51
|
Bandyopadhyay S, Tfelt-Hansen J, Chattopadhyay N. Diverse roles of extracellular calcium-sensing receptor in the central nervous system. J Neurosci Res 2010; 88:2073-82. [PMID: 20336672 DOI: 10.1002/jnr.22391] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The G-protein-coupled calcium-sensing receptor (CaSR), upon activation by Ca(2+) or other physiologically relevant polycationic molecules, performs diverse functions in the brain. The CaSR is widely expressed in the central nervous system (CNS) and is characterized by a robust increase in its expression during postnatal brain development over adult levels throughout the CNS. Developmental increases in CaSR levels in brain correlate with myelinogenesis. Indeed, neural stem cells differentiating to the oligodendrocyte lineage exhibit the highest CaSR expression compared with those differentiating to astrocytic or neuronal lineages. In adult CNS, CaSR has broad relevance in maintaining local ionic homeostasis. CaSR shares an evolutionary relationship with the metabotropic glutamate receptor and forms heteromeric complexes with the type B-aminobutyric acid receptor subunits that affects its cell surface expression, activation, signaling, and functions. In normal physiology as well as in pathologic conditions, CaSR is activated by signals arising from mineral ions, amino acids, polyamines, glutathione, and amyloid-beta in conjunction with Ca(2+) and other divalent cationic ligands. CaSR activation regulates membrane excitability of neurons and glia and affects myelination, olfactory and gustatory signal integration, axonal and dendritic growth, and gonadotrophin-releasing hormonal-neuronal migration. Insofar as the CaSR is a clinically important therapeutic target for parathyroid disorders, development of its agonists or antagonists as therapeutics for CNS disorder could be a major breakthrough.
Collapse
Affiliation(s)
- Sanghamitra Bandyopadhyay
- Developmental Toxicology, Indian Institute of Toxicology Research (Council of Scientific and Industrial Rsearch; CSIR), Lucknow, India
| | | | | |
Collapse
|
52
|
Kiguchi N, Kobayashi Y, Maeda T, Saika F, Kishioka S. CC-chemokine MIP-1α in the spinal cord contributes to nerve injury-induced neuropathic pain. Neurosci Lett 2010; 484:17-21. [PMID: 20692319 DOI: 10.1016/j.neulet.2010.07.085] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 07/30/2010] [Accepted: 07/30/2010] [Indexed: 12/19/2022]
Abstract
We investigated the involvement of spinal macrophage inflammatory protein-1α (MIP-1α), an inflammatory chemokine, in partial sciatic nerve ligation (PSL)-induced neuropathic pain in mice. PSL increased MIP-1α mRNA levels as well as levels of the MIP-1α receptor, CCR1, but not CCR5 in the spinal dorsal horn. PSL-induced tactile allodynia and thermal hyperalgesia were prevented by intrathecal (i.t.) injection of a neutralizing antibody of MIP-1α (2ng). Recombinant MIP-1α (10pmol, i.t.) elicited long-lasting tactile allodynia and thermal hyperalgesia in naïve mice. These results suggest that peripheral nerve injury elicits the up-regulation of spinal MIP-1α and CCR1 to participate in neuropathic pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | | | | | | | | |
Collapse
|
53
|
Fitting S, Zou S, Chen W, Vo P, Hauser KF, Knapp PE. Regional heterogeneity and diversity in cytokine and chemokine production by astroglia: differential responses to HIV-1 Tat, gp120, and morphine revealed by multiplex analysis. J Proteome Res 2010; 9:1795-804. [PMID: 20121167 DOI: 10.1021/pr900926n] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HIV-infected individuals who abuse opiates show a faster progression to AIDS and higher incidence of encephalitis. The HIV-1 proteins Tat and gp120 have been shown to cause neurodegenerative changes either in vitro or when injected or expressed in the CNS, and we have shown that opiate drugs can exacerbate neurotoxic effects in the striatum through direct actions on pharmacologically discrete subpopulations of mu-opioid receptor-expressing astroglia. Opiate coexposure also significantly enhances release of specific inflammatory mediators by astroglia from the striatum, and we theorize that astroglial reactivity may underlie aspects of HIV neuropathology. To determine whether astroglia from different regions of the central nervous system have distinct, intrinsic responses to HIV-1 proteins and opiates, we used multiplex suspension array analyses to define and compare the inflammatory signature of cytokines released by murine astrocytes grown from cerebral cortex, cerebellum, and spinal cord. Results demonstrate significant regional differences in baseline secretion patterns, and in responses to viral proteins. Of importance for the disease process, astrocytes from all regions have very limited inflammatory response to gp120 protein, as compared to Tat protein, either in the presence or absence of morphine. Overall, the chemokine/cytokine release is higher from spinal cord and cortical astroglia than from cerebellar astroglia, paralleling the relatively low incidence of HIV-related neuropathology in the cerebellum.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Anatomy and Neurobiology, Department of Pharmacology and Toxicology, and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia 23298-0709, USA
| | | | | | | | | | | |
Collapse
|
54
|
Hosking MP, Tirotta E, Ransohoff RM, Lane TE. CXCR2 signaling protects oligodendrocytes and restricts demyelination in a mouse model of viral-induced demyelination. PLoS One 2010; 5:e11340. [PMID: 20596532 PMCID: PMC2893165 DOI: 10.1371/journal.pone.0011340] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/04/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The functional role of ELR-positive CXC chemokines during viral-induced demyelination was assessed. Inoculation of the neuroattenuated JHM strain of mouse hepatitis virus (JHMV) into the CNS of susceptible mice results in an acute encephalomyelitis that evolves into a chronic demyelinating disease, modeling white matter pathology observed in the human demyelinating disease Multiple Sclerosis. METHODOLOGY/PRINCIPAL FINDINGS JHMV infection induced the rapid and sustained expression of transcripts specific for the ELR+ chemokine ligands CXCL1 and CXCL2, as well as their binding receptor CXCR2, which was enriched within the spinal cord during chronic infection. Inhibiting CXCR2 signaling with neutralizing antiserum significantly (p<0.03) delayed clinical recovery. Moreover, CXCR2 neutralization was associated with an increase in the severity of demyelination that was independent of viral recrudescence or modulation of neuroinflammation. Rather, blocking CXCR2 was associated with increased numbers of apoptotic cells primarily within white matter tracts, suggesting that oligodendrocytes were affected. JHMV infection of enriched oligodendrocyte progenitor cell (OPC) cultures revealed that apoptosis was associated with elevated expression of cleaved caspase 3 and muted Bcl-2 expression. Inclusion of CXCL1 within JHMV infected cultures restricted caspase 3 cleavage and increased Bcl-2 expression that was associated with a significant (p<0.001) decrease in apoptosis. CXCR2 deficient oligodendrocytes were refractory to CXCL1 mediated protection from JHMV-induced apoptosis, readily activating caspase 3 and down regulating Bcl-2. CONCLUSION/SIGNIFICANCE These findings highlight a previously unappreciated role for CXCR2 signaling in protecting oligodendrocyte lineage cells from apoptosis during inflammatory demyelination initiated by viral infection of the CNS.
Collapse
Affiliation(s)
- Martin P Hosking
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | | | | | | |
Collapse
|
55
|
van Neerven S, Regen T, Wolf D, Nemes A, Johann S, Beyer C, Hanisch UK, Mey J. Inflammatory chemokine release of astrocytes in vitro is reduced by all-trans retinoic acid. J Neurochem 2010; 114:1511-26. [PMID: 20557428 DOI: 10.1111/j.1471-4159.2010.06867.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The production of chemokines by astrocytes constitutes an important component of neuroinflammatory processes in the brain. As the transcriptional activator retinoic acid (RA), used for chemotherapy and dermatological applications, exerts anti-inflammatory effects on monocytes and lymphocytes, we have tested whether the physiologically occurring isomer, all-trans RA, affects chemokine expression by astrocytes. Under control conditions, primary cultures of murine cortical astrocytes expressed no or very low levels of CCL and CXCL chemokines. After treatment with bacterial lipopolysaccharides to simulate inflammation in vitro, we detected a strong increase in the release of CCL2 (to > 4 ng/mL in cell culture supernatant), CCL3 (> 20 ng/mL), CCL5 (> 25 ng/mL), CXCL1 (> 30 ng/mL) and CXCL2 (> 20 ng/mL). Although simultaneous exposure to RA did not significantly affect this response, 12 h pre-treatment with 0.1 microM all-trans RA strongly suppressed mRNA expression and protein release of all chemokines. The anti-inflammatory activity of RA engaged RA and retinoid X receptors and correlated with a decreased expression of the lipopolysaccharides co-receptor CD14. A minor reduction of nuclear NF-kappaB was observed but not significant, activation of Jun amino-terminal kinase, p38 and signal transducer and activator of transcription 3 were not altered by RA. The results suggest that retinoids should be further investigated as candidates for the treatment of neuroinflammation.
Collapse
|
56
|
Gunsolly C, Nicholson JD, Listwak SJ, Ledee D, Zelenka P, Verthelyi D, Chapoval S, Keegan A, Tonelli LH. Expression and regulation in the brain of the chemokine CCL27 gene locus. J Neuroimmunol 2010; 225:82-90. [PMID: 20605223 DOI: 10.1016/j.jneuroim.2010.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/31/2010] [Accepted: 04/28/2010] [Indexed: 11/16/2022]
Abstract
The chemokine CCL27 has chemoattractant properties for memory T cells and has been implicated in skin allergic reactions. The present study reports the expression in the brain of two CCL27 splice variants localized in the cerebral cortex and limbic regions. CCL27-like immunoreactivity was identified mainly in neurons. Variant 1 was found elevated in the olfactory bulbs during allergic inflammation induced by intranasal challenge with allergen. This was accompanied by the presence of T cells in the olfactory bulbs. Intranasal administration of neutralizing antibodies against CCL27 reduced the presence of T cells in the olfactory bulbs suggesting a function in T cell activity in the brain.
