51
|
Single-dose safety and pharmacokinetics of ST-246, a novel orthopoxvirus egress inhibitor. Antimicrob Agents Chemother 2008; 52:1721-7. [PMID: 18316519 DOI: 10.1128/aac.01303-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ST-246 is a novel, potent orthopoxvirus egress inhibitor that is being developed to treat pathogenic orthopoxvirus infections of humans. This phase I, double-blind, randomized, placebo-controlled single ascending dose study (first time with humans) was conducted to determine the safety, tolerability, and pharmacokinetics of ST-246 in healthy human volunteers. ST-246 was administered in single oral doses of 500, 1,000, and 2,000 mg to fasting healthy volunteers and 1,000 mg to nonfasting healthy volunteers. ST-246 was generally well tolerated with no serious adverse events, and no subject was withdrawn from the study due to ST-246. The most commonly reported drug-related adverse event was neutropenia, which was found, upon further analysis, not to be treatment related. ST-246 was readily absorbed following oral administration with mean times to maximum concentration from 2 h to 3 h. Absorption was greater in nonfasting volunteers than in fasting volunteers. Administration of ST-246 resulted in exposure levels predicted to be sufficient for inhibiting orthopoxvirus replication compared to exposure levels in nonhuman primates in which ST-246 protected animals from lethal orthopoxvirus infection.
Collapse
|
52
|
Parker S, Touchette E, Oberle C, Almond M, Robertson A, Trost LC, Lampert B, Painter G, Buller RM. Efficacy of therapeutic intervention with an oral ether-lipid analogue of cidofovir (CMX001) in a lethal mousepox model. Antiviral Res 2008; 77:39-49. [PMID: 17904231 PMCID: PMC9628989 DOI: 10.1016/j.antiviral.2007.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 07/31/2007] [Accepted: 08/02/2007] [Indexed: 11/27/2022]
Abstract
In the 21st century we are faced with the potential use of natural or recombinant VARV and MPXV as biological weapons, and the emergence of human MPXV. Such an occurrences would require therapeutic and prophylactic intervention with antivirals. Cidofovir, an antiviral approved for the treatment of cytomegalovirus retinitis in AIDS patients, has activity against poxviruses, but must be administered intravenously and is associated with nephrotoxicity. An ether-lipid analogue of CDV, CMX001 (HDP-CDV), has potent antiviral activity against a range of DNA viruses including poxviruses, excellent oral bioavailability and minimal nephrotoxicity. CMX001 and CDV are equally efficacious at protecting mice from mortality following high ectromelia virus doses (10,000 x LD(50)) introduced by the intra-nasal route or small particle aerosol. Using CMX001 at a 10mg/kg dose followed by 2.5mg/kg doses every other-day for 14 days provided solid protection against mortality and weight loss following an intra-nasal challenge of (100-200) x LD(50) of ectromelia virus. Furthermore, complete protection against mortality was achieved when administration was delayed until as late as 5 days post-infection, which is 3-4 days prior to the death of the untreated controls. This therapeutic window would be equivalent to intervening during the rash stage of ordinary smallpox.
Collapse
Affiliation(s)
- Scott Parker
- Department of Molecular Microbiology and Immunology, Saint Louis University Medical School, MO 63104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Smee DF, Hurst BL, Wong MH, Glazer RI, Rahman A, Sidwell RW. Efficacy of N-methanocarbathymidine in treating mice infected intranasally with the IHD and WR strains of vaccinia virus. Antiviral Res 2007; 76:124-9. [PMID: 17658623 PMCID: PMC2268765 DOI: 10.1016/j.antiviral.2007.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 04/23/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
N-Methanocarbathymidine [(N)-MCT] is a newly identified inhibitor of orthopoxvirus replication in cell culture and in mice. Limited published animal studies indicated the compound is effective by intraperitoneal (i.p.) route at 10-100 mg/(kg day). More extensive studies using different treatment regimens in intranasally infected mice were conducted in order to further explore the potential of this compound compared to cidofovir in treating vaccinia virus infections. (N)-MCT was given twice a day for 7 days, whereas cidofovir was administered once a day for 2 days, each starting 24h after virus exposure for most experiments. (N)-MCT was not toxic up to 1000 mg/(kg day) by the i.p. treatment route. Oral and i.p. treatment regimens with (N)-MCT were directly compared during a vaccinia virus (IHD strain) infection, indicating that the nucleoside has good oral bioavailability in mice. Treatments by i.p. route with (N)-MCT (100 mg/(kg day)) reduced lung, nasal, and brain virus titers during an IHD virus infection, but not nearly to the same extent as i.p. cidofovir (100 mg/(kg day)). Treatment with both compounds decreased liver, spleen, and kidney virus titers, as well as reduced lung consolidation scores and lung weights. Onset of treatment could be delayed by 2 days with (N)-MCT and by 3 days with cidofovir, providing significant survival benefit during the IHD virus infection. Against a vaccinia virus (WR strain) infection in mice, i.p. (N)-MCT treatment prevented death at 500 mg/(kg day), which was comparable in activity to i.p. cidofovir (100 mg/(kg day)). Significant reductions in tissue virus titers occurred with both treatment regimens. (N)-MCT could be further pursued for its potential to treat orthopoxvirus infections in humans.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-5600, USA
