51
|
Reeves R. Nuclear functions of the HMG proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:3-14. [PMID: 19748605 DOI: 10.1016/j.bbagrm.2009.09.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/04/2009] [Indexed: 12/12/2022]
Abstract
Although the three families of mammalian HMG proteins (HMGA, HMGB and HMGN) participate in many of the same nuclear processes, each family plays its own unique role in modulating chromatin structure and regulating genomic function. This review focuses on the similarities and differences in the mechanisms by which the different HMG families impact chromatin structure and influence cellular phenotype. The biological implications of having three architectural transcription factor families with complementary, but partially overlapping, nuclear functions are discussed.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, Washington State University, Biotechnology/Life Sciences Bldg., Rm. 143, Pullman, WA 99164-7520, USA.
| |
Collapse
|
52
|
Stojanova A, Penn LZ. The role of INI1/hSNF5 in gene regulation and cancer. Biochem Cell Biol 2009; 87:163-77. [PMID: 19234532 DOI: 10.1139/o08-113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The precise modulation of chromatin dynamics is an essential and complex process that ensures the integrity of transcriptional regulation and prevents the transition of a normal cell into a cancerous one. ATP-dependent chromatin remodeling enzymes are multisubunit complexes that play a pivotal role in this operation through the mobilization of nucleosomes to promote DNA accessibility. Chromatin remodeling is mediated by the interaction of DNA-binding factors and individual members of this complex, directing its targeted recruitment to specific regulatory regions. In this review, we discuss a core subunit of the SWI/SNF ATP-dependent chromatin remodeling complex, known as INI1/hSNF5, in the context of transcriptional regulation and impact on cancer biology. In particular, we review current knowledge of the diverse protein interactions between INI1/hSNF5 and viral and cellular factors, with a special emphasis on the potent oncogene c-Myc.
Collapse
Affiliation(s)
- Angelina Stojanova
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G2M9, Canada
| | | |
Collapse
|
53
|
SWI/SNF and Asf1p cooperate to displace histones during induction of the saccharomyces cerevisiae HO promoter. Mol Cell Biol 2009; 29:4057-66. [PMID: 19470759 DOI: 10.1128/mcb.00400-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Regulation of the Saccharomyces cerevisiae HO promoter has been shown to require the recruitment of chromatin-modifying and -remodeling enzymes. Despite this, relatively little is known about what changes to chromatin structure occur during the course of regulation at HO. Here, we used indirect end labeling in synchronized cultures to show that the chromatin structure is disrupted in a region that spans bp -600 to -1800 relative to the transcriptional start site. Across this region, there is a loss of canonical nucleosomes and a reduction in histone DNA cross-linking, as monitored by chromatin immunoprecipitation. The ATPase Snf2 is required for these alterations, but the histone acetyltransferase Gcn5 is not. This suggests that the SWI/SNF complex is directly involved in nucleosome removal at HO. We also present evidence indicating that the histone chaperone Asf1 assists in this. These observations suggest that SWI/SNF-related complexes in concert with histone chaperones act to remove histone octamers from DNA during the course of gene regulation.
Collapse
|
54
|
Astrand C, Belikov S, Wrange O. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter. Exp Cell Res 2009; 315:2604-15. [PMID: 19463811 DOI: 10.1016/j.yexcr.2009.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/29/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
Abstract
Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.
Collapse
Affiliation(s)
- Carolina Astrand
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
55
|
Leimgruber E, Seguín-Estévez Q, Dunand-Sauthier I, Rybtsova N, Schmid CD, Ambrosini G, Bucher P, Reith W. Nucleosome eviction from MHC class II promoters controls positioning of the transcription start site. Nucleic Acids Res 2009; 37:2514-28. [PMID: 19264803 PMCID: PMC2677874 DOI: 10.1093/nar/gkp116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleosome depletion at transcription start sites (TSS) has been documented genome-wide in multiple eukaryotic organisms. However, the mechanisms that mediate this nucleosome depletion and its functional impact on transcription remain largely unknown. We have studied these issues at human MHC class II (MHCII) genes. Activation-induced nucleosome free regions (NFR) encompassing the TSS were observed at all MHCII genes. Nucleosome depletion was exceptionally strong, attaining over 250-fold, at the promoter of the prototypical HLA-DRA gene. The NFR was induced primarily by the transcription factor complex that assembles on the conserved promoter-proximal enhancer situated upstream of the TSS. Functional analyses performed in the context of native chromatin demonstrated that displacing the NFR without altering the sequence of the core promoter induced a shift in the position of the TSS. The NFR thus appears to play a critical role in transcription initiation because it directs correct TSS positioning in vivo. Our results provide support for a novel mechanism in transcription initiation whereby the position of the TSS is controlled by nucleosome eviction rather than by promoter sequence.
Collapse
Affiliation(s)
- Elisa Leimgruber
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, CH-1211, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Knowing the precise locations of nucleosomes in a genome is key to understanding how genes are regulated. Recent 'next generation' ChIP-chip and ChIP-Seq technologies have accelerated our understanding of the basic principles of chromatin organization. Here we discuss what high-resolution genome-wide maps of nucleosome positions have taught us about how nucleosome positioning demarcates promoter regions and transcriptional start sites, and how the composition and structure of promoter nucleosomes facilitate or inhibit transcription. A detailed picture is starting to emerge of how diverse factors, including underlying DNA sequences and chromatin remodelling complexes, influence nucleosome positioning.
Collapse
Affiliation(s)
- Cizhong Jiang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
57
|
Keenen B, de la Serna IL. Chromatin remodeling in embryonic stem cells: regulating the balance between pluripotency and differentiation. J Cell Physiol 2009; 219:1-7. [PMID: 19097034 DOI: 10.1002/jcp.21654] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells have an unlimited potential for self-renewal yet are pluripotent, capable of differentiating into three different germ layers and ultimately into multiple cell lineages. Key pluripotency specific factors maintain an undifferentiated ES cell phenotype while lineage specific factors work in opposition to promote cell specialization. In addition to these important transcriptional regulators, epigenetic modifiers play a defining role in regulating the balance between pluripotency and differentiation by promoting changes in chromatin structure.
Collapse
Affiliation(s)
- Bridget Keenen
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | |
Collapse
|
58
|
Wan M, Zhang J, Lai D, Jani A, Prestone-Hurlburt P, Ramachandran A, Schnitzler GR, Chi T. Molecular basis of CD4 repression by the Swi/Snf-like BAF chromatin remodeling complex. Eur J Immunol 2009; 39:580-8. [PMID: 19180471 PMCID: PMC2774848 DOI: 10.1002/eji.200838909] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Brg1/Brm-associated factor (BAF) chromatin remodeling complex directly binds the CD4 silencer and is essential for CD4 repression during T-cell development, because deletion of the ATPase subunit Brg1 or a dominant negative mutant of BAF57 each impairs CD4 repression in early thymocytes. Paradoxically, BAF57 is dispensable for remodeling nucleosomes in vitro or for binding of the BAF complex to the CD4 silencer in vivo. Thus, it is unclear whether BAF57-dependent CD4 repression involves chromatin remodeling and, if so, how the remodeling translates into CD4 repression. Here we show that nucleosomes at the CD4 silencer occupy multiple translational frames. BAF57 dominant negative mutant does not alter these frames, but reduces the accessibility of the entire silencer without affecting the flanking regions, concomitant with localized accumulation of linker histone H1 and eviction of Runx1, a key repressor of CD4 transcription that directly binds the CD4 silencer. Our data indicate that precise nucleosome positioning is not critical for the CD4 silencer function and that BAF57 participates in remodeling H1-containing chromatin at the CD4 silencer, which enables Runx1 to access the silencer and repress CD4. In addition to BAF57, multiple other subunits in the BAF complex are also dispensable for chromatin remodelling in vitro. Our data suggest that these subunits could also help remodel chromatin at a step after the recruitment of the BAF complex to target genes.
Collapse
Affiliation(s)
- Mimi Wan
- Department of Immunobiology, Yale University Medical School, New Haven, Connecticut, USA
| | - Jianmin Zhang
- Department of Immunobiology, Yale University Medical School, New Haven, Connecticut, USA
| | - Dazhi Lai
- Department of Immunobiology, Yale University Medical School, New Haven, Connecticut, USA
| | - Anant Jani
- Department of Immunobiology, Yale University Medical School, New Haven, Connecticut, USA
| | | | - Aruna Ramachandran
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - Gavin R. Schnitzler
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - Tian Chi
- Department of Immunobiology, Yale University Medical School, New Haven, Connecticut, USA
| |
Collapse
|
59
|
Abstract
The basic repeating unit of chromatin, the nucleosome, is known to play a critical role in regulating the process of gene transcription. The positioning of nucleosomes on a promoter is a significant determinant in its responsiveness to gene-inducing signals. For example, positioning and subsequent mobilization of nucleosomes can regulate the access of various DNA factors to underlying DNA templates. Several mechanisms have been proposed to direct the process of nucleosome displacement such as chemical histone modifications, ATP-dependent remodelling, and the incorporation of histone variants. Thus, rather than being an inert molecular structure, chromatin is highly dynamic in response to the transcription process. In this section, we describe two methodologies that allow the determination of exact nucleosome positioning within specific gene regions.
