51
|
Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J Neurosci 2012; 32:692-702. [PMID: 22238105 DOI: 10.1523/jneurosci.1538-11.2012] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Patterned neuronal activity such as spindle bursts in the neonatal cortex is likely to promote the maturation of cortical synapses and neuronal circuits. Previous work on cats has shown that removal of subplate neurons, a transient neuronal population in the immature cortex, prevents the functional maturation of thalamocortical and intracortical connectivity. Here we studied the effect of subplate removal in the neonatal rat primary somatosensory cortex (S1). Using intracortical EEG we show that after selective removal of subplate neurons in the limb region of S1, endogenous and sensory evoked spindle burst activity is largely abolished. Consistent with the reduced in vivo activity in the S1 limb region, we find by in vitro recordings that thalamocortical inputs to layer 4 neurons are weak. In addition, we find that removal of subplate neurons in the S1 barrel region prevents the development of the characteristic histological barrel-like appearance. Thus, subplate neurons are crucially involved in the generation of particular types of early network activity in the neonatal cortex, which are an important feature of cortical development. The altered EEG pattern following subplate damage could be applicable in the neurological assessment of human neonates.
Collapse
|
52
|
Till SM, Wijetunge LS, Seidel VG, Harlow E, Wright AK, Bagni C, Contractor A, Gillingwater TH, Kind PC. Altered maturation of the primary somatosensory cortex in a mouse model of fragile X syndrome. Hum Mol Genet 2012; 21:2143-56. [DOI: 10.1093/hmg/dds030] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
53
|
Tecchio F, Assenza G, Zappasodi F, Mariani S, Salustri C, Squitti R. Glutamate-mediated primary somatosensory cortex excitability correlated with circulating copper and ceruloplasmin. Int J Alzheimers Dis 2011; 2011:292593. [PMID: 22145081 PMCID: PMC3227495 DOI: 10.4061/2011/292593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 08/08/2011] [Accepted: 08/29/2011] [Indexed: 12/02/2022] Open
Abstract
Objective. To verify whether markers of metal homeostasis are related to a magnetoencephalographic index representative of glutamate-mediated excitability of the primary somatosensory cortex. The index is identified as the source strength of the earliest component (M20) of the somatosensory magnetic fields (SEFs) evoked by right median nerve stimulation at wrist. Method. Thirty healthy right-handed subjects (51 ± 22 years) were enrolled in the study. A source reconstruction algorithm was applied to assess the amount of synchronously activated neurons subtending the M20 and the following SEF component (M30), which is generated by two independent contributions of gabaergic and glutamatergic transmission. Serum copper, ceruloplasmin, iron, transferrin, transferrin saturation, and zinc levels were measured. Results. Total copper and ceruloplasmin negatively correlated with the M20 source strength. Conclusion. This pilot study suggests that higher level of body copper reserve, as marked by ceruloplasmin variations, parallels lower cortical glutamatergic responsiveness.
Collapse
Affiliation(s)
- Franca Tecchio
- Laboratory for Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Fatebenefratelli Hospital Isola Tiberina, Rome, Italy
| | | | | | | | | | | |
Collapse
|
54
|
Jabaudon D, Shnider SJ, Tischfield DJ, Galazo MJ, Macklis JD. RORβ induces barrel-like neuronal clusters in the developing neocortex. ACTA ACUST UNITED AC 2011; 22:996-1006. [PMID: 21799210 DOI: 10.1093/cercor/bhr182] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurons in layer IV of the rodent whisker somatosensory cortex are tangentially organized in periodic clusters called barrels, each of which is innervated by thalamocortical axons transmitting sensory information from a single principal whisker, together forming a somatotopic map of the whisker pad. Proper thalamocortical innervation is critical for barrel formation during development, but the molecular mechanisms controlling layer IV neuron clustering are unknown. Here, we investigate the role in this mapping of the nuclear orphan receptor RORβ, which is expressed in neurons in layer IV during corticogenesis. We find that RORβ protein expression specifically increases in the whisker barrel cortex during barrel formation and that in vivo overexpression of RORβ is sufficient to induce periodic barrel-like clustering of cortical neurons. Remarkably, this clustering can be induced as early as E18, prior to innervation by thalamocortical afferents and whisker derived-input. At later developmental stages, these ectopic neuronal clusters are specifically innervated by thalamocortical axons, demonstrated by anterograde labeling from the thalamus and by expression of thalamocortical-specific synaptic markers. Together, these data indicate that RORβ expression levels control cytoarchitectural patterning of neocortical neurons during development, a critical process for the topographical mapping of whisker input onto the cortical surface.
Collapse
Affiliation(s)
- Denis Jabaudon
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
55
|
Sehara K, Kawasaki H. Neuronal circuits with whisker-related patterns. Mol Neurobiol 2011; 43:155-62. [PMID: 21365361 DOI: 10.1007/s12035-011-8170-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Neuronal circuits with whisker-related patterns, such as those observed in the rodent somatosensory barrel cortex, have been widely used as a model system for investigating the anatomical organization, development and physiological roles of functional neuronal circuits. Whisker-related patterns exist not only in the barrel cortex but also in subcortical structures along the trigeminal neuraxis from the brainstem to the cortex. Here, we briefly summarize the organization, formation, and function of each neuronal circuit with whisker-related patterns, including the novel axonal trajectories that we recently found with the aid of in utero electroporation. We also discuss their biological implications as model systems for the studies of functional neuronal circuits.
Collapse
Affiliation(s)
- Keisuke Sehara
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
56
|
Han L, Itoh K, Yaoi T, Moriwaki S, Kato S, Nakamura K, Fushiki S. Prenatal and Lactational Exposure to Bisphenol A in Mice Alters Expression of Genes Involved in Cortical Barrel Development without Morphological Changes. Acta Histochem Cytochem 2011; 44:25-33. [PMID: 21448315 PMCID: PMC3061449 DOI: 10.1267/ahc.10042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/05/2011] [Indexed: 01/01/2023] Open
Abstract
It has been reported that premature infants in neonatal intensive care units are exposed to a high rate of bisphenol A (BPA), an endocrine disrupting chemical. Our previous studies demonstrated that corticothalamic projection was disrupted by prenatal exposure to BPA, which persisted even in adult mice. We therefore analyzed whether prenatal and lactational exposure to low doses of BPA affected the formation of the cortical barrel, the barreloid of the thalamus, and the barrelette of the brainstem in terms of the histology and the expression of genes involved in the barrel development. Pregnant mice were injected subcutaneously with 20 µg/kg of BPA daily from embryonic day 0 (E0) to postnatal 3 weeks (P3W), while the control mice received a vehicle alone. The barrel, barreloid and barrelette of the adult mice were examined by cytochrome C oxidase (COX) staining. There were no significant differences in the total and septal areas and the patterning of the posterior medial barrel subfield (PMBSF), barreloid and barrelette, between the BPA-exposure and control groups in the adult mice. The developmental study at postnatal day 1 (PD1), PD4 and PD8 revealed that the cortical barrel vaguely appeared at PD4 and completely formed at PD8 in both groups. The expression pattern of some genes was spatiotemporally altered depending on the sex and the treatment. These results suggest that the trigeminal projection and the thalamic relay to the cortical barrel were spared after prenatal and lactational exposure to low doses of BPA, although prenatal exposure to BPA was previously shown to disrupt the corticothalamic projection.
Collapse
Affiliation(s)
- Longzhe Han
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Sanzo Moriwaki
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Shingo Kato
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Keiko Nakamura
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
57
|
The somatosensory cortex of reeler mutant mice shows absent layering but intact formation and behavioral activation of columnar somatotopic maps. J Neurosci 2010; 30:15700-9. [PMID: 21084626 DOI: 10.1523/jneurosci.3707-10.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sensory information acquired via the large facial whiskers is processed and relayed in the whisker-to-barrel pathway, which shows multiple somatotopic maps of the receptor periphery. These maps consist of individual structural modules, the development of which may require intact cortical lamination. In the present study we examined the whisker-to-barrel pathway in the reeler mouse and thus used a model with disturbed cortical organization. A combination of histological (fluorescent Nissl and cytochrome oxidase staining) as well as molecular methods (c-Fos and laminar markers Rgs8, RORB, and ER81 expression) revealed wild type-equivalent modules in reeler. At the neocortical level, however, we found extensive alterations in the layout of the individual modules of the map. Nevertheless, they showed a columnar organization that included compartments equivalent to those of their wild-type counterparts. Moreover, all examined modules showed distinct activation as a consequence of behavioral whisker stimulation. Analysis of the magnitude of the cortical lamination defect surprisingly revealed an extensive disorganization, rather than an inversion, as assumed previously. Striking developmental plasticity of thalamic innervation, as suggested by vGluT2 immunohistochemistry, seems to ensure the proper formation of columnar modules and topological maps even under highly disorganized conditions.
