51
|
Fermentative N-Methylanthranilate Production by Engineered Corynebacterium glutamicum. Microorganisms 2020; 8:microorganisms8060866. [PMID: 32521697 PMCID: PMC7356990 DOI: 10.3390/microorganisms8060866] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
The N-functionalized amino acid N-methylanthranilate is an important precursor for bioactive compounds such as anticancer acridone alkaloids, the antinociceptive alkaloid O-isopropyl N-methylanthranilate, the flavor compound O-methyl-N-methylanthranilate, and as a building block for peptide-based drugs. Current chemical and biocatalytic synthetic routes to N-alkylated amino acids are often unprofitable and restricted to low yields or high costs through cofactor regeneration systems. Amino acid fermentation processes using the Gram-positive bacterium Corynebacterium glutamicum are operated industrially at the million tons per annum scale. Fermentative processes using C. glutamicum for N-alkylated amino acids based on an imine reductase have been developed, while N-alkylation of the aromatic amino acid anthranilate with S-adenosyl methionine as methyl-donor has not been described for this bacterium. After metabolic engineering for enhanced supply of anthranilate by channeling carbon flux into the shikimate pathway, preventing by-product formation and enhancing sugar uptake, heterologous expression of the gene anmt encoding anthranilate N-methyltransferase from Ruta graveolens resulted in production of N-methylanthranilate (NMA), which accumulated in the culture medium. Increased SAM regeneration by coexpression of the homologous adenosylhomocysteinase gene sahH improved N-methylanthranilate production. In a test bioreactor culture, the metabolically engineered C. glutamicum C1* strain produced NMA to a final titer of 0.5 g·L−1 with a volumetric productivity of 0.01 g·L−1·h−1 and a yield of 4.8 mg·g−1 glucose.
Collapse
|
52
|
Li N, Zeng W, Xu S, Zhou J. Obtaining a series of native gradient promoter-5'-UTR sequences in Corynebacterium glutamicum ATCC 13032. Microb Cell Fact 2020; 19:120. [PMID: 32493332 PMCID: PMC7268698 DOI: 10.1186/s12934-020-01376-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium glutamicum is an important industrial microorganism used for the production of many valuable compounds, especially amino acids and their derivatives. For fine-tuning of metabolic pathways, synthetic biological tools are largely based on the rational application of promoters. However, the limited number of promoters make it difficult. RESULTS In this study, according to the analysis of RNA-Seq data, 90 DNA fragments with lengths of 200-500 bp that may contain promoter-5'-UTR (PUTR) sequences were amplified and linked to a fluorescent protein gene. When compared with the common strong PUTR PsodUTR, 17 strong PUTRs were obtained, which maintained stable expression strengths from the early to post stationary phase. Among them, PNCgl1676UTR was the strongest and its fluorescent protein expression level was more than five times higher than that of PsodUTR. Furthermore, nine typical chemicals related to the biosynthesis of sulfur-containing amino acids (such as L-methionine, L-cysteine) were selected as stress substances to preliminarily explore the stress on these PUTRs. The results showed that the expression of PbrnFUTR was activated by L-methionine, while that of PNCgl1202UTR was severely inhibited by L-lysine. CONCLUSIONS These findings demonstrated that the selected PUTRs can stably express different genes, such as the red fluorescence protein gene, and can be useful for fine-tuning regulation of metabolic networks in C. glutamicum or for establishing high-throughput screening strategies through biosensor for the production of useful compounds.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
53
|
Eng T, Sasaki Y, Herbert RA, Lau A, Trinh J, Chen Y, Mirsiaghi M, Petzold CJ, Mukhopadhyay A. Production of tetra-methylpyrazine using engineered Corynebacterium glutamicum. Metab Eng Commun 2020; 10:e00115. [PMID: 31890587 PMCID: PMC6926172 DOI: 10.1016/j.mec.2019.e00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 11/24/2022] Open
Abstract
Corynebacterium glutamicum ATCC 13032 is an established and industrially-relevant microbial host that has been utilized for the expression of many desirable bioproducts. Tetra-methylpyrazine (TMP) is a naturally occurring alkylpyrazine with broad applications spanning fragrances to resins. We identified an engineered strain of C. glutamicum which produces 5 g/L TMP and separately, a strain which can co-produce both TMP and the biofuel compound isopentenol. Ionic liquids also stimulate TMP production in engineered strains. Using a fed batch-mode feeding strategy, ionic liquid stimulated strains produced 2.2 g/L of tetra-methylpyrazine. We show that feedback from a specific heterologous gene pathway on host physiology leads to acetoin accumulation and the production of TMP.
Collapse
Affiliation(s)
- Thomas Eng
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yusuke Sasaki
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto, Japan
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Robin A. Herbert
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew Lau
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jessica Trinh
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mona Mirsiaghi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Advanced Biofuels Process Demonstration Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
54
|
Methanol-Essential Growth of Corynebacterium glutamicum: Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway. Int J Mol Sci 2020; 21:ijms21103617. [PMID: 32443885 PMCID: PMC7279501 DOI: 10.3390/ijms21103617] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered Corynebacterium glutamicum for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogenase from Bacillus methanolicus and of ribulose monophosphate pathway genes for hexulose phosphate synthase and isomerase from Bacillus subtilis enabled methanol-dependent growth of mutants carrying one of two independent metabolic cut-offs, i.e., either lacking ribose-5-phosphate isomerase or ribulose-5-phosphate epimerase. Whole genome sequencing of strains selected by adaptive laboratory evolution (ALE) for faster methanol-dependent growth was performed. Subsequently, three mutations were identified that caused improved methanol-dependent growth by (1) increased plasmid copy numbers, (2) enhanced riboflavin supply and (3) reduced formation of the methionine-analogue O-methyl-homoserine in the methanethiol pathway. Our findings serve as a foundation for the engineering of C. glutamicum to unleash the full potential of methanol as a carbon source in biotechnological processes.
Collapse
|
55
|
Lu L, Mao Y, Kou M, Cui Z, Jin B, Chang Z, Wang Z, Ma H, Chen T. Engineering central pathways for industrial-level (3R)-acetoin biosynthesis in Corynebacterium glutamicum. Microb Cell Fact 2020; 19:102. [PMID: 32398078 PMCID: PMC7216327 DOI: 10.1186/s12934-020-01363-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/05/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Acetoin, especially the optically pure (3S)- or (3R)-enantiomer, is a high-value-added bio-based platform chemical and important potential pharmaceutical intermediate. Over the past decades, intense efforts have been devoted to the production of acetoin through green biotechniques. However, efficient and economical methods for the production of optically pure acetoin enantiomers are rarely reported. Previously, we systematically engineered the GRAS microorganism Corynebacterium glutamicum to efficiently produce (3R)-acetoin from glucose. Nevertheless, its yield and average productivity were still unsatisfactory for industrial bioprocesses. RESULTS In this study, cellular carbon fluxes in the acetoin producer CGR6 were further redirected toward acetoin synthesis using several metabolic engineering strategies, including blocking anaplerotic pathways, attenuating key genes of the TCA cycle and integrating additional copies of the alsSD operon into the genome. Among them, the combination of attenuation of citrate synthase and inactivation of phosphoenolpyruvate carboxylase showed a significant synergistic effect on acetoin production. Finally, the optimal engineered strain CGS11 produced a titer of 102.45 g/L acetoin with a yield of 0.419 g/g glucose at a rate of 1.86 g/L/h in a 5 L fermenter. The optical purity of the resulting (3R)-acetoin surpassed 95%. CONCLUSION To the best of our knowledge, this is the highest titer of highly enantiomerically enriched (3R)-acetoin, together with a competitive product yield and productivity, achieved in a simple, green processes without expensive additives or substrates. This process therefore opens the possibility to achieve easy, efficient, economical and environmentally-friendly production of (3R)-acetoin via microbial fermentation in the near future.