Collapse
|
60
|
Apostolou E, Thanos D. Virus Infection Induces NF-kappaB-dependent interchromosomal associations mediating monoallelic IFN-beta gene expression. Cell 2008; 134:85-96. [PMID: 18614013 DOI: 10.1016/j.cell.2008.05.052] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/18/2008] [Accepted: 05/03/2008] [Indexed: 12/20/2022]
Abstract
Transcriptional activation of the IFN-beta gene by virus infection requires the cooperative assembly of an enhanceosome. We report that the stochastic and monoallelic expression of the IFN-beta gene depends on interchromosomal associations with three identified distinct genetic loci that could mediate binding of the limiting transcription factor NF-kappaB to the IFN-beta enhancer, thus triggering enhanceosome assembly and activation of transcription from this allele. The probability of a cell to express IFN-beta is dramatically increased when the cell is transfected with any of these loci. The secreted IFN-beta protein induces high-level expression of the enhanceosome factor IRF-7, which in turn promotes enhanceosome assembly and IFN-beta transcription from the remaining alleles and in other initially nonexpressing cells. Thus, the IFN-beta enhancer functions in a nonlinear fashion by working as a signal amplifier.
Collapse
Affiliation(s)
- Effie Apostolou
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | | |
Collapse
|
61
|
Poirier MG, Bussiek M, Langowski J, Widom J. Spontaneous access to DNA target sites in folded chromatin fibers. J Mol Biol 2008; 379:772-86. [PMID: 18485363 PMCID: PMC2481406 DOI: 10.1016/j.jmb.2008.04.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
DNA wrapped in nucleosomes is sterically occluded from many protein complexes that must act on it; how such complexes gain access to nucleosomal DNA is not known. In vitro studies on isolated nucleosomes show that they undergo spontaneous partial unwrapping conformational transitions, which make the wrapped nucleosomal DNA transiently accessible. Thus, site exposure might provide a general mechanism allowing access of protein complexes to nucleosomal DNA. However, existing quantitative analyses of site exposure focused on single nucleosomes, while the presence of neighbor nucleosomes and concomitant chromatin folding might significantly influence site exposure. In this work, we carried out quantitative studies on the accessibility of nucleosomal DNA in homogeneous nucleosome arrays. Two striking findings emerged. Organization into chromatin fibers changes the accessibility of nucleosomal DNA only modestly, from approximately 3-fold decreases to approximately 8-fold increases in accessibility. This means that nucleosome arrays are intrinsically dynamic and accessible even when they are visibly condensed. In contrast, chromatin folding decreases the accessibility of linker DNA by as much as approximately 50-fold. Thus, nucleosome positioning dramatically influences the accessibility of target sites located inside nucleosomes, while chromatin folding dramatically regulates access to target sites in linker DNA.
Collapse
Affiliation(s)
- Michael G. Poirier
- Department of Biochemistry, Molecular Biology and Cell Biology and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3500, USA
| | - Malte Bussiek
- German Cancer Research Center, Div. Biophysics of Macromolecules, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Jörg Langowski
- German Cancer Research Center, Div. Biophysics of Macromolecules, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Jonathan Widom
- Department of Biochemistry, Molecular Biology and Cell Biology and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3500, USA
| |
Collapse
|
62
|
Ounzain S, Dacwag CS, Samani NJ, Imbalzano AN, Chong NW. Comparative in silico analysis identifies bona fide MyoD binding sites within the Myocyte stress 1 gene promoter. BMC Mol Biol 2008; 9:50. [PMID: 18489770 PMCID: PMC2408591 DOI: 10.1186/1471-2199-9-50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 05/19/2008] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Myocyte stress 1 (MS1) is a striated muscle actin binding protein required for the muscle specific activity of the evolutionary ancient myocardin related transcription factor (MRTF)/serum response factor (SRF) transcriptional pathway. To date, little is known about the molecular mechanisms that govern skeletal muscle specific expression of MS1. Such mechanisms are likely to play a major role in modulating SRF activity and therefore muscle determination, differentiation and regeneration. In this study we employed a comparative in silico analysis coupled with an experimental promoter characterisation to delineate these mechanisms. RESULTS Analysis of MS1 expression in differentiating C2C12 muscle cells demonstrated a temporal differentiation dependent up-regulation in ms1 mRNA. An in silico comparative sequence analysis identified two conserved putative myogenic regulatory domains within the proximal 1.5 kbp of 5' upstream sequence. Co-transfecting C2C12 myoblasts with ms1 promoter/luciferase reporters and myogenic regulatory factor (MRF) over-expression plasmids revealed specific sensitivity of the ms1 promoter to MyoD. Subsequent mutagenesis and EMSA analysis demonstrated specific targeting of MyoD at two distinct E-Boxes (E1 and E2) within identified evolutionary conserved regions (ECRs, alpha and beta). Chromatin immunoprecipitation (ChIP) analysis indicates that co-ordinated binding of MyoD at E-Boxes located within ECRs alpha and beta correlates with the temporal induction in ms1 mRNA. CONCLUSION These findings suggest that the tissue specific and differentiation dependent up-regulation in ms1 mRNA is mediated by temporal binding of MyoD at distinct evolutionary conserved E-Boxes within the ms1 5' upstream sequence. We believe, through its activation of ms1, this is the first study to demonstrate a direct link between MyoD activity and SRF transcriptional signalling, with clear implications for the understanding of muscle determination, differentiation and regeneration.
Collapse
Affiliation(s)
- Samir Ounzain
- Cardiology Group, Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK.
| | | | | | | | | |
Collapse
|
63
|
Miele V, Vaillant C, d'Aubenton-Carafa Y, Thermes C, Grange T. DNA physical properties determine nucleosome occupancy from yeast to fly. Nucleic Acids Res 2008; 36:3746-56. [PMID: 18487627 PMCID: PMC2441789 DOI: 10.1093/nar/gkn262] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nucleosome positioning plays an essential role in cellular processes by modulating accessibility of DNA to proteins. Here, using only sequence-dependent DNA flexibility and intrinsic curvature, we predict the nucleosome occupancy along the genomes of Saccharomyces cerevisiae and Drosophila melanogaster and demonstrate the predictive power and universality of our model through its correlation with experimentally determined nucleosome occupancy data. In yeast promoter regions, the computed average nucleosome occupancy closely superimposes with experimental data, exhibiting a <200 bp region unfavourable for nucleosome formation bordered by regions that facilitate nucleosome formation. In the fly, our model faithfully predicts promoter strength as encoded in distinct chromatin architectures characteristic of strongly and weakly expressed genes. We also predict that nucleosomes are repositioned by active mechanisms at the majority of fly promoters. Our model uses only basic physical properties to describe the wrapping of DNA around the histone core, yet it captures a substantial part of chromatin's structural complexity, thus leading to a much better prediction of nucleosome occupancy than methods based merely on periodic curved DNA motifs. Our results indicate that the physical properties of the DNA chain, and not just the regulatory factors and chromatin-modifying enzymes, play key roles in eukaryotic transcription.
Collapse
Affiliation(s)
- Vincent Miele
- Laboratoire Statistique et Génome, CNRS/INRA/UEVE, 523 place des Terrasses, 91000 Evry, France
| | | | | | | | | |
Collapse
|
64
|
Hannenhalli S. Eukaryotic transcription factor binding sites--modeling and integrative search methods. Bioinformatics 2008; 24:1325-31. [PMID: 18426806 DOI: 10.1093/bioinformatics/btn198] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A comprehensive knowledge of transcription factor binding sites (TFBS) is important for a mechanistic understanding of transcriptional regulation as well as for inferring gene regulatory networks. Because the DNA motif recognized by a transcription factor is typically short and degenerate, computational approaches for identifying binding sites based only on the sequence motif inevitably suffer from high error rates. Current state-of-the-art techniques for improving computational identification of binding sites can be broadly categorized into two classes: (1) approaches that aim to improve binding motif models by extracting maximal sequence information from experimentally determined binding sites and (2) approaches that supplement binding motif models with additional genomic or other attributes (such as evolutionary conservation). In this review we will discuss recent attempts to improve computational identification of TFBS through these two types of approaches and conclude with thoughts on future development.