Collapse
Affiliation(s)
- Chad Gunsolly
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201-1549, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Zhang D, Hu X, Qian L, O'Callaghan JP, Hong JS. Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 2010; 41:232-41. [PMID: 20148316 PMCID: PMC3629545 DOI: 10.1007/s12035-010-8098-4] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/07/2010] [Indexed: 12/18/2022]
Abstract
Astrogliosis, a cellular reaction with specific structural and functional characteristics, represents a remarkably homotypic response of astrocytes to all kinds of central nervous system (CNS) pathologies. Astrocytes play diverse functions in the brain, both harmful and beneficial. Mounting evidence indicates that astrogliosis is an underlying component of a diverse range of diseases and associated neuropathologies. The mechanisms that lead to astrogliosis are not fully understood, nevertheless, damaged neurons have long been reported to induce astrogliosis and astrogliosis has been used as an index for underlying neuronal damage. As the predominant source of proinflammatory factors in the CNS, microglia are readily activated under certain pathological conditions. An increasing body of evidence suggests that release of cytokines and other soluble products by activated microglia can significantly influence the subsequent development of astrogliosis and scar formation in CNS. It is well known that damaged neurons activate microglia very quickly, therefore, it is possible that activated microglia contribute factors/mediators through which damaged neuron induce astrogliosis. The hypothesis that activated microglia initiate and maintain astrogliosis suggests that suppression of microglial overactivation might effectively attenuate reactive astrogliosis. Development of targeted anti-microglial activation therapies might slow or halt the progression of astrogliosis and, therefore, help achieve a more beneficial environment in various CNS pathologies.
Collapse
Affiliation(s)
- Dan Zhang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA,
| | | | | | | | | |
Collapse
|
58
|
Galzi JL, Hachet-Haas M, Bonnet D, Daubeuf F, Lecat S, Hibert M, Haiech J, Frossard N. Neutralizing endogenous chemokines with small molecules. Principles and potential therapeutic applications. Pharmacol Ther 2010; 126:39-55. [PMID: 20117133 PMCID: PMC7112609 DOI: 10.1016/j.pharmthera.2009.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 02/08/2023]
Abstract
Regulation of cellular responses to external stimuli such as hormones, neurotransmitters, or cytokines is achieved through the control of all steps of the complex cascade starting with synthesis, going through maturation steps, release, distribution, degradation and/or uptake of the signalling molecule interacting with the target protein. One possible way of regulation, referred to as scavenging or neutralization of the ligand, has been increasingly studied, especially for small protein ligands. It shows innovative potential in chemical biology approaches as well as in disease treatment. Neutralization of protein ligands, as for example cytokines or chemokines can lead to the validation of signalling pathways under physiological or pathophysiological conditions, and in certain cases, to the development of therapeutic molecules now used in autoimmune diseases, chronic inflammation and cancer treatment. This review explores the field of ligand neutralization and tries to determine to what extent small chemical molecules could substitute for neutralizing antibodies in therapeutic approaches.
Collapse
Affiliation(s)
- Jean-Luc Galzi
- IREBS, FRE3211, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67412 Illkirch, France.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
McKimmie CS, Graham GJ. Astrocytes modulate the chemokine network in a pathogen-specific manner. Biochem Biophys Res Commun 2010; 394:1006-11. [PMID: 20331977 DOI: 10.1016/j.bbrc.2010.03.111] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/17/2010] [Indexed: 12/25/2022]
Abstract
Immune responses in the central nervous system (CNS) are carefully regulated. Despite the absence of most immune processes and a substantive blood brain barrier, potent immune responses form during infection and autoimmunity. Astrocytes are innate immune sentinels that ensheath parenchymal blood vessels and sit at the gateway to the CNS parenchyma. Viral and bacterial infections trigger the influx of distinct leukocyte subsets. We show that astrocytes alone are sufficient for distinguishing between these two main types of infection and triggers release of relevant chemokines that relate to the microbe recognised. Bacterial-associated molecules induced the preferential expression of CCL2, CXCL1, CCL20 and CCL3 whilst a virus-associated dsRNA analogue preferentially up-regulated CXCL10 and CCL5. Thus, astrocytes can respond to infection in a distinct and appropriate manner suggesting they have the capacity to attract appropriate sets of leukocytes into the brain parenchyma. Astrocytes themselves are unable to respond to these chemokines since they were devoid of most chemokine receptors but expressed CXCR4, CXCR7 and CXCR6 at rest. Stimulation with TGF-beta specifically up-regulated CXCR6 expression and may explain how TGF-beta/CXCL16-expressing gliomas are so effective at attracting astroglial cells.
Collapse
Affiliation(s)
- Clive S McKimmie
- Division of Immunology, Infection and Inflammation, University of Glasgow, UK.
| | | |
Collapse
|
60
|
Foresti ML, Arisi GM, Katki K, Montañez A, Sanchez RM, Shapiro LA. Chemokine CCL2 and its receptor CCR2 are increased in the hippocampus following pilocarpine-induced status epilepticus. J Neuroinflammation 2009; 6:40. [PMID: 20034406 PMCID: PMC2804573 DOI: 10.1186/1742-2094-6-40] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/24/2009] [Indexed: 01/06/2023] Open
Abstract
Background Neuroinflammation occurs after seizures and is implicated in epileptogenesis. CCR2 is a chemokine receptor for CCL2 and their interaction mediates monocyte infiltration in the neuroinflammatory cascade triggered in different brain pathologies. In this work CCR2 and CCL2 expression were examined following status epilepticus (SE) induced by pilocarpine injection. Methods SE was induced by pilocarpine injection. Control rats were injected with saline instead of pilocarpine. Five days after SE, CCR2 staining in neurons and glial cells was examined using imunohistochemical analyses. The number of CCR2 positive cells was determined using stereology probes in the hippocampus. CCL2 expression in the hippocampus was examined by molecular assay. Results Increased CCR2 was observed in the hippocampus after SE. Seizures also resulted in alterations to the cell types expressing CCR2. Increased numbers of neurons that expressed CCR2 was observed following SE. Microglial cells were more closely apposed to the CCR2-labeled cells in SE rats. In addition, rats that experienced SE exhibited CCR2-labeling in populations of hypertrophied astrocytes, especially in CA1 and dentate gyrus. These CCR2+ astroctytes were not observed in control rats. Examination of CCL2 expression showed that it was elevated in the hippocampus following SE. Conclusion The data show that CCR2 and CCL2 are up-regulated in the hippocampus after pilocarpine-induced SE. Seizures also result in changes to CCR2 receptor expression in neurons and astrocytes. These changes might be involved in detrimental neuroplasticity and neuroinflammatory changes that occur following seizures.
Collapse
Affiliation(s)
- Maira L Foresti
- Department of Neurosurgery, Scott and White Hospital, Temple, TX 76503, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Endale M, Kim SD, Lee WM, Kim S, Suk K, Cho JY, Park HJ, Wagley Y, Kim S, Oh JW, Rhee MH. Ischemia induces regulator of G protein signaling 2 (RGS2) protein upregulation and enhances apoptosis in astrocytes. Am J Physiol Cell Physiol 2009; 298:C611-23. [PMID: 20032508 DOI: 10.1152/ajpcell.00517.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulator of G protein signaling (RGS) family members, such as RGS2, interact with Galpha subunits of heterotrimeric G proteins, accelerating the rate of GTP hydrolysis and attenuating the intracellular signaling triggered by the G protein-coupled receptor-ligand interaction. They are also reported to regulate G protein-effector interactions and form multiprotein signaling complexes. Ischemic stress-induced changes in RGS2 expression have been described in astrocytes, and these changes are associated with intracellular signaling cascades, suggesting that RGS2 upregulation may be an important mechanism by which astrocytes may regulate RGS2 function in response to physiological stress. However, information on the functional roles of stress-induced modulation of RGS2 protein expression in astrocyte function is limited. We report the role of ischemic stress in RGS2 protein expression in rat C6 astrocytoma cells and primary mouse astrocytes. A marked increase in RGS2 occurred after ischemic stress induced by chemicals (sodium azide and 2-deoxyglucose) or oxygen-glucose deprivation (OGD, real ischemia). RGS2 mRNA expression was markedly enhanced by 1 h of exposure to chemical ischemia or 6 h of OGD followed by 2 or 6 h of recovery, respectively. This enhanced expression in primary astrocytes and C6 cells was restored to baseline levels after 12 h of recovery from chemically induced ischemic stress or 4-6 h of recovery from OGD. RGS2 protein was also significantly expressed at 12-24 h of recovery from ischemic insult. Ischemia-induced RGS2 upregulation was associated with enhanced apoptosis. It significantly increased annexin V-positive cells, cleaved caspase-3, and enhanced DNA ladder formation and cell cycle arrest. However, a small interfering RNA (siRNA)-mediated RGS2 knockdown reversed the apoptotic cell death associated with ischemia-induced RGS2 upregulation. Upregulated RGS2 was significantly inhibited by SB-203580, a p38 MAPK inhibitor. Rottlerin, a potent inhibitor of PKCdelta, completely abrogated the increased RGS2 expression. We also examine whether ischemia-induced RGS2-mediated apoptosis is affected by siRNA-targeted endogenous PKCdelta downregulation or its phosphorylation. Although RGS2 upregulation was not affected, siRNA transfection significantly suppressed endogenous PKCdelta mRNA and protein expressions. Ischemia-induced PKCdelta phosphorylation and caspase-3 cleavage were dose dependently inhibited by PKCdelta knockdown, and this endogenous PKCdelta suppression reversed ischemia-induced annexin V-positive cells. This study suggests that ischemic stress increases RGS2 expression and that this condition contributes to enhanced apoptosis in C6 cells and primary astrocytes. The signaling it follows may involve PKCdelta and p38 MAPK pathways.
Collapse
Affiliation(s)
- Mehari Endale
- Laboratory of Physiology and Signaling, College of Veterinary Medicine, Kyungpook National Univ., Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Lee YK, Kwak DH, Oh KW, Nam SY, Lee BJ, Yun YW, Kim YB, Han SB, Hong JT. CCR5 deficiency induces astrocyte activation, Abeta deposit and impaired memory function. Neurobiol Learn Mem 2009; 92:356-363. [PMID: 19394434 DOI: 10.1016/j.nlm.2009.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 04/13/2009] [Accepted: 04/16/2009] [Indexed: 11/24/2022]
Abstract
Activation of astrocytes has been known to be associated with amyloid-beta (Abeta) deposit and production of pro-inflammatory cytokines and chemokines that lead to neuronal cell death in the pathogenesis of Alzheimer disease (AD). In the present study, we investigated whether the absence of CC chemokine receptor 5 (CCR5) results in activation of astrocytes, Abeta deposit and memory dysfunction in CCR5 knock (CCR5(-/-)) out mice. We found that long-term and spatial memory functions were impaired in CCR5(-/-) mice. There was a significant increased expression of glial fibrillary acidic protein (GFAP) in the brain of CCR5(-/-) mice as compared with that of wild type of CCR5 (CCR5(+/+)) mice. The expression of CCR5 was observed in CCR5(+/+) astrocytes, but was reduced in the CCR5(-/-) astrocytes even though the expression of GFAP was much higher. Paralleling with the activation of astorcytes, the Abeta(1-42) level was higher in the brains of CCR5(-/-) mice than that of CCR5(+/+) mice. Expression of beta-secretase (BACE1) and its product C99 was significantly elevated in CCR5(-/-) mice. The activation of CC chemokine receptor 2 (CCR2) causes activation of astrocytes that leads to Abeta deposit and memory dysfunction in CCR5(-/-) mice. In CCR5(-/-) mice, CCR2 expression was high and co-localized with GFAP. These findings suggest that the absence of CCR5 increases expression of CCR2, which leads to the activation of astrocytes causing Abeta deposit, and thereby impairs memory function. These results suggest that CCR5 may be a critical suppressor of the development and progression of AD pathology.