Collapse
|
58
|
Ballester-Rosado CJ, Albright MJ, Wu CS, Liao CC, Zhu J, Xu J, Lee LJ, Lu HC. mGluR5 in cortical excitatory neurons exerts both cell-autonomous and -nonautonomous influences on cortical somatosensory circuit formation. J Neurosci 2010; 30:16896-909. [PMID: 21159961 PMCID: PMC3008407 DOI: 10.1523/jneurosci.2462-10.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 10/05/2010] [Accepted: 10/07/2010] [Indexed: 12/24/2022] Open
Abstract
Glutamatergic neurotransmission plays important roles in sensory map formation. The absence of the group I metabotropic glutamate receptor 5 (mGluR5) leads to abnormal sensory map formation throughout the mouse somatosensory pathway. To examine the role of cortical mGluR5 expression on barrel map formation, we generated cortex-specific mGluR5 knock-out (KO) mice. Eliminating mGluR5 function solely in cortical excitatory neurons affects, not only the whisker-related organization of cortical neurons (barrels), but also the patterning of their presynaptic partners, the thalamocortical axons (TCAs). In contrast, subcortical whisker maps develop normally in cortical-mGluR5 KO mice. In the S1 cortex of cortical-mGluR5 KO, layer IV neurons are homogenously distributed and have no clear relationship to the location of TCA clusters. The altered dendritic morphology of cortical layer IV spiny stellate neurons in cortical-mGluR5 KO mice argues for a cell-autonomous role of mGluR5 in dendritic patterning. Furthermore, morphometric analysis of single TCAs in both cortical- and global-mGluR5 KO mice demonstrated that in these mice, the complexity of axonal arbors is reduced, while the area covered by TCA arbors is enlarged. Using voltage-clamp whole-cell recordings in acute thalamocortical brain slices, we found that KO of mGluR5 from cortical excitatory neurons reduced inhibitory but not excitatory inputs onto layer IV neurons. This suggests that mGluR5 signaling in cortical excitatory neurons nonautonomously modulates the functional development of GABAergic circuits. Together, our data provide strong evidence that mGluR5 signaling in cortical principal neurons exerts both cell-autonomous and -nonautonomous influences to modulate the formation of cortical sensory circuits.
Collapse
Affiliation(s)
| | | | - Chia-Shan Wu
- The Cain Foundation Laboratories, Department of Pediatrics
| | - Chun-Chieh Liao
- The Cain Foundation Laboratories, Department of Pediatrics
- National Taiwan University, Taipei, Taiwan 10617
| | - Jie Zhu
- The Cain Foundation Laboratories, Department of Pediatrics
| | - Jian Xu
- Salk Institute, San Diego, California 92186, and
| | - Li-Jen Lee
- National Taiwan University, Taipei, Taiwan 10617
| | - Hui-Chen Lu
- The Cain Foundation Laboratories, Department of Pediatrics
- Program in Developmental Biology, and
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
59
|
Salustri C, Squitti R, Zappasodi F, Ventriglia M, Bevacqua MG, Fontana M, Tecchio F. Oxidative stress and brain glutamate-mediated excitability in depressed patients. J Affect Disord 2010; 127:321-5. [PMID: 20547423 DOI: 10.1016/j.jad.2010.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/12/2010] [Accepted: 05/12/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND Several neuropsychiatric pathologies have been recently linked to oxidative stress. In this study, we investigated the relationship between depression, markers of oxidative stress and neurotransmission, as expressed by sensory cortex excitability. METHODS Serum levels of oxidative stress markers and somatosensory magnetic fields, evoked by external galvanic stimulation, were measured in 13 depressed patients and 13 controls. RESULTS Depressives had higher levels of total and free copper than controls and lower levels of transferrin. They also showed lower sensory cortex excitability, which correlated with copper levels in controls, but not in patients. Transferrin correlated with sensory cortex excitability in both patients and controls, although in opposite ways. Copper level results associated with the patients' clinical status. LIMITATIONS Small sample size and possible sampling bias in patient selection. CONCLUSIONS Pro-oxidant agents appear to affect neuronal excitability and clinical state of depressed patients, as free copper excess alters their cortical glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Carlo Salustri
- Institute of Cognitive Sciences and Technologies (CNR), Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
The mouse trigeminal (V) system undergoes significant postnatal structural and functional developmental changes. Histological modules (barrelettes, barreloids and barrels) in the brainstem, thalamus and cortex related to actively moved (whisking) tactile hairs (vibrissae) on the face allow detailed studies of development. High-resolution [(3) H]2-deoxyglucose (2DG) emulsion autoradiography with cytochrome oxidase histochemistry was used to analyze neuronal activity changes related to specific whisker modules in the developing and mature mouse V system provoked by passive (experimenter-induced) and active (animal-induced) displacements of a single whisker (D4). We tested the hypothesis that neuronal activity patterns change in relation to the onset of active touch (whisking) on postnatal day (P)14. Quantitative image analyses revealed: (i) on P7, when whisker-like patterns of modules are clear, heightened 2DG activity in all appropriate modules in the brainstem, thalamus and cortex; (ii) on P14, a transitory activity pattern coincident with the emergence of whisking behavior that presages (iii) strong labeling of the spinal V subnucleus interpolaris and barrel cortex produced by single-whisker-mediated active touch in adults and (iv) at all above-listed ages and structures, significant suppression of baseline activity in some modules surrounding those representing the stimulated whisker. Differences in activity patterns before and after the onset of whisking behavior may be caused by neuronal activity induced by whisking, and by strengthening of modulatory projections that alter the activity of subcortical inputs produced by whisking behavior during active touch.
Collapse
Affiliation(s)
- Tony Mosconi
- Western University of Health Sciences, Department of Physical Therapy, Pomona, CA 91766
| | - Thomas A. Woolsey
- Washington University School of Medicine, Department of Neurological Surgery, St. Louis, MO 63110
| | - Mark F. Jacquin
- Washington University School of Medicine, Department of Neurology, St. Louis, MO 63110
| |
Collapse
|
61
|
Kastanenka KV, Landmesser LT. In vivo activation of channelrhodopsin-2 reveals that normal patterns of spontaneous activity are required for motoneuron guidance and maintenance of guidance molecules. J Neurosci 2010; 30:10575-85. [PMID: 20686000 PMCID: PMC2934783 DOI: 10.1523/jneurosci.2773-10.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/24/2010] [Indexed: 12/18/2022] Open
Abstract
Spontaneous, highly rhythmic episodes of propagating bursting activity are present early during the development of chick and mouse spinal cords. Acetylcholine, and GABA and glycine, which are both excitatory at this stage, provide the excitatory drive. It was previously shown that a moderate decrease in the frequency of bursting activity, caused by in ovo application of the GABA(A) receptor blocker, picrotoxin, resulted in motoneurons making dorsal-ventral (D-V) pathfinding errors in the limb and in the altered expression of guidance molecules associated with this decision. To distinguish whether the pathfinding errors were caused by perturbation of the normal frequency of bursting activity or interference with GABA(A) receptor signaling, chick embryos were chronically treated in ovo with picrotoxin to block GABA(A) receptors, while light activation by channelrhodopsin-2 was used to restore bursting activity to the control frequency. The restoration of normal patterns of neural activity in the presence of picrotoxin prevented the D-V pathfinding errors in the limb and maintained the normal expression levels of EphA4, EphB1, and polysialic acid on neural cell adhesion molecule, three molecules previously shown to be necessary for this pathfinding choice. These observations demonstrate that developing spinal motor circuits are highly sensitive to the precise frequency and pattern of spontaneous activity, and that any drugs that alter this activity could result in developmental defects.
Collapse
Affiliation(s)
- Ksenia V. Kastanenka
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4975
| | - Lynn T. Landmesser
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4975
| |
Collapse
|
62
|
Xiang C, Zhang KH, Yin J, Arends JJ, Erzurumlu RS, Jacquin MF, Chen ZF. The transcription factor, Lmx1b, is necessary for the development of the principal trigeminal nucleus-based lemniscal pathway. Mol Cell Neurosci 2010; 44:394-403. [PMID: 20621716 PMCID: PMC2904324 DOI: 10.1016/j.mcn.2010.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/21/2010] [Accepted: 05/13/2010] [Indexed: 11/29/2022] Open
Abstract
Little is known of transcriptional mechanisms underlying the development of the trigeminal (V) principal sensory nucleus (PrV), the brainstem nucleus responsible for the development of the whisker-to-barrel cortex pathway. Lmx1b, a LIM homeodomain transcription factor, is expressed in embryonic PrV. In Lmx1b knockout ((-)(/)(-)) mice, V primary afferent projections to PrV are normal, albeit reduced in number, whereas the PrV-thalamic lemniscal pathway is sparse and develops late. Excess cell death occurs in the embryonic Lmx1b(-)(/)(-) PrV, but not in Lmx1b/Bax double null mutants. Expression of Drg11, a downstream transcription factor essential for PrV development and pattern formation, is abolished in PrV, but not in the V ganglion. Consequently, whisker patterns fail to develop in PrV by birth. Rescued PrV cells in Lmx1b/Bax double (-)(/)(-)s failed to rescue whisker-related PrV pattern formation. Thus, Lmx1b and Drg11 may act in the same genetic signaling pathway that is essential for PrV pattern formation.
Collapse
Affiliation(s)
- Chuanxi Xiang
- Departments of Anesthesiology, Psychiatry, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kai-Hua Zhang
- Departments of Anesthesiology, Psychiatry, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jun Yin
- Departments of Anesthesiology, Psychiatry, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joop J.A. Arends
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Mark F. Jacquin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhou-Feng Chen
- Departments of Anesthesiology, Psychiatry, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
63
|
Abstract
With the development of molecular embryology and the coming of the post-genomic era, the molecular mechanisms of morphological evolution have recently begun to be elucidated. Whole genome sequences of many vertebrate species have been determined, and comparative genomics has suggested that one source of biodiversity is conserved non-coding elements (CNEs), which may be involved in generating new networks of gene expression. Nishihara et al. (Genome Res. 2006; 16, 864) discovered retroposon (AmnSINE1s)-derived CNEs in the human genome, and suggested that the AmnSINE1s obtained their function (i.e., exapted) in a common mammalian ancestor and are involved in generating mammalian-specific morphology. Therefore, investigation of the function of AmnSINE1-derived CNEs in morphogenesis helps us understand the molecular events of how mammals obtained their specific morphological characters by exaptation that occurred when the first mammalian ancestor emerged about 250 Ma (million years ago). Because there are more than 100 AmnSINE1-derived CNE loci in the mammalian genome, a burst of exaptation of AmnSINE1s must have occurred, possibly triggered by the Permian-Triassic mass extinction 250 Ma. In this review, we discuss morphological evolution of the mammalian-specific characters including brain that were exapted after retrotransposition of AmnSINE1s by referring to two CNE loci described by Sasaki et al.