Collapse
Affiliation(s)
- Sridhar Hannenhalli
- Penn Center for Bioinformatics and Department of Genetics, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
65
|
W-K Ng D, Hall TC. PvALF and FUS3 activate expression from the phaseolin promoter by different mechanisms. PLANT MOLECULAR BIOLOGY 2008; 66:233-44. [PMID: 18038114 DOI: 10.1007/s11103-007-9265-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/08/2007] [Indexed: 05/22/2023]
Abstract
Transcription from the phaseolin (phas) promoter requires two major events: chromatin remodeling, mediated by PvALF, a B3 domain factor, and activation by an ABA-induced signal transduction cascade. Expression from phas is normally seed-specific, but high levels of expression in leaves can be obtained by ectopic expression of PvALF. Here, the system was used to compare the ability of PvALF and Arabidopsis FUS3, another B3 domain transcription factor that lacks the N-terminal activation and B1 domain present in PvALF, to activate phas expression in vegetative tissues. When compared to PvALF-mediated phas activation in the presence of ABA, a delay in phas activation was observed in the presence of both FUS3 and ABA in vegetative tissue. Significant differences in histone modifications at the phas promoter were mediated by FUS3 and PvALF, suggesting that they function through different epigenetic mechanisms. The relationship between PvALF and ABI5, a bZIP transcription factor, in mediating phas expression was also evaluated. Interestingly, over-expression of ABI5 rendered phas expression ABA-independent in the presence of PvALF. Changes in phas activity in different regions within seed embryos were demonstrated using abi5 mutants. Our results show that (1) redundant factors, such as PvALF and FUS3, employ different mechanisms to regulate their common target gene (phas); (2) ABI5, and possibly other redundant bZIP factors, act downstream of ABA in modulating phas expression in the presence of PvALF.
Collapse
Affiliation(s)
- Danny W-K Ng
- Institute of Developmental and Molecular Biology and Department of Biology, Texas A&M University, College Station, TX 77843-3155, USA
| | | |
Collapse
|
66
|
Abstract
In eukaryotes, transcription factors, including both gene-specific activators and general transcription factors (GTFs), operate in a chromatin milieu. Here, we review evidence from gene-specific and genome-wide studies indicating that chromatin presents an environment that is typically permissive for activator binding, conditional for pre-initiation complex (PIC) formation, and inhibitory for productive PIC assembly within coding sequences. We also discuss the role of nucleosome dynamics in facilitating access to transcription factors (TFs) in vivo and indicate some of the principal questions raised by recent findings.
Collapse
Affiliation(s)
- Randall H Morse
- Wadsworth Center, New York State Department of Health, Albany, New York 12201-2002, USA.
| |
Collapse
|
67
|
Parnell TJ, Huff JT, Cairns BR. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J 2008; 27:100-10. [PMID: 18059476 PMCID: PMC2206128 DOI: 10.1038/sj.emboj.7601946] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 11/07/2007] [Indexed: 12/21/2022] Open
Abstract
Nucleosomes can restrict the access of transcription factors to chromatin. RSC is a SWI/SNF-family chromatin-remodeling complex from yeast that repositions and ejects nucleosomes in vitro. Here, we examined these activities and their importance in vivo. We utilized array-based methods to examine nucleosome occupancy and positioning at more than 200 locations in the genome following the controlled destruction of the catalytic subunit of RSC, Sth1. Loss of RSC function caused pronounced and general reductions in new transcription from Pol I, II, and III genes. At Pol III genes, Sth1 loss conferred a general reduction in RNA Pol III occupancy and a gain in nucleosome density. Notably at the one Pol III gene examined, histone restoration was partly replication-dependent. In contrast, at Pol II promoters we observed primarily single nucleosome changes, including movement. Importantly, alterations near the transcription start site were more common at RSC-occupied promoters than at non-occupied promoters. Thus, RSC action affects both nucleosome density and positioning in vivo, but applies these remodeling modes differently at Pol II and Pol III genes.
Collapse
Affiliation(s)
- Timothy J Parnell
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jason T Huff
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
68
|
Bypassing the requirements for epigenetic modifications in gene transcription by increasing enhancer strength. Mol Cell Biol 2007; 28:926-38. [PMID: 18025106 DOI: 10.1128/mcb.01344-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our current concept postulates that histone acetylation is required for the recruitment of bromodomain-containing transcription complexes, such as the chromatin-remodeling machine SWI/SNF and the basal transcription factor TFIID. We generated simple NF-kappaB-dependent enhancers of increasing transcriptional strengths and found that the histone acetylation requirements for activation of transcription depended on the strengths of these enhancers. All enhancers function by recruiting SWI/SNF and TFIID to induce nucleosome sliding, a prerequisite for transcriptional activation. However, histone acetylation, although it occurs, is dispensable for TFIID and SWI/SNF recruitment by the strong enhancers, indicating that strong activators can overcome the chromatin barrier by directly recruiting the necessary transcriptional complexes. Weak enhancers depend on histone acetylation for recruitment, and this requirement is independent of a histone acetylation code. Thus, the need for nucleosome modifications is imposed on genes and translated according to the quality and strengths of the activators.
Collapse
|
69
|
Hiscott J. Convergence of the NF-κB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev 2007; 18:483-90. [PMID: 17706453 DOI: 10.1016/j.cytogfr.2007.06.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The type I interferon (IFN) alpha and beta promoters have been a leading paradigm of virus-activated transcriptional regulation for more than two decades, and have contributed substantially to our understanding of virus-inducible gene regulation, the coordinated activities of NF-kappaB and IRF transcription factors, the temporal and spatial recruitment of co-activators to the enhanceosome, and signaling pathways that trigger the innate antiviral response. In 2003, the ISICR Milstein Award was presented to John Hiscott of McGill University and Tom Maniatis of Harvard University for their ongoing research describing the mechanisms of regulation of type 1 interferon genes and specifically for the identification of key signaling kinases involved in phosphorylation of the transcription factors IRF-3 and IRF-7. The specific roles played by IRFs and the IKK-related kinases TBK1 and IKKvarepsilon are now recognized within the broader framework of TLR and RIG-I signaling pathways. This review summarizes the unique features of the IKK-related kinases and offers a summary of recent advances in the regulation of the early host response to virus infection.
Collapse
Affiliation(s)
- John Hiscott
- Lady Davis Institute for Medical Research - Jewish General Hospital, Departments of Microbiology & Immunology, Medicine and Oncology, McGill University, Montreal, Canada H3T 1E2.
| |
Collapse
|
70
|
Reimer T, Schweizer M, Jungi TW. Type I IFN induction in response to Listeria monocytogenes in human macrophages: evidence for a differential activation of IFN regulatory factor 3 (IRF3). THE JOURNAL OF IMMUNOLOGY 2007; 179:1166-77. [PMID: 17617610 DOI: 10.4049/jimmunol.179.2.1166] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Listeria monocytogenes is a prototypic bacterium for studying innate and adaptive cellular immunity as well as host defense. Using human monocyte-derived macrophages, we report that an infection with a wild-type strain, but not a listeriolysin O-deficient strain, of the Gram-positive bacterium L. monocytogenes induces expression of IFN-beta and a bioactive type I IFN response. Investigating the activation of signaling pathways in human macrophages after infection revealed that a wild-type strain and a hemolysin-deficient strain of L. monocytogenes activated the NF-kappaB pathway and induced a comparable TNF response. p38 MAPK and activating transcription factor 2 were phosphorylated following infection with either strain, and IFN-beta gene expression induced by wild-type L. monocytogenes was reduced when p38 was inhibited. However, neither IFN regulatory factor (IRF) 3 translocation to the nucleus nor posttranslational modifications and dimerizations were observed after L. monocytogenes infection. In contrast, vesicular stomatitis virus and LPS triggered IRF3 activation and signaling. When IRF3 was knocked down using small interfering RNA, a L. monocytogenes-induced IFN-beta response remained unaffected whereas a vesicular stomatitis virus-triggered response was reduced. Evidence against the possibility that IRF7 acts in place of IRF3 is provided. Thus, we show that wild-type L. monocytogenes induced an IFN-beta response in human macrophages and propose that this response involves p38 MAPK and activating transcription factor 2. Using various stimuli, we show that IRF3 is differentially activated during type I IFN responses in human macrophages.
