51
|
Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Labombarda F, Gonzalez S, Guennoun R, Schumacher M, De Nicola AF. Experimental and clinical evidence for the protective role of progesterone in motoneuron degeneration and neuroinflammation. Horm Mol Biol Clin Investig 2015; 7:403-11. [PMID: 25961276 DOI: 10.1515/hmbci.2011.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 01/08/2023]
Abstract
Far beyond its role in reproduction, progesterone exerts neuro-protective, promyelinating, and anti-inflammatory effects in the nervous system. These effects are amplified under pathological conditions, implying that changes of the local environment sensitize nervous tissues to steroid therapy. The present survey covers our results of progesterone neuroprotection in a motoneuron neurodegeneration model and a neuroinflammation model. In the degenerating spinal cord of the Wobbler mouse, progesterone reverses the impaired expression of neurotrophins, increases enzymes of neurotransmission and metabolism, prevents oxidative damage of motoneurons and their vacuolar degeneration (paraptosis), and attenuates the development of mitochondrial abnormalities. After long-term treatment, progesterone also increases muscle strength and the survival of Wobbler mice. Subsequently, this review describes the effects of progesterone in mice with induced experimental autoimmune encephalomyelitis (EAE), a commonly used model of multiple sclerosis. In EAE mice, progesterone attenuates the clinical severity, decreases demyelination and neuronal dysfunction, increases axonal counts, reduces the formation of amyloid precursor protein profiles, and decreases the aberrant expression of growth-associated proteins. These actions of progesterone may be due to multiple mechanisms, considering that classic nuclear receptors, extranuclear receptors, and membrane receptors are all expressed in the spinal cord. Although many aspects of progesterone action in humans remain unsolved, data provided by experimental models makes getting to this objective closer than previously expected.
Collapse
|
52
|
Garay L, Gonzalez Deniselle MC, Gierman L, Lima A, Roig P, De Nicola AF. Pharmacotherapy with 17β-estradiol and progesterone prevents development of mouse experimental autoimmune encephalomyelitis. Horm Mol Biol Clin Investig 2015; 1:43-51. [PMID: 25961971 DOI: 10.1515/hmbci.2010.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/30/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pregnant women with multiple sclerosis (MS) show disease remission in the third trimester concomitant with high circulating levels of sex steroids. Rodent experimental autoimmune encephalomyelitis (EAE) is an accepted model for MS. Previous studies have shown that monotherapy with estrogens or progesterone exert beneficial effects on EAE. The aim of the present study was to determine if estrogen and progesterone cotherapy of C57BL/6 female mice provided substantial protection from EAE. METHODS A group of mice received single pellets of progesterone (100 mg) and 17 β-estradiol (2.5 mg) subcutaneously 1 week before EAE induction, whereas another group were untreated before EAE induction. On day 16 we compared the two EAE groups and control mice in terms of clinical scores, spinal cord demyelination, expression of myelin basic protein and proteolipid protein, macrophage cell infiltration, neuronal expression of brain-derived neurotrophic factor mRNA and protein, and the number of glial fribrillary acidic protein (GFAP)-immunopositive astrocytes. RESULTS Clinical signs of EAE were substantially attenuated by estrogen and progesterone treatment. Steroid cotherapy prevented spinal cord demyelination, infiltration of inflammatory cells and GFAP+ astrogliocytes to a great extent. In motoneurons, expression of BDNF mRNA and protein was highly stimulated, indicating concomitant beneficial effects of the steroid on neuronal and glial cells. CONCLUSIONS Cotherapy with estrogen and progesterone inhibits the development of major neurochemical abnormalities and clinical signs of EAE. We suggest that a combination of neuroprotective, promyelinating and immuno-suppressive mechanisms are involved in these beneficial effects.
Collapse
|
53
|
Abstract
OBJECTIVE To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric traumatic brain injury. DATA SOURCES National Library of Medicine PubMed literature review. STUDY SELECTION The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of traumatic brain injury is summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult traumatic brain injury is reviewed. DATA EXTRACTION AND DATA SYNTHESIS Progesterone is a pleiotropic agent with beneficial effects on secondary injury cascades that occur after traumatic brain injury, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after traumatic brain injury in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human phase II trials of progesterone for adult traumatic brain injury have been published, and two multicenter phase III trials are underway. CONCLUSIONS The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of traumatic brain injury. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, and statue epilepticus).
Collapse
|
54
|
Hoffmann S, Beyer C. Gonadal steroid hormones as therapeutic tools for brain trauma: the time is ripe for more courageous clinical trials to get into emergency medicine. J Steroid Biochem Mol Biol 2015; 146:1-2. [PMID: 25196186 DOI: 10.1016/j.jsbmb.2014.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefanie Hoffmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
55
|
Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol 2015; 146:48-61. [PMID: 25196185 DOI: 10.1016/j.jsbmb.2014.09.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
Progesterone is a well-known steroid hormone, synthesized by ovaries and placenta in females, and by adrenal glands in both males and females. Several tissues are targets of progesterone and the nervous system is a major one. Progesterone is also locally synthesized by the nervous system and qualifies, therefore, as a neurosteroid. In addition, the nervous system has the capacity to bio-convert progesterone into its active metabolite allopregnanolone. The enzymes required for progesterone and allopregnanolone synthesis are widely distributed in brain and spinal cord. Increased local biosynthesis of pregnenolone, progesterone and 5α-dihydroprogesterone may be a part of an endogenous neuroprotective mechanism in response to nervous system injuries. Progesterone and allopregnanolone neuroprotective effects have been widely recognized. Multiple receptors or associated proteins may contribute to the progesterone effects: classical nuclear receptors (PR), membrane progesterone receptor component 1 (PGRMC1), membrane progesterone receptors (mPR), and γ-aminobutyric acid type A (GABAA) receptors after conversion to allopregnanolone. In this review, we will succinctly describe progesterone and allopregnanolone biosynthetic pathways and enzyme distribution in brain and spinal cord. Then, we will summarize our work on progesterone receptor distribution and cellular expression in brain and spinal cord; neurosteroid stimulation after nervous system injuries (spinal cord injury, traumatic brain injury, and stroke); and on progesterone and allopregnanolone neuroprotective effects in different experimental models including stroke and spinal cord injury. We will discuss in detail the neuroprotective effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABAA receptors.
Collapse
Affiliation(s)
- R Guennoun
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France.
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | | | - P Liere
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - M Schumacher
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| |
Collapse
|
56
|
Calderón-Vallejo D, Quintanar-Stephano A, Hernández-Jasso I, Jiménez-Hernández V, Ruiz-Ornelas J, Jiménez I, Quintanar JL. Functional and structural recovery of the injured spinal cord in rats treated with gonadotropin-releasing hormone. Neurochem Res 2015; 40:455-62. [PMID: 25618391 DOI: 10.1007/s11064-014-1486-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/24/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022]
Abstract
Several studies have shown that gonadotropin-releasing hormone (GnRH) have extra-pituitary roles, including neurotrophic effects. This study was to evaluate the effects of GnRH treatment on the spinal cord injury (SCI) of rats. Ovariectomized rats were divided into: sham SCI surgery (Sham), SCI treated with saline solution (SCI + SS), and SCI treated with GnRH (SCI + GnRH). The SCI was induced by compression. One day after the lesion, SCI + GnRH group was injected with GnRH (60 µg/kg/twice/day; i.m.) for 15 days and the other groups with saline solution. To kinematic gait analysis, length and velocity of the stride were measured. In spinal cord, axonal morphometry and spared white and gray matter were analyzed by histochemistry. Protein expression of spinophilin was evaluated by western blot. The results showed that, 5 weeks after the injury, the group of animals treated with GnRH, significantly increased the length and velocity of the stride compared to SCI + SS group and they were similar to Sham group. In spinal cord, GnRH treatment increased the number and caliber of nerve axons and in the case of white matter, spared tissue was significantly higher than those animals treated with saline solution. The expression of spinophilin in spinal cord of SCI + GnRH group was slightly increased with respect to those not treated. In conclusion, GnRH treatment improves recovery of gait and decreases histopathological damage in the injured spinal cord of rat. These findings suggest that GnRH acts as a neurotrophic factor and can be used as a potential therapeutic agent for treatment of SCI.
Collapse
Affiliation(s)
- Denisse Calderón-Vallejo
- Laboratory of Neurophysiology, Depto. de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, C.P. 20131, Aguascalientes, AGS, Mexico
| | | | | | | | | | | | | |
Collapse
|
57
|
Garcia-Ovejero D, González S, Paniagua-Torija B, Lima A, Molina-Holgado E, De Nicola AF, Labombarda F. Progesterone reduces secondary damage, preserves white matter, and improves locomotor outcome after spinal cord contusion. J Neurotrauma 2014; 31:857-71. [PMID: 24460450 DOI: 10.1089/neu.2013.3162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Progesterone is an anti-inflammatory and promyelinating agent after spinal cord injury, but its effectiveness on functional recovery is still controversial. In the current study, we tested the effects of chronic progesterone administration on tissue preservation and functional recovery in a clinically relevant model of spinal cord lesion (thoracic contusion). Using magnetic resonance imaging, we observed that progesterone reduced both volume and rostrocaudal extension of the lesion at 60 days post-injury. In addition, progesterone increased the number of total mature oligodendrocytes, myelin basic protein immunoreactivity, and the number of axonal profiles at the epicenter of the lesion. Further, progesterone treatment significantly improved motor outcome as assessed using the Basso-Bresnahan-Beattie scale for locomotion and CatWalk gait analysis. These data suggest that progesterone could be considered a promising therapeutical candidate for spinal cord injury.