| | | | | | | | | | | |
Collapse
|
54
|
Nitsche A, Kurth A, Pauli G. Viremia in human Cowpox virus infection. J Clin Virol 2007; 40:160-2. [PMID: 17765007 PMCID: PMC9528219 DOI: 10.1016/j.jcv.2007.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 07/23/2007] [Indexed: 11/23/2022]
Abstract
Background Several poxviruses can infect humans and cause diseases of varying severity. Besides the eradicated Variola virus that induced high mortality rates, numerous further human pathogenic orthopoxviruses are potentially fatal but generally cause less severe infections. While infection-related viremia was described for Variola virus and seems to be rare for Monkeypox virus, it is still debated for Vaccinia virus. So far, viremia in Cowpox virus-infected humans has not been reported. Objectives To estimate the potential risk of Cowpox virus to disseminate and develop severe infections, two Cowpox virus patients were examined for viremia. Study design Whole blood, serum and fluid from virus-induced lesions were analyzed by serology or quantitative real-time PCR. Results Real-time PCR and sequence analysis of the hemagglutinin gene confirmed Cowpox virus in the lesions of both patients. Serology performed on serum obtained at the same time as the lesion specimens demonstrated orthopoxvirus-specific IgG and IgM antibodies, indicating a recent orthopoxvirus infection. In addition, Cowpox virus DNA was detectable in whole blood, but not in serum, as late as week 4 post-infection. Conclusions In contrast to observations following vaccination with Vaccinia virus, DNAemia in patients with localized symptoms of a Cowpox virus infection does not seem to be a rare event. However, its relevance for Cowpox virus pathogenicity has to be elucidated.
Collapse
Affiliation(s)
- Andreas Nitsche
- Robert Koch Institute, Centre for Biological Safety 1, German Consultant Laboratory for Poxviruses, Nordufer 20, 13353, Berlin, Germany.
| | | | | |
Collapse
|
55
|
Prichard MN, Keith KA, Johnson MP, Harden EA, McBrayer A, Luo M, Qiu S, Chattopadhyay D, Fan X, Torrence PF, Kern ER. Selective phosphorylation of antiviral drugs by vaccinia virus thymidine kinase. Antimicrob Agents Chemother 2007; 51:1795-803. [PMID: 17325220 PMCID: PMC1855528 DOI: 10.1128/aac.01447-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/05/2007] [Accepted: 02/19/2007] [Indexed: 11/20/2022] Open
Abstract
The antiviral activity of a new series of thymidine analogs was determined against vaccinia virus (VV), cowpox virus (CV), herpes simplex virus, and varicella-zoster virus. Several compounds were identified that had good activity against each of the viruses, including a set of novel 5-substituted deoxyuridine analogs. To investigate the possibility that these drugs might be phosphorylated preferentially by the viral thymidine kinase (TK) homologs, the antiviral activities of these compounds were also assessed using TK-deficient strains of some of these viruses. Some of these compounds were shown to be much less effective in the absence of a functional TK gene in CV, which was unexpected given the high degree of amino acid identity between this enzyme and its cellular homolog. This unanticipated result suggested that the CV TK was important in the mechanism of action of these compounds and also that it might phosphorylate a wider variety of substrates than other type II enzymes. To confirm these data, we expressed the VV TK and human TK1 in bacteria and isolated the purified enzymes. Enzymatic assays demonstrated that the viral TK could efficiently phosphorylate many of these compounds, whereas most of the compounds were very poor substrates for the cellular kinase, TK1. Thus, the specific phosphorylation of these compounds by the viral kinase may be sufficient to explain the TK dependence. This unexpected result suggests that selective phosphorylation by the viral kinase may be a promising new approach in the discovery of highly selective inhibitors of orthopoxvirus replication.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Bailey TR, Rippin SR, Opsitnick E, Burns CJ, Pevear DC, Collett MS, Rhodes G, Tohan S, Huggins JW, Baker RO, Kern ER, Keith KA, Dai D, Yang G, Hruby D, Jordan R. N-(3,3a,4,4a,5,5a,6,6a-Octahydro-1,3-dioxo-4,6- ethenocycloprop[f]isoindol-2-(1H)-yl)carboxamides: Identification of novel orthopoxvirus egress inhibitors. J Med Chem 2007; 50:1442-4. [PMID: 17335190 PMCID: PMC4067006 DOI: 10.1021/jm061484y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of novel, potent orthopoxvirus egress inhibitors was identified during high-throughput screening of the ViroPharma small molecule collection. Using structure--activity relationship information inferred from early hits, several compounds were synthesized, and compound 14 was identified as a potent, orally bioavailable first-in-class inhibitor of orthopoxvirus egress from infected cells. Compound 14 has shown comparable efficaciousness in three murine orthopoxvirus models and has entered Phase I clinical trials.