Collapse
Affiliation(s)
- Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | | | | | | |
Collapse
|
64
|
Kelly EA, Tremblay ME, McCasland JS, Majewska AK. Postsynaptic deregulation in GAP-43 heterozygous mouse barrel cortex. Cereb Cortex 2010; 20:1696-707. [PMID: 19915093 PMCID: PMC2882825 DOI: 10.1093/cercor/bhp231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Formation of whisker-related barrels in primary somatosensory cortex (S1) requires communication between presynaptic thalamocortical afferents (TCAs) and postsynaptic cortical neurons. GAP-43 is crucially involved in targeting TCAs to postsynaptic S1 neurons but its influence on the interactions between these 2 elements has not been explored. Here, we tested the hypothesis that reduced early expression of presynaptic GAP-43 (GAP-43 heterozygous [HZ] mice) alters postsynaptic differentiation of barrel cells. We found a transient increase in cytochrome oxidase staining between P6 and P14 in HZ animals, indicative of increased metabolic activity in barrel cortex during this time. Golgi impregnation and microtubule-associated protein 2 immunohistochemistry showed anomalous dendritic patterning in GAP-43 HZ cortex at P5, with altered dendritic length and branching and abnormal retention of dendrites that extend into developing septa. This deficiency was no longer apparent at P7, suggesting partial recovery of dendritic pruning processes. Finally, we showed early defects in synaptogenesis from P4 to P5 with increased colocalization of NR1 and GluR1 staining in HZ mice. By P7, this colocalization had normalized to wild type levels. Taken together, our findings suggest abnormal postsynaptic differentiation in GAP-43 HZ cortex during early barrel development, followed by adaptive compensation and partial phenotypic rescue.
Collapse
Affiliation(s)
- Emily A Kelly
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
65
|
Hanganu-Opatz IL. Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. ACTA ACUST UNITED AC 2010; 64:160-76. [PMID: 20381527 DOI: 10.1016/j.brainresrev.2010.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/22/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Sensory systems processing information from the environment rely on precisely formed and refined neuronal networks that build maps of sensory receptor epithelia at different subcortical and cortical levels. These sensory maps share similar principles of function and emerge according to developmental processes common in visual, somatosensory and auditory systems. Whereas molecular cues set the coarse organization of cortico-subcortical topography, its refinement is known to succeed under the influence of experience-dependent electrical activity during critical periods. However, coordinated patterns of activity synchronize the cortico-subcortical networks long before the meaningful impact of environmental inputs on sensory maps. Recent studies elucidated the cellular and network mechanisms underlying the generation of these early patterns of activity and highlighted their similarities across species. Moreover, the experience-independent activity appears to act as a functional template for the maturation of sensory networks and cortico-subcortical maps. A major goal for future research will be to analyze how this early activity interacts with the molecular cues and to determine whether it is permissive or rather supporting for the establishment of sensory topography.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Falkenried 94, Hamburg, Germany.
| |
Collapse
|
66
|
Abstract
The facial somatosensory map in the cortex is derived from facial representations that are first established at the brainstem level and then serially 'copied' at each stage of the somatosensory pathway. Recent studies have provided insights into the molecular mechanisms involved in the development of somatotopic maps of the face and whiskers in the trigeminal nuclei of the mouse brainstem. This work has revealed that early molecular regionalization and positional patterning of trigeminal ganglion and brainstem target neurons are established by homeodomain transcription factors, the expression of which is induced and maintained by signals from the brain and face. Such position-dependent information is fundamental in transforming the early spatial layout of sensory receptors into a topographic connectivity map that is conferred to higher brain levels.
Collapse
|
67
|
Sehara K, Toda T, Iwai L, Wakimoto M, Tanno K, Matsubayashi Y, Kawasaki H. Whisker-related axonal patterns and plasticity of layer 2/3 neurons in the mouse barrel cortex. J Neurosci 2010; 30:3082-92. [PMID: 20181605 PMCID: PMC6633930 DOI: 10.1523/jneurosci.6096-09.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/09/2010] [Accepted: 01/14/2010] [Indexed: 02/07/2023] Open
Abstract
Elucidating neuronal circuits and their plasticity in the cerebral cortex is one of the important questions in neuroscience research. Here we report novel axonal trajectories and their plasticity in the mouse somatosensory barrel cortex. We selectively visualized layer 2/3 neurons using in utero electroporation and examined the axonal trajectories of layer 2/3 neurons. We found that the axons of layer 2/3 neurons preferentially run in the septal regions of layer 4 and named this axonal pattern "barrel nets." The intensity of green fluorescent protein in the septal regions was markedly higher compared with that in barrel hollows. Focal in utero electroporation revealed that the axons in barrel nets were indeed derived from layer 2/3 neurons in the barrel cortex. During development, barrel nets became visible at postnatal day 10, which was well after the initial appearance of barrels. When whisker follicles were cauterized within 3 d after birth, the whisker-related pattern of barrel nets was altered, suggesting that cauterization of whisker follicles results in developmental plasticity of barrel nets. Our results uncover the novel axonal trajectories of layer 2/3 neurons with whisker-related patterns and their developmental plasticity in the mouse somatosensory cortex. Barrel nets should be useful for investigating the pattern formation and axonal reorganization of intracortical neuronal circuits.
Collapse
Affiliation(s)
- Keisuke Sehara
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Tomohisa Toda
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Lena Iwai
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Mayu Wakimoto
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Kaori Tanno
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Yutaka Matsubayashi
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Hiroshi Kawasaki
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| |
Collapse
|
68
|
Early development of the thalamic inhibitory feedback loop in the primary somatosensory system of the newborn mice. J Neurosci 2009; 29:9930-40. [PMID: 19657043 DOI: 10.1523/jneurosci.1671-09.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spontaneous neuronal activity plays an important role during the final development of the brain circuits and the formation of the primary sensory maps. In young rats, spindle bursts have been recorded in the primary somatosensory cortex. They are correlated with spontaneous muscle twitches and occur before active whisking. They bear similarities with the spindles recorded in adult brain that occur during early stages of sleep and rely on a thalamic feedback loop between the glutamatergic nucleus ventroposterior medialis (nVPM) and the GABAergic nucleus reticularis thalami (nRT). However, whether a functional nVPM-nRT loop exists in newborn rodents is unknown. We studied the reciprocal synaptic connections between nVPM and nRT in thalamic acute slices from mice from birth [postnatal day 0 (P0)] until P9. We first demonstrated that nVPM-to-nRT EPSCs could be distinguished from corticothalamic EPSCs by their inhibition by 5-HT attributable to the transient expression of functional presynaptic serotonin 1B receptors. The nVPM-to-nRT EPSCs and nRT-to-nVPM IPSCs were both detected the first day after birth; their amplitude near 2 nS was relatively stable until P5. At P6-P7, there was a rapid and simultaneous increase of both nVPM-to-nRT EPSCs and nRT-to-nVPM IPSCs that reached 8 and 9 nS, respectively. Our results show that the thalamic synapses implicated in spindle activity are functional shortly after birth, suggesting that they could already generate spindles during the first postnatal week. Our results also suggest an inhibitory action of 5-HT on the spindle bursts of the newborn mice.
Collapse
|
69
|
Suzuki-Hirano A, Shimogori T. The role of Fgf8 in telencephalic and diencephalic patterning. Semin Cell Dev Biol 2009; 20:719-25. [DOI: 10.1016/j.semcdb.2009.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/09/2009] [Accepted: 04/01/2009] [Indexed: 12/22/2022]
|
70
|
She WC, Quairiaux C, Albright MJ, Wang YC, Sanchez DE, Chang PS, Welker E, Lu HC. Roles of mGluR5 in synaptic function and plasticity of the mouse thalamocortical pathway. Eur J Neurosci 2009; 29:1379-96. [PMID: 19519626 PMCID: PMC2714552 DOI: 10.1111/j.1460-9568.2009.06696.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the development of cortical sensory maps. However, its precise roles in the synaptic function and plasticity of thalamocortical (TC) connections remain unknown. Here we first show that in mGluR5 knockout (KO) mice bred onto a C57BL6 background cytoarchitectonic differentiation into barrels is missing, but the representations for large whiskers are identifiable as clusters of TC afferents. The altered dendritic morphology of cortical layer IV spiny stellate neurons in mGluR5 KO mice implicates a role for mGluR5 in the dendritic morphogenesis of excitatory neurons. Next, in vivo single-unit recordings of whisker-evoked activity in mGluR5 KO adults demonstrated a preserved topographical organization of the whisker representation, but a significantly diminished temporal discrimination of center to surround whiskers in the responses of individual neurons. To evaluate synaptic function at TC synapses in mGluR5 KO mice, whole-cell voltage-clamp recording was conducted in acute TC brain slices prepared from postnatal day 4-11 mice. At mGluR5 KO TC synapses, N-methyl-D-aspartate (NMDA) currents decayed faster and synaptic strength was more easily reduced, but more difficult to strengthen by Hebbian-type pairing protocols, despite a normal developmental increase in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated currents and presynaptic function. We have therefore demonstrated that mGluR5 is required for synaptic function/plasticity at TC synapses as barrels are forming, and we propose that these functional alterations at the TC synapse are the basis of the abnormal anatomical and functional development of the somatosensory cortex in the mGluR5 KO mouse.