Collapse
Affiliation(s)
- Daniel Garcia-Ovejero
- 1 Laboratorio de Neuroinflamación, Hospital Nacional de Parapléjicos , Toledo, Spain
| | | | | | | | | | | | | |
Collapse
|
58
|
Efficacy of the selective progesterone receptor agonist Nestorone for chronic experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 276:89-97. [DOI: 10.1016/j.jneuroim.2014.08.619] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 11/17/2022]
|
59
|
Liao Z, Smith PG. Persistent genital hyperinnervation following progesterone administration to adolescent female rats. Biol Reprod 2014; 91:144. [PMID: 25359899 DOI: 10.1095/biolreprod.114.121103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Provoked vestibulodynia, a female pelvic pain syndrome affecting substantial numbers of women, is characterized by genital hypersensitivity and sensory hyperinnervation. Previous studies have shown that the risk of developing provoked vestibulodynia is markedly elevated following adolescent use of oral contraceptives with high progesterone content. We hypothesized that progesterone, a steroid hormone with known neurotropic properties, may alter genital innervation through direct or indirect actions. Female Sprague Dawley rats received progesterone (20 mg/kg subcutaneously) from Days 20-27; tissue was removed for analysis in some rats on Day 28, while others were ovariectomized on Day 43 and infused for 7 days with vehicle or 17beta estradiol. Progesterone resulted in overall increases in vaginal innervation at both Day 28 and 50 due to proliferation of peptidergic sensory and sympathetic (but not parasympathetic) axons. Estradiol reduced innervation in progesterone-treated and untreated groups. To assess the mechanisms of sensory hyperinnervation, we cultured dissociated dorsal root ganglion neurons and found that progesterone increases neurite outgrowth by small unmyelinated (but not myelinated) sensory neurons, it was receptor mediated, and it was nonadditive with NGF. Pretreatment of ganglion with progesterone also increased neurite outgrowth in response to vaginal target explants. However, pretreatment of vaginal target with progesterone did not improve outgrowth. We conclude that adolescent progesterone exposure may contribute to provoked vestibulodynia by eliciting persistent genital hyperinnervation via a direct effect on unmyelinated sensory nociceptor neurons and that estradiol, a well-documented therapeutic, may alleviate symptoms in part by reducing progesterone-induced sensory hyperinnervation.
Collapse
Affiliation(s)
- Zhaohui Liao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Peter G Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas Institute for Neurological Discoveries, University of Kansas Medical Center, Kansas City, Kansas Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
60
|
Progesterone protects mitochondrial function in a rat model of pediatric traumatic brain injury. J Bioenerg Biomembr 2014; 47:43-51. [PMID: 25348484 DOI: 10.1007/s10863-014-9585-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/17/2014] [Indexed: 02/03/2023]
Abstract
Progesterone has been studied extensively in preclinical models of adult traumatic brain injury (TBI), and has advanced to clinical trials in adults with TBI. However, there are very few preclinical studies in pediatric TBI models investigating progesterone for neuroprotection. Immature male and female rats (postnatal day, PND 17-21) underwent controlled cortical impact (CCI) to the left parietal cortex. Rats received either progesterone (10 mg/kg) at 1 h (i.p.) and 6 h (s.c.) after TBI or vehicle (22.5 % cyclohexdrin), and were compared to naïve, age-matched littermates. At 24 h after CCI, brain mitochondria were isolated from the ipsilateral hemisphere. Active (State 3) and resting (State 4) mitochondrial respiration were measured, and mitochondrial respiratory control ratio (RCR, State 3/State 4) was determined. Total mitochonidral glutathione content was measured. A separate group of rats were studied for histology, and received progesterone or vehicle every 24 h (s.c.) for 7 days. In male rats, TBI reduced mitochondrial RCR, and progesterone preserved mitochondrial RCR. This improvement of RCR was predominantly through significant decreases in State 4 respiratory rates. In female rats, post-injury treatment with progesterone did not significantly improve mitochondrial RCR. Normal (uninjured) male rats had lower mitochondrial glutathione content than normal female rats. After TBI, progesterone prevented loss of mitochondrial glutathione in male rats only. Tissue loss was reduced in progesterone treated female rats at 7d after CCI. Future studies will be directed at correlation with neurologic outcome testing. These preclinical studies could provide information for planning future clinical trials of progesterone treatment in children with TBI.
Collapse
|
61
|
Abstract
There is currently no standard pharmacological treatment for spinal cord injury. Here, we suggest that progesterone, a steroid hormone, may be a promising therapeutical candidate as it is already for traumatic brain injury, where it has reached phase II clinical trials. We rely on previous works showing anti-inflammatory, neuroprotective and promyelinating roles for progesterone after spinal cord injury and in our recent paper, in which we demonstrate that progesterone diminishes lesion, preserves white matter integrity and improves locomotor recovery in a clinically relevant model of spinal cord lesion.
Collapse
Affiliation(s)
- Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Institute of Biology and Experimental Medicine CONICET, Vuelta de Obligado 2490, Buenos Aires, Argentina ; Departament of Human Biochemistry, School of Medicine, Buenos Aires University, Paraguay 2155, Buenos Aires, Argentina
| | - Daniel Garcia-Ovejero
- Neuroinflammation Laboratory, National Hospital For Paraplegics, (SESCAM), Toledo, Spain
| |
Collapse
|
62
|
El-Etr M, Rame M, Boucher C, Ghoumari AM, Kumar N, Liere P, Pianos A, Schumacher M, Sitruk-Ware R. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex. Glia 2014; 63:104-17. [PMID: 25092805 DOI: 10.1002/glia.22736] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023]
Abstract
Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation, and axonal degeneration. Current therapies are limited to immunomodulators and antiinflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2(+) oligodendrocyte progenitor cells and CA II(+) mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR-knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin.
Collapse
Affiliation(s)
- Martine El-Etr
- UMR 788 Inserm and University Paris-Sud, 94276, Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Distribution and phenotype of TrkB oligodendrocyte lineage cells in the adult rat spinal cord. Brain Res 2014; 1582:21-33. [PMID: 25072185 DOI: 10.1016/j.brainres.2014.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/12/2022]
Abstract
The distribution and phenotype of a previously undescribed population of nonneuronal cells in the intact spinal cord that expresses TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF) and neurotrophin 4 (NT-4), were characterized by examining the extent of co-localization of TrkB with NG2, which identifies oligodendrocyte progenitors (OPCs) or CC1, a marker for mature oligodendrocytes (OLs). All TrkB nonneuronal cells expressed Olig2, confirming their role in the OL lineage. Similar to OPCs and OLs, TrkB cells resided in gray and white matter of the spinal cord in similar abundance. Less than 2% of TrkB cells expressed NG2, while over 80% of TrkB cells in the adult spinal cord co-expressed CC1. Most OPCs did not express detectable levels of TrkB, however a small OPC pool (~5%) showed TrkB immunoreactivity. The majority of mature OLs (~65%) expressed TrkB, but a population of mature OLs (~36%) did not express TrkB at detectable levels, and 17% of TrkB nonneuronal cells did not express NG2 or CC1. Approximately 20% of the TrkB nonneuronal population in the ventral horn resided in close proximity to motor neurons and were categorized as perineuronal. We conclude that TrkB is expressed by several pools of OL lineage cells in the adult spinal cord. These findings are important in understanding the neurotrophin regulation of OL lineage cells in the adult spinal cord.
Collapse
|
64
|
Palanca A, Casafont I, Berciano MT, Lafarga M. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell Mol Life Sci 2014; 71:1961-75. [PMID: 24061536 PMCID: PMC11113442 DOI: 10.1007/s00018-013-1474-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 11/24/2022]
Abstract
Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.
Collapse
Affiliation(s)
- Ana Palanca
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - Iñigo Casafont
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - María T. Berciano
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| |
Collapse
|
65
|
Jayaraman A, Pike CJ. Differential effects of synthetic progestagens on neuron survival and estrogen neuroprotection in cultured neurons. Mol Cell Endocrinol 2014; 384:52-60. [PMID: 24424444 PMCID: PMC3954450 DOI: 10.1016/j.mce.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/22/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022]
Abstract
Progesterone and other progestagens are used in combination with estrogens for clinical purposes, including contraception and postmenopausal hormone therapy. Progesterone and estrogens have interactive effects in brain, however interactions between synthetic progestagens and 17β-estradiol (E2) in neurons are not well understood. In this study, we investigated the effects of seven clinically relevant progestagens on estrogen receptor (ER) mRNA expression, E2-induced neuroprotection, and E2-induced BDNF mRNA expression. We found that medroxyprogesterone acetate decreased both ERα and ERβ expression and blocked E2-mediated neuroprotection and BDNF expression. Conversely, levonorgestrel and nesterone increased ERα and or ERβ expression, were neuroprotective, and failed to attenuate E2-mediated increases in neuron survival and BDNF expression. Other progestagens tested, including norethindrone, norethindrone acetate, norethynodrel, and norgestimate, had variable effects on the measured endpoints. Our results demonstrate a range of qualitatively different actions of progestagens in cultured neurons, suggesting significant variability in the neural effects of clinically utilized progestagens.