Collapse
Affiliation(s)
- Yong Kyoung Lee
- College of Pharmacy and MRC, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Xia Y, Zhai Q. IL-1β enhances the antibacterial activity of astrocytes by activation of NF-κB. Glia 2009; 58:244-52. [DOI: 10.1002/glia.20921] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
64
|
Feng LY, Ou ZL, Wu FY, Shen ZZ, Shao ZM. Involvement of a novel chemokine decoy receptor CCX-CKR in breast cancer growth, metastasis and patient survival. Clin Cancer Res 2009; 15:2962-70. [PMID: 19383822 DOI: 10.1158/1078-0432.ccr-08-2495] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The biological axes of chemokines and chemokine receptors, such as CXCR4/CXCL12, CCR7/CCL19 (CCL21), CCR9/CCL25, and CXCR5/CXCL13, are involved in cancer growth and metastasis. This study is aimed at the potential regulatory role of atypical chemokine binder CCX-CKR, as a scavenger of CCL19, CCL21, CCL25, and CXCL13, in human breast cancer. EXPERIMENTAL DESIGN The role of CCX-CKR in human breast cancer was investigated in cell lines, animal models, and clinical samples. RESULTS Overexpression of CCX-CKR inhibited cancer cell proliferation and invasion in vitro and attenuated xenograft tumor growth and lung metastasis in vivo. CCX-CKR can be regulated by cytokines such as interleukin-1beta, tumor necrosis factor-alpha, and IFN-gamma. Lack or low expression of CCX-CKR correlated with a poor survival rate in the breast cancer patients. A significant correlation between CCX-CKR and lymph node metastasis was observed in human breast cancer tissues. CCX-CKR status was an independent prognostic factor for disease-free survival in breast cancer patients. CONCLUSION We showed for the first time that CCX-CKR is a negative regulator of growth and metastasis in breast cancer mainly by sequestration of homeostatic chemokines and subsequent inhibition of intratumoral neovascularity. This finding may lead to a new therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Lan-Yun Feng
- Department of Oncology, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
65
|
Alexaki A, Liu Y, Wigdahl B. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res 2008; 6:388-400. [PMID: 18855649 DOI: 10.2174/157016208785861195] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major obstacle in human immunodeficiency virus type 1 (HIV-1) eradication is the ability of the virus to remain latent in a subpopulation of the cells it infects. Latently infected cells can escape the viral immune response and persist for long periods of time, despite the presence of successful highly active antiretroviral therapy (HAART). Given the appropriate stimulus, latently infected cells can reactivate and start producing infectious virions. The susceptibility of these cell populations to HIV-1, their life span, their proliferative capacity, and their ability to periodically produce infectious virus subsequent to alterations in cellular physiology and/or immunologic controls are critical issues which determine the contribution of these cells to viral persistence. Memory CD4+ T cells due to the long life span, which may be several years, and their ability to reactivate upon encounter with their cognate antigen or other stimulation, are considered a critical reservoir for maintenance of latent HIV-1 proviral DNA. Cells of the monocyte-macrophage lineage, which originate in the bone marrow (BM), are of particular importance in HIV-1 persistence due to their ability to cross the blood-brain barrier (BBB) and spread HIV-1 infection in the immunoprivileged central nervous system (CNS). Hematopoietic progenitor cells (HPCs) are also a potential HIV-1 reservoir, as several studies have shown that CD34+ HPCs carrying proviral DNA can be found in vivo in a subpopulation of HIV-1-infected patients. The ability of HPCs to proliferate and potentially generate clonal populations of infected cells of the monocyte-macrophage lineage may be crucial in HIV-1 dissemination. The contribution of these and other cell populations in HIV-1 persistence, as well as the possible strategies to eliminate latently infected cells are critically examined in this review.
Collapse
Affiliation(s)
- Aikaterini Alexaki
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
66
|
El-Hage N, Bruce-Keller AJ, Knapp PE, Hauser KF. CCL5/RANTES gene deletion attenuates opioid-induced increases in glial CCL2/MCP-1 immunoreactivity and activation in HIV-1 Tat-exposed mice. J Neuroimmune Pharmacol 2008; 3:275-85. [PMID: 18815890 DOI: 10.1007/s11481-008-9127-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 09/02/2008] [Indexed: 12/18/2022]
Abstract
To assess the role of CC-chemokine ligand 5 (CCL5)/RANTES in opiate drug abuse and human immunodeficiency virus type 1 (HIV-1) comorbidity, the effects of systemic morphine and intrastriatal HIV-1 Tat on macrophage/microglial and astroglial activation were assessed in wild-type and CCL5 knockout mice. Mice were injected intrastriatally with vehicle or Tat and assessed after 7 days. Morphine was administered to some Tat-injected mice via time-release implant (5 mg/day, s.c. for 5 days) starting at 2 days post injection. Glial activation was significantly reduced in CCL5(-/-) compared to wild-type mice at 7 days following combined Tat and morphine exposure. Moreover, the percentage of 3-nitrotyrosine immunopositive macrophages/microglia was markedly reduced in CCL5(-/-) mice injected with Tat +/- morphine compared to wild-type counterparts, suggesting that CCL5 contributes to nitrosative stress in HIV-1 encephalitis. In CCL5(-/-) mice, the reductions in Tat +/- morphine-induced gliosis coincided with significant declines in the proportion of CCL2/MCP-1-immunoreactive astrocytes and macrophages/microglia compared to wild-type counterparts. In knockout mice, neither Tat alone nor in combination with morphine increased the proportion of CCL2-immunoreactive astrocytes above percentages seen in vehicle-injected controls. Macrophages/microglia differed showing modest, albeit significant, increases in the proportion of CCL2-positive cells with combined Tat and morphine exposure, suggesting that CCL5 preferentially affects CCL2 expression by astroglia. Thus, CCL5 mediates glial activation caused by Tat and morphine, thereby aggravating HIV-1 neuropathogenesis in opiate abusers and non-abusers. CCL5 is implicated as mediating the cytokine-driven amplification of CCL2 production by astrocytes and resultant macrophage/microglial recruitment and activation.
Collapse
Affiliation(s)
- Nazira El-Hage
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, 1217 East Marshall Street, Richmond, VA 23298-0613, USA
| | | | | | | |
Collapse
|
67
|
Björklund O, Shang M, Tonazzini I, Daré E, Fredholm BB. Adenosine A1 and A3 receptors protect astrocytes from hypoxic damage. Eur J Pharmacol 2008; 596:6-13. [PMID: 18727925 DOI: 10.1016/j.ejphar.2008.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 12/15/2022]
Abstract
Brain levels of adenosine are elevated during hypoxia. Through effects on adenosine receptors (A(1), A(2A), A(2B) and A(3)) on astrocytes, adenosine can influence functions such as glutamate uptake, reactive gliosis, swelling, as well as release of neurotrophic and neurotoxic factors having an impact on the outcome of metabolic stress. We have studied the roles of these receptors in astrocytes by evaluating their susceptibility to damage induced by oxygen deprivation or exposure to the hypoxia mimic cobalt chloride (CoCl(2)). Hypoxia caused ATP breakdown and purine release, whereas CoCl(2) (0.8 mM) mainly reduced ATP by causing cell death in human D384 astrocytoma cells. Further experiments were conducted in primary astrocytes prepared from specific adenosine receptor knock-out (KO) and wild type (WT) mice. In WT cells purine release following CoCl(2) exposure was mainly due to nucleotide release, whereas hypoxia-induced intracellular ATP breakdown followed by nucleoside efflux. N-ethylcarboxamidoadenosine (NECA), an unselective adenosine receptor agonist, protected from cell death following hypoxia. Cytotoxicity was more pronounced in A(1)R KO astrocytes and tended to be higher in WT cells in the presence of the A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Genetic deletion of A(2A) receptor resulted in less prominent effects. A(3)R KO glial cells were more affected by hypoxia than WT cells. Accordingly, the A(3) receptor agonist 2-chloro-N(6)-(3-iodobenzyl)-N-methyl-5'-carbamoyladenosine (CL-IB-MECA) reduced ATP depletion caused by hypoxic conditions. It also reduced apoptosis in human astroglioma D384 cells after oxygen deprivation. In conclusion, the data point to a cytoprotective role of adenosine mediated by both A(1) and A(3) receptors in primary mouse astrocytes.
Collapse
Affiliation(s)
- Olga Björklund
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
68
|
Miu J, Mitchell AJ, Müller M, Carter SL, Manders PM, McQuillan JA, Saunders BM, Ball HJ, Lu B, Campbell IL, Hunt NH. Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. THE JOURNAL OF IMMUNOLOGY 2008; 180:1217-30. [PMID: 18178862 DOI: 10.4049/jimmunol.180.2.1217] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. Using murine models of malaria, we found much greater up-regulation of a number of chemokine mRNAs, including those for CXCR3 and its ligands, in the brain during fatal murine CM (FMCM) than in a model of non-CM. Expression of CXCL9 and CXCL10 RNA was localized predominantly to the cerebral microvessels and in adjacent glial cells, while expression of CCL5 was restricted mainly to infiltrating lymphocytes. The majority of mice deficient in CXCR3 were found to be protected from FMCM, and this protection was associated with a reduction in the number of CD8+ T cells in brain vessels as well as reduced expression of perforin and FasL mRNA. Adoptive transfer of CD8+ cells from C57BL/6 mice with FMCM abrogated this protection in CXCR3-/- mice. Moreover, there were decreased mRNA levels for the proinflammatory cytokines IFN-gamma and lymphotoxin-alpha in the brains of mice protected from FMCM. These data suggest a role for CXCR3 in the pathogenesis of FMCM through the recruitment and activation of pathogenic CD8+ T cells.