Collapse
Affiliation(s)
- Thornik Reimer
- Institute of Veterinary Virology, University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
71
|
Schwabish MA, Struhl K. The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol 2007; 27:6987-95. [PMID: 17709398 PMCID: PMC2168902 DOI: 10.1128/mcb.00717-07] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Swi/Snf nucleosome-remodeling complex is recruited by DNA-binding activator proteins, whereupon it alters chromatin structure to increase preinitiation complex formation and transcription. At the SUC2 promoter, the Swi/Snf complex is required for histone eviction in a manner that is independent of transcriptional activity. Swi/Snf travels through coding regions with elongating RNA polymerase (Pol) II, and swi2 mutants exhibit sensitivity to drugs affecting Pol elongation. In FACT-depleted cells, Swi/Snf is important for internal initiation within coding regions, suggesting that Swi/Snf is important for histone eviction that occurs during Pol II elongation. Taken together, these observations suggest that Swi/Snf is important for histone eviction at enhancers and that it also functions as a Pol II elongation factor.
Collapse
Affiliation(s)
- Marc A Schwabish
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
72
|
Panne D, Maniatis T, Harrison SC. An atomic model of the interferon-beta enhanceosome. Cell 2007; 129:1111-23. [PMID: 17574024 PMCID: PMC2020837 DOI: 10.1016/j.cell.2007.05.019] [Citation(s) in RCA: 484] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/26/2007] [Accepted: 05/11/2007] [Indexed: 02/07/2023]
Abstract
Transcriptional activation of the interferon-beta (IFN-beta) gene requires assembly of an enhanceosome containing ATF-2/c-Jun, IRF-3/IRF-7, and NFkappaB. These factors bind cooperatively to the IFN-beta enhancer and recruit coactivators and chromatin-remodeling proteins to the IFN-beta promoter. We describe here a crystal structure of the DNA-binding domains of IRF-3, IRF-7, and NFkappaB, bound to one half of the enhancer, and use a previously described structure of the remaining half to assemble a complete picture of enhanceosome architecture in the vicinity of the DNA. Association of eight proteins with the enhancer creates a continuous surface for recognizing a composite DNA-binding element. Paucity of local protein-protein contacts suggests that cooperative occupancy of the enhancer comes from both binding-induced changes in DNA conformation and interactions with additional components such as CBP. Contacts with virtually every nucleotide pair account for the evolutionary invariance of the enhancer sequence.
Collapse
Affiliation(s)
- Daniel Panne
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Howard Hughes Medical Institute, 250 Longwood Ave, Boston, 02115 MA
| | - Tom Maniatis
- Harvard University, Department of Molecular and Cellular Biology, 7 Divinity Ave, Cambridge MA, 02138
| | - Stephen C. Harrison
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Howard Hughes Medical Institute, 250 Longwood Ave, Boston, 02115 MA
| |
Collapse
|
73
|
Abstract
Chromatin structure imposes significant obstacles on all aspects of transcription that are mediated by RNA polymerase II. The dynamics of chromatin structure are tightly regulated through multiple mechanisms including histone modification, chromatin remodeling, histone variant incorporation, and histone eviction. In this Review, we highlight advances in our understanding of chromatin regulation and discuss how such regulation affects the binding of transcription factors as well as the initiation and elongation steps of transcription.
Collapse
Affiliation(s)
- Bing Li
- Stowers Medical Research Institute, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
74
|
Abstract
Rapid induction of type I interferon (IFN) expression is a central event in the establishment of the innate immune response against viral infection and requires the activation of multiple transcriptional proteins following engagement and signaling through Toll-like receptor-dependent and -independent pathways. The transcription factor interferon regulatory factor-3 (IRF-3) contributes to a first line of defense against viral infection by inducing the production of IFN-beta that in turn amplifies the IFN response and the development of antiviral activity. In murine knock-out models, the absence of IRF-3 and the closely related IRF-7 ablates IFN production and increases viral pathogenesis, thus supporting a pivotal role for IRF-3/IRF-7 in the development of the host antiviral response.
Collapse
Affiliation(s)
- John Hiscott
- Lady Davis Institute for Medical Research-Jewish General Hospital, Departments of Microbiology & Immunology, Medicine, and Oncology, McGill University, Montreal H3T 1E2, Canada.
| |
Collapse
|
75
|
Gligoris T, Thireos G, Tzamarias D. The Tup1 corepressor directs Htz1 deposition at a specific promoter nucleosome marking the GAL1 gene for rapid activation. Mol Cell Biol 2007; 27:4198-205. [PMID: 17387147 PMCID: PMC1900012 DOI: 10.1128/mcb.00238-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SWR1 complex (SWR1-C)-dependent deposition of the histone variant Htz1 on promoter nucleosomes is typical of Saccharomyces cerevisiae genes whose expression is frequently reprogrammed. Although this epigenetic marking is of significant physiological importance, the determinants of Htz1 deposition, the conditions that set off SWR1-C occupancy, and the implications of Htz1 in transcriptional initiation are issues that remain unresolved. In this report, we addressed these questions by investigating the GAL1 promoter. We show that Htz1 is required for efficient Mediator recruitment and transcription only when the GAL1 promoter is under the influence of the Tup1 corepressor. In fact, we show that it is Tup1 that specifies Htz1 deposition for the promoter nucleosome covering the transcription start site. This deposition occurs rapidly following transcriptional repression, and it correlates with a Tup1-independent transient recruitment of the SWR1 complex. We propose that Tup1 cooperates with SWR1-C and specifies Htz1 deposition at GAL1, thereby marking the promoter for rapid neutralization from its repressive effects.
Collapse
Affiliation(s)
- Thomas Gligoris
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, University of Crete, P.O. Box 1527, Vassilika Vouton, 711 10 Heraklion, Crete, Greece.
| | | | | |
Collapse
|
76
|
Yang Z, Zheng C, Hayes JJ. The Core Histone Tail Domains Contribute to Sequence-dependent Nucleosome Positioning. J Biol Chem 2007; 282:7930-8. [PMID: 17234628 DOI: 10.1074/jbc.m610584200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The precise positioning of nucleosomes plays a critical role in the regulation of gene expression by modulating the DNA binding activity of trans-acting factors. However, molecular determinants responsible for positioning are not well understood. We examined whether the removal of the core histone tail domains from nucleosomes reconstituted with specific DNA fragments led to alteration of translational positions. Remarkably, we find that removal of tail domains from a nucleosome assembled on a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene results in repositioning of nucleosomes along the DNA, including two related major translational positions that move about 20 bp further upstream with respect to the 5S gene. In a nucleosome reconstituted with a DNA fragment containing the promoter of a Drosophila alcohol dehydrogenase gene, several translational positions shifted by about 10 bp along the DNA upon tail removal. However, the positions of nucleosomes assembled with a DNA fragment known to have one of the highest binding affinities for core histone proteins in the mouse genome were not altered by removal of core histone tail domains. Our data support the notion that the basic tail domains bind to nucleosomal DNA and influence the selection of the translational position of nucleosomes and that once tails are removed movement between translational positions occurs in a facile manner on some sequences. However, the effect of the N-terminal tails on the positioning and movement of a nucleosome appears to be dependent on the DNA sequence such that the contribution of the tails can be masked by very high affinity DNA sequences. Our results suggest a mechanism whereby sequence-dependent nucleosome positioning can be specifically altered by regulated changes in histone tail-DNA interactions in chromatin.
Collapse
Affiliation(s)
- Zungyoon Yang
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
77
|
Grondin B, Lefrancois M, Tremblay M, Saint-Denis M, Haman A, Waga K, Bédard A, Tenen DG, Hoang T. c-Jun homodimers can function as a context-specific coactivator. Mol Cell Biol 2007; 27:2919-33. [PMID: 17283046 PMCID: PMC1899927 DOI: 10.1128/mcb.00936-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcription factors can function as DNA-binding-specific activators or as coactivators. c-Jun drives gene expression via binding to AP-1 sequences or as a cofactor for PU.1 in macrophages. c-Jun heterodimers bind AP-1 sequences with higher affinity than homodimers, but how c-Jun works as a coactivator is unknown. Here, we provide in vitro and in vivo evidence that c-Jun homodimers are recruited to the interleukin-1beta (IL-1beta) promoter in the absence of direct DNA binding via protein-protein interactions with DNA-anchored PU.1 and CCAAT/enhancer-binding protein beta (C/EBPbeta). Unexpectedly, the interaction interface with PU.1 and C/EBPbeta involves four of the residues within the basic domain of c-Jun that contact DNA, indicating that the capacities of c-Jun to function as a coactivator or as a DNA-bound transcription factor are mutually exclusive. Our observations indicate that the IL-1beta locus is occupied by PU.1 and C/EBPbeta and poised for expression and that c-Jun enhances transcription by facilitating a rate-limiting step, the assembly of the RNA polymerase II preinitiation complex, with minimal effect on the local chromatin status. We propose that the basic domain of other transcription factors may also be redirected from a DNA interaction mode to a protein-protein interaction mode and that this switch represents a novel mechanism regulating gene expression profiles.