Collapse
Affiliation(s)
- Anusha Jayaraman
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
66
|
LIU FENG, LIAO FAN, LI WEI, HAN YONGFENG, LIAO DAGUANG. Progesterone alters Nogo-A, GFAP and GAP-43 expression in a rat model of traumatic brain injury. Mol Med Rep 2014; 9:1225-31. [DOI: 10.3892/mmr.2014.1967] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/31/2014] [Indexed: 11/06/2022] Open
|
67
|
Hirst JJ, Kelleher MA, Walker DW, Palliser HK. Neuroactive steroids in pregnancy: key regulatory and protective roles in the foetal brain. J Steroid Biochem Mol Biol 2014; 139:144-53. [PMID: 23669456 DOI: 10.1016/j.jsbmb.2013.04.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Abstract
Neuroactive steroid concentrations are remarkably high in the foetal brain during late gestation. These concentrations are maintained by placental progesterone synthesis and the interaction of enzymes in the placenta and foetal brain. 5α-Pregnane-3α-ol-20-one (allopregnanolone) is a key neuroactive steroid during foetal life, although other 3α-hydroxy-pregnanes may make an additional contribution to neuroactive steroid action. Allopregnanolone modulates GABAergic inhibition to maintain a suppressive action on the foetal brain during late gestation. This action suppresses foetal behaviour and maintains the appropriate balance of foetal sleep-like behaviours, which in turn are important to normal neurodevelopment. Neuroactive steroid-induced suppression of excitability has a key role in protecting the foetal brain from acute hypoxia/ischaemia insults. Hypoxia-induced brain injury is markedly increased if neuroactive steroid levels are suppressed and there is increased seizure activity. There is also a rapid increase in allopregnanolone synthesis and hence levels in response to acute stress that acts as an endogenous protective mechanism. Allopregnanolone has a trophic role in regulating development, maintaining normal levels of apoptosis and increasing myelination during late gestation in the brain. In contrast, chronic foetal stressors, including intrauterine growth restriction, do not increase neuroactive steroid levels in the brain and exposure to repeated synthetic corticosteroids reduce neuroactive steroid levels. The reduced availability of neuroactive steroids may contribute to the adverse effects of chronic stressors on the foetal and newborn brain. Preterm birth also deprives the foetus of neuroactive steroid mediated protection and may increase vulnerability to brain injury and suboptimal development. These finding suggest replacement therapies should be explored. This article is part of a Special Issue entitled 'Pregnancy and steroids'.
Collapse
Affiliation(s)
- Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | |
Collapse
|
68
|
Gargiulo-Monachelli GM, Campos-Melo D, Droppelmann CA, Keller BA, Leystra-Lantz C, De Nicola AF, Gonzalez Deniselle MC, Volkening K, Strong MJ. Expression and cellular localization of the classical progesterone receptor in healthy and amyotrophic lateral sclerosis affected spinal cord. Eur J Neurol 2013; 21:273-80.e11. [DOI: 10.1111/ene.12291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Affiliation(s)
- G. M. Gargiulo-Monachelli
- Laboratory of Neuroendocrine Biochemistry; Instituto de Biología y Medicina Experimental − CONICET and School of Medicine; University of Buenos Aires; Buenos Aires Argentina
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
| | - D. Campos-Melo
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
| | - C. A. Droppelmann
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
| | - B. A. Keller
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
- Department of Pathology; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| | - C. Leystra-Lantz
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
| | - A. F. De Nicola
- Laboratory of Neuroendocrine Biochemistry; Instituto de Biología y Medicina Experimental − CONICET and School of Medicine; University of Buenos Aires; Buenos Aires Argentina
| | - M. C. Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry; Instituto de Biología y Medicina Experimental − CONICET and School of Medicine; University of Buenos Aires; Buenos Aires Argentina
| | - K. Volkening
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
- Department of Clinical Neurological Sciences; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| | - M. J. Strong
- Molecular Brain Research Group; Robarts Research Institute; Western University; London ON Canada
- Department of Clinical Neurological Sciences; Schulich School of Medicine and Dentistry; Western University; London ON Canada
| |
Collapse
|
69
|
De Nicola AF, Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Guennoun R, Schumacher M, Carreras MC, Poderoso JJ. Progesterone protective effects in neurodegeneration and neuroinflammation. J Neuroendocrinol 2013; 25:1095-103. [PMID: 23639063 DOI: 10.1111/jne.12043] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/12/2013] [Accepted: 04/26/2013] [Indexed: 01/03/2023]
Abstract
Progesterone is a neuroprotective, promyelinating and anti-inflammatory factor for the nervous system. Here, we review the effects of progesterone in models of motoneurone degeneration and neuroinflammation. In neurodegeneration of the Wobbler mouse, a subset of spinal cord motoneurones showed increased activity of nitric oxide synthase (NOS), increased intramitochondrial NOS, decreased activity of respiratory chain complexes, and decreased activity and protein expression of Mn-superoxide dismutase type 2 (MnSOD2). Clinically, Wobblers suffered several degrees of motor impairment. Progesterone treatment restored the expression of neuronal markers, decreased the activity of NOS and enhanced complex I respiratory activity and MnSOD2. Long-term treatment with progesterone increased muscle strength, biceps weight and survival. Collectively, these data suggest that progesterone prevented neurodegeneration. To study the effects of progesterone in neuroinflammation, we employed mice with experimental autoimmune encephalomyelitis (EAE). EAE mice spinal cord showed increased mRNA levels of the inflammatory mediators tumour necrosis factor (TNF)α and its receptor TNFR1, the microglial marker CD11b, inducible NOS and the toll-like receptor 4. Progesterone pretreatment of EAE mice blocked the proinflammatory mediators, decreased Iba1+ microglial cells and attenuated clinical signs of EAE. Therefore, reactive glial cells became targets of progesterone anti-inflammatory effects. These results represent a starting point for testing the usefulness of neuroactive steroids in neurological disorders.
Collapse
Affiliation(s)
- A F De Nicola
- Department of Human Biochemistry, Faculty of Medicine, Instituto de Biologia y Medicina Experimental, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Frye CA, Koonce CJ, Walf AA. Pregnane xenobiotic receptors and membrane progestin receptors: role in neurosteroid-mediated motivated behaviours. J Neuroendocrinol 2013; 25:1002-11. [PMID: 24028379 PMCID: PMC3943623 DOI: 10.1111/jne.12105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/23/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
Progestogens have actions in the midbrain ventral tegmental area (VTA) to mediate motivated behaviours, such as those involved in reproductive processes, among female rodents. In the VTA, the formation and actions of one progestogen, 5α-pregnan-3α-ol-20-one (3α,5α-THP), are necessary and sufficient to facilitate sexual responding (measured by lordosis) of female rodents. Although 3α,5α-THP can be produced after metabolism of ovarian progesterone, 3α,5α-THP is also a neurosteroid produced de novo in brain regions, such as the VTA. There can be dynamic changes in 3α,5α-THP production associated with behavioural experience, such as mating. Questions of interest are the sources and targets of 3α,5α-THP. Regarding sources, the pregnane xenobiotic receptor (PXR) may be a novel factor involved in 3α,5α-THP metabolism in the VTA (as well as a direct target of 3α,5α-THP). We have identified PXR in the midbrain of female rats, and manipulating PXR in this region reduces 3α,5α-THP synthesis and alters lordosis, as well as affective and social behaviours. Regarding targets, recent studies have focused on the role of membrane progestin receptors (mPRs). We have analysed the expression of two of the common forms of these receptors (mPRα/paqr7 and mPRβ/paqr8) in female rats. The expression of mPRα was observed in peripheral tissues and brain areas, including the hypothalamus and midbrain. The expression of mPRβ was only observed in brain tissues and was abundant in the midbrain and hypothalamus. To our knowledge, studies of these receptors in mammalian models have been limited to expression and regulation, instead of function. One question that was addressed was the functional effects of progestogens via mPRα and mPRβ in the midbrain of hormone-primed rats for lordosis. Studies to date suggest that mPRβ may be an important target of progestogens in the VTA for lordosis. Taken together, the result of these studies demonstrate that PXR is involved in the production of 3α,5α-THP in the midbrain VTA. Moreover, mPRs may be a target for the actions of progestogens in the VTA for lordosis.