Collapse
Affiliation(s)
- Lingxue Lu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Mengyun Kou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhenzhen Cui
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Biao Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhishuai Chang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
56
|
Wang Y, Fan L, Tuyishime P, Liu J, Zhang K, Gao N, Zhang Z, Ni X, Feng J, Yuan Q, Ma H, Zheng P, Sun J, Ma Y. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Commun Biol 2020; 3:217. [PMID: 32382107 PMCID: PMC7205612 DOI: 10.1038/s42003-020-0954-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/03/2020] [Indexed: 12/26/2022] Open
Abstract
Synthetic methylotrophy has recently been intensively studied to achieve methanol-based biomanufacturing of fuels and chemicals. However, attempts to engineer platform microorganisms to utilize methanol mainly focus on enzyme and pathway engineering. Herein, we enhanced methanol bioconversion of synthetic methylotrophs by improving cellular tolerance to methanol. A previously engineered methanol-dependent Corynebacterium glutamicum is subjected to adaptive laboratory evolution with elevated methanol content. Unexpectedly, the evolved strain not only tolerates higher concentrations of methanol but also shows improved growth and methanol utilization. Transcriptome analysis suggests increased methanol concentrations rebalance methylotrophic metabolism by down-regulating glycolysis and up-regulating amino acid biosynthesis, oxidative phosphorylation, ribosome biosynthesis, and parts of TCA cycle. Mutations in the O-acetyl-l-homoserine sulfhydrylase Cgl0653 catalyzing formation of l-methionine analog from methanol and methanol-induced membrane-bound transporter Cgl0833 are proven crucial for methanol tolerance. This study demonstrates the importance of tolerance engineering in developing superior synthetic methylotrophs. Wang et al. improve the methanol tolerance for the synthetic methylotroph, Corynebacterium glutamicum. They generate 3 new strains by directed evolution and use biochemical, transcriptomic, and genetic approaches to characterize the pathways underlying the enhanced methanol metabolism. Their findings are important for biomanufacturing purposes.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Philibert Tuyishime
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Kun Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Gao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Qianqian Yuan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
57
|
Andriiash GS, Sekan OS, Tigunova OO, Blume YB, Shulga SM. Metabolic Engineering of Lysine Producing Corynebacterium glutamicum Strains. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
58
|
Chromosome organization by a conserved condensin-ParB system in the actinobacterium Corynebacterium glutamicum. Nat Commun 2020; 11:1485. [PMID: 32198399 PMCID: PMC7083940 DOI: 10.1038/s41467-020-15238-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 02/21/2020] [Indexed: 01/23/2023] Open
Abstract
Higher-order chromosome folding and segregation are tightly regulated in all domains of life. In bacteria, details on nucleoid organization regulatory mechanisms and function remain poorly characterized, especially in non-model species. Here, we investigate the role of DNA-partitioning protein ParB and SMC condensin complexes in the actinobacterium Corynebacterium glutamicum. Chromosome conformation capture reveals SMC-mediated long-range interactions around ten centromere-like parS sites clustered at the replication origin (oriC). At least one oriC-proximal parS site is necessary for reliable chromosome segregation. We use chromatin immunoprecipitation and photoactivated single-molecule localization microscopy to show the formation of distinct, parS-dependent ParB-nucleoprotein subclusters. We further show that SMC/ScpAB complexes, loaded via ParB at parS sites, mediate chromosomal inter-arm contacts (as previously shown in Bacillus subtilis). However, the MukBEF-like SMC complex MksBEFG does not contribute to chromosomal DNA-folding; instead, this complex is involved in plasmid maintenance and interacts with the polar oriC-tethering factor DivIVA. Our results complement current models of ParB-SMC/ScpAB crosstalk and show that some condensin complexes evolved functions that are apparently uncoupled from chromosome folding. The regulation of higher-order chromosome folding and segregation in bacteria is poorly understood. Here, Böhm et al. provide insights into the roles of DNA partitioning protein ParB and SMC condensin complexes in Corynebacterium glutamicum.
Collapse
|
59
|
Chen J, Wang Y, Guo X, Rao D, Zhou W, Zheng P, Sun J, Ma Y. Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:41. [PMID: 32175008 PMCID: PMC7063817 DOI: 10.1186/s13068-020-01685-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/21/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA) is a promising biostimulant, feed nutrient, and photodynamic drug with wide applications in modern agriculture and therapy. Considering the complexity and low yield of chemical synthesis methods, bioproduction of 5-ALA has drawn intensive attention recently. However, the present bioproduction processes use refined glucose as the main carbon source and the production level still needs further enhancement. RESULTS To lay a solid technological foundation for large-scale commercialized bioproduction of 5-ALA, an industrial workhorse Corynebacterium glutamicum was metabolically engineered for high-level 5-ALA biosynthesis from cheap renewable bioresources. After evaluation of 5-ALA synthetases from different sources, the 5-ALA biosynthetic pathway and anaplerotic pathway were rebalanced by regulating intracellular activities of 5-ALA synthetase and phosphoenolpyruvate carboxylase. The engineered biocatalyst produced 5.5 g/L 5-ALA in shake flasks and 16.3 g/L in 5-L bioreactors with a one-step fermentation process from glucose. To lower the cost of feedstock, cheap raw materials were used to replace glucose. Enzymatically hydrolyzed cassava bagasse was proven to be a perfect alternative to refined sugars since the final 5-ALA titer further increased to 18.5 g/L. Use of corn starch hydrolysate resulted in a similar 5-ALA production level (16.0 g/L) with glucose, whereas use of beet molasses caused seriously inhibition. The results obtained here represent a new record of 5-ALA bioproduction. It is estimated that replacing glucose with cassava bagasse will reduce the carbon source cost by 90.1%. CONCLUSIONS The high-level biosynthesis of 5-ALA from cheap bioresources will brighten the prospects for industrialization of this sustainable and environment-friendly process. The strategy for balancing metabolic flux developed in this study can also be used for improving the bioproduction of other value-added chemicals.
Collapse
Affiliation(s)
- Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Deming Rao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Wenjuan Zhou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
60
|
Engineering Corynebacterium glutamicum for the Efficient Production of 3-Hydroxypropionic Acid from a Mixture of Glucose and Acetate via the Malonyl-CoA Pathway. Catalysts 2020. [DOI: 10.3390/catal10020203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
3-Hydroxypropionic acid (3-HP) has been recognized as one of the top value-added building block chemicals, due to its numerous potential applications. Over the past decade, biosynthesis of 3-HP via the malonyl-CoA pathway has been increasingly favored because it is balanced in terms of ATP and reducing equivalents, does not require the addition of costly coenzymes, and can utilize renewable lignocellulosic biomass. In this study, gene mcr encoding malonyl-CoA reductase from Chloroflexus aurantiacus was introduced into Corynebacterium glutamicum ATCC13032 to construct the strain Cgz1, which accumulated 0.30 g/L 3-HP. Gene ldhA encoding lactate dehydrogenase was subsequently deleted to eliminate lactate accumulation, but this decreased 3-HP production and greatly increased acetate accumulation. Then, different acetate utilization genes were overexpressed to reuse the acetate, and the best candidate Cgz5 expressing endogenous gene pta could effectively reduce the acetate accumulation and produced 0.68 g/L 3-HP. To enhance the supply of the precursor acetyl-CoA, acetate was used as an ancillary carbon source to improve the 3-HP production, and 1.33 g/L 3-HP could be produced from a mixture of glucose and acetate, with a 2.06-fold higher yield than from glucose alone. Finally, to inhibit the major 3-HP competing pathway-fatty acid synthesis, 10 μM cerulenin was added and strain Cgz5 produced 3.77 g/L 3-HP from 15.47 g/L glucose and 4.68 g/L acetate with a yield of 187 mg/g substrate in 48 h, which was 12.57-fold higher than that of Cgz1. To our best knowledge, this is the first report on engineering C. glutamicum to produce 3-HP via the malonyl-CoA pathway. The results indicate that the innocuous biosafety level I microorganism C. glutamicum is a potential industrial 3-HP producer.