Collapse
Affiliation(s)
- Benoit Grondin
- Institute of Research in Immunology and Cancer, University of Montreal, P.O. Box 6128, Downtown station, Montréal, Québec
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Sherriff JA, Kent NA, Mellor J. The Isw2 chromatin-remodeling ATPase cooperates with the Fkh2 transcription factor to repress transcription of the B-type cyclin gene CLB2. Mol Cell Biol 2007; 27:2848-60. [PMID: 17283050 PMCID: PMC1899929 DOI: 10.1128/mcb.01798-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Forkhead (Fkh) transcription factors influence cell death, proliferation, and differentiation and the cell cycle. In Saccharomyces cerevisiae, Fkh2 both activates and represses transcription of CLB2, encoding a B-type cyclin. CLB2 is expressed during G(2)/M phase and repressed during G(1). Fkh2 recruits the coactivator Ndd1, an interaction which is promoted by Clb2/Cdk1-dependent phosphorylation of Ndd1, suggesting that CLB2 is autoregulated. Ndd1 is proposed to function by antagonizing Fkh2-mediated repression, but nothing is known about the mechanism. Here we ask how Fkh2 represses CLB2. We show that Fkh2 controls a repressive chromatin structure that initiates in the early coding region of CLB2 and spreads up the promoter during the M and G(1) phases. The Isw2 chromatin-remodeling ATPase cooperates with Fkh2 to remodel the chromatin and repress CLB2 expression throughout the cell cycle. In addition, the related factors Isw1 and Fkh1 configure the chromatin at the early coding region and negatively regulate CLB2 expression but only during G(2)/M phase. Thus, the cooperative actions of two forkhead transcription factors and two chromatin-remodeling ATPases combine to regulate CLB2. We propose that chromatin-mediated repression by Isw1 and Isw2 may serve to limit activation of CLB2 expression by the Clb2/Cdk1 kinase during G(2)/M and to fully repress expression during G(1).
Collapse
Affiliation(s)
- Julia A Sherriff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
79
|
Ganapathi M, Singh GP, Sandhu KS, Brahmachari SK, Brahmachari V. A whole genome analysis of 5' regulatory regions of human genes for putative cis-acting modulators of nucleosome positioning. Gene 2007; 391:242-51. [PMID: 17321698 DOI: 10.1016/j.gene.2007.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 01/16/2007] [Accepted: 01/16/2007] [Indexed: 01/10/2023]
Abstract
We have carried out in silico analysis of upstream regions of 23,034 genes from the human genome for sequence motifs, which can potentially affect nucleosome positioning. Nucleosome exclusion elements (NEE) occur in 12% of the genes while less than 1% contain nucleosome positioning elements (NPE). NEE are significantly higher in 5' regions of certain categories of genes, namely, genes with active promoters, genes localised to gene-rich chromosomes 16, 17 and 19, genes having significantly higher expression levels and higher levels of occupancy of general transcription machinery proteins. NEE are also enriched in housekeeping and TATA-less genes, but are significantly under-represented in the upstream region of genes functionally classified under 'organ development' and 'morphogenesis' categories. Further, DNase I hypersensitive sites which co-localise with NEE, preferentially occur in 5' regulatory regions. Considering the positioning sequences identified so far, we speculate that low affinity nucleosome positioning in the upstream sequences of genes in the human genome is the default state requiring activation through chromatin remodelling, while, there appears to be a selection for nucleosome excluding sequences in the upstream sequences of genes that are ubiquitously expressed.
Collapse
Affiliation(s)
- Mythily Ganapathi
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
| | | | | | | | | |
Collapse
|
80
|
Gal-Yam EN, Jeong S, Tanay A, Egger G, Lee AS, Jones PA. Constitutive nucleosome depletion and ordered factor assembly at the GRP78 promoter revealed by single molecule footprinting. PLoS Genet 2006; 2:e160. [PMID: 17002502 PMCID: PMC1574359 DOI: 10.1371/journal.pgen.0020160] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 08/09/2006] [Indexed: 11/24/2022] Open
Abstract
Chromatin organization and transcriptional regulation are interrelated processes. A shortcoming of current experimental approaches to these complex events is the lack of methods that can capture the activation process on single promoters. We have recently described a method that combines methyltransferase M.SssI treatment of intact nuclei and bisulfite sequencing allowing the representation of replicas of single promoters in terms of protected and unprotected footprint modules. Here we combine this method with computational analysis to study single molecule dynamics of transcriptional activation in the stress inducible GRP78 promoter. We show that a 350–base pair region upstream of the transcription initiation site is constitutively depleted of nucleosomes, regardless of the induction state of the promoter, providing one of the first examples for such a promoter in mammals. The 350–base pair nucleosome-free region can be dissected into modules, identifying transcription factor binding sites and their combinatorial organization during endoplasmic reticulum stress. The interaction of the transcriptional machinery with the GRP78 core promoter is highly organized, represented by six major combinatorial states. We show that the TATA box is frequently occupied in the noninduced state, that stress induction results in sequential loading of the endoplasmic reticulum stress response elements, and that a substantial portion of these elements is no longer occupied following recruitment of factors to the transcription initiation site. Studying the positioning of nucleosomes and transcription factors at the single promoter level provides a powerful tool to gain novel insights into the transcriptional process in eukaryotes. Control of gene expression and transcription are complex and well-coordinated processes. Most current experimental approaches to understanding the underlying mechanisms, which include binding of transcription factors to regulatory regions of genes, and changes in the structure and composition of chromatin, rely on studies of populations of cells and cannot capture the transcription activation process on single promoters. The authors describe the use of a footprinting method which enables analysis of chromatin structure and binding of factors on single DNA molecules. This is applied to study the activation process of GRP78, a protein which is important for the induction of a response to endoplasmic reticulum stress. By combining the footprinting method and computational analyses, the authors define functional modules on the GRP78 promoter and show that it exists in few major combinatorial states, reflecting its high level of organization. These results provide novel insights into the activation of GRP78 which could not be gleaned using conventional methods. They also demonstrate the use of the method as a unique and powerful tool to study the transcriptional process in eukaryotes, which remains a major source of interest and challenge for the scientific community.
Collapse
Affiliation(s)
- Einav Nili Gal-Yam
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shinwu Jeong
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amos Tanay
- Center for Studies in Physics and Biology, Rockefeller University, New York, New York, United States of America
| | - Gerda Egger
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amy S Lee
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Peter A Jones
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
81
|
Tenbrock K, Juang YT, Leukert N, Roth J, Tsokos GC. The transcriptional repressor cAMP response element modulator alpha interacts with histone deacetylase 1 to repress promoter activity. THE JOURNAL OF IMMUNOLOGY 2006; 177:6159-64. [PMID: 17056544 DOI: 10.4049/jimmunol.177.9.6159] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcriptional repression is a fundamental mechanism of gene regulation. cAMP response element (CRE) modulator (CREM)alpha is an ubiquitously expressed transcription factor and a counterpart of the activator CREB. In T cells, CREM is responsible for the termination of the IL-2 expression by a chromatin-dependent mechanism. We demonstrate in this study that CREMalpha associates with histone deacetylase (HDAC)1 through its H domain, which is located between the kinase inducible and DNA binding domains. The CREMalpha-mediated recruitment of HDAC1 to the CRE sites of the IL-2 and c-Fos promoter causes histone deacetylation and inaccessibility to restriction enzymes and limited transcriptional activity. Importantly, the CRE sites of these promoters are crucial for the activity and binding of HDAC1. Therefore, CREMalpha exerts its repressor activity by a mechanism that involves recruitment of HDAC1, increased deacetylation of histones, and repression of promoter activity.
Collapse
Affiliation(s)
- Klaus Tenbrock
- Department of Pediatrics, Division of Rheumatology, University Hospital, University of Muenster, Röntgenstrasse 21, 48149 Muenster, Germany.
| | | | | | | | | |
Collapse
|
82
|
Hiscott J, Nguyen TLA, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006; 25:6844-67. [PMID: 17072332 PMCID: PMC7100320 DOI: 10.1038/sj.onc.1209941] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Viral and microbial constituents contain specific motifs or pathogen-associated molecular patterns (PAMPs) that are recognized by cell surface- and endosome-associated Toll-like receptors (TLRs). In addition, intracellular viral double-stranded RNA is detected by two recently characterized DExD/H box RNA helicases, RIG-I and Mda-5. Both TLR-dependent and -independent pathways engage the IkappaB kinase (IKK) complex and related kinases TBK-1 and IKKvarepsilon. Activation of the nuclear factor kappaB (NF-kappaB) and interferon regulatory factor (IRF) transcription factor pathways are essential immediate early steps of immune activation; as a result, both pathways represent prime candidates for viral interference. Many viruses have developed strategies to manipulate NF-kappaB signaling through the use of multifunctional viral proteins that target the host innate immune response pathways. This review discusses three rapidly evolving areas of research on viral pathogenesis: the recognition and signaling in response to virus infection through TLR-dependent and -independent mechanisms, the involvement of NF-kappaB in the host innate immune response and the multitude of strategies used by different viruses to short circuit the NF-kappaB pathway.