Collapse
Affiliation(s)
- C A Frye
- Department of Chemistry, The University of Alaska-Fairbanks, Fairbanks, AK, USA; Institute of Artic Biology, The University of Alaska-Fairbanks, Fairbanks, AK, USA; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks, Fairbanks, AK, USA
| | | | | |
Collapse
|
71
|
Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2013; 113:6-39. [PMID: 24172649 DOI: 10.1016/j.pneurobio.2013.09.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
Progesterone is commonly considered as a female reproductive hormone and is well-known for its role in pregnancy. It is less well appreciated that progesterone and its metabolite allopregnanolone are also male hormones, as they are produced in both sexes by the adrenal glands. In addition, they are synthesized within the nervous system. Progesterone and allopregnanolone are associated with adaptation to stress, and increased production of progesterone within the brain may be part of the response of neural cells to injury. Progesterone receptors (PR) are widely distributed throughout the brain, but their study has been mainly limited to the hypothalamus and reproductive functions, and the extra-hypothalamic receptors have been neglected. This lack of information about brain functions of PR is unexpected, as the protective and trophic effects of progesterone are much investigated, and as the therapeutic potential of progesterone as a neuroprotective and promyelinating agent is currently being assessed in clinical trials. The little attention devoted to the brain functions of PR may relate to the widely accepted assumption that non-reproductive actions of progesterone may be mainly mediated by allopregnanolone, which does not bind to PR, but acts as a potent positive modulator of γ-aminobutyric acid type A (GABA(A) receptors. The aim of this review is to critically discuss effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABA(A) receptors, with main focus on the brain.
Collapse
Affiliation(s)
- M Schumacher
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France.
| | - C Mattern
- M et P Pharma AG, Emmetten, Switzerland
| | - A Ghoumari
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - J P Oudinet
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - P Liere
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Sitruk-Ware
- Population Council and Rockefeller University, New York, USA
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Guennoun
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
72
|
Coronel MF, Labombarda F, De Nicola AF, González SL. Progesterone reduces the expression of spinal cyclooxygenase-2 and inducible nitric oxide synthase and prevents allodynia in a rat model of central neuropathic pain. Eur J Pain 2013; 18:348-59. [PMID: 23929706 DOI: 10.1002/j.1532-2149.2013.00376.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) results in the development of chronic pain that is refractory to conventional treatment. Progesterone, a neuroprotective steroid, may offer a promising perspective in pain modulation after central injury. Here, we explore the impact of progesterone administration on the post-injury inflammatory cascade involving the enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) at the spinal cord level. We also analyse pain behaviours, the profile of glial cell activation, and IκB-α mRNA levels, as an index of NF-κB transactivation. METHODS We used biochemical, immunohistochemical and molecular techniques, as well as behavioural studies, to investigate the effects of progesterone in a well-characterized model of central neuropathic pain. RESULTS Injured animals receiving progesterone presented reduced mRNA levels of the proinflammatory enzymes, as well as decreased COX-2 activity and nitrite levels, as compared to vehicle-treated injured rats. Further, animals receiving the steroid exhibited lower levels of IκB-α mRNA, suggesting decreased NF-κB transactivation. Progesterone administration also attenuated the injury-induced increase in the number of glial fibrillary acidic protein and OX-42 positive cells both at early and late time points after injury, and prevented the development of mechanical and thermal allodynia. Further, when injured rats received early progesterone administration for a critical period of time after injury, they did not display allodynic behaviours even after the treatment had stopped. CONCLUSIONS Our results suggest that progesterone, by modulating early neuroinflammatory events triggered after SCI, may represent a useful strategy to prevent the development of central chronic pain.
Collapse
Affiliation(s)
- M F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
73
|
Neuroprotection by steroids after neurotrauma in organotypic spinal cord cultures: A key role for progesterone receptors and steroidal modulators of GABAA receptors. Neuropharmacology 2013; 71:46-55. [DOI: 10.1016/j.neuropharm.2013.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/21/2013] [Accepted: 03/03/2013] [Indexed: 11/23/2022]
|
74
|
Meyer M, Gonzalez Deniselle MC, Gargiulo-Monachelli G, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. Progesterone attenuates several hippocampal abnormalities of the Wobbler mouse. J Neuroendocrinol 2013; 25:235-43. [PMID: 23157231 DOI: 10.1111/jne.12004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/03/2012] [Accepted: 11/10/2012] [Indexed: 12/13/2022]
Abstract
It is now recognised that progesterone plays a protective role for diseases of the central nervous system. In the Wobbler mouse, a model of motoneurone degeneration, progesterone treatment prevents spinal cord neuropathology and clinical progression of the disease. However, neuropathological and functional abnormalities have also been discovered in the brain of Wobbler mice and patients with amyotrophic lateral sclerosis. The present study examined the hippocampus of control and afflicted Wobbler mice and the changes in response to progesterone treatment. Mice received either a single progesterone implant (20 mg for 18 days). We found that the hippocampal pathology of the untreated Wobblers involved a decreased expression of brain-derived neurotrophic factor (BDNF) mRNA, decreased astrogliosis in the stratum lucidum, stratum radiatum and stratum lacunosum-moleculare, decreased doublecortin (DCX)-positive neuroblasts in the subgranular zone of the dentate gyrus and a decreased density of GABA immunoreactive hippocampal interneurones and granule cells of the dentate gyrus. Although progesterone did not change the normal parameters of control mice, it attenuated several hippocampal abnormalities in Wobblers. Thus, progesterone increased hippocampal BDNF mRNA expression, decreased glial fibrillary acidic protein-positive astrocytes and increased the number of GABAergic interneurones and granule cells. The number of DCX expressing neuroblasts and immature neurones remained impaired in both progesterone-treated and untreated Wobblers. In conclusion, progesterone treatment exerted beneficial effects on some aspects of hippocampal neuropathology, suggesting its neuroprotective role in the brain, in agreement with previous data obtained in the spinal cord of Wobbler mice.
Collapse
Affiliation(s)
- M Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 2013; 167:699-719. [PMID: 23003569 DOI: 10.1111/j.1476-5381.2012.02025.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem throughout the world. It is a complicated pathological process that consists of primary insults and a secondary insult characterized by a set of biochemical cascades. The imbalance between a higher energy demand for repair of cell damage and decreased energy production led by mitochondrial dysfunction aggravates cell damage. At the cellular level, the main cause of the secondary deleterious cascades is cell damage that is centred in the mitochondria. Excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), Bcl-2 family, caspases and apoptosis inducing factor (AIF) are the main participants in mitochondria-centred cell damage following TBI. Some preclinical and clinical results of mitochondria-targeted therapy show promise. Mitochondria- targeted multipotential therapeutic strategies offer new hope for the successful treatment of TBI and other acute brain injuries.
Collapse
Affiliation(s)
- Gang Cheng
- Neurosurgical Department, PLA Navy General Hospital, Beijing, China
| | | | | | | |
Collapse
|
76
|
Arevalo MA, Santos-Galindo M, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM. Gonadal hormones and the control of reactive gliosis. Horm Behav 2013; 63:216-21. [PMID: 22401743 DOI: 10.1016/j.yhbeh.2012.02.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/08/2023]
Abstract
Astrocytes and microglia respond to central nervous system (CNS) injury with changes in morphology, proliferation, migration and expression of inflammatory regulators. This phenomenon is known as reactive gliosis. Activation of astrocytes and microglia after acute neural insults, such as stroke or traumatic CNS injury, is considered to be an adaptive response that contributes to minimize neuronal damage. However, reactive gliosis may amplify CNS damage under chronic neurodegenerative conditions. Progesterone, estradiol and testosterone have been shown to control reactive gliosis in different models of CNS injury, modifying the number of reactive astrocytes and reactive microglia and the expression of anti-inflammatory and proinflammatory mediators. The actions of gonadal hormones on reactive gliosis involve different mechanisms, including the modulation of the activity of steroid receptors, such as estrogen receptors α and β, the regulation of nuclear factor-κB mediated transcription of inflammatory molecules and the recruitment of the transcriptional corepressor c-terminal binding protein to proinflammatory promoters. In addition, the Parkinson's disease related gene parkin and the endocannabinoid system also participate in the regulation of reactive gliosis by estradiol. The control exerted by gonadal hormones on reactive gliosis may affect the response of neural tissue to trauma and neurodegeneration and may contribute to sex differences in the manifestation of neurodegenerative diseases. However, the precise functional consequences of the regulation of reactive gliosis by gonadal hormones under acute and chronic neurodegenerative conditions are still not fully clarified.
Collapse
|
77
|
Stein DG. A clinical/translational perspective: can a developmental hormone play a role in the treatment of traumatic brain injury? Horm Behav 2013; 63:291-300. [PMID: 22626570 DOI: 10.1016/j.yhbeh.2012.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 01/24/2023]
Abstract
Despite decades of laboratory research and clinical trials, a safe and effective treatment for traumatic brain injury (TBI) has yet to be put into successful clinical use. I suggest that much of the problem can be attributed to a reductionist perspective and attendant research strategy directed to finding or designing drugs that target a single receptor mechanism, gene, or brain locus. This approach fails to address the complexity of TBI, which leads to a cascade of systemic toxic events in the brain and throughout the body that may persist over long periods of time. Attention is now turning to pleiotropic drugs: drugs that act on multiple genomic, proteomic and metabolic pathways to enhance morphological and functional outcomes after brain injury. Of the various agents now in clinical trials, the neurosteroid progesterone (PROG) is gaining attention despite the widespread assumption that it is "just a female hormone" with limited, if any, neuroprotective properties. This perspective should change. PROG is also a powerful developmental hormone that plays a critical role in protecting the fetus during gestation. I argue here that development, neuroprotection and cellular repair have a number of properties in common. I discuss evidence that PROG is pleiotropically neuroprotective and may be a useful therapeutic and neuroprotective agent for central nervous system injury and some neurodegenerative diseases.