Collapse
|
61
|
Li Y, Ai Y, Zhang J, Fei J, Liu B, Wang J, Li M, Zhao Q, Song J. A novel expression vector for Corynebacterium glutamicum with an auxotrophy complementation system. Plasmid 2019; 107:102476. [PMID: 31758959 DOI: 10.1016/j.plasmid.2019.102476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 01/27/2023]
Abstract
Corynebacterium glutamicum is an important industrial strain used for the production of amino acids and vitamins. Most tools developed for overexpression of genes in C. glutamicum are based on the inducible promoter regulated by the lacIq gene or contain an antibiotic resistance gene as a selection marker. These vectors are essential for rapid identification of recombinant strains and detailed study of gene functions, but, as a considerable disadvantage, these vectors are not suitable for large-scale industrial production due to the need for the addition of isopropyl-β-D-thiogalactopyranoside (IPTG) and antibiotics. In this study, the novel Escherichia coli-C. glutamicum shuttle expression vector pLY-4, derived from the expression vector pXMJ19, was constructed. The constitutive vector pLY-4 contains a large multiple cloning site, the strong promoter tacM and two selective markers: the original chloramphenicol resistance gene cat is used for molecular cloning operations, and the auxotrophy complementation marker alr, which can be stably replicated in the auxotrophic host strain without antibiotic selection pressure, is used for industrial fermentation. Heterologous expression of the gapC gene using the vector pLY-4 in C. glutamicum for L-methionine production indicated the potential application of pLY-4 in the development of C. glutamicum strain engineering and industrial fermentation.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yuqing Ai
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China
| | - Junzheng Zhang
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Jingxuan Fei
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China
| | - Bingnan Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jing Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, PR China
| | - Meng Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China
| | - Qiancheng Zhao
- Liaoning Key Laboratory Aquatic Product Processing and Utilization, Dalian Ocean University, Dalian 116023, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
62
|
Improved Astaxanthin Production with Corynebacterium glutamicum by Application of a Membrane Fusion Protein. Mar Drugs 2019; 17:md17110621. [PMID: 31683510 PMCID: PMC6891673 DOI: 10.3390/md17110621] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
Astaxanthin is one of the strongest natural antioxidants and a red pigment occurring in nature. This C40 carotenoid is used in a broad range of applications such as a colorant in the feed industry, an antioxidant in cosmetics or as a supplement in human nutrition. Natural astaxanthin is on the rise and, hence, alternative production systems are needed. The natural carotenoid producer Corynebacterium glutamicum is a potent host for industrial fermentations, such as million-ton scale amino acid production. In C. glutamicum, astaxanthin production was established through heterologous overproduction of the cytosolic lycopene cyclase CrtY and the membrane-bound β-carotene hydroxylase and ketolase, CrtZ and CrtW, in previous studies. In this work, further metabolic engineering strategies revealed that the potential of this GRAS organism for astaxanthin production is not fully exploited yet. It was shown that the construction of a fusion protein comprising the membrane-bound β-carotene hydroxylase and ketolase (CrtZ~W) significantly increased astaxanthin production under high glucose concentration. An evaluation of used carbon sources indicated that a combination of glucose and acetate facilitated astaxanthin production. Moreover, additional overproduction of cytosolic carotenogenic enzymes increased the production of this high value compound. Taken together, a seven-fold improvement of astaxanthin production was achieved with 3.1 mg/g CDW of astaxanthin.
Collapse
|
63
|
Mindt M, Hannibal S, Heuser M, Risse JM, Sasikumar K, Nampoothiri KM, Wendisch VF. Fermentative Production of N-Alkylated Glycine Derivatives by Recombinant Corynebacterium glutamicum Using a Mutant of Imine Reductase DpkA From Pseudomonas putida. Front Bioeng Biotechnol 2019; 7:232. [PMID: 31616665 PMCID: PMC6775277 DOI: 10.3389/fbioe.2019.00232] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
Sarcosine, an N-methylated amino acid, shows potential as antipsychotic, and serves as building block for peptide-based drugs, and acts as detergent when acetylated. N-methylated amino acids are mainly produced chemically or by biocatalysis, with either low yields or high costs for co-factor regeneration. Corynebacterium glutamicum, which is used for the industrial production of amino acids for decades, has recently been engineered for production of N-methyl-L-alanine and sarcosine. Heterologous expression of dpkA in a C. glutamicum strain engineered for glyoxylate overproduction enabled fermentative production of sarcosine from sugars and monomethylamine. Here, mutation of an amino acyl residue in the substrate binding site of DpkA (DpkAF117L) led to an increased specific activity for reductive alkylamination of glyoxylate using monomethylamine and monoethylamine as substrates. Introduction of DpkAF117L into the production strain accelerated the production of sarcosine and a volumetric productivity of 0.16 g L-1 h-1 could be attained. Using monoethylamine as substrate, we demonstrated N-ethylglycine production with a volumetric productivity of 0.11 g L-1 h-1, which to the best of our knowledge is the first report of its fermentative production. Subsequently, the feasibility of using rice straw hydrolysate as alternative carbon source was tested and production of N-ethylglycine to a titer of 1.6 g L-1 after 60 h of fed-batch bioreactor cultivation could be attained.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Silvin Hannibal
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Maria Heuser
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Joe Max Risse
- Fermentation Technology, Technical Faculty and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Keerthi Sasikumar
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific & Industrial Research, Trivandrum, India
| | - K. Madhavan Nampoothiri
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific & Industrial Research, Trivandrum, India
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
64
|
Leszczewicz M, Walczak P. Selection of Thermotolerant Corynebacterium glutamicum Strains for Organic Acid Biosynthesis. Food Technol Biotechnol 2019; 57:249-259. [PMID: 31537974 PMCID: PMC6718964 DOI: 10.17113/ftb.57.02.19.5980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, Corynebacterium glutamicum has been considered as producer of many valuable chemical compounds. Among them, organic acids such as l-lactic and succinic acids are the most important ones. It is known that the wild-type C. glutamicum grows well in the temperature range between 25 and 37 °C. Above 40 °C, the biomass growth usually abruptly stops; however, the bacteria remain metabolically active. High temperature affects the metabolic activity of C. glutamicum cells and can lead to changes in the composition and quantity of the fermentation products. Therefore, in a series of subsequent selection steps, we tried to obtain prototrophic strains capable of growing at 44 °C from the culture of homoserine auxotroph C. glutamicum ATCC 13287. During selection, we used complex and mineral media containing succinic and citric acids. As a result, we obtained 47 clones able to grow at elevated temperature. Moreover, the estimated optimal growth temperature for several of them was about 40 °C or higher. Under oxygen limitation conditions, C. glutamicum strains produce organic acids. Regardless of the tested clone, l-lactic acid was the main product. However, its concentration was the highest in the cultures performed at 44 °C. The elevated temperature also affected the biosynthesis of other organic acids. Compared to the parental strain, the concentration of acetic acid increased, and of succinic acid decreased in the cultures of thermotolerant strains. Strain RCG44.3 exhibited interesting properties; it was able to synthesise 27.1 g/L l-lactic acid, with production yield of 0.57 g/g, during 24 h of fermentation at 44 °C.
Collapse
Affiliation(s)
- Martyna Leszczewicz
- Industrial Biotechnology Laboratory, "Bionanopark" Ltd., Dubois 114/116, 93-465 Łódź, Poland.,Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| | - Piotr Walczak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| |
Collapse
|
65
|
Back from the Past: DNA Barcodes and Morphology Support Ablabesmyia americana Fittkau as a Valid Species (Diptera: Chironomidae). DIVERSITY 2019. [DOI: 10.3390/d11090173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Short, standardized gene fragments for species identification (DNA barcodes) have proven effective in delineating closely-related insect species, and can be critical characters to include in taxonomic studies. This is also the case for the species-rich and widely distributed fly family Chironomidae (non-biting midges). Inspired by observed genetic differences in partial COI gene sequences between North American and European populations of the chironomid Ablabesmyia monilis sensu lato, we investigated whether or not the morphology of male and female adults supported the distinction of more than one species. Our results support that the junior synonym Ablabesmyia americana is a valid species separate from A. monilis, and that A. monilis sensu stricto is distributed both in the Palearctic region and in North America. We provide re-descriptions of all of the major life stages of A. americana and of the adult female of A. monilis.