Collapse
Affiliation(s)
- Jenny Miu
- Molecular Immunopathology Unit, Bosch Institute, School of Medical Sciences, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2008; 10:1361-8. [PMID: 17965656 DOI: 10.1038/nn1992] [Citation(s) in RCA: 1332] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nociceptive pain results from the detection of intense or noxious stimuli by specialized high-threshold sensory neurons (nociceptors), a transfer of action potentials to the spinal cord, and onward transmission of the warning signal to the brain. In contrast, clinical pain such as pain after nerve injury (neuropathic pain) is characterized by pain in the absence of a stimulus and reduced nociceptive thresholds so that normally innocuous stimuli produce pain. The development of neuropathic pain involves not only neuronal pathways, but also Schwann cells, satellite cells in the dorsal root ganglia, components of the peripheral immune system, spinal microglia and astrocytes. As we increasingly appreciate that neuropathic pain has many features of a neuroimmune disorder, immunosuppression and blockade of the reciprocal signaling pathways between neuronal and non-neuronal cells offer new opportunities for disease modification and more successful management of pain.
Collapse
Affiliation(s)
- Joachim Scholz
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
70
|
Machado RR, Soares DM, Soares DM, Proudfoot AE, Souza GEP. CCR1 and CCR5 chemokine receptors are involved in fever induced by LPS (E. coli) and RANTES in rats. Brain Res 2007; 1161:21-31. [PMID: 17604006 DOI: 10.1016/j.brainres.2007.05.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 01/22/2023]
Abstract
This study, besides examining the involvement of CCR1 and CCR5 receptors in the LPS-induced fever (lipopolysaccharide, Escherichia coli) in male Wistar rats, evaluated if RANTES (regulated on activation, normal T cells expressed and secreted) injected into the preoptic area of the anterior hypothalamus (AH/POA) would promote an integrated febrile response via these receptors. Moreover, the effects of selective and non-selective cyclooxygenase blockers on both fever and the level of prostaglandin (PG)E(2) in the cerebrospinal fluid (CSF) after injection of RANTES into the AH/POA were also investigated. Met-RANTES, CCR1 and CCR5 receptor antagonist, reduced LPS-evoked fever dose dependently. RANTES microinjected into the AH/POA increased the rectal temperature of rats dose dependently and caused a significant decrease in the tail skin temperature and an increase (at 2.5 and 5 h) of the levels of PGE(2) in the CSF. Met-RANTES prevented the fever induced by RANTES. Ibuprofen abolished the fever caused by RANTES between 60 min and 2.5 h, and it reduced the temperature until the end of observation period. Celecoxib blocked the RANTES-induced fever, while indomethacin reduced it in the last 60 min of the experimental period. At 2.5 and 5 h all antipyretics brought the CSF PGE(2) level near to the control. These results indicate that CCR1 and CCR5 receptors are involved in the fever induced by systemic LPS and intrahypothalamic RANTES. RANTES promotes an integrated febrile response accompanied by an increase of CSF PGE(2). The inhibitory effects of celecoxib and ibuprofen suggest that PGE(2) was generated via COX-2. As indomethacin dissociates fever and the decrease of PGE(2) level during the RANTES-induced fever, an alternative COX-2-independent pathway or other mechanisms of action of celecoxib and ibuprofen might be considered.
Collapse
Affiliation(s)
- Renes R Machado
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
71
|
de Haas AH, van Weering HRJ, de Jong EK, Boddeke HWGM, Biber KPH. Neuronal chemokines: versatile messengers in central nervous system cell interaction. Mol Neurobiol 2007; 36:137-51. [PMID: 17952658 PMCID: PMC2039784 DOI: 10.1007/s12035-007-0036-8] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 01/17/2007] [Indexed: 01/07/2023]
Abstract
Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron-astrocyte, neuron-microglia, and neuron-neuron interaction.
Collapse
Affiliation(s)
- A H de Haas
- Department of Medical Physiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | | | | | | | | |
Collapse
|
72
|
Peterson KE, Chesebro B. Influence of proinflammatory cytokines and chemokines on the neuropathogenesis of oncornavirus and immunosuppressive lentivirus infections. Curr Top Microbiol Immunol 2007; 303:67-95. [PMID: 16570857 DOI: 10.1007/978-3-540-33397-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retroviral infection of the CNS can lead to severe debilitating neurological diseases in humans and other animals. Four general types of pathogenic effects with various retroviruses have been observed including: hemorrhage (TR1.3), spongiform encephalopathy (CasBrE, FrCasE, PVC211, NT40, Mol-ts1), demyelination with inflammatory lesions (HTLV-1, visna, CAEV), and encephalopathy with gliosis and proinflammatory chemokines and cytokines, usually with microglial giant cells and nodules [human immunodeficiencyvirus (HIV), feline immunodeficiencyvirus (FIV), simian immunodeficiency virus (SIV), Fr98]. This review focuses on this fourth group of retroviruses. In this latter group, proinflammatory cytokine and chemokine upregulation accompanies the disease process, and may influence pathogenesis by direct effects on resident CNS cells. The review first discusses the Fr98 murine polytropic virus system with particular reference to the roles of cytokines and chemokines in the pathogenic process. The Fr98 data are then compared and contrasted to the cytokine and chemokine data in the lentivirus systems, HIV, SIV, and FIV. Finally, various mechanisms are presented by which tumor necrosis factor (TNF) and several chemokines may alter the pathogenesis of retrovirus infection of the CNS.
Collapse
Affiliation(s)
- K E Peterson
- Dept. of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
73
|
Chen X, Geller EB, Rogers TJ, Adler MW. Rapid heterologous desensitization of antinociceptive activity between mu or delta opioid receptors and chemokine receptors in rats. Drug Alcohol Depend 2007; 88:36-41. [PMID: 17049756 PMCID: PMC1880888 DOI: 10.1016/j.drugalcdep.2006.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 09/06/2006] [Accepted: 09/15/2006] [Indexed: 11/19/2022]
Abstract
Previous studies have shown pretreatment with chemokines CCL5/RANTES (100 ng) or CXCL12/SDF-1alpha (100 ng) injected into the periaqueductal grey (PAG) region of the brain, 30 min before the mu opioid agonist DAMGO (400 ng), blocked the antinociception induced by DAMGO in the in vivo cold water tail-flick (CWT) antinociceptive test in rats. In the present experiments, we tested whether the action of other agonists at mu and delta opioid receptors is blocked when CCL5/RANTES or CXCL12/SDF-1alpha is administered into the PAG 30 min before, or co-administered with, opioid agonists in the CWT assay. The results showed that: (1) CXCL12/SDF-1alpha (100 ng, PAG) or CCL5/RANTES (100 ng, PAG), given 30 min before the opioid agonist morphine, or selective delta opioid receptor agonist DPDPE, blocked the antinociceptive effect of these drugs; (2) CXCL12/SDF-1alpha (100 ng, PAG) or CCL5/RANTES (100 ng, PAG), injected at the same time as DAMGO or DPDPE, significantly reduced the antinociceptive effect induced by these drugs. These results demonstrate that the heterologous desensitization is rapid between the mu or delta opioid receptors and either CCL5/RANTES receptor CCR5 or CXCL12/SDF-1alpha receptor CXCR4 in vivo, but the effect is greater if the chemokine is administered before the opioid.
Collapse
Affiliation(s)
- Xiaohong Chen
- Center for Substance Abuse Research, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
74
|
Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007; 28:138-45. [PMID: 17276138 DOI: 10.1016/j.it.2007.01.005] [Citation(s) in RCA: 965] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/02/2007] [Accepted: 01/19/2007] [Indexed: 02/06/2023]
Abstract
Innate immunity is a constitutive component of the central nervous system (CNS) and relies strongly on resident myeloid cells, the microglia. However, evidence is emerging that the most abundant glial cell population of the CNS, the astrocyte, participates in the local innate immune response triggered by a variety of insults. Astrocytes display an array of receptors involved in innate immunity, including Toll-like receptors, nucleotide-binding oligomerization domains, double-stranded RNA-dependent protein kinase, scavenger receptors, mannose receptor and components of the complement system. Following activation, astrocytes are endowed with the ability to secrete soluble mediators, such as CXCL10, CCL2, interleukin-6 and BAFF, which have an impact on both innate and adaptive immune responses. The role of astrocytes in inflammation and tissue repair is elaborated by recent in vivo studies employing cell-type specific gene targeting.
Collapse
Affiliation(s)
- Cinthia Farina
- Neuroimmunology and Neuromuscular Disorders Unit, National Neurological Institute Carlo Besta, 20133 Milan, Italy.
| | | | | |
Collapse
|
75
|
Liu JX, Cao X, Tang YC, Liu Y, Tang FR. CCR7, CCR8, CCR9 and CCR10 in the mouse hippocampal CA1 area and the dentate gyrus during and after pilocarpine-induced status epilepticus. J Neurochem 2007; 100:1072-88. [PMID: 17181556 DOI: 10.1111/j.1471-4159.2006.04272.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study showed CCR7, CCR8, CCR9 and CCR10 in the normal Swiss mouse hippocampus at both protein and mRNA levels. CCR7, CCR9 and CCR10 were mainly localized in hippocampal principal cells and some interneurons. CCR9 was also found in the mossy fibres and/or terminals, suggesting an axonal or presynaptic localization, and CCR10 in apical dendrites of pyramidal neurons in the CA1 area. CCR8 was observed in interneurons. Double-labelling immunocytochemistry revealed that most of calbindin (CB)-, calretinin (CR)- and parvalbumin (PV)-immunopositive neurons expressed CCR7-10, except CR-immunopositive cells in which only 10 to 12% expressed CCR8. During and after pilocarpine-induced status epilepticus, progressive changes of each of CCR7, CCR8, CCR9 and CCR10 proteins occurred in different patterns at various time points. Sensitive real-time PCR showed similar change patterns at mRNA level. At the chronic stage, i.e. at 2 months after pilocarpine-induced status epilepticus, significant reduction of CCR7-10 expression in CB-, CR- and PV-immunpositive interneurons may suggest the phenotype change of surviving interneurons. Double labelling of CCR7, CCR8 and CCR9 with glial fibrillary acidic protein (GFAP) at the chronic stage may suggest an induced expression in reactive astrocytes. The present study may, therefore, for the first time, provide evidence that CCR7-10 may be involved in normal hippocampal activity. The demonstration of the progressive changes of CCR7-10 during and after status epilepticus may open a new area to reveal the mechanism of neuronal loss after status epilepticus and of epileptogenesis.