Collapse
Affiliation(s)
- Donald G Stein
- Department of Emergency Medicine, Emory University, USA.
| |
Collapse
|
78
|
Ye JN, Chen XS, Su L, Liu YL, Cai QY, Zhan XL, Xu Y, Zhao SF, Yao ZX. Progesterone alleviates neural behavioral deficits and demyelination with reduced degeneration of oligodendroglial cells in cuprizone-induced mice. PLoS One 2013; 8:e54590. [PMID: 23359803 PMCID: PMC3554738 DOI: 10.1371/journal.pone.0054590] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 12/14/2012] [Indexed: 12/30/2022] Open
Abstract
Demyelination occurs widely in neurodegenerative diseases. Progesterone has neuroprotective effects, is known to reduce the clinical scores and the inflammatory response. Progesterone also promotes remyelination in experimental autoimmune encephalomyelitis and cuprizone-induced demyelinating brain. However, it still remains unclear whether progesterone can alleviate neural behavioral deficits and demyelination with degeneration of oligodendroglial cells in cuprizone-induced mice. In this study, mice were fed with 0.2% cuprizone to induce demyelination, and treated with progesterone to test its potential protective effect on neural behavioral deficits, demyelination and degeneration of oligodendroglial cells. Our results showed noticeable alleviation of neural behavioral deficits following progesterone treatment as assessed by changes in average body weight, and activity during the open field and Rota-rod tests when compared with the vehicle treated cuprizone group. Progesterone treatment alleviated demyelination as shown by Luxol fast blue staining, MBP immunohistochemical staining, and electron microscopy. There was an obvious decrease in TUNEL and Caspase-3-positive apoptotic cells, and an increase in the number of oligodendroglial cells staining positive for PDGFRα, Olig2, Sox10 and CC-1 antibody in the brains of cuprizone-induced mice after progesterone administration. These results indicate that progesterone can alleviate neural behavioral deficits and demyelination against oligodendroglial cell degeneration in cuprizone-induced mice.
Collapse
Affiliation(s)
- Jian-Ning Ye
- Department of Neurology, Xin Qiao Hospital, Third Military Medical University, Chongqing, China
| | - Xing-Shu Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Le Su
- Squadron 9 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yun-Lai Liu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Qi-Yan Cai
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Xiao-Li Zhan
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Yan Xu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Shi-Fu Zhao
- Department of Neurology, Xin Qiao Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (Z-XY) (SZ); (S-FZ) (ZY)
| | - Zhong-Xiang Yao
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- Department of Physiology, Third Military Medical University, Chongqing, China
- * E-mail: (Z-XY) (SZ); (S-FZ) (ZY)
| |
Collapse
|
79
|
Chan WM, Mohammed Y, Lee I, Pearse DD. Effect of gender on recovery after spinal cord injury. Transl Stroke Res 2013; 4:447-61. [PMID: 24323341 DOI: 10.1007/s12975-012-0249-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 11/24/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition that affects thousands of new individuals each year, the majority of which are males. Males with SCI tend to be injured at an earlier age, mostly during sports or motor vehicle accidents, whereas females tend be injured later in life, particularly in the age group 65 and older. In both experimental and clinical studies, the question as to whether gender affects outcome has been addressed in a variety of patient groups and animal models. Results from experimental paradigms have suggested that a gender bias in outcome exists that favors females and appears to involve the advantageous or disadvantageous effects of the gonadal sex hormones estrogen and progesterone or testosterone, respectively. However, other studies have shown an absence of gender differences in outcome in specific SCI models and work has also questioned the involvement of female sex hormones in the observed outcome improvements in females. Similar controversy exists clinically, in studies that have examined gender disparities in outcome after SCI. The current review examines the experimental and clinical evidence for a gender bias in outcome following SCI and discusses issues that have made it difficult to conclusively answer this question.
Collapse
Affiliation(s)
- Wai-Man Chan
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | | | | | | |
Collapse
|
80
|
Meffre D, Labombarda F, Delespierre B, Chastre A, De Nicola AF, Stein DG, Schumacher M, Guennoun R. Distribution of membrane progesterone receptor alpha in the male mouse and rat brain and its regulation after traumatic brain injury. Neuroscience 2012; 231:111-24. [PMID: 23211561 DOI: 10.1016/j.neuroscience.2012.11.039] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/02/2012] [Accepted: 11/21/2012] [Indexed: 11/29/2022]
Abstract
Progesterone has been shown to exert pleiotropic actions in the brain of both male and females. In particular, after traumatic brain injury (TBI), progesterone has important neuroprotective effects. In addition to intracellular progesterone receptors, membrane receptors of the hormone such as membrane progesterone receptor (mPR) may also be involved in neuroprotection. Three mPR subtypes (mPRα, mPRβ, and mPRγ) have been described and mPRα is best characterized pharmacologically. In the present study we investigated the distribution, cellular localization and the regulation of mPRα in male mouse and rat brain. We showed by reverse transcription-PCR that mPRα is expressed at similar levels in the male and female mouse brain suggesting that its expression may not be influenced by steroid levels. Treatment of males by estradiol or progesterone did not modify the level of expression of mPRα as shown by Western blot analysis. In situ hybridization and immunohistochemistry analysis showed a wide expression of mPRα in particular in the olfactory bulb, striatum, cortex, thalamus, hypothalamus, septum, hippocampus and cerebellum. Double immunofluorescence and confocal microscopy analysis showed that mPRα is expressed by neurons but not by oligodendrocytes and astrocytes. In the rat brain, the distribution of mPRα was similar to that observed in mouse brain; and after TBI, mPRα expression was induced in oligodendrocytes, astrocytes and reactive microglia. The wide neuroanatomical distribution of mPRα suggests that this receptor may play a role beyond neuroendocrine and reproductive functions. However, in the absence of injury its role might be restricted to neurons. The induction of mPRα after TBI in microglia, astrocytes and oligodendrocytes, points to a potential role in mediating the modulatory effects of progesterone in inflammation, ion and water homeostasis and myelin repair in the injured brain.
Collapse
Affiliation(s)
- D Meffre
- UMR 788 INSERM and University Paris-Sud, 94276 Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Progesterone down-regulates spinal cord inflammatory mediators and increases myelination in experimental autoimmune encephalomyelitis. Neuroscience 2012; 226:40-50. [PMID: 23000619 DOI: 10.1016/j.neuroscience.2012.09.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022]
Abstract
In mice with experimental autoimmune encephalomyelitis (EAE) pretreatment with progesterone improves clinical signs and decreases the loss of myelin basic protein (MBP) and proteolipid protein (PLP) measured by immunohistochemistry and in situ hybridization. Presently, we analyzed if progesterone effects in the spinal cord of EAE mice involved the decreased transcription of local inflammatory mediators and the increased transcription of myelin proteins and myelin transcription factors. C57Bl/6 female mice were divided into controls, EAE and EAE receiving progesterone (100mg implant) 7 days before EAE induction. Tissues were collected on day 17 post-immunization. Real time PCR technology demonstrated that progesterone blocked the EAE-induced increase of the proinflammatory mediators tumor necrosis factor alpha (TNFα) and its receptor TNFR1, the microglial marker CD11b and toll-like receptor 4 (TLR4) mRNAs, and increased mRNA expression of PLP and MBP, the myelin transcription factors NKx2.2 and Olig1 and enhanced CC1+oligodendrocyte density respect of untreated EAE mice. Immunocytochemistry demonstrated decreased Iba1+microglial cells. Confocal microscopy demonstrated that TNFα colocalized with glial-fibrillary acidic protein+astrocytes and OX-42+microglial cells. Therefore, progesterone treatment improved the clinical signs of EAE, decreased inflammatory glial reactivity and increased myelination. Data suggest that progesterone neuroprotection involves the modulation of transcriptional events in the spinal cord of EAE mice.