Collapse
Affiliation(s)
- Wei-Chi She
- The Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Charles Quairiaux
- Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, Lausanne, Switzerland
| | - Michael J. Albright
- The Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yu-Chi Wang
- The Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Denisse E. Sanchez
- The Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Poh-Shing Chang
- The Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Egbert Welker
- Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, Lausanne, Switzerland
| | - Hui-Chen Lu
- The Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
- Department of Neuroscience and Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
71
|
Neonatal fluoxetine exposure affects the neuronal structure in the somatosensory cortex and somatosensory-related behaviors in adolescent rats. Neurotox Res 2009; 15:212-23. [PMID: 19384594 DOI: 10.1007/s12640-009-9022-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/29/2008] [Accepted: 12/12/2008] [Indexed: 10/20/2022]
Abstract
Selective serotonin reuptake inhibitor (SSRI)-type antidepressants are often prescribed to depressive pregnant women for their less adverse side effects. However, growing evidences have shown increased congenital malformations and poor neonatal adaptation in the perinatal SSRI-exposed human infants as well as animal pups. In this study, we examined the effects of early exposure of fluoxetine, the most popular SSRI-type antidepressant, on the developing somatosensory system. Physiological saline or fluoxetine (10 mg/kg) was subcutaneously injected into neonatal rats from P0 to P6. Somatosensory-related behaviors were examined in adolescence (P30-P35). Morphological features of the primary somatosensory cortex were checked at P7 and P35. The tactile and thermal perceptions as well as locomotor activity were affected by neonatal fluoxetine treatment. At the morphological level, the number of branch tips of thalamocortical afferents to the somatosensory cortex was reduced in the fluoxetine-treated rats. Furthermore, the spiny stellate neurons in the layer IV somatosensory cortex had reduced dendritic span and complexity with fewer branches, shorter dendritic length, and smaller dendritic field. The spine density of spiny stellate neurons was significantly reduced whereas the spine length of mushroom- and branched-type was increased. Taken together, these results indicate that neonatal fluoxetine administration has long-lasting effects on the function and structure in the somatosensory system. Sensory information processing may be disturbed in the neonatal fluoxetine-treated animals due to the structural deformation in the thalamocortical afferents and dendritic structures of the spiny stellate neurons in the layer IV somatosensory cortex.
Collapse
|
72
|
Wijetunge LS, Till SM, Gillingwater TH, Ingham CA, Kind PC. mGluR5 regulates glutamate-dependent development of the mouse somatosensory cortex. J Neurosci 2008; 28:13028-37. [PMID: 19052194 PMCID: PMC3844741 DOI: 10.1523/jneurosci.2600-08.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/08/2008] [Accepted: 10/11/2008] [Indexed: 11/21/2022] Open
Abstract
We have previously reported that mGluR5 signaling via PLC-beta1 regulates the development of whisker patterns within S1 (barrel) cortex of mice (Hannan et al., 2001). However, whether these defects arise from the loss of postsynaptic mGluR5 signaling, and whether the level of mGluR5 is important for barrel formation, was not examined. Furthermore, whether mGluR5 regulates other developmental processes that occur before or after barrel development is not known. We now show that mGluR5 is present postsynaptically at thalamocortical synapses during barrel formation. In addition, Mglur5(+/-) mice exhibit normal TCA patch formation but reduced cellular segregation in layer 4, indicating a dose-dependent role for mGluR5 in the regulation of pattern formation. Furthermore Mglur5(-/-) and Mglur5(+/-) mice display normal cortical arealization, layer formation, and size of PMBSF indicating the defects within S1 do not result from general abnormalities of cortical mapping during earlier stages of development. At P21 layer 4 neurons from Mglur5(-/-) and Mglur5(+/-) mice show a significant reduction in spine density but normal dendritic complexity compared with Mglur5(+/+) mice indicating a role in synaptogenesis during cortical development. Finally, mGluR5 regulates pattern formation throughout the trigeminal system of mice as the representation of the AS whiskers in the PrV, VpM, and S1 cortex was disrupted in Mglur5(-/-) mice. Together these data indicate a key role for mGluR5 at both early and late stages of neuronal development in the trigeminal system of mice.
Collapse
Affiliation(s)
- Lasani S. Wijetunge
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Sally M. Till
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Thomas H. Gillingwater
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Cali A. Ingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Peter C. Kind
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
73
|
Hoerder-Suabedissen A, Paulsen O, Molnár Z. Thalamocortical maturation in mice is influenced by body weight. J Comp Neurol 2008; 511:415-20. [PMID: 18803242 DOI: 10.1002/cne.21853] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The emergence of the whisker-related patterning of the barrel cortex during the first postnatal week is a frequently assessed feature of rodent cortical development and has been used extensively to screen for effects of genetic mutations on neural development in mice. As alterations in body weight often accompany genetic mutations, we asked whether body weight itself might affect the progression of barrel cortex development in wildtype C57/BL6 mice. The body weight varied considerably between as well as within litters, and could differ by a factor of up to 1.6 between littermates. The establishment of the periphery-related and barrel patterning was assessed at postnatal (P days) 4 and 6 using cytochrome oxidase and Nissl staining. We found that only 20% of the mouse pups had an established thalamocortical afferent pattern in the barrel cortex at P4 (4 out of 21 brains), while the majority of the pups showed a well-established pattern at P6 (13 of 16 brains). At both ages the more developed barrel structure was found in the heavier littermates. Conversely, no periphery-related pattern was apparent in the somatosensory cortex at either P4 or P6 below a critical body weight of 2.6 g and 2.0 g, respectively. These findings may have implications for the interpretation of developmental changes in the barrel cortex of genetically modified mice.
Collapse
Affiliation(s)
- Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom.
| | | | | |
Collapse
|
74
|
Kataoka A, Shimogori T. Fgf8 controls regional identity in the developing thalamus. Development 2008; 135:2873-81. [DOI: 10.1242/dev.021618] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate thalamus contains multiple sensory nuclei and serves as a relay station to receive sensory information and project to corresponding cortical areas. During development, the progenitor region of the diencephalon is divided into three parts, p1, p2 (presumptive thalamus) and p3, along its longitudinal axis. Besides the local expression of signaling molecules such as sonic hedgehog (Shh), Wnt proteins and Fgf8, the patterning mechanisms of the thalamic nuclei are largely unknown. Using mouse in utero electroporation to overexpress or inhibit endogenous Fgf8 at the diencephalic p2/p3 border, we revealed that it affected gene expression only in the p2 region without altering overall diencephalic size or the expression of other signaling molecules. We demonstrated that two distinctive populations in p2,which can be distinguished by Ngn2 and Mash1 in early embryonic diencephalon, are controlled by Fgf8 activity in complementary manner. Furthermore, we found that FGF activity shifts thalamic sensory nuclei on the A/P axis in postnatal brain. Moreover, gene expression analysis demonstrated that FGF signaling shifts prethalamic nuclei in complementary manner to the thalamic shift. These findings suggest conserved roles of FGF signaling in patterning along the A/P axis in CNS, and reveal mechanisms of nucleogenesis in the developing thalamus.
Collapse
Affiliation(s)
- Ayane Kataoka
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama 351-0198,Japan
| | - Tomomi Shimogori
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama 351-0198,Japan
| |
Collapse
|
75
|
Termination of lesion-induced plasticity in the mouse barrel cortex in the absence of oligodendrocytes. Mol Cell Neurosci 2008; 39:40-9. [PMID: 18588982 DOI: 10.1016/j.mcn.2008.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 01/26/2023] Open
Abstract
Termination of developmental plasticity occurs at specific points in development, and the mechanisms responsible for it are not well understood. One hypothesis that has been proposed is that oligodendrocytes (OLs) play an important role. Consistent with this, we found that OLs appeared in the mouse somatosensory cortex at the end of the critical period for whisker lesion-induced barrel structural plasticity. To test this hypothesis, we used two mouse lines with defective OL differentiation: Olig1-deficient and jimpy. In Olig1-deficient mice, although OLs were totally absent, the termination of lesion-induced plasticity was not delayed. The timing was normal even when the cytoarchitectonic barrel formation was temporarily blocked by pharmacological treatment in Olig1-deficient mice. Furthermore, the termination was not delayed in jimpy mice. These results demonstrate that, even though OLs appear at the end of the critical period, OLs are not intrinsically necessary for the termination of lesion-induced plasticity. Our findings underscore a mechanistic distinction between the termination of thalamocortical axonal plasticity in the barrel cortex and that in the visual cortex, in which OL-derived Nogo-A/B was recently suggested to be essential.
Collapse
|
76
|
Iwasato T, Inan M, Kanki H, Erzurumlu RS, Itohara S, Crair MC. Cortical adenylyl cyclase 1 is required for thalamocortical synapse maturation and aspects of layer IV barrel development. J Neurosci 2008; 28:5931-43. [PMID: 18524897 PMCID: PMC2733830 DOI: 10.1523/jneurosci.0815-08.2008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 04/07/2008] [Accepted: 04/27/2008] [Indexed: 11/21/2022] Open
Abstract
Experimental evidence from mutant or genetically altered mice indicates that the formation of barrels and the proper maturation of thalamocortical (TC) synapses in the primary somatosensory (barrel) cortex depend on mechanisms mediated by neural activity. Type 1 adenylyl cyclase (AC1), which catalyzes the formation of cAMP, is stimulated by increases in intracellular Ca(2+) levels in an activity-dependent manner. The AC1 mutant mouse, barrelless (brl), lacks typical barrel cytoarchitecture, and displays presynaptic and postsynaptic functional defects at TC synapses. However, because AC1 is expressed throughout the trigeminal pathway, the barrel cortex phenotype of brl mice may be a consequence of AC1 disruption in cortical or subcortical regions. To examine the role of cortical AC1 in the development of morphological barrels and TC synapses, we generated cortex-specific AC1 knock-out (CxAC1KO) mice. We found that neurons in layer IV form grossly normal barrels and TC axons fill barrel hollows in CxAC1KO mice. In addition, whisker lesion-induced critical period plasticity was not impaired in these mice. However, we found quantitative reductions in the quality of cortical barrel cytoarchitecture and dendritic asymmetry of layer IV barrel neurons in CxAC1KO mice. Electrophysiologically, CxAC1KO mice have deficits in the postsynaptic but not in the presynaptic maturation of TC synapses. These results suggest that activity-dependent postsynaptic AC1-cAMP signaling is required for functional maturation of TC synapses and the development of normal barrel cortex cytoarchitecture. They also suggest that the formation of the gross morphological features of barrels is independent of postsynaptic AC1 in the barrel cortex.