Collapse
Affiliation(s)
- Jian Xin Liu
- Institute of Neurobiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
76
|
Cinque P, Brew BJ, Gisslen M, Hagberg L, Price RW. Cerebrospinal fluid markers in central nervous system HIV infection and AIDS dementia complex. HANDBOOK OF CLINICAL NEUROLOGY 2007; 85:261-300. [PMID: 18808988 DOI: 10.1016/s0072-9752(07)85017-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Paola Cinque
- Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
77
|
Ozdener H. Inducible functional expression of Bcl-2 in human astrocytes derived from NTera-2 cells. J Neurosci Methods 2007; 159:8-18. [PMID: 16860395 DOI: 10.1016/j.jneumeth.2006.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/14/2006] [Accepted: 06/14/2006] [Indexed: 11/19/2022]
Abstract
Astrocytes provide structural support for neurons and may also play important roles in both neuroprotection and neurodegeneration. We, here report that human astrocytes derived from on NTera-2 (NT2) cell line expressing a functional anti-apoptotic protein bcl-2 under the control of a tetracycline responsive promoter using the Tet-On and Tet-Off expression systems. NT2 cells were transfected with the Tet On or Tet Off vectors followed by pTRE carrying human bcl-2. Drug resistant cells were differentiated into astrocytes under retinoic acid exposure. These astrocyte lines were found to express astrocyte specific markers such glial fibrillary acidic protein and chemokine receptors (CCR5, CXCR4) but not CCR3 and CD4. Furthermore, NT2 astrocytes expressing bcl-2 showed rapid response to doxycycline presence in the Tet On and Tet off system. The inducible expression of bcl-2 was found to be tightly regulated by doxycycline concentration in the NT2 astrocytes. We also showed that the induction of bcl-2 expression prevented NT2 astrocytes from camptothecin-induced cellular damage. These results indicate that this system may be useful for the study of specific effects of bcl-2 gene expression on astrocyte function(s) and cellular damage.
Collapse
Affiliation(s)
- Hakan Ozdener
- University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
78
|
Comerford I, Litchfield W, Harata-Lee Y, Nibbs RJB, McColl SR. Regulation of chemotactic networks by ‘atypical’ receptors. Bioessays 2007; 29:237-47. [PMID: 17295321 DOI: 10.1002/bies.20537] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Directed cell migration is a fundamental component of numerous biological systems and is critical to the pathology of many diseases. Although the importance of secreted chemoattractant factors in providing navigational cues to migrating cells bearing specific chemoattractant receptors is now well-established, how the function of these factors is regulated is not so well understood and may be of key importance to the design of new therapeutics for numerous human diseases. While regulation of migration clearly takes place on a number of different levels, it is becoming clear that so-called 'atypical' receptors play a role in scavenging, or altering the localisation of, chemoattractant molecules such as chemokines and complement components. These receptors do this through binding and/or internalising their chemoattractant ligands without activating signal transduction cascades leading to cell migration. The atypical chemokine receptor family currently comprises the receptors D6, DARC and CCX-CKR. In this review, we discuss the evidence from in vitro and in vivo studies that these receptors play a role in regulating cell migration, and speculate that other orphan receptors may also belong to this family. Furthermore, with the advent of gene therapy on the horizon, the therapeutic potential of these receptors in human disease is also considered.
Collapse
Affiliation(s)
- Iain Comerford
- School of Molecular and Biomedical Science, University of Adelaide, Australia.
| | | | | | | | | |
Collapse
|
79
|
Steele M, Stuchbury G, Münch G. The molecular basis of the prevention of Alzheimer’s disease through healthy nutrition. Exp Gerontol 2007; 42:28-36. [PMID: 16839733 DOI: 10.1016/j.exger.2006.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 05/26/2006] [Accepted: 06/01/2006] [Indexed: 11/15/2022]
Abstract
The Alzheimer's disease (AD) brain shows numerous pathological phenomena, including amyloid plaques, neurofibrillary tangles, elevated levels of advanced glycation endproducts and their receptor, oxidative damage and inflammation, all of which contribute to neurodegeneration. In this review, we consider these neuropathologies associated with AD and propose that inflammation and oxidative stress play major pathogenic roles throughout disease progression. It is believed that oxidative stress and inflammation not only play major roles early in the disease, but that they act in a reinforcing cycle, amplifying their damaging effects. Therefore, epidemiological studies indicate that anti-inflammatory, antioxidant and neuroprotective agents including those from medicinal plants and health promoting foods may protect against AD, possibly through scavenging of reactive oxygen species, cytokine downregulation and strengthening the neurons antioxidant defense. This concept is further supported by evidence that certain diets (such as a Mediterranean diet) have been associated with a lower incidence of AD. This review highlights specific foods and diets thought to lower the risk of developing AD and discusses the potential of healthy nutrition in disease prevention.
Collapse
Affiliation(s)
- Megan Steele
- Comparative Genomics Centre, James Cook University, Townsville, Australia
| | | | | |
Collapse
|
80
|
Corbin ME, Pourciau S, Morgan TW, Boudreaux M, Peterson KE. Ligand up-regulation does not correlate with a role for CCR1 in pathogenesis in a mouse model of non-lymphocyte-mediated neurological disease. J Neurovirol 2006; 12:241-50. [PMID: 16966215 DOI: 10.1080/13550280600851393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CCR1 ligands, including CCL3, CCL5, and CCL7, are up-regulated in a number of neurological disorders in humans and animal models. CCR1 is expressed by multiple cell types in the central nervous system (CNS), suggesting that receptor signaling by neuronal cell types may influence pathogenesis. In the current study, the authors used a mouse model of retrovirus infection to study the contribution of CCR1 to neuropathogenesis in the absence of lymphocyte recruitment to the CNS. In this model, infection of neonatal mice with the neurovirulent retrovirus Fr98 results in increased expression of proinflammatory chemokines in the CNS, activation of glial cells, and development of severe neurological disease. Surprisingly, no difference in neuropathogenesis was observed between CCR1-sufficient and CCR1-deficient mice following infection with the neuropathogenic virus Fr98. CCR1 was also not necessary for control of virus replication in the brain or virus-induced activation of astroglia. Additionally, CCR1 deficiency did not affect the up-regulation of its ligands, CCL3, CCL5, or CCL7. Thus, CCR1 did not appear to have a notable role in Fr98-induced pathogenesis, despite the correlation between ligand expression and disease development. This suggests that in the absence of inflammation, CCR1 may have a very limited role in neuropathogenesis.
Collapse
Affiliation(s)
- Meryll E Corbin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | |
Collapse
|
81
|
Maysami S, Nguyen D, Zobel F, Heine S, Höpfner M, Stangel M. Oligodendrocyte precursor cells express a functional chemokine receptor CCR3: Implications for myelination. J Neuroimmunol 2006; 178:17-23. [PMID: 16828880 DOI: 10.1016/j.jneuroim.2006.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 05/23/2006] [Accepted: 05/24/2006] [Indexed: 11/26/2022]
Abstract
Myelination in the central nervous system requires an accurate interplay between oligodendrocyte precursor cells (OPC) and axons. By as yet not fully understood mechanisms, OPC proliferate, migrate to the axon to be myelinated and finally differentiate into mature oligodendrocytes. The recent finding that OPC express CXC chemokine receptors led us to the investigation of the expression and functional importance of CC chemokine receptors. Using RT-PCR, we show that primary OPC from neonatal rats express CCR3, while CCR1, CCR2, CCR4, CCR5, and CCR7 are not expressed. Immunofluorescence staining of OPC could further demonstrate protein expression of CCR3. A rise of intracellular Ca2+ upon stimulation with the appropriate ligand CCL11 showed that this receptor is functional. Moreover, CCL11 led to a concentration specific increase in proliferation, inhibition of migration, and augmentation of differentiation in primary OPC. Thus, CCR3 may influence the process of myelination. This is of general importance for both developmental tissue patterning and for repair processes in demyelinating diseases like multiple sclerosis.
Collapse
Affiliation(s)
- Samaneh Maysami
- Department of Neurology, Medical School Hannover, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
82
|
Kim SD, Lee WM, Suk K, Park SC, Kim SK, Cho JY, Rhee MH. Mechanism of isoproterenol-induced RGS2 up-regulation in astrocytes. Biochem Biophys Res Commun 2006; 349:408-15. [PMID: 16934753 DOI: 10.1016/j.bbrc.2006.08.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 08/14/2006] [Indexed: 11/18/2022]
Abstract
Regulators of G protein signaling (RGSs) are inducibly expressed in response to various stimuli and the up-regulation of RGSs leads to significant decreases in GPCR responsiveness. Isoproterenol, an adrenergic receptor agonist, stimulated RGS2 mRNA in C6 rat astrocytoma cells. The up-regulation of RGS2 mRNA was abrogated by genistein, a protein tyrosine kinase inhibitor (PTK), and by broad-spectrum protein kinase C (PKC) inhibitors (staurosporine and GF109203X). alpha-Adrenergic antagonist (prazocin), beta-adrenergic antagonist (prazocin), and pertussis toxin only partially blocked the RGS2 up-regulation, suggesting that the RGS2 up-regulation is concomitantly mediated by Galphai, Galphas, and Galphaq. It is interesting to note that SB203580, a potent p38 mitogen-activated protein kinase (MAPK) inhibitor, completely inhibited the isoproterenol-mediated RGS2 expression. In addition, isoproterenol also markedly stimulated RGS2 mRNA in rat primary astrocytes, which were sensitive to SB203580 and staurosporine. Therefore, our data suggest that adrenergic receptor-mediated signaling (induced by isoproterenol) may be involved in the regulation of RGS2 expression in astrocytes via activating PTK, PKC, and p38 MAPK.
Collapse
Affiliation(s)
- Sung Dae Kim
- Laboratory of Physiology and Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
83
|
El-Hage N, Wu G, Ambati J, Bruce-Keller AJ, Knapp PE, Hauser KF. CCR2 mediates increases in glial activation caused by exposure to HIV-1 Tat and opiates. J Neuroimmunol 2006; 178:9-16. [PMID: 16831471 PMCID: PMC4310703 DOI: 10.1016/j.jneuroim.2006.05.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 05/23/2006] [Accepted: 05/26/2006] [Indexed: 12/18/2022]
Abstract
To assess the role of CCL2/MCP-1 in opiate drug abuse and HIV-1 comorbidity, the effects of systemic morphine and intrastriatal HIV-1 Tat on macrophage/microglial and astroglial activation were assessed in wild type and CCR2 null mice. Tat and/or morphine additively increased the proportion of CCL2 immunoreactive astroglia. The effects of morphine were prevented by naltrexone. Glial activation was significantly reduced in CCR2-/- versus wild-type mice following Tat or morphine plus Tat exposure. Thus, CCR2 contributes to local glial activation caused by Tat alone or in the presence of opiates, implicating CCR2 signaling in HIV-1 neuropathogenesis in drug abusers and non-abusers.