Collapse
Affiliation(s)
- J Hiscott
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
83
|
Biel M, Wascholowski V, Giannis A. Epigenetics--an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem Int Ed Engl 2006; 44:3186-216. [PMID: 15898057 DOI: 10.1002/anie.200461346] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The treatment of cancer through the development of new therapies is one of the most important challenges of our time. The decoding of the human genome has yielded important insights into the molecular basis of physical disorders, and in most cases a connection between failures in specific genes and the resulting clinical symptoms can be made. The modulation of epigenetic mechanisms enables, by definition, the alteration of cellular phenotype without altering the genotype. The information content of a single gene can be crucial or harmful, but the prerequisite for a cellular effect is active gene transcription. To this end, epigenetic mechanisms play a very important role, and the transcription of a given gene is directly influenced by the modification pattern of the surrounding histone proteins as well as the methylation pattern of the DNA. These processes are effected by different enzymes which can be directly influenced through the development of specific modulators. Of course, all genetic information is written as a four-character code in DNA. However, epigenetics describes the art of reading between the lines.
Collapse
Affiliation(s)
- Markus Biel
- University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | | | | |
Collapse
|
84
|
Abstract
Complexes formed from the nuclear factor kappaB (NF-kappaB) family of transcription factors are ubiquitously expressed and are induced by a diverse array of stimuli. This results in their becoming activated in a wide variety of different settings. While the functions of NF-kappaB in many of these contexts have been the subject of intense research and are now well established, it is also clear that there is great diversity in the effects and consequences of NF-kappaB activation. NF-kappaB subunits do not necessarily regulate the same genes, in an identical manner, in all of the different circumstances in which they are induced. This review will discuss the different functions of NF-kappaB, the pathways that modulate NF-kappaB subunit activity and, in contrast to its more commonly thought of role as a promoter of cancer cell growth and survival, the ability of NF-kappaB, under some circumstances, to behave as a tumor suppressor.
Collapse
Affiliation(s)
- N D Perkins
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, MSI/WTB Complex, Dow Street, Dundee, Scotland DD1 5EH, UK.
| | | |
Collapse
|
85
|
de la Serna IL, Ohkawa Y, Imbalzano AN. Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 2006; 7:461-73. [PMID: 16708073 DOI: 10.1038/nrg1882] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The initiation of cellular differentiation involves alterations in gene expression that depend on chromatin changes, at the level of both higher-order structures and individual genes. Consistent with this, chromatin-remodelling enzymes have key roles in differentiation and development. The functions of ATP-dependent chromatin-remodelling enzymes have been studied in several mammalian differentiation pathways, revealing cell-type-specific and gene-specific roles for these proteins that add another layer of precision to the regulation of differentiation. Recent studies have also revealed a role for ATP-dependent remodelling in regulating the balance between proliferation and differentiation, and have uncovered intriguing links between chromatin remodelling and other cellular processes during differentiation, including recombination, genome organization and the cell cycle.
Collapse
Affiliation(s)
- Ivana L de la Serna
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3035 Arlington Avenue, Toledo, Ohio 43606, USA
| | | | | |
Collapse
|
86
|
Mitra D, Parnell EJ, Landon JW, Yu Y, Stillman DJ. SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment. Mol Cell Biol 2006; 26:4095-110. [PMID: 16705163 PMCID: PMC1489090 DOI: 10.1128/mcb.01849-05] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We use chromatin immunoprecipitation assays to show that the Gcn5 histone acetyltransferase in SAGA is required for SWI/SNF association with the HO promoter and that binding of SWI/SNF and SAGA are interdependent. Previous results showed that SWI/SNF binding to HO was Gcn5 independent, but that work used a strain with a mutation in the Ash1 daughter-specific repressor of HO expression. Here, we show that Ash1 functions as a repressor that inhibits SWI/SNF binding and that Gcn5 is required to overcome Ash1 repression in mother cells to allow HO transcription. Thus, Gcn5 facilitates SWI/SNF binding by antagonizing Ash1. Similarly, a mutation in SIN3, like an ash1 mutation, allows both HO expression and SWI/SNF binding in the absence of Gcn5. Although Ash1 has recently been identified in a Sin3-Rpd3 complex, our genetic analysis shows that Ash1 and Sin3 have distinct functions in regulating HO. Analysis of mutant strains shows that SWI/SNF binding and HO expression are correlated and regulated by histone acetylation. The defect in HO expression caused by a mutant SWI/SNF with a Swi2(E834K) substitution can be partially suppressed by ash1 or spt3 mutation or by a gain-of-function V71E substitution in the TATA-binding protein (TBP). Spt3 inhibits TBP binding at HO, and genetic analysis suggests that Spt3 and TBP(V71E) act in the same pathway, distinct from that of Ash1. We have detected SWI/SNF binding at the HO TATA region, and our results suggest that SWI/SNF, either directly or indirectly, facilitates TBP binding at HO.
Collapse
Affiliation(s)
- Doyel Mitra
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT 84132-2501, USA
| | | | | | | | | |
Collapse
|
87
|
Villagra A, Cruzat F, Carvallo L, Paredes R, Olate J, van Wijnen AJ, Stein GS, Lian JB, Stein JL, Imbalzano AN, Montecino M. Chromatin remodeling and transcriptional activity of the bone-specific osteocalcin gene require CCAAT/enhancer-binding protein beta-dependent recruitment of SWI/SNF activity. J Biol Chem 2006; 281:22695-706. [PMID: 16772287 DOI: 10.1074/jbc.m511640200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue-specific activation of the osteocalcin (OC) gene is associated with changes in chromatin structure at the promoter region. Two nuclease-hypersensitive sites span the key regulatory elements that control basal tissue-specific and vitamin D3-enhanced OC gene transcription. To gain understanding of the molecular mechanisms involved in chromatin remodeling of the OC gene, we have examined the requirement for SWI/SNF activity. We inducibly expressed an ATPase-defective BRG1 catalytic subunit that forms inactive SWI/SNF complexes that bind to the OC promoter. This interaction results in inhibition of both basal and vitamin D3-enhanced OC gene transcription and a marked decrease in nuclease hypersensitivity. We find that SWI/SNF is recruited to the OC promoter via the transcription factor CCAAT/enhancer-binding protein beta, which together with Runx2 forms a stable complex to facilitate RNA polymerase II binding and activation of OC gene transcription. Together, our results indicate that the SWI/SNF complex is a key regulator of the chromatin-remodeling events that promote tissue-specific transcription in osteoblasts.
Collapse
Affiliation(s)
- Alejandro Villagra
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Casilla 160-C, 4079100 Concepcion, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Donati G, Imbriano C, Mantovani R. Dynamic recruitment of transcription factors and epigenetic changes on the ER stress response gene promoters. Nucleic Acids Res 2006; 34:3116-27. [PMID: 16757577 PMCID: PMC1475745 DOI: 10.1093/nar/gkl304] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Response to stresses that alter the function of the endoplasmic reticulum is an important cellular function, which relies on the activation of specific genes. Several transcription factors (TFs) are known to affect this pathway. Using RT-PCR and ChIP assays, we studied the recruitment of promoter-specific TFs, general TFs and epigenetic marks in activated promoters. H3-K4 di- and tri-methylation and H3-K79 di-methylation are present before induction. H3 acetylation is generally high before induction, and H4 acetylation shows a promoter-specific increase. Interestingly, there is a depletion of histone H3 under maximal induction, explaining an apparent decrease of H3-K4 tri-methylation and H3-K79 di-methylation. Pol II is found enriched on some promoters under basal conditions, unlike TBP and p300, which are recruited selectively. Most genes are bound by XBP-1 after induction, some before induction, presumably by the inactive isoform. ATF6 and CHOP associate to largely different set of genes. C/EBPbeta is selective and binding to the CHOP promoter precedes that of XBP-1, ATF6 and CHOP. Finally, one of the ER-stress inducible genes analyzed, HRD1, is not bound by any of these factors. Among the constitutive TFs, NF-Y, but not Sp1, is found on all genes before induction. Intriguingly, siRNA interference of the NF-YB subunit indicates transcriptional impairment of some, but not all genes. These data highlight a previously unappreciated complexity of TFs binding and epigenetic changes, pointing to different TFs-specific pathways within this broad response.