Collapse
|
66
|
Felpeto‐Santero C, Galán B, Luengo JM, Fernández‐Cañon JM, del Cerro C, Medrano FJ, García JL. Identification and expression of the 11β-steroid hydroxylase from Cochliobolus lunatus in Corynebacterium glutamicum. Microb Biotechnol 2019; 12:856-868. [PMID: 31197939 PMCID: PMC6680611 DOI: 10.1111/1751-7915.13428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/01/2022] Open
Abstract
Hydroxylation of steroids has acquired special relevance for the pharmaceutical industries. Particularly, the 11β-hydroxylation of steroids is a reaction of biotechnological importance currently carried out at industrial scale by the fungus Cochliobolus lunatus. In this work, we have identified the genes encoding the cytochrome CYP103168 and the reductase CPR64795 of C. lunatus responsible for the 11β-hydroxylase activity in this fungus, which is the key step for the preparative synthesis of cortisol in industry. A recombinant Corynebacterium glutamicum strain harbouring a plasmid expressing both genes forming a synthetic bacterial operon was able to 11β-hydroxylate several steroids as substrates. This is a new example to show that the industrial strain C. glutamicum can be used as a suitable chassis to perform steroid biotransformation expressing eukaryotic cytochromes.
Collapse
Affiliation(s)
| | - Beatriz Galán
- Department of Environmental BiologyCentro de Investigaciones BiológicasCSICMadridSpain
| | - José M. Luengo
- Department of Molecular BiologyUniversity of LeónLeónSpain
| | | | - Carlos del Cerro
- Department of Environmental BiologyCentro de Investigaciones BiológicasCSICMadridSpain
| | - Francisco J. Medrano
- Department of Chemical and Physical BiologyCentro de Investigaciones BiológicasCSICMadridSpain
| | - José L. García
- Department of Environmental BiologyCentro de Investigaciones BiológicasCSICMadridSpain
- Department of Applied BiotechnologyInstitute for Integrative Systems Biology (I2SysBio)(Universidad de Valencia‐CSIC)ValenciaSpain
| |
Collapse
|
67
|
Shen J, Chen J, Jensen PR, Solem C. Sweet As Sugar-Efficient Conversion of Lactose into Sweet Sugars Using a Novel Whole-Cell Catalyst. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6257-6262. [PMID: 31117497 DOI: 10.1021/acs.jafc.9b01529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lactose, the sugar contained in milk, has a low sweetness. We have constructed an efficient whole-cell catalyst (WCC) that can be grown on dairy waste and that is able to convert lactose into a mixture of sugars as sweet as sucrose. The WCC is based on Corynebacterium glutamicum ATCC13032, which has been engineered to metabolize lactose, to express xylose and arabinose isomerase, and to eliminate byproduct formation. When introduced in concentrated cheese whey permeate, its content of 98 g/L lactose was completely hydrolyzed and the liberated sugars partially isomerized into 23.5 g/L fructose and 20.4 g/L tagatose, which corresponds to a 49% conversion of the glucose and a 44% conversion of galactose. The latter is similar to what can be obtained using purified enzymes. The new technology enables better resource utilization and allows for dairy waste to be converted into a valuable food sweetener with many potential uses.
Collapse
Affiliation(s)
- Jing Shen
- National Food Institute , Technical University of Denmark , 2800 Kongens Lyngby , Denmark
| | - Jun Chen
- National Food Institute , Technical University of Denmark , 2800 Kongens Lyngby , Denmark
| | - Peter Ruhdal Jensen
- National Food Institute , Technical University of Denmark , 2800 Kongens Lyngby , Denmark
| | - Christian Solem
- National Food Institute , Technical University of Denmark , 2800 Kongens Lyngby , Denmark
| |
Collapse
|
68
|
Mindt M, Heuser M, Wendisch VF. Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2019; 281:135-142. [PMID: 30818264 DOI: 10.1016/j.biortech.2019.02.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The aim of this work was to study the fermentative production of the N-methylated amino acid sarcosine by C. glutamicum. Characterization of the imine reductase DpkA from Pseudomonas putida revealed that it catalyses N-methylamination of glyoxylate to sarcosine. Heterologous expression of dpkA in a C. glutamicum strain engineered for glyoxylate overproduction enabled fermentative production of sarcosine from sugars and monomethylamine. Glucose-based fermentation reached sarcosine production titers of 2.4 ± 0.1 g L-1. Sarcosine production based on the second generation feedstocks xylose and arabinose led to higher product titers of 2.7 ± 0.1 g L-1 and 3.4 ± 0.3 g L-1, respectively, than glucose-based production. Optimization of production conditions with xylose and potassium acetate blends increased sarcosine titers to 8.7 ± 0.2 g L-1 with a yield of 0.25 g g-1. This is the first example in which a C. glutamicum process using lignocellulosic pentoses is superior to glucose-based production.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Maria Heuser
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
69
|
Muriel C, Blanco-Romero E, Trampari E, Arrebola E, Durán D, Redondo-Nieto M, Malone JG, Martín M, Rivilla R. The diguanylate cyclase AdrA regulates flagellar biosynthesis in Pseudomonas fluorescens F113 through SadB. Sci Rep 2019; 9:8096. [PMID: 31147571 PMCID: PMC6543031 DOI: 10.1038/s41598-019-44554-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/14/2019] [Indexed: 11/23/2022] Open
Abstract
Flagellum mediated motility is an essential trait for rhizosphere colonization by pseudomonads. Flagella synthesis is a complex and energetically expensive process that is tightly regulated. In Pseudomonas fluorescens, the regulatory cascade starts with the master regulatory protein FleQ that is in turn regulated by environmental signals through the Gac/Rsm and SadB pathways, which converge in the sigma factor AlgU. AlgU is required for the expression of amrZ, encoding a FleQ repressor. AmrZ itself has been shown to modulate c-di-GMP levels through the control of many genes encoding enzymes implicated in c-di-GMP turnover. This cyclic nucleotide regulates flagellar function and besides, the master regulator of the flagellar synthesis signaling pathway, FleQ, has been shown to bind c-di-GMP. Here we show that AdrA, a diguanylate cyclase regulated by AmrZ participates in this signaling pathway. Epistasis analysis has shown that AdrA acts upstream of SadB, linking SadB with environmental signaling. We also show that SadB binds c-di-GMP with higher affinity than FleQ and propose that c-di-GMP produced by AdrA modulates flagella synthesis through SadB.
Collapse
Affiliation(s)
- Candela Muriel
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Esther Blanco-Romero
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Eleftheria Trampari
- Department of Molecular Microbiology, John Innes Centre. Colney Lane, Norwich, UK.,Quadram Institute, Norwich, UK
| | - Eva Arrebola
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,Department of Microbiology, University of Málaga, Málaga, Spain
| | - David Durán
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre. Colney Lane, Norwich, UK
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
70
|
Wang YY, Xu JZ, Zhang WG. Metabolic engineering of l-leucine production in Escherichia coli and Corynebacterium glutamicum: a review. Crit Rev Biotechnol 2019; 39:633-647. [PMID: 31055970 DOI: 10.1080/07388551.2019.1577214] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
l-Leucine, as an essential branched-chain amino acid for humans and animals, has recently been attracting much attention because of its potential for a fast-growing market demand. The applicability ranges from flavor enhancers, animal feed additives and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. Microbial fermentation is the major method for producing l-leucine by using Escherichia coli and Corynebacterium glutamicum as host bacteria. This review gives an overview of the metabolic pathway of l-leucine (i.e. production, import and export systems) and highlights the main regulatory mechanisms of operons in E. coli and C. glutamicum l-leucine biosynthesis. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating l-leucine producing strains. Finally, future perspectives to construct industrially advantageous strains are considered with respect to recent advances in biology.