Collapse
Affiliation(s)
- Nazira El-Hage
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536
| | - Guanghan Wu
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536
| | - Jayakrishna Ambati
- Department of Ophthalmology and Visual Sciences, University of Kentucky Medical Center, Lexington, KY 40536
| | - Annadora J. Bruce-Keller
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536
- Department of the KY Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536
- Department of the KY Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Kurt F. Hauser
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536
- Department of the KY Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| |
Collapse
|
84
|
Sabri F, Titanji K, De Milito A, Chiodi F. Astrocyte activation and apoptosis: their roles in the neuropathology of HIV infection. Brain Pathol 2006; 13:84-94. [PMID: 12580548 PMCID: PMC8095843 DOI: 10.1111/j.1750-3639.2003.tb00009.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Astrogliosis is a common neuropathological finding in the brains of HIV infected individuals; both activation and apoptosis of astrocytes are seen. This review aims to discuss the Fas pathway in the context of proliferation and apoptosis of astrocytes during HIV infection, and as a result of astrogliosis, the dysregulation of astrocyte-neuron networks. The presence of molecules reflecting astrocyte activation, which are derived from the solubilization of receptor/ligand from the surface of proliferating astrocytes, in the cerebrospinal fluid may be used to evaluate the degree of brain cell activation during HAART therapy. A better understanding of the molecular pathway(s) leading to increase activation and apoptosis of astrocytes, in parallel with studies conducted to unravel the molecules involved in T-cell apoptosis during HIV infection, may lead to the development of new therapeutic strategies for controlling HIV replication and tissue damage.
Collapse
Affiliation(s)
- Farideh Sabri
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, S‐17177 Stockholm, Sweden
| | - Kehmia Titanji
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, S‐17177 Stockholm, Sweden
| | - Angelo De Milito
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, S‐17177 Stockholm, Sweden
| | - Francesca Chiodi
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, S‐17177 Stockholm, Sweden
| |
Collapse
|
85
|
Kadi L, Selvaraju R, de Lys P, Proudfoot AEI, Wells TNC, Boschert U. Differential effects of chemokines on oligodendrocyte precursor proliferation and myelin formation in vitro. J Neuroimmunol 2006; 174:133-46. [PMID: 16574247 DOI: 10.1016/j.jneuroim.2006.01.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 01/06/2006] [Accepted: 01/13/2006] [Indexed: 02/04/2023]
Abstract
Chemokines have recently been postulated to have important functions in the central nervous system (CNS) in addition to their principal role of directional migration of leukocytes. In particular, it has been shown that chemokines may play a role in the regulation of oligodendrocyte biology. Here, we have chosen to study the role of certain chemokines in regulating myelination. We have used the murine oligodendrocyte precursor-like cell line, Oli-neu, and primary mixed cortical cultures as experimental systems to assess their activities on oligodendrocyte precursor proliferation and developmental in vitro myelination. GRO-alpha, IL-8, SDF-1alpha and RANTES dose-dependently increased proliferation of this mouse A2B5 precursor-like cell line, while MCP-1 did not. Furthermore, the CXC chemokines GRO-alpha, IL-8 and SDF-1alpha stimulated myelin basic protein synthesis in a dose-dependent manner in primary myelinating cultures and enhanced myelin segment formation in this system, while the CC chemokines MCP-1 and RANTES did not. We also demonstrate that the receptor for SDF-1alpha, CXCR4, is expressed in mixed cortical cultures by PDGFalphaR positive oligodendrocyte precursors (OLPs) as well as by Oli-neu cells. SDF-1alpha induced proliferation in primary mixed cultures and the Oli-neu cell line was mediated through this receptor. We propose, therefore, that CXC chemokines and in particular SDF-1alpha regulates CNS myelination via their effects on cells of the oligodendrocyte lineage, specifically stimulation of OLP proliferation.
Collapse
Affiliation(s)
- Linda Kadi
- Department of Immunology, Serono Pharmaceutical Research Institute 14, Chemin des Aulx, 1228 Plan les Ouates, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
86
|
Takanohashi A, Yabe T, Schwartz JP. Pigment epithelium-derived factor induces the production of chemokines by rat microglia. Glia 2006. [DOI: 10.1002/glia.20351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
87
|
Xu J, Drew PD. 9-Cis-retinoic acid suppresses inflammatory responses of microglia and astrocytes. J Neuroimmunol 2005; 171:135-44. [PMID: 16303184 PMCID: PMC2825699 DOI: 10.1016/j.jneuroim.2005.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Accepted: 10/07/2005] [Indexed: 11/15/2022]
Abstract
Retinoic acid (RA) regulates a wide range of biologic process, including inflammation. Previously, RA was shown to inhibit the clinical signs of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). The current study investigated the effects of 9-cis-RA on primary mouse microglia and astrocytes, two cell types implicated in the pathology of MS and EAE. The studies demonstrated that 9-cis-RA inhibited the production of nitric oxide (NO) as well as the pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-12 p40 by LPS-stimulated microglia. However, this retinoid had no effect on IL-6 secretion and increased MCP-1 production by LPS-stimulated microglia. In LPS-stimulated astrocytes, 9-cis-RA inhibited NO and TNF-alpha production but had not effect on IL-1beta, IL-6 and MCP-1 secretion. These results suggest that RA modulates EAE, at least in part, by suppressing the production of NO and specific inflammatory cytokines from activated glia and suggests that RA might be effective in the treatment of MS.
Collapse
Affiliation(s)
| | - Paul D. Drew
- Corresponding author. Tel.: +1 501 296 1265; fax: +1 501 526 6756. (P.D. Drew)
| |
Collapse
|
88
|
Hosokawa Y, Hosokawa I, Ozaki K, Nakae H, Murakami K, Miyake Y, Matsuo T. CXCL12 and CXCR4 expression by human gingival fibroblasts in periodontal disease. Clin Exp Immunol 2005; 141:467-74. [PMID: 16045736 PMCID: PMC1809465 DOI: 10.1111/j.1365-2249.2005.02852.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CXCL12 is a CXC chemokine that is related to lymphocyte infiltration and angiogenesis in inflammatory sites such as arthritis. However, the expression and roles of CXCL12 in periodontal disease are uncertain. The aim of this study was to assess the expression of CXCL12 and its receptor, CXCR4, in periodontal tissue and to investigate the properties of CXCL12 and CXCR4 expression by human gingival fibroblasts (HGF). RT-PCR analysis revealed that CXCL12 and CXCR4 mRNA were expressed in both normal gingival tissues and periodontal diseased tissues. Immunohistochemistry disclosed that CXCL12 was expressed and CXCR4 positive cells were found in both normal and periodontal diseased gingival tissues. Our in vitro experiments elucidated that HGF constitutively produced CXCL12, and the levels were enhanced by stimulation with tumour necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), transforming growth factor-beta (TGF-beta), regulated upon activation normal T cell expressed and secreted (RANTES) and macrophage inflammatory protein 3(alpha) (MIP-3(alpha)). On the other hand, heat killed Porphyromonas gingivalis (P. gingivalis) and P. gingivalis LPS reduced the CXCL12 production by HGF. Flow cytometry analysis clarified that CXCR4 was highly expressed on HGF, and CXCR4 expression was abrogated by TNF-alpha, IFN-gamma and P. gingivalis LPS. Moreover, CXCL12 induced vascular endothelial growth factor (VEGF) production by HGF. Our results demonstrated that CXCL12 might be related to CXCR4+ cells infiltration and angiogenesis both in normal periodontal tissues and periodontal diseased tissue. P. gingivalis, a known periodontal pathogen, inhibits the production of CXCL12 and the expression of CXCR4 by HGF. This fact means that P. gingivalis may inhibit CXCR4+ cells infiltration and neovascularization in periodontal tissue and escape from the immune response.
Collapse
Affiliation(s)
- Y Hosokawa
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
89
|
Blednov YA, Bergeson SE, Walker D, Ferreira VM, Kuziel WA, Harris RA. Perturbation of chemokine networks by gene deletion alters the reinforcing actions of ethanol. Behav Brain Res 2005; 165:110-25. [PMID: 16105698 PMCID: PMC3040067 DOI: 10.1016/j.bbr.2005.06.026] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 06/23/2005] [Accepted: 06/23/2005] [Indexed: 12/19/2022]
Abstract
Microarray analysis of human alcoholic brain and cultured cells exposed to ethanol showed significant changes in expression of genes related to immune or inflammatory responses, including chemokines and chemokine receptors. To test the hypothesis that chemokines exhibit previously undiscovered pleiotropic effects important for the behavioral actions of ethanol, we studied mutant mice with deletion of the Ccr2, Ccr5, Ccl2 or Ccl3 genes. Deletion of Ccr2, Ccl2 (females) or Ccl3 in mice resulted in lower preference for alcohol and consumption of lower amounts of alcohol in a two-bottle choice test as compared with wild-type mice. Ethanol treatment (2.5 g/kg, i.p.) induced stronger conditioned taste aversion in Ccr2, Ccl2 or Ccl3 null mutant mice than in controls. Ccr2 and Ccr5 null mutant mice did not differ from wild-type mice in ethanol-induced loss of righting reflex (LORR), but mice lacking Ccl2 or Ccl3 showed longer LORR than wild-type mice. There were no differences between mutant strains and wild-type mice in severity of ethanol-induced withdrawal. Genetic mapping of chromosome 11 for the Ccl2 and Ccl3 genes (46.5 and 47.6 cM, respectively) revealed that an alcohol-induced LORR QTL region was contained within the introgressed region derived from 129/SvJ, which may cause some behavioral phenotypes observed in the null mice. On the contrary, known QTLs on Chr 9 are outside of 129/SvJ region in Ccr2 and Ccr5 (71.9 and 72.0 cM, respectively) null mutant mice. These data show that disruption of the chemokine network interferes with motivational effects of alcohol.