Collapse
Affiliation(s)
- Takuji Iwasato
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Melis Inan
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Hiroaki Kanki
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, School of Medicine, Baltimore, Maryland 21201
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Michael C. Crair
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, and
| |
Collapse
|
77
|
Donovan SL, McCasland JS. GAP-43 is critical for normal targeting of thalamocortical and corticothalamic, but not trigeminothalamic axons in the whisker barrel system. Somatosens Mot Res 2008; 25:33-47. [PMID: 18344146 DOI: 10.1080/08990220701830696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mice lacking the growth-associated protein GAP-43 (KO) show disrupted cortical topography and no barrels. Whisker-related patterns of cells are normal in the KO brainstem trigeminal complex (BSTC), while the pattern in KO ventrobasal thalamus (VB) is somewhat compromised. To better understand the basis for VB and cortical abnormalities, we used small placements of DiI to trace axonal projections between BSTC, VB, and barrel cortex in wildtype (WT) and GAP-43 KO mice. The trigeminothalamic (TT) pathway consists of axons from cells in the Nucleus Prinicipalis that project to the contralateral VB thalamus. DiI-labeled KO TT axons crossed the midline from BSTC and projected to contralateral VB normally, consistent with normal BSTC cytoarchitecture. By contrast, the KO thalamocortical axons (TCA) projection was highly abnormal. KO TCAs showed delays of 1-2 days in initial ingrowth to cortex. Postnatally, KO TCAs showed multiple pathfinding errors near intermediate targets, and were abnormally fasciculated within the internal capsule (IC). Interestingly, most individually labeled KO TCAs terminated in deep layers instead of in layer IV as in WT. This misprojection is consistent with birthdating analysis in KO mice, which revealed that neurons normally destined for layer IV remain in deep cortical layers. Early outgrowth of KO corticofugal (CF) axons was similar for both genotypes. However, at P7 KO CF fibers remained bundled as they entered the IC, and exhibited few terminal branches in VB. Thus, the establishment of axonal projections between thalamus and cortex are disrupted in GAP-43 KO mice.
Collapse
Affiliation(s)
- Stacy L Donovan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
78
|
Lush ME, Li Y, Kwon CH, Chen J, Parada LF. Neurofibromin is required for barrel formation in the mouse somatosensory cortex. J Neurosci 2008; 28:1580-7. [PMID: 18272679 PMCID: PMC2760344 DOI: 10.1523/jneurosci.5236-07.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 12/26/2007] [Indexed: 11/21/2022] Open
Abstract
The rodent barrel cortex is a useful system to study the role of genes and neuronal activity in the patterning of the nervous system. Several genes encoding either intracellular signaling molecules or neurotransmitter receptors are required for barrel formation. Neurofibromin is a tumor suppressor protein that has Ras GTPase activity, thus attenuating the MAPK (mitogen-activated protein kinase) and and PI-3 kinase (phosphatidylinositol 3-kinase) pathways, and is mutated in humans with the condition neurofibromatosis type 1 (NF1). Neurofibromin is widely expressed in the developing and adult nervous system, and a common feature of NF1 is deficits in intellectual development. In addition, NF1 is an uncommonly high disorder among individuals with autism. Thus, NF1 may have important roles in normal CNS development and function. To explore roles for neurofibromin in the development of the CNS, we took advantage of a mouse conditional allele. We show that mice that lack neurofibromin in the majority of cortical neurons and astrocytes fail to form cortical barrels in the somatosensory cortex, whereas segregation of thalamic axons within the somatosensory cortex appears unaffected.
Collapse
Affiliation(s)
- Mark E. Lush
- Department of Developmental Biology and Kent Waldrep Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133
| | - Yun Li
- Department of Developmental Biology and Kent Waldrep Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133
| | - Chang-Hyuk Kwon
- Department of Developmental Biology and Kent Waldrep Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133
| | - Jian Chen
- Department of Developmental Biology and Kent Waldrep Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133
| | - Luis F. Parada
- Department of Developmental Biology and Kent Waldrep Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133
| |
Collapse
|
79
|
Trevelyan AJ, Upton AL, Cordery PM, Thompson ID. An experimentally induced duplication of retinotopic mapping within the hamster primary visual cortex. Eur J Neurosci 2007; 26:3277-90. [PMID: 18005057 DOI: 10.1111/j.1460-9568.2007.05941.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary cortical areas normally have a single mapping of the receptor array arising from a 'point-to-point' projection from the thalamus. We show that, for the visual cortex, this simple mapping rule breaks down when retinal input to the thalamus is altered. We utilize the monocular enucleation paradigm, which alters subcortical mappings ipsilateral to the remaining eye. We show that this manipulation produces an altered visuotopic map in area 17 with two separated, mirror-imaged representations of the central visual field. Furthermore, thalamic point-to-point connectivity is dramatically changed. There are now two overlapping geniculocortical projections: the predominant projection maps with apparently normal topography, and a second projection maps with the opposite polarity. The plane of symmetry of the duplicated anatomical projection coincides precisely with the functional map reversal and, notably, geniculocortical magnification factors are identical in the two projections. We suggest that the duplicated, abnormal geniculocortical projection is retinotopically matched to the normal projection. We speculate that aberrant geniculocortical terminals are stabilized because they have coherent activity patterns with topographically normal terminals.
Collapse
|
80
|
Lane RD, Pluto CP, Kenmuir CL, Chiaia NL, Mooney RD. Does reorganization in the cuneate nucleus following neonatal forelimb amputation influence development of anomalous circuits within the somatosensory cortex? J Neurophysiol 2007; 99:866-75. [PMID: 18032566 DOI: 10.1152/jn.00867.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neonatal forelimb amputation in rats produces sprouting of sciatic nerve afferent fibers into the cuneate nucleus (CN) and results in 40% of individual CN neurons expressing both forelimb-stump and hindlimb receptive fields. The forelimb-stump region of primary somatosensory cortex (S-I) of these rats contains neurons in layer IV that express both stump and hindlimb receptive fields. However, the source of the aberrant input is the S-I hindlimb region conveyed to the S-I forelimb-stump region via intracortical projections. Although the reorganization in S-I reflects changes in cortical circuitry, it is possible that these in turn are dependent on the CN reorganization. The present study was designed to directly test whether the sprouting of sciatic afferents into the CN is required for expression of the hindlimb inputs in the S-I forelimb-stump field. To inhibit sprouting, neurotrophin-3 (NT-3) was applied to the cut nerves following amputation. At P60 or older, NT-3-treated rats showed minimal sciatic nerve fibers in the CN. Multiunit electrophysiological recordings in the CN of NT-3-treated, amputated rats revealed 6.3% of sites were both stump/hindlimb responsive, compared with 30.5% in saline-treated amputated animals. Evaluation of the S-I following GABA receptor blockade, revealed that the percentage of hindlimb responsive sites in the stump representation of the NT-3-treated rats (34.2%) was not significantly different from that in saline-treated rats (31.5%). These results indicate that brain stem reorganization in the form of sprouting of sciatic afferents into the CN is not necessary for development of anomalous hindlimb receptive fields within the S-I forelimb/stump region.
Collapse
Affiliation(s)
- Richard D Lane
- Department of Neurosciences, Toledo, College of Medicine, Toledo, OH 43614-2598, USA.
| | | | | | | | | |
Collapse
|
81
|
Melzer P, Mineo L, Ebner FF. Optic nerve transection affects development and use-dependent plasticity in neocortex of the rat: Quantitative acetylcholinesterase imaging. Brain Res 2007; 1139:68-84. [PMID: 17280650 DOI: 10.1016/j.brainres.2006.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 12/04/2006] [Accepted: 12/14/2006] [Indexed: 11/15/2022]
Abstract
We investigated the effects of neonatal optic nerve transection on cortical acetylcholinesterase (AChE) activity in hooded rats during postnatal development and following behavioral manipulation after weaning. AChE reaction product was quantified on digitized images of histochemically stained sections in layer IV of primary somatic sensory, primary visual and visual association cortex. Rats with optic nerve transection were compared to sham-operated littermates. In all cortical regions of both types of animal, AChE reaction product was increased to peak 2 weeks after birth and decreased thereafter, reaching adult levels at the end of the third postnatal week. During postnatal development, reaction product in primary visual cortex was lower in rats deprived of retinal input than in sham-operated littermates and the area delineated by reaction product was smaller. However, optic nerve transection did not modify the time course of postnatal development or statistically significantly diminish adult levels of AChE activity. Behavioral manipulations after weaning statistically significantly increased enzyme activity in sham-operated rats in all cortical areas examined. Compared with cage rearing, training in a discrimination task with food reward had a greater impact than environmental enrichment. By contrast, in the rats with optic nerve transection enrichment and training resulted in statistically significantly increased AChE activity only in lateral visual association cortex. Our findings provide evidence for intra- and supramodal influences of the neonatal removal of retinal input on neural activity- and use-dependent modifications of cortical AChE activity. The laminar distribution of the AChE reaction product suggests that the observed changes in AChE activity were mainly related to cholinergic basal forebrain afferents. These afferents may facilitate the stabilization of transient connections between the somatic sensory and the visual pathway.