Collapse
Affiliation(s)
- Ying-Yu Wang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| | - Jian-Zhong Xu
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China.,b The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| | - Wei-Guo Zhang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| |
Collapse
|
71
|
Castellani LG, Nilsson JF, Wibberg D, Schlüter A, Pühler A, Brom S, Pistorio M, Torres Tejerizo G. Insight into the structure, function and conjugative transfer of pLPU83a, an accessory plasmid of Rhizobium favelukesii LPU83. Plasmid 2019; 103:9-16. [DOI: 10.1016/j.plasmid.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/11/2019] [Accepted: 03/24/2019] [Indexed: 11/26/2022]
|
72
|
Liu L, Bilal M, Luo H, Zhao Y, Iqbal HMN. Metabolic Engineering and Fermentation Process Strategies for L-Tryptophan Production by Escherichia coli. Processes (Basel) 2019; 7:213. [DOI: 10.3390/pr7040213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
L-tryptophan is an essential aromatic amino acid that has been widely used in medicine, food, and animal feed. Microbial biosynthesis of L-tryptophan through metabolic engineering approaches represents a sustainable, cost-effective, and environmentally friendly route compared to chemical synthesis. In particular, metabolic pathway engineering allows enhanced product titers by inactivating/blocking the competing pathways, increasing the intracellular level of essential precursors, and overexpressing rate-limiting enzymatic steps. Based on the route of the L-tryptophan biosynthesis pathway, this review presents a systematic and detailed summary of the contemporary metabolic engineering approaches employed for L-tryptophan production. In addition to the engineering of the L-tryptophan biosynthesis pathway, the metabolic engineering modification of carbon source uptake, by-product formation, key regulatory factors, and the polyhydroxybutyrate biosynthesis pathway in L-tryptophan biosynthesis are discussed. Moreover, fermentation bioprocess optimization strategies used for L-tryptophan overproduction are also delineated. Towards the end, the review is wrapped up with the concluding remarks, and future strategies are outlined for the development of a high L-tryptophan production strain.
Collapse
Affiliation(s)
- Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Campus Monterrey, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico
| |
Collapse
|
73
|
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng 2019; 58:17-34. [PMID: 30940506 DOI: 10.1016/j.ymben.2019.03.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
Abstract
Amino acid fermentation is one of the major pillars of industrial biotechnology. The multi-billion USD amino acid market is rising steadily and is diversifying. Metabolic engineering is no longer focused solely on strain development for the bulk amino acids L-glutamate and L-lysine that are produced at the million-ton scale, but targets specialty amino acids. These demands are met by the development and application of new metabolic engineering tools including CRISPR and biosensor technologies as well as production processes by enabling a flexible feedstock concept, co-production and co-cultivation schemes. Metabolic engineering advances are exemplified for specialty proteinogenic amino acids, cyclic amino acids, omega-amino acids, and amino acids functionalized by hydroxylation, halogenation and N-methylation.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
74
|
Schwentner A, Feith A, Münch E, Stiefelmaier J, Lauer I, Favilli L, Massner C, Öhrlein J, Grund B, Hüser A, Takors R, Blombach B. Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:65. [PMID: 30962820 PMCID: PMC6432763 DOI: 10.1186/s13068-019-1410-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND l-Histidine biosynthesis is embedded in an intertwined metabolic network which renders microbial overproduction of this amino acid challenging. This is reflected in the few available examples of histidine producers in literature. Since knowledge about the metabolic interplay is limited, we systematically perturbed the metabolism of Corynebacterium glutamicum to gain a holistic understanding in the metabolic limitations for l-histidine production. We, therefore, constructed C. glutamicum strains in a modularized metabolic engineering approach and analyzed them with LC/MS-QToF-based systems metabolic profiling (SMP) supported by flux balance analysis (FBA). RESULTS The engineered strains produced l-histidine, equimolar amounts of glycine, and possessed heavily decreased intracellular adenylate concentrations, despite a stable adenylate energy charge. FBA identified regeneration of ATP from 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as crucial step for l-histidine production and SMP identified strong intracellular accumulation of inosine monophosphate (IMP) in the engineered strains. Energy engineering readjusted the intracellular IMP and ATP levels to wild-type niveau and reinforced the intrinsic low ATP regeneration capacity to maintain a balanced energy state of the cell. SMP further indicated limitations in the C1 supply which was overcome by expression of the glycine cleavage system from C. jeikeium. Finally, we rerouted the carbon flux towards the oxidative pentose phosphate pathway thereby further increasing product yield to 0.093 ± 0.003 mol l-histidine per mol glucose. CONCLUSION By applying the modularized metabolic engineering approach combined with SMP and FBA, we identified an intrinsically low ATP regeneration capacity, which prevents to maintain a balanced energy state of the cell in an l-histidine overproduction scenario and an insufficient supply of C1 units. To overcome these limitations, we provide a metabolic engineering strategy which constitutes a general approach to improve the production of ATP and/or C1 intensive products.
Collapse
Affiliation(s)
- Andreas Schwentner
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - André Feith
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Eugenia Münch
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Judith Stiefelmaier
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ira Lauer
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lorenzo Favilli
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Christoph Massner
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | - Bastian Grund
- Evonik Creavis GmbH, Paul-Baumann-Straße 1, 45772 Marl, Germany
| | - Andrea Hüser
- Evonik Nutrition & Care GmbH, Kantstraße 2, 33790 Halle, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| |
Collapse
|
75
|
Veldmann KH, Minges H, Sewald N, Lee JH, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan. J Biotechnol 2019; 291:7-16. [DOI: 10.1016/j.jbiotec.2018.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022]
|
76
|
Yang J, Tian C, Zhang T, Ren C, Zhu Y, Zeng Y, Men Y, Sun Y, Ma Y. Development of food-grade expression system for d-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebacterium glutamicum and its application in conversion of cane molasses to D-allulose. Biotechnol Bioeng 2019; 116:745-756. [PMID: 30597517 DOI: 10.1002/bit.26909] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/10/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022]
Abstract
D-Allulose 3-epimerase (DAE) has been applied to produce D-allulose, a low-calorie and functional sweetener. In this study, a new DAE from Paenibacillus senegalensis was characterized in Escherichia coli. Furthermore, we presented a tandem isoenzyme gene expression strategy to express multiple DAEs in one cell and construct food-grade expression systems based on Corynebacterium glutamicum. Seventeen expression cassettes based on three DAE genes from different organisms were constructed. Among all recombinant strains, DAE16 harboring three DAE genes in an expression vector exhibited the highest enzyme activity with 22.7 U/mg. Whole-cell transformation of DAE16 produced 225 g/L D-allulose with a volumetric productivity of 353 g·g -1 ·hr -1 . The catalytic efficiency of strain C-DAE9 integrating total 11 DAE genes in chromosome was 16.4-fold higher than strains carrying one DAE. Fed-batch culture of C-DAE9 gave enzyme activity of 44,700 U/L. We also expressed a thermostable invertase in C. glutamicum and obtained enzyme activity of 29 U/mg. Immobilized cells expressing DAE or invertase exhibited 80% of retained activity after 30 cycles of catalytic reactions. Those immobilized cells were coupled to produce 61.2 g/L D-allulose from cane molasses in a two-step reaction process. This study provided an efficient approach for enzyme preparation and allowed access to produce D-allulose from other abundant and low-cost feedstock enriched with sucrose.
