods based on MSA and substitution model. CONCLUSIONS The genome sequencing efforts of Italian provinces, combined with a structured national system of NGS data management, provided support for surveillance SARS-CoV-2 in Italy. We propose to build phylogenomic trees of SARS-CoV-2 variants through an accurate, discriminant and fast MST-based method avoiding the typical time consuming steps related to MSA and substitution model-based phylogenomic inference.
Collapse
Affiliation(s)
- Adriano Di Pasquale
- National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data-base and bioinformatics analysis (GENPAT), Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), via Campo Boario, 64100 Teramo, TE Italy
| | - Nicolas Radomski
- National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data-base and bioinformatics analysis (GENPAT), Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), via Campo Boario, 64100 Teramo, TE Italy
| | - Iolanda Mangone
- National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data-base and bioinformatics analysis (GENPAT), Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), via Campo Boario, 64100 Teramo, TE Italy
| | - Paolo Calistri
- National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data-base and bioinformatics analysis (GENPAT), Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), via Campo Boario, 64100 Teramo, TE Italy
| | - Alessio Lorusso
- National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data-base and bioinformatics analysis (GENPAT), Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), via Campo Boario, 64100 Teramo, TE Italy
| | - Cesare Cammà
- National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data-base and bioinformatics analysis (GENPAT), Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), via Campo Boario, 64100 Teramo, TE Italy
| |
Collapse
|
99
|
Nasker SS, Nanda A, Ramadass B, Nayak S. Epidemiological Analysis of SARS-CoV-2 Transmission Dynamics in the State of Odisha, India: A Yearlong Exploratory Data Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11203. [PMID: 34769722 PMCID: PMC8582922 DOI: 10.3390/ijerph182111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
COVID-19 remains a matter of global public health concern. Previous research suggested the association between local environmental factors and viral transmission. We present a multivariate observational analysis of SARS-CoV-2 transmission in the state of Odisha, India, hinting at a seasonal activity. We aim to investigate the demographic characteristics of COVID-19 in the Indian state of Odisha for two specific timelines in 2020 and 2021. For a comparative outlook, we chose similar datasets from the state of New York, USA. Further, we present a critical analysis pertaining to the effects of environmental factors and the emergence of variants on SARS-CoV-2 transmission and persistence. We assessed the datasets for confirmed cases, death, age, and gender for 29 February 2020 to 31 May 2020, and 1 March 2021 to 31 May 2021. We determined the case fatalities, crude death rates, sex ratio, and incidence rates for both states along with monthly average temperature analysis. A yearlong epi-curve analysis was conducted to depict the coronavirus infection spread pattern in the respective states. The Indian state of Odisha reported a massive 436,455 confirmed cases and 875 deaths during the 2021 timeline as compared to a mere 2223 cases and 7 deaths during the 2020 timeline. We further discuss the demographic and temperature association of SARS-CoV-2 transmission during early 2020 and additionally comment on the variant-associated massive rise in cases during 2021. Along with the rapid rise of variants, the high population density and population behavior seem to be leading causes for the 2021 pandemic, whereas factors such as age group, gender, and average local temperature were prominent during the 2020 spread. A seasonal occurrence of SARS-CoV-2 transmission is also observed from the yearlong epidemiological plot. The recent second wave of COVID-19 is a lesson that emphasizes the significance of continuous epidemiological surveillance to predict the relative risk of viral transmission for a specific region.
Collapse
Affiliation(s)
- Sourya Subhra Nasker
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India; (S.S.N.); (A.N.)
| | - Ananya Nanda
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India; (S.S.N.); (A.N.)
| | | | - Sasmita Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India; (S.S.N.); (A.N.)
- Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| |
Collapse
|
100
|
Nova N. Cross-Species Transmission of Coronaviruses in Humans and Domestic Mammals, What Are the Ecological Mechanisms Driving Transmission, Spillover, and Disease Emergence? Front Public Health 2021; 9:717941. [PMID: 34660513 PMCID: PMC8514784 DOI: 10.3389/fpubh.2021.717941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses cause respiratory and digestive diseases in vertebrates. The recent pandemic, caused by the novel severe acute respiratory syndrome (SARS) coronavirus 2, is taking a heavy toll on society and planetary health, and illustrates the threat emerging coronaviruses can pose to the well-being of humans and other animals. Coronaviruses are constantly evolving, crossing host species barriers, and expanding their host range. In the last few decades, several novel coronaviruses have emerged in humans and domestic animals. Novel coronaviruses have also been discovered in captive wildlife or wild populations, raising conservation concerns. The evolution and emergence of novel viruses is enabled by frequent cross-species transmission. It is thus crucial to determine emerging coronaviruses' potential for infecting different host species, and to identify the circumstances under which cross-species transmission occurs in order to mitigate the rate of disease emergence. Here, I review (broadly across several mammalian host species) up-to-date knowledge of host range and circumstances concerning reported cross-species transmission events of emerging coronaviruses in humans and common domestic mammals. All of these coronaviruses had similar host ranges, were closely related (indicative of rapid diversification and spread), and their emergence was likely associated with high-host-density environments facilitating multi-species interactions (e.g., shelters, farms, and markets) and the health or well-being of animals as end- and/or intermediate spillover hosts. Further research is needed to identify mechanisms of the cross-species transmission events that have ultimately led to a surge of emerging coronaviruses in multiple species in a relatively short period of time in a world undergoing rapid environmental change.
Collapse
Affiliation(s)
- Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|