Collapse
|
82
|
Su C, Cunningham RL, Rybalchenko N, Singh M. Progesterone increases the release of brain-derived neurotrophic factor from glia via progesterone receptor membrane component 1 (Pgrmc1)-dependent ERK5 signaling. Endocrinology 2012; 153:4389-400. [PMID: 22778217 PMCID: PMC3423611 DOI: 10.1210/en.2011-2177] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progesterone (P4) is cytoprotective in various experimental models, but our understanding of the mechanisms involved is still incomplete. Our laboratory has implicated brain-derived neurotrophic factor (BDNF) signaling as an important mediator of P4's protective actions. We have shown that P4 increases the expression of BDNF, an effect mediated by the classical P4 receptor (PR), and that the protective effects of P4 were abolished using inhibitors of Trk receptor signaling. In an effort to extend our understanding of the interrelationship between P4 and BDNF signaling, we determined whether P4 influenced BDNF release and examined the role of the classical PR and a putative membrane PR, progesterone receptor membrane component-1 (Pgrmc1), as mediators of this response. Given recent data from our laboratory that supported the role of ERK5 in BDNF release, we also tested whether P4-induced BDNF release was mediated by ERK5. In this study, we found that P4 and the membrane-impermeable P4 (P4-BSA) both induced BDNF release from cultured C6 glial cells and primary astrocytes. Both these cells lack the classical nuclear/intracellular PR but express high levels of membrane-associated PR, including Pgrmc1. Using RNA interference-mediated knockdown of Pgrmc1 expression, we determined that P4-induced BDNF release was dependent on the expression of Pgrmc1, although pharmacological inhibition of the PR failed to alter the effects of P4. Furthermore, the BDNF release elicited by P4 was mediated by ERK5, and not ERK1/2. Collectively, our data describe that P4 elicits an increase in BDNF release from glia via a Pgrmc1-induced ERK5 signaling mechanism and identify Pgrmc1 as a potential therapeutic target for future hormone-based drug development for the treatment of such degenerative diseases as Alzheimer's disease as well as other diseases wherein neurotrophin dysregulation is noted.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center at Fort Worth, 3400 Camp Bowie Boulevard, Fort Worth, Texas 76107, USA
| | | | | | | |
Collapse
|
83
|
Yagishita T, Kushida A, Tamura H. Vitamin D(3) enhances ATRA-mediated neurosteroid biosynthesis in human glioma GI-1 cells. J Biochem 2012; 152:285-92. [PMID: 22761456 DOI: 10.1093/jb/mvs074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Emerging evidence indicates that vitamin D (VD) is an important modulator of brain development and function. To investigate whether VD modulates neurosteroid biosynthesis in neural cells, we investigated the effect of VD(3) on steroidogenic gene expression in human glioma GI-1 cells. We found that VD(3) enhanced CYP11A1 and 3β-hydroxysteroid dehydrogenase gene expression. The induction of CYP11A1 gene expression by VD(3) was dose- and incubation time-dependent. Calcipotriol, a VD(3) receptor (VDR) agonist, also induced CYP11A1 gene expression in GI-1 cells, indicating that VDR is involved in this induction. The induction of progesterone (PROG) de novo synthesis was observed along with the induction of steroidogenic genes by VD(3). Furthermore, VD(3) enhanced all-trans retinoic acid (ATRA)-induced CYP11A1 gene expression and PROG production. This suggests cooperative regulation of steroidogenic gene expression by the two fat-soluble vitamins, A and D. In addition, a mixed culture of neuronal IMR-32 cells and GI-1 cells treated with ATRA and VD(3) resulted in the induction of PROG-responsive gene expression in the IMR-32 cells. This result shows a paracrine action of PROG that is induced in and released by the GI-1 cells. The relationship between neurological dysfunction associated with VD deficiency and neurosteroid induction by VD is discussed.
Collapse
Affiliation(s)
- Toshiaki Yagishita
- Department of Pharmacy, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minatoku, Tokyo 105-8512, Japan
| | | | | |
Collapse
|
84
|
Deniselle MCG, Carreras MC, Garay L, Gargiulo-Monachelli G, Meyer M, Poderoso JJ, De Nicola AF. Progesterone prevents mitochondrial dysfunction in the spinal cord of wobbler mice. J Neurochem 2012; 122:185-95. [DOI: 10.1111/j.1471-4159.2012.07753.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
85
|
Wagner AK, Brett CA, McCullough EH, Niyonkuru C, Loucks TL, Dixon CE, Ricker J, Arenth P, Berga SL. Persistent hypogonadism influences estradiol synthesis, cognition and outcome in males after severe TBI. Brain Inj 2012; 26:1226-42. [DOI: 10.3109/02699052.2012.667594] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
86
|
Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 2012; 6:10. [PMID: 22347156 PMCID: PMC3274763 DOI: 10.3389/fnins.2012.00010] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/16/2012] [Indexed: 11/15/2022] Open
Abstract
Progesterone is well known as a female reproductive hormone and in particular for its role in uterine receptivity, implantation, and the maintenance of pregnancy. However, neuroendocrine research over the past decades has established that progesterone has multiple functions beyond reproduction. Within the nervous system, its neuromodulatory and neuroprotective effects are much studied. Although progesterone has been shown to also promote myelin repair, its influence and that of other steroids on myelination and remyelination is relatively neglected. Reasons for this are that hormonal influences are still not considered as a central problem by most myelin biologists, and that neuroendocrinologists are not sufficiently concerned with the importance of myelin in neuron functions and viability. The effects of progesterone in the nervous system involve a variety of signaling mechanisms. The identification of the classical intracellular progesterone receptors as therapeutic targets for myelin repair suggests new health benefits for synthetic progestins, specifically designed for contraceptive use and hormone replacement therapies. There are also major advantages to use natural progesterone in neuroprotective and myelin repair strategies, because progesterone is converted to biologically active metabolites in nervous tissues and interacts with multiple target proteins. The delivery of progesterone however represents a challenge because of its first-pass metabolism in digestive tract and liver. Recently, the intranasal route of progesterone administration has received attention for easy and efficient targeting of the brain. Progesterone in the brain is derived from the steroidogenic endocrine glands or from local synthesis by neural cells. Stimulating the formation of endogenous progesterone is currently explored as an alternative strategy for neuroprotection, axonal regeneration, and myelin repair.
Collapse
|
87
|
Chen W, Tong YW. PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization. Acta Biomater 2012; 8:540-8. [PMID: 22005329 DOI: 10.1016/j.actbio.2011.09.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 08/26/2011] [Accepted: 09/20/2011] [Indexed: 11/19/2022]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microspheres, with properties such as slower degradation and more efficient drug delivery properties, have important benefits for neural tissue engineering. Our previous studies have shown PHBV microspheres to improve cell growth and differentiation. This study aimed to investigate if PHBV microspheres would support neurons to extend these benefits to neural tissue engineering. PHBV microspheres' suitability as neural tissue engineering scaffolds was investigated using PC12 cells, cortical neurons (CNs), and neural progenitor cells (NPCs) to cover a variety of neuronal types for different applications. Microspheres were fabricated using an emulsion-solvent-evaporation technique. DNA quantification, cell viability assays, and immunofluorescent staining were carried out. PC12 cultures on PHBV microspheres showed growth trends comparable to two-dimensional controls. This was further verified by staining for cell spreading. Also, CNs expressed components of the signaling pathway on PHBV microspheres, and had greater axon-dendrite segregation (4.1 times for axon stains and 2.3 times for dendrite stains) than on coverslips. NPCs were also found to differentiate into neurons on the microspheres. Overall, the results indicate that PHBV microspheres, as scaffolds for neural tissue engineering, supported a variety of neuronal cell types and promoted greater axon-dendrite segregation.
Collapse
Affiliation(s)
- Wenhui Chen
- NUS Graduate School for Integrative Sciences and Engineering, Department of Biomolecular and Chemical Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
88
|
Li Z, Wang B, Kan Z, Zhang B, Yang Z, Chen J, Wang D, Wei H, Zhang JN, Jiang R. Progesterone increases circulating endothelial progenitor cells and induces neural regeneration after traumatic brain injury in aged rats. J Neurotrauma 2012; 29:343-53. [PMID: 21534727 PMCID: PMC3261789 DOI: 10.1089/neu.2011.1807] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vascular remodeling plays a key role in neural regeneration in the injured brain. Circulating endothelial progenitor cells (EPCs) are a mediator of the vascular remodeling process. Previous studies have found that progesterone treatment of traumatic brain injury (TBI) decreases cerebral edema and cellular apoptosis and inhibits inflammation, which in concert promote neuroprotective effects in young adult rats. However, whether progesterone treatment regulates circulating EPC level and fosters vascular remodeling after TBI have not been investigated. In this study, we hypothesize that progesterone treatment following TBI increases circulating EPC levels and promotes vascular remodeling in the injured brain in aged rats. Male Wistar 20-month-old rats were subjected to a moderate unilateral parietal cortical contusion injury and were treated with or without progesterone (n=54/group). Progesterone was administered intraperitoneally at a dose of 16mg/kg at 1 h post-TBI and was subsequently injected subcutaneously daily for 14 days. Neurological functional tests and immnunostaining were performed. Circulating EPCs were measured by flow cytometry. Progesterone treatment significantly improved neurological outcome after TBI measured by the modified neurological severity score, Morris Water Maze and the long term potentiation in the hippocampus as well as increased the circulating EPC levels compared to TBI controls (p<0.05). Progesterone treatment also significantly increased CD34 and CD31 positive cell number and vessel density in the injured brain compared to TBI controls (p<0.05). These data indicate that progesterone treatment of TBI improves multiple neurological functional outcomes, increases the circulating EPC level, and facilitates vascular remodeling in the injured brain after TBI in aged rats.