Collapse
Affiliation(s)
- Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chaoyu Tian
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tong Zhang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chenxi Ren
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
77
|
Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M. Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. Front Microbiol 2019; 9:3287. [PMID: 30687273 PMCID: PMC6338062 DOI: 10.3389/fmicb.2018.03287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
Corynebacterium glutamicum ATCC 13032 harbors five sigma subunits of RNA polymerase belonging to Group IV, also called extracytoplasmic function (ECF) σ factors. These factors σC, σD, σE, σH, and σM are mostly involved in stress responses. The role of σD consists in the control of cell wall integrity. The σD regulon is involved in the synthesis of components of the mycomembrane which is part of the cell wall in C. glutamicum. RNA sequencing of the transcriptome from a strain overexpressing the sigD gene provided 29 potential σD-controlled genes and enabled us to precisely localize their transcriptional start sites. Analysis of the respective promoters by both in vitro transcription and the in vivo two-plasmid assay confirmed that transcription of 11 of the tested genes is directly σD-dependent. The key sequence elements of all these promoters were found to be identical or closely similar to the motifs -35 GTAACA/G and -10 GAT. Surprisingly, nearly all of these σD-dependent promoters were also active to a much lower extent with σHin vivo and one (Pcg0607) also in vitro, although the known highly conserved consensus sequence of the σH-dependent promoters is different (-35 GGAAT/C and -10 GTT). In addition to the activity of σH at the σD-controlled promoters, we discovered separated or overlapping σA- or σB-regulated or σH-regulated promoters within the upstream region of 8 genes of the σD-regulon. We found that phenol in the cultivation medium acts as a stress factor inducing expression of some σD-dependent genes. Computer modeling revealed that σH binds to the promoter DNA in a similar manner as σD to the analogous promoter elements. The homology models together with mutational analysis showed that the key amino acids, Ala 60 in σD and Lys 53 in σH, bind to the second nucleotide within the respective -10 promoter elements (GAT and GTT, respectively). The presented data obtained by integrating in vivo, in vitro and in silico approaches demonstrate that most of the σD-controlled genes also belong to the σH-regulon and are also transcribed from the overlapping or closely located housekeeping (σA-regulated) and/or general stress (σB-regulated) promoters.
Collapse
Affiliation(s)
- Hana Dostálová
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| | - Tobias Busche
- Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Jiří Holátko
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| | - Lenka Rucká
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| | - Václav Štěpánek
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| | - Ivan Barvík
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Jan Nešvera
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| | - Jörn Kalinowski
- Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Miroslav Pátek
- Institute of Microbiology of the CAS, v. v. i., Prague, Czechia
| |
Collapse
|
78
|
Yang Z, Pei X, Xu G, Wu J, Yang L. Efficient inducible expression of nitrile hydratase in Corynebacterium glutamicum. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
79
|
Mutations in Peptidoglycan Synthesis Gene ponA Improve Electrotransformation Efficiency of Corynebacterium glutamicum ATCC 13869. Appl Environ Microbiol 2018; 84:AEM.02225-18. [PMID: 30341076 DOI: 10.1128/aem.02225-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum is frequently engineered to serve as a versatile platform and model microorganism. However, due to its complex cell wall structure, transformation of C. glutamicum with exogenous DNA is inefficient. Although efforts have been devoted to improve the transformation efficiency by using cell wall-weakening agents, direct genetic engineering of cell wall synthesis for enhancing cell competency has not been explored thus far. Herein, we reported that engineering of peptidoglycan synthesis could significantly increase the transformation efficiency of C. glutamicum Comparative analysis of C. glutamicum wild-type strain ATCC 13869 and a mutant with high electrotransformation efficiency revealed nine mutations in eight cell wall synthesis-related genes. Among them, the Y489C mutation in bifunctional peptidoglycan glycosyltransferase/peptidoglycan dd-transpeptidase PonA dramatically increased the electrotransformation of strain ATCC 13869 by 19.25-fold in the absence of cell wall-weakening agents, with no inhibition on growth. The Y489C mutation had no effect on the membrane localization of PonA but affected the peptidoglycan structure. Deletion of the ponA gene led to more dramatic changes to the peptidoglycan structure but only increased the electrotransformation by 4.89-fold, suggesting that appropriate inhibition of cell wall synthesis benefited electrotransformation more. Finally, we demonstrated that the PonAY489C mutation did not cause constitutive or enhanced glutamate excretion, making its permanent existence in C. glutamicum ATCC 13869 acceptable. This study demonstrates that genetic engineering of genes involved in cell wall synthesis, especially peptidoglycan synthesis, is a promising strategy to improve the electrotransformation efficiency of C. glutamicum IMPORTANCE Metabolic engineering and synthetic biology are now the key enabling technologies for manipulating microorganisms to suit the practical outcomes desired by humankind. The introduction of exogenous DNA into cells is an indispensable step for this purpose. However, some microorganisms, including the important industrial workhorse Corynebacterium glutamicum, possess a complex cell wall structure to shield cells against exogenous DNA. Although genes responsible for cell wall synthesis in C. glutamicum are known, engineering of related genes to improve cell competency has not been explored yet. In this study, we demonstrate that mutations in cell wall synthesis genes can significantly improve the electrotransformation efficiency of C. glutamicum Notably, the Y489C mutation in bifunctional peptidoglycan glycosyltransferase/peptidoglycan dd-transpeptidase PonA increased electrotransformation efficiency by 19.25-fold by affecting peptidoglycan synthesis.
Collapse
|
80
|
Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 2018; 50:122-141. [DOI: 10.1016/j.ymben.2018.07.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
|
81
|
Pérez-García F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF. Efficient Production of the Dicarboxylic Acid Glutarate by Corynebacterium glutamicum via a Novel Synthetic Pathway. Front Microbiol 2018; 9:2589. [PMID: 30425699 PMCID: PMC6218589 DOI: 10.3389/fmicb.2018.02589] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/10/2018] [Indexed: 12/04/2022] Open
Abstract
The dicarboxylic acid glutarate is an important building-block gaining interest in the chemical and pharmaceutical industry. Here, a synthetic pathway for fermentative production of glutarate by the actinobacterium Corynebacterium glutamicum has been developed. The pathway does not require molecular oxygen and operates via lysine decarboyxylase followed by two transamination and two NAD-dependent oxidation reactions. Using a genome-streamlined L-lysine producing strain as basis, metabolic engineering was performed to enable conversion of L-lysine to glutarate in a five-step synthetic pathway comprising lysine decarboxylase, putrescine transaminase and γ-aminobutyraldehyde dehydrogenase from Escherichia coli and GABA/5AVA amino transferase and succinate/glutarate semialdehyde dehydrogenase either from C. glutamicum or from three Pseudomonas species. Loss of carbon via formation of the by-products cadaverine and N-acetylcadaverine was avoided by deletion of the respective acetylase and export genes. As the two transamination reactions in the synthetic glutarate biosynthesis pathway yield L-glutamate, biosynthesis of L-glutamate by glutamate dehydrogenase was expected to be obsolete and, indeed, deletion of its gene gdh increased glutarate titers by 10%. Glutarate production by the final strain was tested in bioreactors (n = 2) in order to investigate stability and reliability of the process. The most efficient glutarate production from glucose was achieved by fed-batch fermentation (n = 1) with a volumetric productivity of 0.32 g L-1 h-1, an overall yield of 0.17 g g-1 and a titer of 25 g L-1.
Collapse
Affiliation(s)
- Fernando Pérez-García
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - João M P Jorge
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Annika Dreyszas
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Joe Max Risse
- Fermentation Technology, Technical Faculty and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
82
|
Lee MJ, Kim P. Recombinant Protein Expression System in Corynebacterium glutamicum and Its Application. Front Microbiol 2018; 9:2523. [PMID: 30416490 PMCID: PMC6213972 DOI: 10.3389/fmicb.2018.02523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Corynebacterium glutamicum, a soil-derived gram-positive actinobacterium, has been widely used for the production of biochemical molecules such as amino acids (i.e., L-glutamate and L-lysine), nucleic acids, alcohols, and organic acids. The metabolism of the bacterium has been engineered to increase the production of the target biochemical molecule, which requires a cytosolic enzyme expression. As recent demand for new proteinaceous biologics (such as antibodies, growth factors, and hormones) increase, C. glutamicum is attracting industrial interest as a recombinant protein expression host for therapeutic protein production due to the advantages such as low protease activity without endotoxin activity. In this review, we have summarized the recent studies on the heterologous expression of the recombinant protein in C. glutamicum for metabolic engineering, expansion of substrate availability, and recombinant protein secretion. We have also outlined the advances in genetic components such as promoters, surface anchoring systems, and secretory signal sequences in C. glutamicum for effective recombinant protein expression.