Collapse
Affiliation(s)
- Peter Melzer
- Deparment of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, Tennessee 37203, USA.
| | | | | |
Collapse
|
82
|
Abstract
Since their detection in the early 1980s immediate-early genes (most of them being inducible transcription factors) have been regarded as molecular keys to the orchestration of late-effector genes that ultimately would enable functional and structural adaptation of the brain to changing external and internal demands. This is called neuronal plasticity and it has been intensively studied in the somatosensory (barrel) cortex of rodents. This brain region is intimately involved in the processing and probably also the storage of tactile information, stemming from the large facial whiskers, necessary for object detection or spatial navigation in the environment. On the other hand, several of the inducible transcription factors have been found to function as neuronal activity markers providing a cellular resolution, thus, enabling the cell-type specific mapping of activated neuronal circuits. Some recent data on both topics in the rodent barrel cortex will be presented in this topical review.
Collapse
Affiliation(s)
- Jochen F Staiger
- Department of Neuroanatomy, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| |
Collapse
|
83
|
Lazutkin AA, Meyer BI, Anokhin KV. Transgene 6A-99 is a molecular marker of developing somatosensory cortex in mice. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
84
|
Deshmukh S, Onozuka K, Bender KJ, Bender VA, Lutz B, Mackie K, Feldman DE. Postnatal development of cannabinoid receptor type 1 expression in rodent somatosensory cortex. Neuroscience 2007; 145:279-87. [PMID: 17210229 PMCID: PMC1850104 DOI: 10.1016/j.neuroscience.2006.11.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/17/2006] [Accepted: 11/20/2006] [Indexed: 11/19/2022]
Abstract
Endocannabinoids are powerful modulators of synaptic transmission that act on presynaptic cannabinoid receptors. Cannabinoid receptor type 1 (CB1) is the dominant receptor in the CNS, and is present in many brain regions, including sensory cortex. To investigate the potential role of CB1 receptors in cortical development, we examined the developmental expression of CB1 in rodent primary somatosensory (barrel) cortex, using immunohistochemistry with a CB1-specific antibody. We found that before postnatal day (P) 6, CB1 receptor staining was present exclusively in the cortical white matter, and that CB1 staining appeared in the gray matter between P6 and P20 in a specific laminar pattern. CB1 staining was confined to axons, and was most prominent in cortical layers 2/3, 5a, and 6. CB1 null (-/-) mice showed altered anatomical barrel maps in layer 4, with enlarged inter-barrel septa, but normal barrel size. These results indicate that CB1 receptors are present in early postnatal development and influence development of sensory maps.
Collapse
Affiliation(s)
- Suvarna Deshmukh
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357
| | - Kaori Onozuka
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357
| | - Kevin J. Bender
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357
| | - Vanessa A. Bender
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357
| | - Beat Lutz
- Department of Physiological Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Ken Mackie
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA 98195-6540
| | - Daniel E. Feldman
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357
- Corresponding author: phone 858-822-4271, fax 858-534-7309,
| |
Collapse
|
85
|
Gheorghita F, Kraftsik R, Dubois R, Welker E. Structural basis for map formation in the thalamocortical pathway of the barrelless mouse. J Neurosci 2006; 26:10057-67. [PMID: 17005869 PMCID: PMC6674479 DOI: 10.1523/jneurosci.1263-06.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Barrelless mice (BRL) homozygous for the BRL mutation that disrupts the gene coding for adenylyl cyclase type I on chromosome 11 lack spatial segregation of layer IV cortical cells and of the thalamocortical axons (TCAs) into barrel domains. Despite these morphological perturbations, a functional topographic map has been demonstrated. We reconstructed individual biocytin-injected TCAs from thalamus to barrel cortex in NOR (normal) and BRL mice to analyze to what extent the TCA arborization pattern and bouton distribution could explain the topographic representation of the whisker follicles. In BRL, the geometry of TCA is modified within layer IV as well as in infragranular layers. However, in both strains, the spatial distribution of TCA in layer IV reflects the spatial relationship of their cell bodies in the ventrobasal nucleus of the thalamus. The morphometric analysis revealed that TCAs of both strains have the same length, branch number, and number of axonal boutons in layer IV. However, in barrelless, the boutons are distributed within a larger tangential extent. Analysis of the distribution of boutons from neighboring thalamic neurons demonstrated the existence in layer IV of domains of high bouton density that in both strains equal the size and shape of individual barrels. We propose that the domains of high bouton density are at the basis of the whisker map in barrelless mice.
Collapse
Affiliation(s)
- Fulvia Gheorghita
- Département de Biologie Cellulaire et de Morphologie, Faculté de Médecine, Université de Lausanne, CH-1005 Lausanne, Switzerland
| | - Rudolf Kraftsik
- Département de Biologie Cellulaire et de Morphologie, Faculté de Médecine, Université de Lausanne, CH-1005 Lausanne, Switzerland
| | - Roger Dubois
- Département de Biologie Cellulaire et de Morphologie, Faculté de Médecine, Université de Lausanne, CH-1005 Lausanne, Switzerland
| | - Egbert Welker
- Département de Biologie Cellulaire et de Morphologie, Faculté de Médecine, Université de Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|
86
|
Marks CA, Cheng K, Cummings DM, Belluscio L. Activity-dependent plasticity in the olfactory intrabulbar map. J Neurosci 2006; 26:11257-66. [PMID: 17079653 PMCID: PMC6674536 DOI: 10.1523/jneurosci.2805-06.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In mammals, each olfactory bulb contains two mirror-symmetric glomerular maps. Isofunctional glomeruli within each bulb are specifically linked through a set of reciprocal intrabulbar projections (IBPs) to form an intrabulbar map. We injected neural tracers into the glomerular layer on one side of the bulb and examined the resulting projection on the opposite side. In adult mice, the size of the projection tuft is directly proportional to the size of the injected region. Using this ratio as a measure of IBP maturity, we find an immature 5:1 projection to injection ratio at 1 week of age that gradually refines to a mature 1:1 by 7 weeks. Moreover, whereas the glomerular map is able to form despite the elimination of odorant-induced activity, the intrabulbar map shows clear activity dependence for its precise formation. Here we show through experiments with both naris-occluded and anosmic mice that odorant-induced activity is not required to establish IBPs but is crucial for projection refinement. In contrast, increased glomerular activation through exposure to distinct odorants during map development can accelerate the refinement of projections associated with the activated glomeruli. These findings illustrate a clear role for odorant-induced activity in shaping the internal circuitry of the bulb. Interestingly, activity deprivation can alter the organization of both the developing and the mature map to the same degree, demonstrating that intrabulbar map plasticity is maintained into adulthood with no discernible critical period.
Collapse
Affiliation(s)
- Carolyn A. Marks
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Kai Cheng
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Diana M. Cummings
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Leonardo Belluscio
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
87
|
Minlebaev M, Ben-Ari Y, Khazipov R. Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. J Neurophysiol 2006; 97:692-700. [PMID: 17093125 DOI: 10.1152/jn.00759.2006] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Early in development, cortical networks generate particular patterns of activity that participate in cortical development. The dominant pattern of electrical activity in the neonatal rat neocortex in vivo is a spatially confined spindle-burst. Here, we studied network mechanisms of generation of spindle-bursts in the barrel cortex of neonatal rats using a superfused cortex preparation in vivo. Both spontaneous and sensory-evoked spindle-bursts were present in the superfused barrel cortex. Pharmacological analysis revealed that spindle-bursts are driven by glutamatergic synapses with a major contribution of AMPA/kainate receptors, but slight participation of NMDA receptors and gap junctions. Although GABAergic synapses contributed minimally to the pacing the rhythm of spindle-burst oscillations, surround GABAergic inhibition appeared to be crucial for their compartmentalization. We propose that local spindle-burst oscillations, driven by glutamatergic synapses and spatially confined by GABAergic synapses, contribute to the development of barrel cortex during the critical period of developmental plasticity.
Collapse
Affiliation(s)
- Marat Minlebaev
- The Mediterranean Institute of Neurobiology/INSERM U29, 163 Avenue de Luminy, B.P. 13, 13273 Marseille, France
| | | | | |
Collapse
|
88
|
de Rivero Vaccari JC, Casey GP, Aleem S, Park WM, Corriveau RA. NMDA receptors promote survival in somatosensory relay nuclei by inhibiting Bax-dependent developmental cell death. Proc Natl Acad Sci U S A 2006; 103:16971-6. [PMID: 17077143 PMCID: PMC1636563 DOI: 10.1073/pnas.0608068103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Naturally occurring cell death is a universal feature of developing nervous systems that plays an essential role in determining adult brain function. Yet little is known about the decisions that select a subset of CNS neurons for survival and cause others to die. We report that postnatal day 0 NMDA receptor subunit 1 (NMDAR1) knockout mice display an approximately 2-fold increase in cell death in the brainstem trigeminal complex (BSTC), including all four nuclei that receive somatosensory inputs from the face (principalis, oralis, interpolaris, and caudalis). Treatment with the NMDA receptor antagonist dizocilpine maleate (MK-801) for 24 h before birth also caused an increase in cell death that reached statistical significance in two of the four nuclei (oralis and interpolaris). The neonatal sensitivity to NMDA receptor hypofunction in the BSTC, and in its main thalamic target, the ventrobasal nucleus (VB), coincides with the peak of naturally occurring cell death and trigeminothalamic synaptogenesis. At embryonic day 17.5, before the onset of these events, NMDAR1 knockout does not affect cell survival in either the BSTC or the VB. Immunostaining for active caspase-3 and the neuronal marker Hu specifically confirms the presence of dying neurons in the BSTC and the VB of NMDAR1 knockout neonates. Finally, genetic deletion of Bax rescues these structures from the requirement for NMDA receptors to limit naturally occurring cell death. Taken together, the results indicate that NMDA receptors play a survival role for somatosensory relay neurons during synaptogenesis by inhibiting Bax-dependent developmental cell death.