Collapse
Affiliation(s)
- Thomas R Bailey
- ViroPharma Incorporated, 397 Eagleview Boulevard, Exton, Pennsylvania 19341, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Harrop R, John J, Carroll MW. Recombinant viral vectors: cancer vaccines. Adv Drug Deliv Rev 2006; 58:931-47. [PMID: 17030074 DOI: 10.1016/j.addr.2006.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 07/10/2006] [Indexed: 12/11/2022]
Abstract
To date cancer vaccines have yet to show efficacy in a phase III trial. However, the clinical benefit seen with monoclonal antibody mediated therapies (e.g., Herceptin) has provided proof of principle that immune responses directed against tumour-associated antigens could have therapeutic potential. The failure of past cancer vaccine trials is likely due to several factors including the inappropriate choice of tumour antigen, use of an unoptimised antigen delivery system or vaccination schedule or selection of the wrong patient group. Any one of these variables could potentially result in the induction of an immune response of insufficient magnitude to deliver clinical benefit. Live recombinant viral vaccines have been used in the development of cancer immunotherapy approaches for the past 10 years. Though such vectors are self-adjuvanted and offer the ability to express multiple tumour-associated antigens (TAAs) along with an array of immune co-factors, arguably, they have yet to demonstrate convincing efficacy in pivotal clinical trials. However, in recent years, more coordinated studies have revealed mechanisms to optimise current vectors and have lead to the development of new advantageous vector systems. In this review, we highlight that live recombinant viral vectors provide a versatile and effective antigen delivery system and describe the optimal properties of an effective viral vector. Additionally, we discuss the advantages and disadvantages of the panel of recombinant viral systems currently available to cancer vaccinologists and how they can work in synergy in heterologous prime boost protocols and with other treatment modalities.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica (U.K.) Ltd., Oxford Science Park, Oxford, OX4 4GA U.K
| | | | | |
Collapse
|
58
|
Jordan R, Hruby D. Smallpox antiviral drug development: satisfying the animal efficacy rule. Expert Rev Anti Infect Ther 2006; 4:277-89. [PMID: 16597208 PMCID: PMC9709928 DOI: 10.1586/14787210.4.2.277] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Concerns over the potential use of variola virus as a biological weapon have prompted new interest in the development of small molecule therapeutics to prevent and treat smallpox infection. Since smallpox is no longer endemic, human clinical trials designed to link antiviral efficacy to clinical outcome have been supplanted by antiviral efficacy evaluations in animal models of orthopoxvirus disease. This poses a unique challenge for drug development; how can animal efficacy data with a surrogate virus be used to establish clinical correlates predictive of human disease outcome? This review will examine the properties of selected animal models that are being used to evaluate poxvirus antiviral drug candidates, and discuss how data from these models can be used to link drug efficacy to clinical correlates of human disease.
Collapse
|
59
|
Smee DF, Wandersee MK, Bailey KW, Wong MH, Chu CK, Gadthula S, Sidwell RW. Cell line dependency for antiviral activity and in vivo efficacy of N-methanocarbathymidine against orthopoxvirus infections in mice. Antiviral Res 2006; 73:69-77. [PMID: 16712967 DOI: 10.1016/j.antiviral.2006.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/12/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
A novel carbocyclic thymidine analog, N-methanocarbathymidine [(N)-MCT], was evaluated for inhibition of orthopoxvirus infections. Efficacy in vitro was assessed by plaque reduction assays against wild-type and cidofovir-resistant strains of cowpox and vaccinia viruses in nine different cell lines. Minimal differences were seen in antiviral activity against wild-type and cidofovir-resistant viruses. (N)-MCT's efficacy was affected by the cell line used for assay, with 50% poxvirus-inhibitory concentrations in cells as follows: mouse=0.6-2.2 microM, rabbit=52-90 microM, monkey=87 to >1000 microM, and human=39-220 microM. Limited studies performed with carbocyclic thymidine indicated a similar cell line dependency for antiviral activity. (N)-MCT did not inhibit actively dividing uninfected cells at 1000 microM. The potency of (N)-MCT against an S-variant thymidine kinase-deficient vaccinia virus was similar to that seen against S-variant and wild-type viruses in mouse, monkey, and human cells, implicating a cellular enzyme in the phosphorylation of the compound. Mice were intranasally infected with cowpox and vaccinia viruses followed 24h later by intraperitoneal treatment with (N)-MCT (twice a day for 7 days) or cidofovir (once a day for 2 days). (N)-MCT treatment at 100 and 30 mg/kg/day resulted in 90 and 20% survival from cowpox virus infection, respectively, compared to 0% survival in the placebo group. Statistically significant reductions in lung virus titers on day 5 occurred in 10, 30, and 100mg/kg/day treated mice. These same doses were also active against a lethal vaccinia virus (WR strain) challenge, and protection was seen down to 10mg/kg/day against a lethal vaccinia virus (IHD strain) infection. Cidofovir (100mg/kg/day) protected animals from death in all three infections.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-5600, USA.