Collapse
Affiliation(s)
| | - Pil Kim
- Department of Biotechnology, The Catholirc University of Korea, Bucheon, South Korea
| |
Collapse
|
83
|
Sgobba E, Blöbaum L, Wendisch VF. Production of Food and Feed Additives From Non-food-competing Feedstocks: Valorizing N-acetylmuramic Acid for Amino Acid and Carotenoid Fermentation With Corynebacterium glutamicum. Front Microbiol 2018; 9:2046. [PMID: 30319554 PMCID: PMC6165865 DOI: 10.3389/fmicb.2018.02046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Corynebacterium glutamicum is used for the million-ton-scale production of food and feed amino acids such as L-glutamate and L-lysine and has been engineered for production of carotenoids such as lycopene. These fermentation processes are based on sugars present in molasses and starch hydrolysates. Due to competing uses of starch and sugars in human nutrition, this bacterium has been engineered for utilization of alternative feedstocks, for example, pentose sugars present in lignocellulosic and hexosamines such as glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc). This study describes strain engineering and fermentation using N-acetyl-D-muramic acid (MurNAc) as non-food-competing feedstock. To this end, the genes encoding the MurNAc-specific PTS subunits MurP and Crr and the etherase MurQ from Escherichia coli K-12 were expressed in C. glutamicumΔnanR. While MurP and MurQ were required to allow growth of C. glutamicumΔnanR with MurNAc, heterologous Crr was not, but it increased the growth rate in MurNAc minimal medium from 0.15 h-1 to 0.20 h-1. When in addition to murP-murQ-crr the GlcNAc-specific PTS gene nagE from C. glycinophilum was expressed in C. glutamicumΔnanR, the resulting strain could utilize blends of GlcNAc and MurNAc. Fermentative production of the amino acids L-glutamate and L-lysine, the carotenoid lycopene, and the L-lysine derived chemicals 1,5-diaminopentane and L-pipecolic acid either from MurNAc alone or from MurNAc-GlcNAc blends was shown. MurNAc and GlcNAc are the major components of the bacterial cell wall and bacterial biomass is an underutilized side product of large-scale bacterial production of organic acids, amino acids or enzymes. The proof-of-concept for valorization of MurNAc reached here has potential for biorefinery applications to convert non-food-competing feedstocks or side-streams to valuable products such as food and feed additives.
Collapse
Affiliation(s)
| | | | - Volker F. Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
84
|
One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Sci Rep 2018; 8:12895. [PMID: 30150644 PMCID: PMC6110843 DOI: 10.1038/s41598-018-31309-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
N-methylated amino acids are found in Nature in various biological compounds. N-methylation of amino acids has been shown to improve pharmacokinetic properties of peptide drugs due to conformational changes, improved proteolytic stability and/or higher lipophilicity. Due to these characteristics N-methylated amino acids received increasing interest by the pharmaceutical industry. Syntheses of N-methylated amino acids by chemical and biocatalytic approaches are known, but often show incomplete stereoselectivity, low yields or expensive co-factor regeneration. So far a one-step fermentative process from sugars has not yet been described. Here, a one-step conversion of sugars and methylamine to the N-methylated amino acid N-methyl-l-alanine was developed. A whole-cell biocatalyst was derived from a pyruvate overproducing C. glutamicum strain by heterologous expression of the N-methyl-l-amino acid dehydrogenase gene from Pseudomonas putida. As proof-of-concept, N-methyl-l-alanine titers of 31.7 g L−1 with a yield of 0.71 g per g glucose were achieved in fed-batch cultivation. The C. glutamicum strain producing this imine reductase enzyme was engineered further to extend this green chemistry route to production of N-methyl-l-alanine from alternative feed stocks such as starch or the lignocellulosic sugars xylose and arabinose.
Collapse
|
85
|
Tuyishime P, Wang Y, Fan L, Zhang Q, Li Q, Zheng P, Sun J, Ma Y. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab Eng 2018; 49:220-231. [PMID: 30048680 DOI: 10.1016/j.ymben.2018.07.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/19/2018] [Indexed: 11/26/2022]
Abstract
Methanol is a promising feedstock for bioproduction of fuels and chemicals, thus massive efforts have been devoted to engineering non-native methylotrophic platform microorganisms to utilize methanol. Herein, we rationally designed and experimentally engineered the industrial workhorse Corynebacterium glutamicum to serve as a methanol-dependent synthetic methylotroph. The cell growth of the methanol-dependent strain relies on co-utilization of methanol and xylose, and most notably methanol is an indispensable carbon source. Due to the methanol-dependent characteristic, adaptive laboratory evolution was successfully applied to improving methanol utilization. The evolved mutant showed a 20-fold increase in cell growth on methanol-xylose minimal medium and utilized methanol and xylose with a high mole ratio of 3.83:1. 13C-labeling experiments demonstrated that the carbon derived from methanol was assimilated into intracellular building blocks, high-energy carriers, cofactors, and biomass (up to 63% 13C-labeling). By inhibiting cell wall biosynthesis, methanol-dependent glutamate production was also achieved, demonstrating the potential application in bioconversion of methanol into useful chemicals. Genetic mutations detected in the evolved strains indicate the importance of intracellular NAD+/NADH ratio, substrate uptake, and methanol tolerance on methanol utilization. This study reports significant improvement in the area of developing fully synthetic methylotrophs.
Collapse
Affiliation(s)
- Philibert Tuyishime
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; School of Life Science, University of Science and Technology of China, Hefei 230026, China
| | - Qiongqiong Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qinggang Li
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
86
|
Sgobba E, Stumpf AK, Vortmann M, Jagmann N, Krehenbrink M, Dirks-Hofmeister ME, Moerschbacher B, Philipp B, Wendisch VF. Synthetic Escherichia coli-Corynebacterium glutamicum consortia for l-lysine production from starch and sucrose. BIORESOURCE TECHNOLOGY 2018; 260:302-310. [PMID: 29631180 DOI: 10.1016/j.biortech.2018.03.113] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
In the biorefinery concept renewable feedstocks are converted to a multitude of value-added compounds irrespective of seasonal or other variations of the complex biomass substrates. Conceptionally, this can be realized by specialized single microbial strains or by co-culturing various strain combinations. In the latter approach strains for substrate conversion and for product formation can be combined. This study addressed the construction of binary microbial consortia based on starch- and sucrose-based production of l-lysine and derived value-added compounds. A commensalism-based synthetic consortium for l-lysine production from sucrose was developed combining an l-lysine auxotrophic, naturally sucrose-negative E. coli strain with a C. glutamicum strain able to produce l-lysine that secretes fructose when grown with sucrose due to deletion of the fructose importer gene ptsF. Mutualistic synthetic consortia with an l-lysine auxotrophic, α-amylase secreting E. coli strain and naturally amylase-negative C. glutamicum strains was implemented for production of valuable fine chemicals from starch.