Collapse
Affiliation(s)
| | - Gregory P. Casey
- *Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Salman Aleem
- *Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Won-Mee Park
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118; and
| | - Roderick A. Corriveau
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH 43614
- To whom correspondence should be sent at the present address:
Coriell Institute for Medical Research, 403 Haddon Avenue, Camden, NJ 08103. E-mail:
| |
Collapse
|
89
|
Ohsaki K, Nakamura S. Instructive role of a peripheral pattern for the central patterning of the trigeminal projection at the brainstem and thalamus revealed by an artificially altered whisker pattern. Neuroscience 2006; 141:1899-908. [PMID: 16808999 DOI: 10.1016/j.neuroscience.2006.04.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/13/2006] [Accepted: 04/14/2006] [Indexed: 11/16/2022]
Abstract
The central patterning mechanism of neuronal circuits is an important issue in developmental neuroscience. We report here the role of a peripheral whisker pattern for the patterning of the trigeminal projection at the brainstem and thalamus in the mouse somatosensory system. The whisker pattern was manipulated by infecting the embryonic epidermis with adenovirus harboring Shh. The ectopic expression of Shh led to the induction of extra whiskers and displacement of whiskers, where these whiskers were histologically normal. The altered whisker pattern was isomorphically represented in the brainstem (barrelette: subnuclei principalis and subnuclei interpolaris), thalamus (barreloid) and cortex (barrel) as revealed by cytochrome oxidase staining. The barrelette-like pattern of the parvalbumin became discernible by immunostaining at P7 in subnuclei principalis and at P4 in subnuclei interpolaris in normal mice. These are the barrelette neurons projecting to the thalamus and the local circuit within the barrelette. The barrelette-like parvalbumin pattern also exhibits the altered whisker pattern induced by the adenovirus harboring Shh. These results highlight the role the peripheral whisker pattern for the central patterning of the brainstem, thalamus, and cortex in the mouse somatosensory system.
Collapse
Affiliation(s)
- K Ohsaki
- National Institute of Neuroscience, National Center for Neurology and Psychiatry, Department of Biochemistry and Cellular Biology, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.
| | | |
Collapse
|
90
|
Persico AM, Di Pino G, Levitt P. Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro. Brain Res 2006; 1095:17-25. [PMID: 16701576 DOI: 10.1016/j.brainres.2006.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 03/23/2006] [Accepted: 04/03/2006] [Indexed: 11/30/2022]
Abstract
Serotonin (5-HT) exerts prominent morphogenetic roles during development. For example, somatosensory cortical barrel formation is altered in mouse models characterized by excessive extracellular 5-HT, suggesting that 5-HT affects development of thalamic afferents and/or neocortical target regions. The present study assessed 5-HT effects in primary cultures of fetal ventroposterior thalamic (VPT) neurons. 5-HT produces concentration-dependent trophic effects, with impressive 59% and 106% peak increases in total neurite length and number of branching points, respectively, at a dose of 30 microM 5-HT. The exposure of VPT neurons to specific 5-HT receptor agonists 8-OH-DPAT (5-HT(1A)), CGS-12066A (5-HT(1B)), DOI (5-HT(2A/2C)), and m-CPBG (5-HT(3)), enhances primary neurite length and number of branching points with rank-order potency 5-HT(1B) > 5-HT(2A/2C) = 5-HT(3) > 5-HT(1A) = vehicle. Trophic 5-HT effects on embryonic VPT neurons are thus much more prominent than previously reported, and can be mediated by multiple 5-HT receptor subtypes.
Collapse
Affiliation(s)
- Antonio M Persico
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Via Emilio Longoni 83, I-00155 Rome, Italy.
| | | | | |
Collapse
|
91
|
Abstract
Axonal branching is an important process for establishing the final pattern of connections between a neuron and its target cells. Cortical connections between upper-layer cells in the neocortex have provided insights into the cellular mechanisms by which electrical activity regulates neural connectivity, including branch formation. Recent evidence further indicates that spontaneous firing and synaptic transmission contribute to axonal branching of cortical neurons through postsynaptic activation.
Collapse
Affiliation(s)
- Naofumi Uesaka
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
92
|
Watson RF, Abdel-Majid RM, Barnett MW, Willis BS, Katsnelson A, Gillingwater TH, McKnight GS, Kind PC, Neumann PE. Involvement of protein kinase A in patterning of the mouse somatosensory cortex. J Neurosci 2006; 26:5393-401. [PMID: 16707791 PMCID: PMC6675315 DOI: 10.1523/jneurosci.0750-06.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 03/23/2006] [Accepted: 03/25/2006] [Indexed: 11/21/2022] Open
Abstract
Patterning of the mouse somatosensory cortex is unusually evident because of the presence of a "barrel field." Presynaptic serotonin and postsynaptic glutamate receptors regulate barrel formation, but little is known of the intracellular signaling pathways through which they act. To determine whether protein kinase A (PKA) plays a role in the development of the barrel field, we examined five viable PKA subunit-specific knock-out (KO) mouse lines for barrel field abnormalities. Barrels are present in these mice, but those lacking the RIIbeta subunit display significantly reduced contrast between the cell densities of barrel hollows and sides compared with wild-type animals. Thalamocortical afferent segregation in the posterior medial barrel subfield appeared normal, suggesting a postsynaptic site of gene action for the RIIbeta protein. Immunoelectron microscopy confirmed that RIIbeta was selectively localized to dendrites and dendritic spines. Mice lacking RIIbeta show reduced glutamate receptor A (GluRA) subunit insertion into the postsynaptic density in postnatal day 7 somatosensory cortex; however, GluRA KO mice developed normal barrels. Our results clearly demonstrate a role for postsynaptic PKA signaling pathways in barrel differentiation. They also demonstrate a clear dissociation between the regulation of GluRA trafficking by PKA and its role in barrel formation. Finally, although a role for PKA downstream of cAMP cannot be ruled out, these data suggest that PKA may not be the principle downstream target because none of the mutants showed a barrelless phenotype similar to that observed in adenylate cyclase type 1 KO mice. These results give insight into activity-dependent mechanisms that regulate barrel formation.
Collapse
|
93
|
Inan M, Lu HC, Albright MJ, She WC, Crair MC. Barrel map development relies on protein kinase A regulatory subunit II beta-mediated cAMP signaling. J Neurosci 2006; 26:4338-49. [PMID: 16624954 PMCID: PMC6674004 DOI: 10.1523/jneurosci.3745-05.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellular and molecular mechanisms mediating the activity-dependent development of brain circuitry are still incompletely understood. Here, we examine the role of cAMP-dependent protein kinase [protein kinase A (PKA)] signaling in cortical development and plasticity, focusing on its role in thalamocortical synapse and barrel map development. We provide direct evidence that PKA activity mediates barrel map formation using knock-out mice that lack type IIbeta regulatory subunits of PKA (PKARIIbeta). We show that PKARIIbeta-mediated PKA function is required for proper dendritogenesis and the organization of cortical layer IV neurons into barrels, but not for the development and plasticity of thalamocortical afferent clustering into a barrel pattern. We localize PKARIIbeta function to postsynaptic processes in barrel cortex and show that postsynaptic PKA targets, but not presynaptic PKA targets, have decreased phosphorylation in pkar2b knock-out (PKARIIbeta(-/-)) mice. We also show that long-term potentiation at TC synapses and the associated developmental increase in AMPA receptor function at these synapses, which normally occurs as barrels form, is absent in PKARIIbeta(-/-) mice. Together, these experiments support an activity-dependent model for barrel map development in which the selective addition and elimination of thalamocortical synapses based on Hebbian mechanisms for synapse formation is mediated by a cAMP/PKA-dependent pathway that relies on PKARIIbeta function.
Collapse
|
94
|
Ferrere A, Vitalis T, Gingras H, Gaspar P, Cases O. Expression of Cux-1 and Cux-2 in the developing somatosensory cortex of normal and barrel-defective mice. ACTA ACUST UNITED AC 2006; 288:158-65. [PMID: 16419078 DOI: 10.1002/ar.a.20284] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, two orthologues of the Drosophila homeobox Cut gene, Cux-1 and Cux-2, have been identified as restricted molecular markers of upper layer (II-IV) neurons in the murine cerebral cortex. We show that during early postnatal life, from P0 to P10, Cux-1 and Cux-2 mRNA are coexpressed in all primary sensory cortices. Antisera to Cux-1 and Cux-2 immunoreactivities preferentially label neurons in the barrel walls of the primary somatosensory cortex (S1). Subsequently, Cux-1 remains enriched in sensory cortices, whereas Cux-2 expression enlarges to comprise the frontal and insular areas. The laminar distribution of Cux-1 and Cux-2 differs: Cux-1 follows a layer IV to layer II decreasing gradient of expression, whereas Cux-2 expression is homogeneous across layers IV-II. No colocalization was found with GABA and birth dating experiments showed that Cux-1-positive neurons in layer IV are born during a restricted period, E13.5-E14.5, suggesting that Cux-1 is a useful molecular marker of the glutamatergic neurons of layer IV. We examined Cux-1 and Cux-2 in barrel-defective mouse strains, the VMAT2 KO, the MAOA KO, and the Adcyl 1(brl) strain. A normal expression level of Cux-1 and Cux-2 was found in layer IV, despite the lack of segregation of the neurons as barrels. Conversely, in Reeler mice, Cux-1 and Cux-2 had a distinct laminar distribution: the Cux-1-positive neurons had an inverted deep localization, whereas the Cux-2-positive neurons were distributed throughout the cortical thickness, suggesting that Cux-2 expression is more widely expressed in the inverted cortex of reeler mutants. Our results indicate that Cux-1 is a useful marker of the layer IV neurons in S1, and that Cux-1 and Cux-2 are differently regulated in the upper layers of the cerebral cortex.