Collapse
MESH Headings
- Alcohol Drinking/genetics
- Alcohol Drinking/immunology
- Alcoholism/genetics
- Alcoholism/immunology
- Animals
- Association Learning/physiology
- Chemokine CCL2/deficiency
- Chemokine CCL2/genetics
- Chemokine CCL3
- Chemokine CCL4
- Chemokines, CC/deficiency
- Chemokines, CC/genetics
- Conditioning, Classical/physiology
- Disease Models, Animal
- Ethanol
- Female
- Gene Deletion
- Macrophage Inflammatory Proteins/deficiency
- Macrophage Inflammatory Proteins/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, CCR2
- Receptors, CCR5/deficiency
- Receptors, CCR5/genetics
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Reinforcement, Psychology
- Severity of Illness Index
- Sex Factors
- Signal Transduction/genetics
- Substance Withdrawal Syndrome/genetics
- Substance Withdrawal Syndrome/immunology
- Taste/genetics
Collapse
Affiliation(s)
- Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas A 4800, 1 University Station, 2500 Speedway MBB 1.124, Austin, TX 78712-1095, USA
- Corresponding author. Tel.: +1 512 232 2520/5761;, fax: +1 512 232 2525
| | - Susan E. Bergeson
- Waggoner Center for Alcohol and Addiction Research, University of Texas A 4800, 1 University Station, 2500 Speedway MBB 1.124, Austin, TX 78712-1095, USA
| | - Danielle Walker
- Waggoner Center for Alcohol and Addiction Research, University of Texas A 4800, 1 University Station, 2500 Speedway MBB 1.124, Austin, TX 78712-1095, USA
| | - Vania M.M. Ferreira
- Waggoner Center for Alcohol and Addiction Research, University of Texas A 4800, 1 University Station, 2500 Speedway MBB 1.124, Austin, TX 78712-1095, USA
| | - William A. Kuziel
- Department of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University Station A 5000, Austin, TX 78712-0162, USA
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas A 4800, 1 University Station, 2500 Speedway MBB 1.124, Austin, TX 78712-1095, USA
| |
Collapse
|
90
|
Ludwig A, Schulte A, Schnack C, Hundhausen C, Reiss K, Brodway N, Held-Feindt J, Mentlein R. Enhanced expression and shedding of the transmembrane chemokine CXCL16 by reactive astrocytes and glioma cells. J Neurochem 2005; 93:1293-303. [PMID: 15934948 DOI: 10.1111/j.1471-4159.2005.03123.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transmembrane chemokine CXCL16 is expressed by dendritic and vascular cells and mediates chemotaxis and adhesion of activated T cells via the chemokine receptor CXCR6/Bonzo. Here we describe the expression and shedding of this chemokine by glioma cells in situ and in vitro. By quantitative RT-PCR and immunohistochemistry, we show that CXCL16 is highly expressed in human gliomas, while expression in normal brain is low and mainly restricted to brain vascular endothelial cells. In cultivated human glioma cells as well as in activated mouse astroglial cells, CXCL16 mRNA and protein is constitutively expressed and further up-regulated by tumour necrosis factor alpha (TNFalpha) and interferon-gamma (IFNgamma). CXCL16 is continuously released from glial cells by proteolytic cleavage which is rapidly enhanced by stimulation with phorbol-12-myristate-13-acetate (PMA). As shown by inhibitor studies, two distinct members of the disintegrin-like metalloproteinase family ADAM10 and 17 are involved in the constitutive and PMA-induced shedding of glial CXCL16. In addition to the chemokine, its receptor CXCR6 could be detected by quantitative RT-PCR in human glioma tissue, cultivated murine astrocytes and at a lower level in microglial cells. Functionally, recombinant soluble CXCL16 enhanced proliferation of CXCR6-positive murine astroglial and microglial cells. Thus, the transmembrane chemokine CXCL16 is expressed in the brain by malignant and inflamed astroglial cells, shed to a soluble form and targets not only activated T cells but also glial cells themselves.
Collapse
Affiliation(s)
- Andreas Ludwig
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Olshausenstrasse, Germany
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Lu W, Gersting JA, Maheshwari A, Christensen RD, Calhoun DA. Developmental expression of chemokine receptor genes in the human fetus. Early Hum Dev 2005; 81:489-96. [PMID: 15935926 DOI: 10.1016/j.earlhumdev.2004.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/01/2004] [Accepted: 10/06/2004] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chemokines induce cell motility during embryogenesis by activating specific receptors. While the orchestration of organogenesis is complex and requires the interaction of many morphoregulatory molecules that lead to coordinated organ development, limited knowledge exists regarding the human developmental biology of chemokines and their receptors. Such information on chemokine receptor expression could potentially enhance our understanding of organogenesis in the normal human fetus. AIM To determine the distribution of the CXC receptors (CXCR-1, CXCR-2, CXCR-3, and CXCR-4) and SDF-1 in human fetuses. SUBJECTS Tissues from human fetuses 12-15 weeks (n = 5) and 16-19 weeks (n = 5) gestation were studied. OUTCOME MEASURES Reverse transcription-PCR was performed to simultaneously determine the gene expression of CXCR-1-4 and SDF-1, and immunohistochemical staining of non-hematopoietic tissues was used to determine the specific cellular proteins. RESULTS CXCR-1-4 and SDF-1 mRNA were present in every tissue examined. The expression of CXCR-3 in kidney, liver, and brain was dependent upon gestational age. CXCR-1-4 protein was expressed in non-hematopoietic cells in the brain, heart, intestine, and kidney. CONCLUSIONS CXCR-1-4 and SDF-1 genes are widely expressed in the normal human fetus. This suggests that these gene products could influence fetal development.
Collapse
Affiliation(s)
- Wenge Lu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
92
|
Zhou Y, Bian X, Le Y, Gong W, Hu J, Zhang X, Wang L, Iribarren P, Salcedo R, Howard OMZ, Farrar W, Wang JM. Formylpeptide Receptor FPR and the Rapid Growth of Malignant Human Gliomas. ACTA ACUST UNITED AC 2005; 97:823-35. [PMID: 15928303 DOI: 10.1093/jnci/dji142] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND The formylpeptide receptor (FPR) is a G-protein-coupled receptor (GPCR) that mediates chemotaxis of phagocytic leukocytes induced by bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (fMLF). We previously showed that selected human glioma cell lines also express functional FPR. We therefore investigated the relationship between FPR expression and the biologic behavior of glioma cells. METHODS Expression and function of FPR in the human glioblastoma cell line U-87 were examined by reverse transcription-polymerase chain reaction (RT-PCR) and chemotaxis assays, respectively. FPR protein expression was detected in specimens from 33 human primary gliomas by immunohistochemistry. FPR short interfering (si) RNA was used to block FPR expression in U-87 cells. Cell proliferation was assessed by measuring DNA synthesis. Xenograft tumor formation and growth were measured in nude mice. Endogenous FPR agonist activity released by necrotic tumor cells was assessed by measuring FPR activation in an FPR-transfected basophil leukemia cell line and live U-87 cells. Vascular endothelial growth factor (VEGF) mRNA was assessed by RT-PCR, and VEGF protein was assessed by enzyme-linked immunosorbent assay. All statistical tests were two-sided. RESULTS FPR was selectively expressed by the highly malignant human glioblastoma cell line U-87 and most primary grade IV glioblastomas multiforme and grade III anaplastic astrocytomas. U-87 cells responded to the FPR agonist fMLF by chemotaxis (i.e., increased motility), increased cell proliferation, and increased production of VEGF protein. FPR siRNA substantially reduced the tumorigenicity of U-87 cells in nude mice (38 days after implantation, mean tumor volume from wild-type U-87 cells = 842 mm3, 95% confidence interval [CI] = 721 to 963 mm3; and from FPR-siRNA transfected U-87 cells = 225 mm3, 95% CI = 194 to 256 mm3; P = .001). Necrotic glioblastoma cells released a factor(s) that activated FPR in live U-87 cells. CONCLUSIONS FPR is expressed by highly malignant human glioma cells and appears to mediate motility, growth, and angiogenesis of human glioblastoma by interacting with host-derived agonists. Thus, FPR may represent a molecular target for the development of novel antiglioma therapeutics.
Collapse
Affiliation(s)
- Ye Zhou
- Laboratory of Molecular Immunoregulation, CCR, NCI-Frederick, Building 560, Room 31-40, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Fang J, Acheampong E, Dave R, Wang F, Mukhtar M, Pomerantz RJ. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes. Virology 2005; 336:299-307. [PMID: 15892970 DOI: 10.1016/j.virol.2005.03.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 03/03/2005] [Accepted: 03/12/2005] [Indexed: 11/16/2022]
Abstract
Productive infection by human immunodeficiency virus type I (HIV-1) in the central nervous system (CNS) involves mainly macrophages and microglial cells. A frequency of less than 10% of human astrocytes is estimated to be infectable with HIV-1. Nonetheless, this relatively low percentage of infected astrocytes, but associated with a large total number of astrocytic cells in the CNS, makes human astrocytes a critical part in the analyses of potential HIV-1 reservoirs in vivo. Investigations in astrocytic cell lines and primary human fetal astrocytes revealed that limited HIV-1 replication in these cells resulted from low-level viral entry, transcription, viral protein processing, and virion maturation. Of note, a low ratio of unspliced versus spliced HIV-1-specific RNA was also investigated, as Rev appeared to act aberrantly in astrocytes, via loss of nuclear and/or nucleolar localization and diminished Rev-mediated function. Host cellular machinery enabling Rev function has become critical for elucidation of diminished Rev activity, especially for those factors leading to RNA metabolism. We have recently identified a DEAD-box protein, DDX1, as a Rev cellular co-factor and now have explored its potential importance in astrocytes. Cells were infected with HIV-1 pseudotyped with envelope glycoproteins of amphotropic murine leukemia viruses (MLV). Semi-quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) for unspliced, singly-spliced, and multiply-spliced RNA clearly showed a lower ratio of unspliced/singly-spliced over multiply-spliced HIV-1-specific RNA in human astrocytes as compared to Rev-permissive, non-glial control cells. As well, the cellular localization of Rev in astrocytes was cytoplasmically dominant as compared to that of Rev-permissive, non-glial controls. This endogenous level of DDX1 expression in astrocytes was demonstrated directly to lead to a shift of Rev sub-cellular distribution dominance from nuclear and/or nucleolar to cytoplasmic, as input of exogenous DDX1 significantly altered both Rev sub-cellular localization from cytoplasmic to nuclear predominance and concomitantly increased HIV-1 viral production in these human astrocytes. We conclude that altered DDX1 expression in human astrocytes is, at least in part, responsible for the unfavorable cellular microenvironment for Rev function in these CNS-based cells. Thus, these data suggest a molecular mechanism(s) for restricted replication in astrocytes as a potential low-level site of residual HIV-1 in vivo.