| | | | | | | | | | | | | |
Collapse
|
60
|
Rinaggio J, Glick M. The smallpox vaccine. J Am Dent Assoc 2006; 137:452-60. [PMID: 16637473 DOI: 10.14219/jada.archive.2006.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND A heightened awareness of the potential for bioterrorist attacks in the United States has led to the expansion of the nation's supply of smallpox vaccine and the institution of procedures to distribute this vaccine in the unlikely event of a release of this potentially deadly agent. METHODS The authors conducted a review of the relevant smallpox literature through a MEDLINE search. They also reviewed the Web site of the Centers for Disease Control and Prevention and numerous other Web sites. RESULTS The authors considered for inclusion more than 100 articles discussing smallpox, the smallpox vaccine and the role of the dental professional in a bioterrorist attack. CONCLUSIONS Dentists may detect the initial signs of a smallpox infection, provide information concerning the disease to the public and potentially assist in the administration of smallpox vaccine. CLINICAL IMPLICATIONS Should an intentional release of smallpox occur, the dental professional may play an important role in its treatment and prevention.
Collapse
Affiliation(s)
- Joseph Rinaggio
- Department of Diagnostic Sciences, University of Medicine and Dentistry of New Jersey, New Jersey Dental School, Newark 07103-2400, USA.
| | | |
Collapse
|
61
|
Prichard MN, Keith KA, Quenelle DC, Kern ER. Activity and mechanism of action of N-methanocarbathymidine against herpesvirus and orthopoxvirus infections. Antimicrob Agents Chemother 2006; 50:1336-41. [PMID: 16569849 PMCID: PMC1426929 DOI: 10.1128/aac.50.4.1336-1341.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/08/2005] [Accepted: 02/02/2006] [Indexed: 11/20/2022] Open
Abstract
N-Methanocarbathymidine [(N)-MCT] is a conformationally locked nucleoside analog that is active against some herpesviruses and orthopoxviruses in vitro. The antiviral activity of this molecule is dependent on the type I thymidine kinase (TK) in herpes simplex virus and also appears to be dependent on the type II TK expressed by cowpox and vaccinia viruses, suggesting that it is a substrate for both of these divergent forms of the enzyme. The drug is also a good inhibitor of viral DNA synthesis in both viruses and is consistent with inhibition of the viral DNA polymerase once it is activated by the viral TK homologs. This mechanism of action explains the rather unusual spectrum of activity, which is limited to orthopoxviruses, alphaherpesviruses, and Epstein-Barr virus, since these viruses express molecules with TK activity that can phosphorylate and thus activate the drug. The compound is also effective in vivo and reduces the mortality of mice infected with orthopoxviruses, as well as those infected with herpes simplex virus type 1 when treatment is initiated 24 h after infection. These results indicate that (N)-MCT is active in vitro and in vivo, and its mechanism of action suggests that the molecule may be an effective therapeutic for orthopoxvirus and herpesvirus infections, thus warranting further development.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35233, USA.
| | | | | | | |
Collapse
|
62
|
Painter G, Buller M, Kern E, Huggins J, Moyer R, Painter W, Doucette M, Robertson A. The challenges of developing an antiviral agent for the treatment of smallpox using the animal efficacy rule. Future Virol 2006. [DOI: 10.2217/17460794.1.2.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smallpox, eradicated in the late 1970s, is considered a serious worldwide threat because of its potential use as a biological weapon. Attempts to develop an antiviral drug for the prophylaxis and treatment of the disease are complicated by the need to demonstrate effective antiviral activity and propose human dosing paradigms based on data generated in animals infected with related orthopoxviruses. This perspective article reviews the difficulties associated with developing an antiviral agent using animal models and the ‘animal efficacy rule’: a FDA regulation designed for situations where human clinical trials are not an option.