Collapse
Affiliation(s)
- Zhanying Li
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- Department of Neurosurgery, Kailuan Hospital, Hebei United University, Tangshan, China
| | - Bin Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhisheng Kan
- Department of Neurosurgery, Kailuan Hospital, Hebei United University, Tangshan, China
| | - Baoliang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhuo Yang
- School of Medicine, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Huijie Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jian-ning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
89
|
Arevalo MA, Diz-Chaves Y, Santos-Galindo M, Bellini MJ, Garcia-Segura LM. Selective oestrogen receptor modulators decrease the inflammatory response of glial cells. J Neuroendocrinol 2012; 24:183-90. [PMID: 21564348 DOI: 10.1111/j.1365-2826.2011.02156.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroinflammation comprises a feature of many neurological disorders that is accompanied by the activation of glial cells and the release of pro-inflammatory cytokines and chemokines. Such activation is a normal response oriented to protect neural tissue and it is mainly regulated by microglia and astroglia. However, excessive and chronic activation of glia may lead to neurotoxicity and may be harmful for neural tissue. The ovarian hormone oestradiol exerts protective actions in the central nervous system that, at least in part, are mediated by a reduction of reactive gliosis. Several selective oestrogen receptor modulators may also exert neuroprotective effects by controlling glial inflammatory responses. Thus, tamoxifen and raloxifene decrease the inflammatory response caused by lipopolysaccharide, a bacterial endotoxin, in mouse and rat microglia cells in vitro. Tamoxifen and raloxifene are also able to reduce microglia activation in the brain of male and female rats in vivo after the peripheral administration of lipopolysaccharide. In addition, tamoxifen decreases the microglia inflammatory response induced by irradiation. Furthermore, treatment with tamoxifen and raloxifene resulted in a significant reduction of the number of reactive astrocytes in the hippocampus of young, middle-aged and older female rats after a stab wound injury. Tamoxifen, raloxifene and the new selective oestrogen receptor modulators ospemifene and bazedoxifene decrease the expression and release of interleukine-6 and interferon-γ inducible protein-10 in cultured astrocytes exposed to lipopolysaccharide. Ospemifene and bazedoxifene exert anti-inflammatory effects in astrocytes by a mechanism involving classical oestrogen receptors and the inhibition of nuclear factor-kappa B p65 transactivation. These data suggest that oestrogenic compounds are candidates to counteract brain inflammation under neurodegenerative conditions by targeting the production and release of pro-inflammatory molecules by glial cells.
Collapse
|
90
|
Panzica GC, Balthazart J, Frye CA, Garcia-Segura LM, Herbison AE, Mensah-Nyagan AG, McCarthy MM, Melcangi RC. Milestones on Steroids and the Nervous System: 10 years of basic and translational research. J Neuroendocrinol 2012; 24:1-15. [PMID: 22188420 DOI: 10.1111/j.1365-2826.2011.02265.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During the last 10 years, the conference on 'Steroids and Nervous System' held in Torino (Italy) has been an important international point of discussion for scientists involved in this exciting and expanding research field. The present review aims to recapitulate the main topics that have been presented through the various meetings. Two broad areas have been explored: the impact of gonadal hormones on brain circuits and behaviour, as well as the mechanism of action of neuroactive steroids. Relationships among steroids, brain and behaviour, the sexual differentiation of the brain and the impact of gonadal hormones, the interactions of exogenous steroidal molecules (endocrine disrupters) with neural circuits and behaviour, and how gonadal steroids modulate the behaviour of gonadotrophin-releasing hormone neurones, have been the topics of several lectures and symposia during this series of meetings. At the same time, many contributions have been dedicated to the biosynthetic pathways, the physiopathological relevance of neurosteroids, the demonstration of the cellular localisation of different enzymes involved in neurosteroidogenesis, the mechanisms by which steroids may exert some of their effects, both the classical and nonclassical actions of different steroids, the role of neuroactive steroids on neurodegeneration, neuroprotection, and the response of the neural tissue to injury. In these 10 years, this field has significantly advanced and neuroactive steroids have emerged as new potential therapeutic tools to counteract neurodegenerative events.
Collapse
Affiliation(s)
- G C Panzica
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Roth J, Hingst V, Lenz JH. Blindness following severe midfacial trauma--case report and review. J Craniomaxillofac Surg 2011; 40:608-13. [PMID: 22196738 DOI: 10.1016/j.jcms.2011.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 10/14/2022] Open
Abstract
PURPOSE Severe trauma of the viscerocranium or neurocranium may result in impaired visual acuity or even blindness. Case based epidemiology, pathomechanism and actual strategies in midfacial trauma for initial therapy and prevention of posttraumatic blindness are discussed. CASE AND REVIEW A 58-year old patient was treated at our Department of Oral and Maxillofacial Plastic Surgery after his central midface had been hit by a swinging steel girder. Initially he was blind on both eyes. Initial treatment started by applying 24 mg of dexamethasone and omeprazole. During the following 2 weeks, amaurosis persisted on the left eye. On the right eye complete visual acuity was regained. On the basis of data from our Department of Oral and Maxillofacial Plastic Surgery an Odds Ratio of 0.12 was calculated for the combination of blindness and midfacial trauma. Today cortisol therapy is still used. However, hypothermia, anti-Trendelenburg position, and application of mannitol seem to be more effective therapeutic strategies. Erythropoetine and progesterone are promising drugs with neuroprotective, anti-inflammatory as well as anti-oedematous effects. CONCLUSION The risk of blindness is higher than expected. Latest findings regarding the neuroprotective effects of erythropoetine or/and progesterone seem to promise a more successful treatment.
Collapse
Affiliation(s)
- Johannes Roth
- Department of Oral and Maxillofacial Plastic Surgery, Rostock University, Rostock, Germany.
| | | | | |
Collapse
|
92
|
Janmaat S, Akwa Y, Doulazmi M, Bakouche J, Gautheron V, Liere P, Eychenne B, Pianos A, Luiten P, Groothuis T, Baulieu EE, Mariani J, Sherrard RM, Frédéric F. Age-related Purkinje cell death is steroid dependent: RORα haplo-insufficiency impairs plasma and cerebellar steroids and Purkinje cell survival. AGE (DORDRECHT, NETHERLANDS) 2011; 33:565-578. [PMID: 21222044 PMCID: PMC3220403 DOI: 10.1007/s11357-010-9203-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/16/2010] [Indexed: 05/30/2023]
Abstract
A major problem of ageing is progressive impairment of neuronal function and ultimately cell death. Since sex steroids are neuroprotective, their decrease with age may underlie age-related neuronal degeneration. To test this, we examined Purkinje cell numbers, plasma sex steroids and cerebellar neurosteroid concentrations during normal ageing (wild-type mice, WT), in our model of precocious ageing (Rora(+/sg), heterozygous staggerer mice in which expression of the neuroprotective factor RORα is disrupted) and after long-term hormone insufficiency (WT post-gonadectomy). During normal ageing (WT), circulating sex steroids declined prior to or in parallel with Purkinje cell loss, which began at 18 months of age. Although Purkinje cell death was advanced in WT long-term steroid deficiency, this premature neuronal loss did not begin until 9 months, indicating that vulnerability to sex steroid deficiency is a phenomenon of ageing Purkinje neurons. In precocious ageing (Rora(+/sg)), circulating sex steroids decreased prematurely, in conjunction with marked Purkinje cell death from 9 months. Although Rora(+/sg) Purkinje cells are vulnerable through their RORα haplo-insufficiency, it is only as they age (after 9 months) that sex steroid failure becomes critical. Finally, cerebellar neurosteroids did not decrease with age in either genotype or gender; but were profoundly reduced by 3 months in male Rora(+/sg) cerebella, which may contribute to the fragility of their Purkinje neurons. These data suggest that ageing Purkinje cells are maintained by circulating sex steroids, rather than local neurosteroids, and that in Rora(+/sg) their age-related death is advanced by premature sex steroid loss induced by RORα haplo-insufficiency.