Collapse
Affiliation(s)
- Jianhua Fang
- The Dorrance H. Hamilton Laboratories, Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
94
|
Malgorzata Goczalik I, Raap M, Weick M, Milenkovic I, Heidmann J, Enzmann V, Wiedemann P, Reichenbach A, Francke M. The activation of IL-8 receptors in cultured guinea pig Müller glial cells is modified by signals from retinal pigment epithelium. J Neuroimmunol 2005; 161:49-60. [PMID: 15748943 DOI: 10.1016/j.jneuroim.2004.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/08/2004] [Accepted: 12/08/2004] [Indexed: 11/19/2022]
Abstract
Interleukin 8 (IL-8, CXCL8) is a pro-inflammatory chemokine which attracts neutrophils to sites of inflammation via an activation of the G-protein-coupled receptors, CXCR1 and CXCR2. However, both IL-8 and IL-8 receptors are widely expressed in various tissues and cell types, and have been suggested to be involved in other functions such as angiogenesis, tumor growth, or brain pathology. We examined the expression of IL-8 and IL-8 receptors in highly enriched primary cultures of guinea pig Muller glial cells. Immunoreactivity for CXCL8, CXCR1 and CXCR2 was observed in all cultured Muller cells. The expression of CXCL8 was confirmed by PCR, and the secretion of the CXCL8 protein from Muller cells was revealed by ELISA. Western blots showed prominent bands at approximately 40 kDa by using antibodies specific for human CXCR1 and CXCR2, and the expression of a putative CXCR2 receptor in Muller cells was confirmed by PCR. Furthermore, cultured Muller cells responded to application of recombinant human IL-8 with an increase of the cytosolic Ca(2+) concentration. If supernatants of cultured human retinal pigment epithelium (RPE) cells were applied to the Muller cell cultures, no obvious changes were observed in the CXCL8, CXCR1 and CXCR2 expression but (i) Muller cell proliferation was stimulated, and (ii) there was an increased number of CXCL8-responsive Muller cells and the amplitudes of the evoked calcium responses were enhanced. It is concluded that Muller glial cells may participate in the inflammatory response(s) of the retina during ocular diseases, and that this contribution may be modified by interactions with RPE cells.
Collapse
Affiliation(s)
- Iwona Malgorzata Goczalik
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Ure DR, Lane TE, Liu MT, Rodriguez M. Neutralization of chemokines RANTES and MIG increases virus antigen expression and spinal cord pathology during Theiler's virus infection. Int Immunol 2005; 17:569-79. [PMID: 15824069 PMCID: PMC7108597 DOI: 10.1093/intimm/dxh236] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The role of chemokines during some viral infections is unpredictable because the inflammatory response regulated by these molecules can have two, contrasting effects—viral immunity and immunopathologic injury to host tissues. Using Theiler's virus infection of SJL mice as a model of this type of disease, we have investigated the roles of two chemokines—regulated on activation, normal T cell-expressed and secreted (RANTES) chemokine and monokine induced by IFN-γ (MIG)—by treating mice with antisera that block lymphocyte migration. Control, infected mice showed virus persistence, mild inflammation and a small degree of demyelination in the white matter of the spinal cord at 6 weeks post-infection. Treatment of mice with RANTES antiserum starting at 2 weeks post-infection increased both viral antigen expression and the severity of inflammatory demyelination at 6 weeks post-infection. MIG antiserum increased the spread of virus and the proportion of spinal cord white matter with demyelination. Overall, viral antigen levels correlated strongly with the extent of pathology. At the RNA level, high virus expression was associated with low IL-2 and high IL-10 levels, and RANTES antiserum decreased the IL-2/IL-10 ratio. Our results suggest that RANTES and MIG participate in an immune response that attempts to restrict viral expression while limiting immunopathology and that anti-chemokine treatment poses the risk of exacerbating both conditions in the long term.
Collapse
|
96
|
Lee HP, Jun YC, Choi JK, Kim JI, Carp RI, Kim YS. The expression of RANTES and chemokine receptors in the brains of scrapie-infected mice. J Neuroimmunol 2005; 158:26-33. [PMID: 15589034 DOI: 10.1016/j.jneuroim.2004.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 07/30/2004] [Accepted: 08/02/2004] [Indexed: 01/08/2023]
Abstract
While chemokines play an important role in host defense, it has become abundantly clear that their expression is not solely restricted to immune cells. In this study, to investigate the role of chemokines in pathogenic mechanism of neurodegeneration in prion diseases, we determined the cerebral expression of RANTES, a major chemoattractant of monocytes and activated lymphocytes, and its receptors CCR1, CCR3 and CCR5 in ME7 scrapie-infected mice. The mRNA of RANTES gene was upregulated in the brains of scrapie-infected mice. Intense immunoreactivity of RANTES was observed only in glial fibrillary acidic protein (GFAP)-positive astrocytes of the hippocampus of the infected mice. In addition, the levels of mRNA expression of CCR1, CCR3, and CCR5 were increased in hippocampus of scrapie-infected brains compared to the values in controls. Immunostaining of CCR1, CCR3, and CCR5 was observed in reactive astrocytes of the hippocampal region of scrapie-infected brains. In addition, immunoreactivity of CCR5 was also observed in microglia of scrapie-infected brains. These results suggest that RANTES and its receptors may participate in amplifying proinflammatory responses and, thereby, exacerbate the neurodegeneration of prion diseases.
Collapse
Affiliation(s)
- Hyun-Pil Lee
- Ilsong Institute of Life Science, Hallym University, 1605-4 Kwanyangdong, Dongangu, Anyang, Kyeonggi-Do 431-060, Republic of Korea
| | | | | | | | | | | |
Collapse
|
97
|
Gavrilin MA, Gulina IV, Kawano T, Dragan S, Chakravarti L, Kolattukudy PE. Site-directed mutagenesis of CCR2 identified amino acid residues in transmembrane helices 1, 2, and 7 important for MCP-1 binding and biological functions. Biochem Biophys Res Commun 2005; 327:533-40. [PMID: 15629146 DOI: 10.1016/j.bbrc.2004.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Indexed: 10/26/2022]
Abstract
Monocyte chemotactic protein-1 (MCP-1) binds its G-protein-coupled seven transmembrane (TM) receptor, CCR2B, and causes infiltration of monocytes/macrophages into areas of injury, infection or inflammation. To identify functionally important amino acid residues in CCR2B, we made specific mutations of nine residues selected on the basis of conservation in chemokine receptors and located TM1 (Tyr(49)), TM2 (Leu(95)), TM3 (Thr(117) and Tyr(120)), and TM7 (Ala(286), Thr(290), Glu(291), and His(297)) and in the extracellular loop 3 (Glu(278)). MCP-1 binding was drastically affected only by mutations in TM7. Reversing the charge at Glu(291) (E291K) and at His(297) (H297D) prevented MCP binding although substitution with Ala at either site had little effect, suggesting that Glu(291) and His(297) probably stabilize TM7 by their ionic interaction. E291A elicited normal Ca(2+) influx. H297A, Y49F in TM1 and L95A in TM2 that showed normal MCP-1 binding did not elicit Ca(2+) influx and elicited no adenylate cyclase inhibition at any MCP-1 concentration. MCP-1 treatment of HEK293 cells caused lamellipodia formation only when they expressed CCR2B. The mutants that showed no Ca(2+) influx and adenylate cyclase inhibition by MCP-1 treatment showed lamellipodia formation and chemotaxis. Our results show that induction of lamellipodia formation, but not Ca(2+) influx and adenylate cyclase inhibition, is necessary for chemotaxis.
Collapse
Affiliation(s)
- Mikhail A Gavrilin
- Davis Heart and Lung Reseach Institute, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Pujol F, Kitabgi P, Boudin H. The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons. J Cell Sci 2005; 118:1071-80. [PMID: 15731012 DOI: 10.1242/jcs.01694] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent data have shown that the chemokine SDF-1 plays a critical role in several aspects of brain development such as cell migration and axon pathfinding. However, its potential function in the generation of axons and dendrites is poorly characterized. In order to better understand the role of SDF-1 in the development of central neurons, we studied the cellular distribution of the SDF-1 receptor CXCR4 by immunocytochemistry of developing hippocampal neurons and tested the effect of SDF-1 in process patterning at the early stages of neuronal development. We found that CXCR4 immunoreactivity undergoes a striking redistribution during development. At the early stages, from day 2 to day 4 in culture, CXCR4 is particularly concentrated at the leading edge of growing neurites. As the cells mature, staining declines at the tip of the processes and becomes more broadly distributed along axons and, to a lesser extent, dendrites. SDF-1 stimulation of neurons at day 1-2 in culture triggers several effects on neuronal morphogenesis. SDF-1 reduces growth cone number and axonal outgrowth but stimulates axonal branching. These latter two effects are not observed in other neurites. This study unravels a new role for SDF-1/CXCR4 in specifying hippocampal neuron morphology by regulating axonal patterning at an early stage of neuronal development.
Collapse
Affiliation(s)
- Fabien Pujol
- INSERM E0350, Hospital St Antoine, 184 rue du Fg St Antoine, 75571 Paris CEDEX 12, France
| | | | | |
Collapse
|
99
|
Abstract
HIV-associated dementia (HAD) is an important complication of the central nervous system in patients who are infected with HIV-1. Although the incidence of HAD has markedly decreased since it has become possible to effectively control viral replication in the blood by administering highly active antiretroviral therapy, a less severe form of HAD, comprising a milder cognitive and motor disorder, is now potentially a serious problem. Brain macrophages and microglia are the key cell types that are infected by HIV-1 in the central nervous system, and they are likely to mediate the neurodegeneration seen in patients with HAD; however, the precise pathogenesis of this neurodegeneration is still unclear. Here, we discuss the studies that are being carried out to determine the respective contributions of infection, and monocyte and macrophage activation, to disease progression.
Collapse
Affiliation(s)
- Francisco González-Scarano
- Department of Neurology, 3 West Gates, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, Philadelphia 19104-4283, USA.
| | | |
Collapse
|
100
|
Cartier L, Hartley O, Dubois-Dauphin M, Krause KH. Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. ACTA ACUST UNITED AC 2005; 48:16-42. [PMID: 15708626 DOI: 10.1016/j.brainresrev.2004.07.021] [Citation(s) in RCA: 388] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/22/2022]
Abstract
Chemokines were originally described as chemotactic cytokines involved in leukocyte trafficking. Research over the last decade, however, has shown that chemokine receptors are not restricted to leukocytes. In the brain, chemokine receptors are not only found in microglia (a brain macrophage), but also in astrocytes, oligodendrocytes and neurons. In this review, we describe the spatial and cellular distribution of chemokine receptors in the brain, distinguishing between constitutively and inducibly expressed receptors. We then discuss possible physiological functions, including neuronal migration, cell proliferation and synaptic activity. Evidence is emerging that chemokine receptors are also involved in neuronal death and hence neurodegenerative diseases. Chemokines may induce neuronal death either indirectly (e.g. through activation of microglia killing mechanisms) or directly through activation of neuronal chemokine receptors. Disease processes in which chemokines and their receptors are likely to be involved include multiple sclerosis (MS), Alzheimer's disease (AD), HIV-associated dementia (HAD) and cerebral ischemic disease. The study of chemokines and their receptors in the central nervous system (CNS) is not only relevant for the understanding of brain physiology and pathophysiology, but may also lead to the development of targeted treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Laetitia Cartier
- Biology of Ageing Laboratory, Department of Geriatrics, Geneva University Hospitals, 2 chemin du Petit-Bel Air, CH-1225 Chêne-Bourg, Switzerland
| | | | | | | |
Collapse
|