Collapse
|
63
|
Nalca A, Rimoin AW, Bavari S, Whitehouse CA. Reemergence of monkeypox: prevalence, diagnostics, and countermeasures. Clin Infect Dis 2005; 41:1765-71. [PMID: 16288402 DOI: 10.1086/498155] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 07/13/2005] [Indexed: 11/04/2022] Open
Abstract
Human monkeypox is a viral zoonotic disease that occurs mostly in the rain forests of central and western Africa. However, the disease recently emerged in the United States in imported wild rodents from Africa. Monkeypox has a clinical presentation very similar to that of ordinary forms of smallpox, including flulike symptoms, fever, malaise, back pain, headache, and characteristic rash. Given this clinical spectrum, differential diagnosis to rule out smallpox is very important. There are no licensed therapies for human monkeypox; however, the smallpox vaccine can protect against the disease. The discontinuation of general vaccination in the 1980s has given rise to increasing susceptibility to monkeypox virus infection in the human population. This has led to fears that monkeypox virus could be used as a bioterrorism agent. Effective prevention relies on limiting the contact with infected patients or animals and limiting the respiratory exposure to infected patients.
Collapse
Affiliation(s)
- Aysegul Nalca
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
| | | | | | | |
Collapse
|
64
|
Yang G, Pevear DC, Davies MH, Collett MS, Bailey T, Rippen S, Barone L, Burns C, Rhodes G, Tohan S, Huggins JW, Baker RO, Buller RLM, Touchette E, Waller K, Schriewer J, Neyts J, DeClercq E, Jones K, Hruby D, Jordan R. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus Challenge. J Virol 2005; 79:13139-49. [PMID: 16189015 PMCID: PMC1235851 DOI: 10.1128/jvi.79.20.13139-13149.2005] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 07/14/2005] [Indexed: 11/20/2022] Open
Abstract
ST-246 is a low-molecular-weight compound (molecular weight = 376), that is potent (concentration that inhibited virus replication by 50% = 0.010 microM), selective (concentration of compound that inhibited cell viability by 50% = >40 microM), and active against multiple orthopoxviruses, including vaccinia, monkeypox, camelpox, cowpox, ectromelia (mousepox), and variola viruses. Cowpox virus variants selected in cell culture for resistance to ST-246 were found to have a single amino acid change in the V061 gene. Reengineering this change back into the wild-type cowpox virus genome conferred resistance to ST-246, suggesting that V061 is the target of ST-246 antiviral activity. The cowpox virus V061 gene is homologous to vaccinia virus F13L, which encodes a major envelope protein (p37) required for production of extracellular virus. In cell culture, ST-246 inhibited plaque formation and virus-induced cytopathic effects. In single-cycle growth assays, ST-246 reduced extracellular virus formation by 10 fold relative to untreated controls, while having little effect on the production of intracellular virus. In vivo oral administration of ST-246 protected BALB/c mice from lethal infection, following intranasal inoculation with 10x 50% lethal dose (LD(50)) of vaccinia virus strain IHD-J. ST-246-treated mice that survived infection acquired protective immunity and were resistant to subsequent challenge with a lethal dose (10x LD(50)) of vaccinia virus. Orally administered ST-246 also protected A/NCr mice from lethal infection, following intranasal inoculation with 40,000x LD(50) of ectromelia virus. Infectious virus titers at day 8 postinfection in liver, spleen, and lung from ST-246-treated animals were below the limits of detection (<10 PFU/ml). In contrast, mean virus titers in liver, spleen, and lung tissues from placebo-treated mice were 6.2 x 10(7), 5.2 x 10(7), and 1.8 x 10(5) PFU/ml, respectively. Finally, oral administration of ST-246 inhibited vaccinia virus-induced tail lesions in Naval Medical Research Institute mice inoculated via the tail vein. Taken together, these results validate F13L as an antiviral target and demonstrate that an inhibitor of extracellular virus formation can protect mice from orthopoxvirus-induced disease.
Collapse
Affiliation(s)
- Guang Yang
- ViroPharma, Inc., Exton, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
PURPOSE To describe atopic dermatitis (AD) in relation to a case study, the diagnostic criteria, complications, prevalence, future implications, and management for the primary care provider. DATA SOURCES Extensive literature review on the condition, supplemented with an actual case study. CONCLUSIONS Although there are many scientific studies done on AD, the exact pathogenesis and cure for this condition are still to be discovered. It is usually chronic and has some fatal sequelae in those who have been exposed to viral infections. Asthma, allergic rhinitis (AR), and AD are considered the atopic triad. Further studies that may help improve medical providers' understanding of AD are going on and offer hope to those afflicted by this disorder. IMPLICATIONS FOR PRACTICE Children over 5 years old may have outgrown their symptoms, so it is best to diagnose this condition at an early age to provide better management outcomes. Because it is part of an atopic triad, the nurse practitioner must think beyond the presenting skin condition to consider possible respiratory system conditions. AD may herald the onset of asthma and AR.