Collapse
Affiliation(s)
- Sonja Janmaat
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
- Molecular Imaging and Electron Microscopy, University Medical Centre, Groningen, 9700 AD The Netherlands
- Department of Molecular Neurobiology and Biological Psychiatry, University of Groningen, 9750 AA Haren, The Netherlands
| | - Yvette Akwa
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Mohamed Doulazmi
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Joëlle Bakouche
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Vanessa Gautheron
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Philippe Liere
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Bernard Eychenne
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Antoine Pianos
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Paul Luiten
- Department of Molecular Neurobiology and Biological Psychiatry, University of Groningen, 9750 AA Haren, The Netherlands
| | - Ton Groothuis
- Department of Molecular Neurobiology and Biological Psychiatry, University of Groningen, 9750 AA Haren, The Netherlands
| | - Etienne-Emile Baulieu
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Jean Mariani
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
- AP-HP, Hôpital Charles Foix, UEF, 94200 Ivry-sur-Seine, France
| | - Rachel M. Sherrard
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Florence Frédéric
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| |
Collapse
|
93
|
Azcoitia I, Arevalo MA, De Nicola AF, Garcia-Segura LM. Neuroprotective actions of estradiol revisited. Trends Endocrinol Metab 2011; 22:467-73. [PMID: 21889354 DOI: 10.1016/j.tem.2011.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/19/2011] [Accepted: 08/03/2011] [Indexed: 12/31/2022]
Abstract
Results from animal experiments showing that estradiol is neuroprotective were challenged 10 years ago by findings indicating an increased risk of dementia and stroke in women over 65 years of age taking conjugated equine estrogens. Our understanding of the complex signaling of estradiol in neural cells has recently clarified the causes of this discrepancy. New data indicate that estradiol may lose its neuroprotective activity or even increase neural damage, a situation that depends on the duration of ovarian hormone deprivation and on age-associated modifications in the levels of other molecules that modulate estradiol action. These studies highlight the complex neuroprotective mechanisms of estradiol and suggest a window of opportunity during which effective hormonal therapy could promote brain function and cognition.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Cell Biology, Faculty of Biology, Complutense University of Madrid, E-28040 Madrid, Spain
| | | | | | | |
Collapse
|
94
|
Casas S, García S, Cabrera R, Nanfaro F, Escudero C, Yunes R. Progesterone prevents depression-like behavior in a model of Parkinson's disease induced by 6-hydroxydopamine in male rats. Pharmacol Biochem Behav 2011; 99:614-8. [DOI: 10.1016/j.pbb.2011.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/09/2011] [Accepted: 06/08/2011] [Indexed: 11/24/2022]
|
95
|
Labombarda F, González S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol 2011; 231:135-46. [DOI: 10.1016/j.expneurol.2011.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 05/09/2011] [Accepted: 06/04/2011] [Indexed: 11/26/2022]
|
96
|
Johann S, Dahm M, Kipp M, Zahn U, Beyer C. Regulation of choline acetyltransferase expression by 17 β-oestradiol in NSC-34 cells and in the spinal cord. J Neuroendocrinol 2011; 23:839-48. [PMID: 21790808 DOI: 10.1111/j.1365-2826.2011.02192.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Motoneurones located in the ventral horn of the spinal cord conciliate cholinergic innervation of skeletal muscles. These neurones appear to be exceedingly affected in neurodegenerative diseases such as amyotrophic lateral sclerosis. The dysfunction of motoneurones is typically accompanied by alterations of cholinergic metabolism and signalling, as demonstrated by a decrease in choline acetyltransferase (ChAT) expression. 17 β-Oestradiol (E(2)) is generally accepted as neuroprotective factor in the brain under acute toxic and neurodegenerative conditions and also appears to exert a protective role for motoneurones. In the present study, we attempted to analyse the role of E(2) signalling on ChAT expression in the motoneurone-like cell line NSC-34 and in vivo. In a first step, we demonstrated the presence of oestrogen receptor α and β in NSC-34 cells, as well as in the cervical and lumbar parts, of the male mouse spinal cord. Subsequently, we investigated the effect of E(2) treatment on ChAT expression. The application of E(2) significantly increased the transcription of ChAT in NSC-34 cells and in the cervical but not lumbar part of the spinal cord. Our results indicate that E(2) can influence the cholinergic system by increasing ChAT expression in the mouse spinal cord. This mechanism might support motoneurones, in addition to survival-promoting mechanisms, in the temporal balance toxic or neurodegenerative challenges.
Collapse
Affiliation(s)
- S Johann
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | |
Collapse
|
97
|
Coronel MF, Labombarda F, Roig P, Villar MJ, De Nicola AF, González SL. Progesterone Prevents Nerve Injury-Induced Allodynia and Spinal NMDA Receptor Upregulation in Rats. PAIN MEDICINE 2011; 12:1249-61. [DOI: 10.1111/j.1526-4637.2011.01178.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
98
|
Feeser VR, Loria RM. Modulation of traumatic brain injury using progesterone and the role of glial cells on its neuroprotective actions. J Neuroimmunol 2011; 237:4-12. [PMID: 21777982 DOI: 10.1016/j.jneuroim.2011.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 02/07/2023]
Abstract
TBI is a complex disease process caused by a cascade of systemic events. Attention is now turning to drugs that act on multiple pathways to enhance survival and functional outcomes. Progesterone has been found to be beneficial in several animal species, different models of brain injury, and in two preliminary human clinical trials. It holds promise as a treatment for TBI. Progesterone's multiple mechanisms of action may work synergistically to prevent the death of neurons and glia, leading to reduced morbidity and mortality. This review highlights the importance of glial cells as mediators of progesterone's actions on the CNS and describes progesterone's pleiotrophic effects on immune enhancement and neuroprotection in TBI.
Collapse
Affiliation(s)
- V Ramana Feeser
- Department of Emergency Medicine, Virginia Commonwealth University Reanimation Engineering Shock Center, Richmond, Virginia, United States.
| | | |
Collapse
|
99
|
Santos-Galindo M, Acaz-Fonseca E, Bellini MJ, Garcia-Segura LM. Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide. Biol Sex Differ 2011; 2:7. [PMID: 21745355 PMCID: PMC3143074 DOI: 10.1186/2042-6410-2-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/11/2011] [Indexed: 01/09/2023] Open
Abstract
Background Numerous neurological and psychiatric disorders show sex differences in incidence, age of onset, symptomatology or outcome. Astrocytes, one of the glial cell types of the brain, show sex differences in number, differentiation and function. Since astrocytes are involved in the response of neural tissue to injury and inflammation, these cells may participate in the generation of sex differences in the response of the brain to pathological insults. To explore this hypothesis, we have examined whether male and female astrocytes show a different response to an inflammatory challenge and whether perinatal testosterone influences this response. Methods Cortical astrocyte cultures were prepared from postnatal day 1 (one day after birth) male or female CD1 mice pups. In addition, cortical astrocyte cultures were also prepared from female pups that were injected at birth with 100 μg of testosterone propionate or vehicle. Cultures were treated for 5 hours with medium containing lipopolysaccharide (LPS) or with control medium. The mRNA levels of IL6, interferon-inducible protein 10 (IP10), TNFα, IL1β, Toll-like receptor 4 (TLR4), steroidogenic acute regulatory protein and translocator protein were assessed by quantitative real-time polymerase chain reaction. Statistical significance was assessed by unpaired t-test or by one-way analysis of variance followed by the Tukey post hoc test. Results The mRNA levels of IL6, TNFα and IL1β after LPS treatment were significantly higher in astrocytes derived from male or androgenized females compared to astrocytes derived from control or vehicle-injected females. In contrast, IP10 mRNA levels after LPS treatment were higher in astrocytes derived from control or vehicle-injected females than in those obtained from males or androgenized females. The different response of male and female astrocytes to LPS was due neither to differences in the basal expression of the inflammatory molecules nor to differences in the expression of the LPS receptor TLR4. In contrast, the different inflammatory response was associated with increased mRNA levels of translocator protein, a key steroidogenic regulator, in female astrocytes that were treated with LPS. Conclusions Male and female cortical astrocytes respond differentially to an inflammatory challenge and this may be predetermined by perinatal testosterone exposure.
Collapse
|
100
|
Bethea CL, Smith AW, Centeno ML, Reddy AP. Long-term ovariectomy decreases serotonin neuron number and gene expression in free ranging macaques. Neuroscience 2011; 192:675-88. [PMID: 21763405 DOI: 10.1016/j.neuroscience.2011.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/06/2011] [Accepted: 06/01/2011] [Indexed: 01/08/2023]
Abstract
The serotonin system responds to the ovarian steroids, estradiol (E) and progesterone (P), in women and female animal models. In macaques, ovarian steroid administration to ovariectomized (Ovx) individuals improves serotonin neural function through actions on pivotal serotonin-related genes and proteins, such as TPH2 (tryptophan hydroxylase 2), SERT (serotonin reuptake transporter), and the 5HT1A autoreceptor. In addition, ovarian steroid administration reduces gene and protein expression in the caspase-independent pathway and reduces DNA fragmentation in serotonin neurons. This study examines the hypothesis that long-term ovariectomy will lead to a loss of serotonin neurons and compromised gene expression in serotonin neurons. Female Japanese macaques were ovariectomized or tubal ligated (n=5/group) at 3 years of age and returned to their natal troop. After 3 years, the animals were collected, administered a fenfluramine challenge to determine global serotonin availability, and then euthanized. Fev, TPH2, SERT, and 5HT1A expression were examined with digoxigenin in situ hybridization (ISH) and quantitative image analysis. Cell number, positive pixel area, and average pixel density were determined. In the Ovx group, Fev, TPH2, SERT, and 5HT1A showed a significant decease in average and total cell number and positive pixel area. The reduction in Fev-positive neurons suggests that there were fewer serotonin neurons in Ovx animals compared to ovary-intact animals. The decrease in TPH2 in the Ovx animals was consistent with earlier results in 5-month Ovx animals, but it may be due to the decrease in cell number rather than a decrease in expression on an individual cell basis. The decrease in SERT and 5HT1A in long-term Ovx differed from previous studies in short-term Ovx. In summary, long-term ovarian steroid loss resulted in fewer serotonin neurons and overall lower Fev, TPH2, SERT, and 5HT1A gene expression. This may be due to serotonin cell death or to a negative impact on a long-term developmental process in young female macaques.
Collapse
Affiliation(s)
- C L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|