Collapse
Affiliation(s)
| | - Carol Imbriano
- Dipartimento di Biologia Animale, Università di Modena e ReggioVia Campi 287/d, 41100 Modena, Italy
| | - Roberto Mantovani
- To whom correspondence should be addressed. Tel: +39 02 50315005; Fax: +39 02 50315044;
| |
Collapse
|
89
|
Kobrossy L, Rastegar M, Featherstone M. Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. J Biol Chem 2006; 281:25926-39. [PMID: 16757478 DOI: 10.1074/jbc.m602555200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Correct patterning of the antero-posterior axis of the embryonic trunk is dependent on spatiotemporally restricted Hox gene expression. In this study, we identified components of the Hoxd4 P1 promoter directing expression in neurally differentiating retinoic acid-treated P19 cells. We mapped three nucleosomes that are subsequently remodeled into an open chromatin state upon retinoic acid-induced Hoxd4 transcription. These nucleosomes spanned the Hoxd4 transcriptional start site in addition to a GC-rich positive regulatory element located 3' to the initiation site. We further identified two major cis-acting regulatory elements. An autoregulatory element was shown to recruit HOXD4 and its cofactor PBX1 and to positively regulate Hoxd4 expression in differentiating P19 cells. Conversely, the Polycomb group (PcG) protein Ying-Yang 1 (YY1) binds to an internucleosomal linker and represses Hoxd4 transcription before and during transcriptional activation. Sequential chromatin immunoprecipitation studies revealed that the PcG protein MEL18 was co-recruited with YY1 only in undifferentiated P19 cells, suggesting a role for MEL18 in silencing Hoxd4 transcription in undifferentiated P19 cells. This study links for the first time local chromatin remodeling events that take place during transcriptional activation with the dynamics of transcription factor association and DNA accessibility at a Hox regulatory region.
Collapse
Affiliation(s)
- Laila Kobrossy
- McGill Cancer Centre, McGill University, Montréal, Québec H3G 1Y6 Canada
| | | | | |
Collapse
|
90
|
Abstract
Central issues surrounding the basic helix-loop-helix (bHLH) superfamily of dimeric transcription factors concern how specificity of partner selection and DNA binding are achieved. bHLH proteins bind DNA through the basic sequence that is contiguous with a helix-loop-helix dimerization domain. For the two subgroups within the family, dimerization is further regulated by an adjacent Per-Arnt-Sim homology (PAS) or leucine zipper (LZ) domain. We provide evidence that for the bHLH.PAS transcription factors Dioxin Receptor (DR) and Arnt, the DR PAS A domain has a unique interaction with the bHLH region that underpins both dimerization strength and affinity for an atypical E-box DNA sequence. A PAS swap heterodimer, where the DR bHLH domain was fused to Arnt PAS A and the Arnt bHLH fused to DR PAS A, gave strong DNA binding, but dimerization was only effective with the native arrangement, suggesting the PAS A domain is critical for each process via distinct mechanisms. LZ domains, which regulate heterodimerization for the bHLH.LZ family members Myc and Max, could not replace the PAS domains for either dimerization or DNA binding in the DR/Arnt heterodimer. In vitro footprinting revealed that the PAS domains influence the conformation of target DNA in a manner consistent with DNA bending. These results provide the first insights for understanding mechanisms of selective dimerization and DNA interaction that distinguish bHLH.PAS proteins from the broader bHLH superfamily.
Collapse
Affiliation(s)
- Anne Chapman-Smith
- School of Molecular and Biomedical Science (Biochemistry), University of Adelaide, South Australia, Australia.
| | | |
Collapse
|
91
|
de la Serna IL, Ohkawa Y, Higashi C, Dutta C, Osias J, Kommajosyula N, Tachibana T, Imbalzano AN. The microphthalmia-associated transcription factor requires SWI/SNF enzymes to activate melanocyte-specific genes. J Biol Chem 2006; 281:20233-41. [PMID: 16648630 DOI: 10.1074/jbc.m512052200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microphthalmia transcription factor (Mitf) activates melanocyte-specific gene expression, is critical for survival and proliferation of melanocytes during development, and has been described as an oncogene in malignant melanoma. SWI/SNF complexes are ATP-dependent chromatin-remodeling enzymes that play a role in many developmental processes. To determine the requirement for SWI/SNF enzymes in melanocyte differentiation, we introduced Mitf into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, Brahma or Brahma-related gene 1 (BRG1). These dominant negative SWI/SNF components have been shown to inhibit gene activation events that normally require SWI/SNF enzymes. We found that Mitf-mediated activation of a subset of endogenous melanocyte-specific genes required SWI/SNF enzymes but that cell-cycle regulation occurred independently of SWI/SNF function. Activation of tyrosinase-related protein 1, a melanocyte-specific gene, correlated with SWI/SNF-dependent changes in chromatin accessibility at the endogenous locus. Both BRG1 and Mitf could be localized to the tyrosinase-related protein 1 and tyrosinase promoters by chromatin immunoprecipitation, whereas immunofluorescence and immunoprecipitation experiments indicate that Mitf and BRG1 co-localized in the nucleus and physically interacted. Together these results suggest that Mitf can recruit SWI/SNF enzymes to melanocyte-specific promoters for the activation of gene expression via induced changes in chromatin structure at endogenous loci.
Collapse
Affiliation(s)
- Ivana L de la Serna
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Park SW, Huq MDM, Loh HH, Wei LN. Retinoic acid-induced chromatin remodeling of mouse kappa opioid receptor gene. J Neurosci 2006; 25:3350-7. [PMID: 15800190 PMCID: PMC6724898 DOI: 10.1523/jneurosci.0186-05.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mouse kappa opioid receptor (KOR) gene is constitutively expressed in P19 embryonic stem cells but is first suppressed and reactivated during retinoic acid (RA)-induced neuronal differentiation. However, no RA response element (RARE) can be found in this gene regulatory region. The suppression and reactivation of the KOR gene in this neuronal differentiation model suggested chromatin remodeling occurred on this gene promoter triggered by RA induction. This study asks whether RA induces alteration in the nucleosomal structure of this gene promoter that has no apparent RARE and, if so, how RA remodels chromatin of this promoter. The results revealed two loose nucleosomes, N1 at -44 (3' boundary) from the transcription initiation site and N2 spanning the transcription initiation site, that are relevant to active transcription. RA formed a repressive chromatin configuration of this promoter by compacting nucleosome N1, followed by nucleosome N2 condensation. Chromatin immunoprecipitation assay demonstrated RA induced replacement of the c-Myc/Max complex with the Max/Mad1 complex on the E box located within nucleosome N1, coinciding with reduced Sp1 binding to GC boxes located within nucleosome N2 and recruitment of chromatin remodeling factor Brahma-related gene 1 (BRG-1) to this promoter. Consistently, histone deacetylation, Lys9 methylation, and hypophosphorylation of RNA polymerase II C-terminal domain were detected on this promoter after RA treatment. It is concluded that RA induces KOR gene suppression, as early neuronal differentiation marker, by inducing substitution of c-Myc/Max with Max/Mad on the E box and by BRG-1 involved nucleosome recruitment and chromatin condensation, thereby abolishing Sp1 binding.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
93
|
Tolić-Nørrelykke SF, Rasmussen MB, Pavone FS, Berg-Sørensen K, Oddershede LB. Stepwise bending of DNA by a single TATA-box binding protein. Biophys J 2006; 90:3694-703. [PMID: 16500964 PMCID: PMC1440750 DOI: 10.1529/biophysj.105.074856] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TATA-box binding protein (TBP) is required by all three eukaryotic RNA polymerases for the initiation of transcription from most promoters. TBP recognizes, binds to, and bends promoter sequences called "TATA-boxes" in the DNA. We present results from the study of individual Saccharomyces cerevisiae TBPs interacting with single DNA molecules containing a TATA-box. Using video microscopy, we observed the Brownian motion of beads tethered by short surface-bound DNA. When TBP binds to and bends the DNA, the conformation of the DNA changes and the amplitude of Brownian motion of the tethered bead is reduced compared to that of unbent DNA. We detected individual binding and dissociation events and derived kinetic parameters for the process. Dissociation was induced by increasing the salt concentration or by directly pulling on the tethered bead using optical tweezers. In addition to the well-defined free and bound classes of Brownian motion, we observed another two classes of motion. These extra classes were identified with intermediate states on a three-step, linear-binding pathway. Biological implications of the intermediate states are discussed.
Collapse
|
94
|
Lorch Y, Maier-Davis B, Kornberg RD. Chromatin remodeling by nucleosome disassembly in vitro. Proc Natl Acad Sci U S A 2006; 103:3090-3. [PMID: 16492771 PMCID: PMC1413907 DOI: 10.1073/pnas.0511050103] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RSC chromatin-remodeling complex completely disassembles a nucleosome in the presence of the histone chaperone Nap1 and ATP. Disassembly occurs in a stepwise manner, with the removal of H2A/H2B dimers, followed by the rest of the histones and the release of naked DNA. RSC and related chromatin-remodeling complexes may be responsible for the removal of promoter nucleosomes during transcriptional activation in vivo.