Collapse
|
66
|
Jones-Trower A, Garcia A, Meseda CA, He Y, Weiss C, Kumar A, Weir JP, Merchlinsky M. Identification and preliminary characterization of vaccinia virus (Dryvax) antigens recognized by vaccinia immune globulin. Virology 2005; 343:128-40. [PMID: 16165184 DOI: 10.1016/j.virol.2005.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/15/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
Using vaccinia immune globulin (VIG), a high-titer antibody preparation from immunized subjects, we demonstrate that the humoral immune response in humans is directed against numerous antigens in the Dryvax vaccine strain. Western blot and immunoprecipitation analyses revealed highly antigenic proteins associated with both the extracellular enveloped virus and intracellular mature virus forms. The modified vaccinia virus Ankara (MVA), a new generation smallpox vaccine that is attenuated for replication in humans, expresses most, but not all, of the major vaccinia antigens recognized by antibodies in VIG, lacking the highly antigenic protein corresponding to the A-type inclusion body protein. Since new-generation smallpox vaccines such as MVA will require extensive comparison to traditional smallpox vaccines in animal models of immunogenicity and protection, we compared the vaccinia virus antigens recognized by VIG to those recognized by sera from Dryvax and MVA immunized mice. The humoral immune response in immunized mice is qualitatively similar to that in humans.
Collapse
Affiliation(s)
- Agnes Jones-Trower
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, HFM-457, 1401 Rockville Pike, Rockville, MD 20852-1448, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Shearer JD, Siemann L, Gerkovich M, House RV. Biological activity of an intravenous preparation of human vaccinia immune globulin in mouse models of vaccinia virus infection. Antimicrob Agents Chemother 2005; 49:2634-41. [PMID: 15980330 PMCID: PMC1168682 DOI: 10.1128/aac.49.7.2634-2641.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biological activity of a new intravenous (i.v.) preparation of human vaccinia immune globulin (VIGIV) was evaluated in two mouse models of vaccinia virus (VV) infection. In a mouse tail lesion model, female CD-1 mice were inoculated i.v. with 7 x 10(4) PFU of VV to produce >10 lesions per tail 8 days later. In a mouse lethality model, female severe combined immunodeficient (SCID) mice were inoculated i.v. with 3 x 10(4) PFU of VV to produce 100% mortality within 45 days. The ability of VIGIV to reduce tail lesion formation in CD-1 mice and mortality in SCID mice was determined by (i) pretreatment of a lethal VV dose with VIGIV prior to i.v. inoculation into SCID mice and (ii) i.v. administration of VIGIV to CD-1 and SCID mice the day before and up to 8 days after VV infection. VIGIV reduced the proportion of CD-1 mice with >10 tail lesions in a dose-related manner when VIGIV was given 1 day before and up to 1 day after VV inoculation. The pretreatment of VV with VIGIV prolonged survival and decreased mortality. VIGIV (100 and 400 mg/kg) prolonged survival when given up to 4 days after VV inoculation, and the 400-mg/kg dose reduced the mortality rate by 80% when given the day before or immediately after VV inoculation. The biological activity of VIGIV was demonstrated in both the immunocompetent and immunocompromised murine models. The timing of treatment relative to VV inoculation appeared to be important for the demonstration of VIGIV's biological activity.
Collapse
Affiliation(s)
- Jeffry D Shearer
- DVC LLC, 64 Thomas Johnson Drive, Frederick, Maryland 21702, USA.
| | | | | | | |
Collapse
|
68
|
Abstract
Over the past several years, there has been an increase in knowledge pertaining to the diagnosis and management strategies for the herpes family (Types 1-8), the pox viruses, mumps, measles, rubella, and parvovirus B19 as well as the viral etiologies of hepatitis. Various antiviral treatments, such as nucleoside analogs and interferon therapy, have been available to reduce the signs and symptoms of these common viral infections. This article summarizes the preferred treatment strategies to be employed for each of the viruses for reducing severity, duration, recurrences (notably in the herpes family), transmission rates, as well as preventive alternatives. The majority of the therapeutic options attenuate the course of disease. Treatment decisions are driven by knowledge of the natural history and often are tailored to incorporate clinical circumstances for individual patients. Promotion of community awareness and the development of vaccines should be emphasized in the battle against these common viruses, particularly the herpes simplex viruses, the pox viruses, and hepatitis B.