Collapse
Affiliation(s)
- Arnaud Ferrere
- INSERM U616, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
95
|
Lu HC, Butts DA, Kaeser PS, She WC, Janz R, Crair MC. Role of efficient neurotransmitter release in barrel map development. J Neurosci 2006; 26:2692-703. [PMID: 16525048 PMCID: PMC6675166 DOI: 10.1523/jneurosci.3956-05.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical maps are remarkably precise, with organized arrays of thalamocortical afferents (TCAs) that project into distinct neuronal modules. Here, we present evidence for the involvement of efficient neurotransmitter release in mouse cortical barrel map development using barrelless mice, a loss-of-function mutant of calcium/calmodulin-activated adenylyl cyclase I (AC1), and mice with a mutation in Rab3-interacting molecule 1alpha (RIM1alpha), an active zone protein that regulates neurotransmitter release. We demonstrate that release efficacy is substantially decreased in barrelless TCAs. We identify RIMs as important phosphorylation targets for AC1 in the presynaptic terminal. We further show that RIM1alpha mutant mice have reduced TCA neurotransmitter release efficacy and barrel map deficits, although not as severe as those found in barrelless mice. This supports the role of RIM proteins in mediating, in part, AC1 signaling in barrel map development. Finally, we present a model to show how inadequacies in presynaptic function can interfere with activity-dependent processes in neuronal circuit formation. These results demonstrate how efficient synaptic transmission mediated by AC1 function contributes to the development of cortical barrel maps.
Collapse
Affiliation(s)
- Hui-Chen Lu
- Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
Donald Hebb postulated the existence of a mechanism of activity-dependent transcription and synaptic modification almost 60 years ago. While the details of this process are still unclear, a new study by Ince-Dunn et al. in this issue of Neuron indicates that NeuroD2, a calcium-regulated transcription factor, plays a central role in thalamocortical synaptic maturation.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, Oxford, OX1 3QX, United Kingdom
| | | |
Collapse
|
97
|
Ince-Dunn G, Hall BJ, Hu SC, Ripley B, Huganir RL, Olson JM, Tapscott SJ, Ghosh A. Regulation of Thalamocortical Patterning and Synaptic Maturation by NeuroD2. Neuron 2006; 49:683-95. [PMID: 16504944 DOI: 10.1016/j.neuron.2006.01.031] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 07/25/2005] [Accepted: 01/30/2006] [Indexed: 11/22/2022]
Abstract
During cortical development, both activity-dependent and genetically determined mechanisms are required to establish proper neuronal connectivity. While activity-dependent transcription may link the two processes, specific transcription factors that mediate such a process have not been identified. We identified the basic helix-loop-helix (bHLH) transcription factor Neurogenic Differentiation 2 (NeuroD2) in a screen for calcium-regulated transcription factors and report that it is required for the proper development of thalamocortical connections. In neuroD2 null mice, thalamocortical axon terminals fail to segregate in the somatosensory cortex, and the postsynaptic barrel organization is disrupted. Additionally, synaptic transmission is defective at thalamocortical synapses in neuroD2 null mice. Total excitatory synaptic currents are reduced in layer IV in the knockouts, and the relative contribution of AMPA and NMDA receptor-mediated currents to evoked responses is decreased. These observations indicate that NeuroD2 plays a critical role in regulating synaptic maturation and the patterning of thalamocortical connections.
Collapse
Affiliation(s)
- Gulayse Ince-Dunn
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Margret CP, Li CX, Chappell TD, Elberger AJ, Matta SG, Waters RS. Prenatal alcohol exposure delays the development of the cortical barrel field in neonatal rats. Exp Brain Res 2006; 172:1-13. [PMID: 16506013 DOI: 10.1007/s00221-005-0319-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
In-utero alcohol exposure produces sensorimotor developmental abnormalities that often persist into adulthood. The rodent cortical barrel field associated with the representation of the body surface was used as our model system to examine the effect of prenatal alcohol exposure (PAE) on early somatosensory cortical development. In this study, pregnant female rats were intragastrically gavaged daily with high doses of alcohol (6 gm/kg body weight) throughout the first 20 days of pregnancy. Blood alcohol levels were measured in the pregnant dams on gestational days 13 (G13) and G20. The ethanol treated group (EtOH) was compared to the normal control chowfed (CF) group, nutritionally matched pairfed (PF) group, and cross-foster (XF) group. Cortical barrel development was examined in pups across all treatment groups from G25, corresponding to postnatal day 2 (P2), to G32 corresponding to P9. The EtOH and control group pups were weighed, anesthetized, and perfused. Brains were removed and weighed with, and without cerebellum and olfactory bulbs, and neocortex was removed and weighed. Cortices were then flattened, sectioned tangentially, and stained with a metabolic marker, cytochrome oxidase (CO) to reveal the barrel field. Progression of barrel development was distinguished into three categories: (a) absent, (b) cloudy barrel-like pattern, and (c) well-formed barrels with intervening septae. The major findings are: (1) PAE delayed barrel field development by one or more days, (2) the barrel field first appeared as a cloudy pattern that gave way on subsequent days to an adult-like pattern with clearly demarcated intervening septal regions, (3) the barrel field developed differentially in a lateral-to-medial gradient in both alcohol and control groups, (4) PAE delayed birth by one or more days in 53% of the pups, (5) regardless of whether pups were born on G23 (normal expected birth date for non-alcohol controls) or as in the case for the alcohol-delayed pups born as late as G27, the barrel field was never present at birth suggesting the importance of postnatal experience on barrel field development, and (6) PAE did not disrupt the normal barrel field pattern, although both total body and brain weights were compromised. These findings suggest that PAE delays the development of the somatosensory cortex (SI); such delays may interfere with timing and formation of cortical circuits. It is unknown whether other nuclei along the somatosensory pathway undergo similar delays in development or if PAE selectively disrupts cortical circuitry.
Collapse
Affiliation(s)
- Cecilia P Margret
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
99
|
Nicol X, Muzerelle A, Rio JP, Métin C, Gaspar P. Requirement of adenylate cyclase 1 for the ephrin-A5-dependent retraction of exuberant retinal axons. J Neurosci 2006; 26:862-72. [PMID: 16421306 PMCID: PMC6675379 DOI: 10.1523/jneurosci.3385-05.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The calcium-stimulated adenylate cyclase 1 (AC1) has been shown to be required for the refinement of the retinotopic map, but the mechanisms involved are not known. To investigate this question, we devised a retinotectal coculture preparation that reproduces the gradual acquisition of topographic specificity along the rostrocaudal axis of the superior colliculus (SC). Temporal retinal axons invade the entire SC at 4 d in vitro (DIV) and eliminate exuberant branches caudally by 12 DIV. Temporal and nasal axons form branches preferentially in the rostral or caudal SC, respectively. Retinal explants from AC1-deficient mice, AC1(brl/brl), maintain exuberant branches and lose the regional selectivity of branching when confronted with wild-type (WT) SC. Conversely, WT retinas correctly target AC1(brl/brl) collicular explants. The effects of AC1 loss of function in the retina are mimicked by the blockade of ephrin-A5 signaling in WT cocultures. Video microscopic analyses show that AC1(brl/brl) axons have modified responses to ephrin-A5: the collapse of the growth cones occurs, but the rearward movement of the axon is arrested. Our results demonstrate a presynaptic, cell autonomous role of AC1 in the retina and further indicate that AC1 is necessary to enact a retraction response of the retinal axons to ephrin-A5 during the refinement of the retinotopic map.
Collapse
Affiliation(s)
- Xavier Nicol
- Institut National de la Santé et de la Recherche Médicale, U616, University Paris 06, Hôpital Pitié Salpêtrière, Institut Féderatif Neurosciences, F-75013 Paris, France
| | | | | | | | | |
Collapse
|
100
|
Barnett MW, Watson RF, Vitalis T, Porter K, Komiyama NH, Stoney PN, Gillingwater TH, Grant SGN, Kind PC. Synaptic Ras GTPase activating protein regulates pattern formation in the trigeminal system of mice. J Neurosci 2006; 26:1355-65. [PMID: 16452659 PMCID: PMC6675506 DOI: 10.1523/jneurosci.3164-05.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 11/30/2005] [Accepted: 12/08/2005] [Indexed: 11/21/2022] Open
Abstract
The development of ordered connections or "maps" within the nervous system is a common feature of sensory systems and is crucial for their normal function. NMDA receptors are known to play a key role in the formation of these maps; however, the intracellular signaling pathways that mediate the effects of glutamate are poorly understood. Here, we demonstrate that SynGAP, a synaptic Ras GTPase activating protein, is essential for the anatomical development of whisker-related patterns in the developing somatosensory pathways in rodent forebrain. Mice lacking SynGAP show only partial segregation of barreloids in the thalamus, and thalamocortical axons segregate into rows but do not form whisker-related patches. In cortex, layer 4 cells do not aggregate to form barrels. In Syngap(+/-) animals, barreloids develop normally, and thalamocortical afferents segregate in layer 4, but cell segregation is retarded. SynGAP is not necessary for the development of whisker-related patterns in the brainstem. Immunoelectron microscopy for SynGAP from layer 4 revealed a postsynaptic localization with labeling in developing postsynaptic densities (PSDs). Biochemically, SynGAP associates with the PSD in a PSD-95-independent manner, and Psd-95(-/-) animals develop normal barrels. These data demonstrate an essential role for SynGAP signaling in the activity-dependent development of whisker-related maps selectively in forebrain structures indicating that the intracellular pathways by which NMDA receptor activation mediates map formation differ between brain regions and developmental stage.
Collapse
Affiliation(s)
- Mark W Barnett
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|