Collapse
Affiliation(s)
- Yahli Lorch
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126
| | - Barbara Maier-Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126
| | - Roger D. Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
95
|
Hill DA, Peterson CL, Imbalzano AN. Effects of HMGN1 on chromatin structure and SWI/SNF-mediated chromatin remodeling. J Biol Chem 2005; 280:41777-83. [PMID: 16253989 DOI: 10.1074/jbc.m509637200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dynamic modulation of chromatin structure is determined by many factors, including enzymes that modify the core histone proteins, enzymes that remodel the structure of chromatin, and factors that bind to genomic DNA to affect its structure. Previous work indicates that the nucleosome binding family of high mobility group proteins (HMGN) facilitates the formation of a chromatin structure that is more conducive for transcription. SWI/SNF complexes are ATP-dependent chromatin remodeling enzymes that alter nucleosome structure to facilitate the binding of various regulatory proteins to chromatin. Here we examine the structural consequences of reconstituting chromatin with HMGN1 and the resulting effects on hSWI/SNF function. We demonstrate that HMGN1 decreases the sedimentation velocity of nucleosomal arrays in low ionic strength buffers but has little effect on the structure of more highly folded arrays. We further demonstrate that HMGN1 does not affect SWI/SNF-dependent chromatin remodeling on either mononucleosomes or nucleosomal arrays, indicating that SWI/SNF functions independently of HMGN1.
Collapse
Affiliation(s)
- David A Hill
- Department of Cell Biology at the University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
96
|
Verdone L, Caserta M, Di Mauro E. Role of histone acetylation in the control of gene expression. Biochem Cell Biol 2005; 83:344-53. [PMID: 15959560 DOI: 10.1139/o05-041] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histone proteins play structural and functional roles in all nuclear processes. They undergo different types of covalent modifications, defined in their ensemble as epigenetic because changes in DNA sequences are not involved. Histone acetylation emerges as a central switch that allows interconversion between permissive and repressive chromatin domains in terms of transcriptional competence. The mechanisms underlying the histone acetylation-dependent control of gene expression include a direct effect on the stability of nucleosomal arrays and the creation of docking sites for the binding of regulatory proteins. Histone acetyltransferases and deacetylases are, respectively, the enzymes devoted to the addition and removal of acetyl groups from lysine residues on the histone N-terminal tails. The enzymes exert fundamental roles in developmental processes and their deregulation has been linked to the progression of diverse human disorders, including cancer.
Collapse
Affiliation(s)
- Loredana Verdone
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy
| | | | | |
Collapse
|
97
|
Sekkali B, Szabat E, Ktistaki E, Tolaini M, Roderick K, Harker N, Patel A, Williams K, Norton T, Kioussis D. Human high mobility group box transcription factor 1 affects thymocyte development and transgene variegation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:5203-12. [PMID: 16210625 DOI: 10.4049/jimmunol.175.8.5203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been shown previously that a human CD2 (hCD2) disabled locus control region (LCR) transgene is unable to establish an open chromatin configuration in all the T cells, and this leads to position effect variegation of the transgene. In this study we show that thymus-specific overexpression of human high mobility group box transcription factor 1 (HBP1), a transcription factor that binds a specific sequence within the hCD2 LCR, affects thymus cellularity as well as the number of CD8(+) thymocytes in two independent transgenic mouse lines and increases the proportion of T cells that fully activate the transgenic locus in hCD2 variegating mice in a sequence-specific dependent manner. This finding suggests that overexpression of HBP1 can affect lineage commitment and can relieve the suppressive influence of heterochromatin, allowing thymocytes to express the variegating target locus more efficiently. These effects could be the result of direct HBP1 action on LCR activity. Alternatively, the extra HBP1 molecules may sequester repressive elements away from the LCR, thus allowing transcription permissive states to form on the transgene locus.
Collapse
Affiliation(s)
- Belaïd Sekkali
- National Institute for Medical Research, Division of Molecular Immunology, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Schmeck B, Beermann W, van Laak V, Zahlten J, Opitz B, Witzenrath M, Hocke AC, Chakraborty T, Kracht M, Rosseau S, Suttorp N, Hippenstiel S. Intracellular bacteria differentially regulated endothelial cytokine release by MAPK-dependent histone modification. THE JOURNAL OF IMMUNOLOGY 2005; 175:2843-50. [PMID: 16116170 DOI: 10.4049/jimmunol.175.5.2843] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epigenetic histone modifications contribute to the regulation of eukaryotic gene transcription. The role of epigenetic regulation in immunity to intracellular pathogens is poorly understood. We tested the hypothesis that epigenetic histone modifications influence cytokine expression by intracellular bacteria. Intracellular Listeria monocytogenes, but not noninvasive Listeria innocua, induced release of distinct CC and CXC chemokines, as well as Th1 and Th2 cytokines and growth factors by endothelial cells. Cytokine expression was in part dependent on p38 MAPK and MEK1. We analyzed global histone modification and modifications in detail at the gene promoter of IL-8, which depended on both kinase pathways, and of IFN-gamma, which was not blocked by kinase inhibition. Intracellular Listeria induced time-dependent acetylation (lysine 8) of histone H4 and phosphorylation/acetylation (serine 10/lysine 14) of histone H3 globally and at the il8 promoter in HUVEC, as well as recruitment of the histone acetylase CREB-binding protein. Inhibitors of p38 MAPK and MEK1 reduced lysine 8 acetylation of histone H4 and serine 10/lysine 14 phosphorylation/acetylation of histone H3 in Listeria-infected endothelial cells and disappearance of histone deacetylase 1 at the il8 promoter in HUVEC. In contrast, IFN-gamma gene transcription was activated by Listeria monocytogenes independent of p38 MAPK and MEK1, and histone phosphorylation/acetylation remained unchanged in infected cells at the IFN-gamma promoter. Specific inhibition of histone deacetylases by trichostatin A increased Listeria-induced expression of IL-8, but not of IFN-gamma, underlining the specific physiological impact of histone acetylation. In conclusion, MAPK-dependent epigenetic modifications differentially contributed to L. monocytogenes-induced cytokine expression by human endothelial cells.
Collapse
Affiliation(s)
- Bernd Schmeck
- Department of Internal Medicine and Infectious Diseases, Charité-University Medicine Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Park SW, Li G, Lin YP, Barrero MJ, Ge K, Roeder RG, Wei LN. Thyroid hormone-induced juxtaposition of regulatory elements/factors and chromatin remodeling of Crabp1 dependent on MED1/TRAP220. Mol Cell 2005; 19:643-53. [PMID: 16137621 DOI: 10.1016/j.molcel.2005.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 07/20/2005] [Accepted: 08/10/2005] [Indexed: 11/24/2022]
Abstract
The cellular retinoic acid binding protein I gene is induced by thyroid hormone (T3) through a T3 response element (TRE) approximately 1 kb upstream of the basal promoter. The upstream region is organized into a positioned nucleosomal array with the N1 nucleosome spanning the GC box region. T3 induces apparent interactions between chromatin segments containing the TRE and the GC box regions and the sliding of upstream nucleosomes toward N1 with concomitant N1 remodeling. Concurrently, the chromatin-remodeling factor BRM is replaced by BRG1 and histones are hyperacetylated. All these events are abolished in Med1/Trap220 null cells, indicating a key role for TRAP/Mediator in these processes. A MED1/TRAP220-containing Mediator complex constitutively occupies the GC box region but not the TRE, serving as a nexus for distal and proximal factors. This indicates new TRAP/Mediator functions in facilitating ultimate recruitment and function of RNA polymerase II and the general transcription machinery.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Mellor J. The dynamics of chromatin remodeling at promoters. Mol Cell 2005; 19:147-57. [PMID: 16039585 DOI: 10.1016/j.molcel.2005.06.023] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 04/01/2005] [Accepted: 06/13/2005] [Indexed: 01/08/2023]
Abstract
The nucleosome, the structural unit of chromatin, is known to play a central role in regulating gene transcription from promoters. The last seven years have spawned a vast amount of data on the enzymes that remodel and modify nucleosomes and the rules governing how transcription factors interact with the epigenetic code on histones. Yet despite this effort, there has yet to emerge a unifying mechanism by which nucleosomes are remodeled during gene regulation. Recent advances have allowed nucleosome dynamics on promoters to be studied in real time, dramatically changing how we think about gene regulation on chromatin templates.
Collapse
Affiliation(s)
- Jane Mellor
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, UK.
| |
Collapse
|