Collapse
MESH Headings
- Animals
- Antiviral Agents/therapeutic use
- Diagnosis, Differential
- Hepatitis, Viral, Human/diagnosis
- Hepatitis, Viral, Human/drug therapy
- Hepatitis, Viral, Human/prevention & control
- Herpesviridae Infections/diagnosis
- Herpesviridae Infections/drug therapy
- Herpesviridae Infections/prevention & control
- Humans
- Measles/diagnosis
- Measles/drug therapy
- Measles/prevention & control
- Mumps/diagnosis
- Mumps/drug therapy
- Mumps/prevention & control
- Parvoviridae Infections/diagnosis
- Parvoviridae Infections/drug therapy
- Parvoviridae Infections/prevention & control
- Poxviridae Infections/diagnosis
- Poxviridae Infections/drug therapy
- Poxviridae Infections/prevention & control
- Rubella/diagnosis
- Rubella/drug therapy
- Rubella/prevention & control
- Skin Diseases, Viral/diagnosis
- Skin Diseases, Viral/drug therapy
- Skin Diseases, Viral/prevention & control
- Vaccination
Collapse
|
69
|
Bregenholt S, Haurum J. Pathogen-specific recombinant human polyclonal antibodies: biodefence applications. Expert Opin Biol Ther 2005; 4:387-96. [PMID: 15006732 DOI: 10.1517/14712598.4.3.387] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The potential use of biological agents such as viruses, bacteria or bacterial toxins as weapons of mass destruction has fuelled significant national and international research and development in novel prophylactic or therapeutic countermeasures. Such measures need to be fast-acting and broadly specific, a hallmark of target-specific polyclonal antibodies (pAbs). As reviewed here, pathogen-specific antibodies in the form of human or animal serum have long been recognised as effective therapies in a number of infectious diseases. This review focuses in particular on the potential biowarfare agents prioritised by the National Institute of Allergy and Infectious Diseases and the Centers for Disease Control and Prevention (CDC), referred to as the category A organisms. Furthermore, it is propose that the last decade of development in recombinant antibody technologies offers the possibility for developing highly specific human monoclonal or polyclonal pathogen-specific antibodies. In particular, pathogen-specific polyclonal human antibodies offer certain advantages over existing hyperimmune serum products, monoclonal antibodies, small molecule drugs and vaccines. Here, the rationale for designing pAb-based therapeutics against the CDC category A microbial agents causing anthrax, botulism, plague, smallpox, tularaemia and viral haemorrhagic fevers, as well as the overall design of such therapeutics, are discussed.
Collapse
|
70
|
Westerfeld N, Zurbriggen R. Peptides delivered by immunostimulating reconstituted influenza virosomes. J Pept Sci 2005; 11:707-12. [PMID: 16059967 DOI: 10.1002/psc.700] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vaccines have been well accepted and used effectively for more than 100 years. Traditional vaccines are generally composed of whole inactivated or attenuated microorganisms that have lost their disease-causing properties. These classical prophylactic live vaccines evoke protective immune responses, but have often been associated with an unfavorable safety profile, as observed, for example, for smallpox and polio myelitis vaccines [1,2]. First improvements were subunit vaccines that do not focus on attenuation of whole organisms but concentrate on particular proteins. These vaccines are able to generate protective immune responses (e.g. diphtheria, tetanus, pertussis)3. However, next generation vaccines should focus on specific antigens (e.g. proteins, peptides), since the requirements by regulatory authorities to crude biological material are becoming more stringent over time. An increasing number of such antigens capable of inducing protective humoral or cellular immune responses have been identified in the last few years. But most of these are weak immunogens. This reemphasizes the need for adjuvants to promote a potent immune response and also for delivery antigens to the immune system in an appropriate way (carrier capability). Here we review a new approach for prophylactic and therapeutic vaccines, which focuses on the induction of highly specific immune responses directed against antigen-derived peptides using a suitable carrier system.
Collapse
|
71
|
Smee DF, Sidwell RW. Anti-cowpox virus activities of certain adenosine analogs, arabinofuranosyl nucleosides, and 2'-fluoro-arabinofuranosyl nucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2004; 23:375-83. [PMID: 15043161 DOI: 10.1081/ncn-120028334] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nucleoside analogs were investigated for their potential to inhibit cowpox virus (a surrogate for variola and monkeypox viruses) in cell culture and in lethal respiratory infections in mice. Cell culture antiviral activity was determined by plaque reduction assays, with cytotoxicity determined by cell proliferation assays. Selectivity indices (SI's, 50% cytotoxic concentration divided by 50% virus-inhibitory concentration) were determined for 15 compounds. Three arabinofuranosyl (Ara) nucleosides showed activity in mouse mammary tumor (C127I) cells: guanine (Ara-G), thymine (Ara-T), and adenine (Ara-A) with SI's of 113, 61, and 95, respectively. The 2'-fluoro-Ara nucleosides of 5-F-cytosine (FIAC), 5-methyluracil (FMAU), and 5-iodouracil (FIAU) exhibited SI's of 148, 77, and 29, respectively. Other potent compounds included cidofovir (a positive control) and 3'-O-methyladenosine, with SI values of 164 and 56, respectively. In general, assays performed in African green monkey kidney (Vero) cells produced lower SI's than in C127I cells, except for 5-iodo-2'-deoxyuridine (IDU) which had an SI of > 71 in Vero cells and 3.1 in C127I cells. Intranasal infection of mice with cowpox virus was followed a day later by twice daily intraperitoneal treatment with compounds for 5 days. Ara-A was active at 300 mg/kg/day (40% survival), FMAU at 100 mg/kg/day (70% survival), and cidofovir (given for 1 day only) at 100 mg/kg (80-100% survival). None of the other compounds, including IDU, prevented death nor delayed the time to death. Cidofovir had the best potential for treating orthopoxvirus infections of those tested.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah 84322-5600, USA.
| | | |
Collapse
|
72
|
Bray M. Henry Kempe and the birth of vaccinia immune globulin. Clin Infect Dis 2004; 39:767-9. [PMID: 15472805 DOI: 10.1086/423005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 05/20/2004] [Indexed: 11/04/2022] Open
|
73
|
Neyts J, Leyssen P, Verbeken E, De Clercq E. Efficacy of cidofovir in a murine model of disseminated progressive vaccinia. Antimicrob Agents Chemother 2004; 48:2267-73. [PMID: 15155231 PMCID: PMC415602 DOI: 10.1128/aac.48.6.2267-2273.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An animal model that mimics progressive disseminated vaccinia was elaborated. To this end nude (athymic) mice were inoculated intracutaneously with vaccinia virus in the lumbosacral area. Viral replication (DNA) in the skin was detected as early as day 2 postinfection (p.i.). Mice developed typical vaccinia lesions at the site of inoculation by day 4 to 6 p.i. By about 2 weeks p.i., the infection had spread all over the body, a situation reminiscent of disseminated vaccinia in humans. The infection resulted in viremia and spread of the virus to visceral organs, as well as to the brain. Topical treatment with cidofovir, initiated at the day of infection or at day 1 p.i., completely protected against virus-induced cutaneous lesions and against associated mortality. When treatment was initiated at a later time (day 2 to 5 p.i.), a partial but marked protective effect was noted, which can be explained by the fact that by that time, the virus had spread from the skin to the visceral organs. Next, infected animals were left untreated until the time ( approximately 2 weeks p.i.) at which disseminated vaccinia had developed. When systemic treatment with cidofovir was initiated at that time, it caused lesions to heal and regress. In most of these animals, lesions had completely (or almost completely) disappeared by day 10 to 15 after the start of therapy. The observation that cidofovir is able to cause healing of disseminated vaccinia lesions in animals should have implications for the therapy of complications of vaccination against smallpox.
Collapse
Affiliation(s)
- Johan Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
74
|
Abstract
Concern regarding the use of smallpox for bioterrorism has led to the reintroduction of smallpox vaccination. The historic background leading to protective methods against smallpox disease, the adverse reactions and contraindications associated with vaccination, and the ongoing development of potentially safer smallpox vaccines are reviewed here.
Collapse
Affiliation(s)
- Wynnis L Tom
- Department of Internal Medicine, San Diego School of Medicine, University of California, 200 West Arbor Drive, Mail Code 8422, San Diego, CA 92103, USA
| | | | | |
Collapse
|
75
|
Keith KA, Wan WB, Ciesla SL, Beadle JR, Hostetler KY, Kern ER. Inhibitory activity of alkoxyalkyl and alkyl esters of cidofovir and cyclic cidofovir against orthopoxvirus replication in vitro. Antimicrob Agents Chemother 2004; 48:1869-71. [PMID: 15105146 PMCID: PMC400568 DOI: 10.1128/aac.48.5.1869-1871.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new series of ether lipid esters of cidofovir (CDV) were evaluated against vaccinia and cowpox viruses. Activity was dependent on number of atoms in the alkyl or alkoxyalkyl chain, the linker moiety, and the presence of a double bond in the alkoxyalkyl chains linked to the phosphonate moiety of CDV.
Collapse
Affiliation(s)
- Kathy A Keith
- University of Alabama School of Medicine, Birmingham, Alabama 35233, USA
| | | | | | | | | | | |
Collapse
|
76
|
Bray M, Buller M. Looking back at smallpox. Clin Infect Dis 2004; 38:882-9. [PMID: 14999635 DOI: 10.1086/381976] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 11/25/2003] [Indexed: 11/03/2022] Open
Abstract
Smallpox apparently arose through transfer of variola virus to humans from another animal species. By causing a brief infection that required close contact for transmission and engendered solid immunity, the agent was always vulnerable to simple isolation measures. The high replicative fidelity of the viral DNA polymerase limited variola's ability to adapt to humans and preserved orthopoxviral antigenic cross-reactivity, so that vaccinia vaccination protected against smallpox. Host-derived genes encoding immunomodulatory proteins helped shelter viral replication from innate immune responses. Examination of clinical variants suggests that severity of illness was usually determined by host responses during the incubation period. Control of viral replication was aided by early postexposure vaccination and might be strengthened by additional immunological interventions. Massive inflammatory responses were responsible for major features of illness. Some patients with high levels of circulating virus developed hemorrhagic disease resembling septic shock. Continued study of virus-host interactions is needed to defend against genetically modified agents.
Collapse
Affiliation(s)
- Mike Bray
- Biodefense Clinical Research Branch, Office of Clinical Research, Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|