Collapse
Affiliation(s)
- Elvira Sgobba
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Anna K Stumpf
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Münster, Germany
| | - Marina Vortmann
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität (WWU) Münster, Germany
| | - Nina Jagmann
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Münster, Germany
| | | | | | - Bruno Moerschbacher
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität (WWU) Münster, Germany
| | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Münster, Germany
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
87
|
Lange J, Münch E, Müller J, Busche T, Kalinowski J, Takors R, Blombach B. Deciphering the Adaptation of Corynebacterium glutamicum in Transition from Aerobiosis via Microaerobiosis to Anaerobiosis. Genes (Basel) 2018; 9:E297. [PMID: 29899275 PMCID: PMC6027265 DOI: 10.3390/genes9060297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/02/2023] Open
Abstract
Zero-growth processes are a promising strategy for the production of reduced molecules and depict a steady transition from aerobic to anaerobic conditions. To investigate the adaptation of Corynebacterium glutamicum to altering oxygen availabilities, we conceived a triple-phase fermentation process that describes a gradual reduction of dissolved oxygen with a shift from aerobiosis via microaerobiosis to anaerobiosis. The distinct process phases were clearly bordered by the bacteria’s physiologic response such as reduced growth rate, biomass substrate yield and altered yield of fermentation products. During the process, sequential samples were drawn at six points and analyzed via RNA-sequencing, for metabolite concentrations and for enzyme activities. We found transcriptional alterations of almost 50% (1421 genes) of the entire protein coding genes and observed an upregulation of fermentative pathways, a rearrangement of respiration, and mitigation of the basic cellular mechanisms such as transcription, translation and replication as a transient response related to the installed oxygen dependent process phases. To investigate the regulatory regime, 18 transcriptionally altered (putative) transcriptional regulators were deleted, but none of the deletion strains showed noticeable growth kinetics under an oxygen restricted environment. However, the described transcriptional adaptation of C. glutamicum resolved to varying oxygen availabilities provides a useful basis for future process and strain engineering.
Collapse
Affiliation(s)
- Julian Lange
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Eugenia Münch
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Jan Müller
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
- Institute for Biology-Microbiology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany.
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
88
|
Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum. Genes (Basel) 2018; 9:genes9040219. [PMID: 29673223 PMCID: PMC5924561 DOI: 10.3390/genes9040219] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 12/25/2022] Open
Abstract
Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i) construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii) prevention of carotenoid-like byproduct formation; (iii) overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP)-pathway to increase precursor supply; and (iv) heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1.
Collapse
|
89
|
Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:4117-4130. [DOI: 10.1007/s00253-018-8911-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/24/2018] [Accepted: 03/03/2018] [Indexed: 12/20/2022]
|
90
|
Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl Microbiol Biotechnol 2018; 102:3915-3937. [DOI: 10.1007/s00253-018-8896-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/22/2023]
|
91
|
DeLorenzo DM, Rottinghaus AG, Henson WR, Moon TS. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630. ACS Synth Biol 2018; 7:727-738. [PMID: 29366319 DOI: 10.1021/acssynbio.7b00416] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rhodococcus opacus PD630 is a non-model Gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized because of a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ∼45-fold in output was constructed. To improve the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.
Collapse
Affiliation(s)
- Drew M. DeLorenzo
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Austin G. Rottinghaus
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - William R. Henson
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
92
|
Gorshkova NV, Lobanova JS, Tokmakova IL, Smirnov SV, Akhverdyan VZ, Krylov AA, Mashko SV. Mu-driven transposition of recombinant mini-Mu unit DNA in the Corynebacterium glutamicum chromosome. Appl Microbiol Biotechnol 2018; 102:2867-2884. [PMID: 29392386 PMCID: PMC5847225 DOI: 10.1007/s00253-018-8767-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/05/2023]
Abstract
A dual-component Mu-transposition system was modified for the integration/amplification of genes in Corynebacterium. The system consists of two types of plasmids: (i) a non-replicative integrative plasmid that contains the transposing mini-Mu(LR) unit bracketed by the L/R Mu ends or the mini-Mu(LER) unit, which additionally contains the enhancer element, E, and (ii) an integration helper plasmid that expresses the transposition factor genes for MuA and MuB. Efficient transposition in the C. glutamicum chromosome (≈ 2 × 10−4 per cell) occurred mainly through the replicative pathway via cointegrate formation followed by possible resolution. Optimizing the E location in the mini-Mu unit significantly increased the efficiency of Mu-driven intramolecular transposition–amplification in C. glutamicum as well as in gram-negative bacteria. The new C. glutamicum genome modification strategy that was developed allows the consequent independent integration/amplification/fixation of target genes at high copy numbers. After integration/amplification of the first mini-Mu(LER) unit in the C. glutamicum chromosome, the E-element, which is bracketed by lox-like sites, is excised by Cre-mediated fashion, thereby fixing the truncated mini-Mu(LR) unit in its position for the subsequent integration/amplification of new mini-Mu(LER) units. This strategy was demonstrated using the genes for the citrine and green fluorescent proteins, yECitrine and yEGFP, respectively.
Collapse
Affiliation(s)
- Natalya V Gorshkova
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Juliya S Lobanova
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Irina L Tokmakova
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Sergey V Smirnov
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Valerii Z Akhverdyan
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Alexander A Krylov
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Sergey V Mashko
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545.
| |
Collapse
|
93
|
Muriel C, Arrebola E, Redondo-Nieto M, Martínez-Granero F, Jalvo B, Pfeilmeier S, Blanco-Romero E, Baena I, Malone JG, Rivilla R, Martín M. AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113. Sci Rep 2018; 8:1979. [PMID: 29386661 PMCID: PMC5792552 DOI: 10.1038/s41598-018-20419-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/18/2018] [Indexed: 01/17/2023] Open
Abstract
The transcriptional regulator AmrZ is a global regulatory protein conserved within the pseudomonads. AmrZ can act both as a positive and a negative regulator of gene expression, controlling many genes implicated in environmental adaption. Regulated traits include motility, iron homeostasis, exopolysaccharides production and the ability to form biofilms. In Pseudomonas fluorescens F113, an amrZ mutant presents a pleiotropic phenotype, showing increased swimming motility, decreased biofilm formation and very limited ability for competitive colonization of rhizosphere, its natural habitat. It also shows different colony morphology and binding of the dye Congo Red. The amrZ mutant presents severely reduced levels of the messenger molecule cyclic-di-GMP (c-di-GMP), which is consistent with the motility and biofilm formation phenotypes. Most of the genes encoding proteins with diguanylate cyclase (DGCs) or phosphodiesterase (PDEs) domains, implicated in c-di-GMP turnover in this bacterium, appear to be regulated by AmrZ. Phenotypic analysis of eight mutants in genes shown to be directly regulated by AmrZ and encoding c-di-GMP related enzymes, showed that seven of them were altered in motility and/or biofilm formation. The results presented here show that in P. fluorescens, AmrZ determines c-di-GMP levels through the regulation of a complex network of genes encoding DGCs and PDEs.
Collapse
Affiliation(s)
- Candela Muriel
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Eva Arrebola
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | | | - Blanca Jalvo
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Sebastian Pfeilmeier
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, NR47UH, Norwich, UK
| | - Esther Blanco-Romero
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Irene Baena
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, NR47UH, Norwich, UK
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain.
| |
Collapse
|
94
|
Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production. J Ind Microbiol Biotechnol 2018; 45:123-139. [PMID: 29344811 DOI: 10.1007/s10295-018-2003-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
Abstract
Putrescine is widely used in the industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Because the highest titer of putrescine is much lower than that of its precursor L-ornithine reported in microorganisms to date, further work is needed to increase putrescine production in Corynebacterium glutamicum. We first compared 7 ornithine decarboxylase genes and found that the Enterobacter cloacae ornithine decarboxylase gene speC1 was most suitable for putrescine production in C. glutamicum. Increasing NADPH availability and blocking putrescine oxidation and acetylation were chosen as targets for metabolic engineering. The putrescine producer C. glutamicum PUT4 was first constructed by deleting puo, butA and snaA genes, and replacing the fabG gene with E. cloacae speC1. After adaptive evolution with C. glutamicum PUT4, the evolved strain C. glutamicum PUT-ALE, which produced an 96% higher amount of putrescine compared to the parent strain, was obtained. The whole genome resequencing indicates that the SNPs located in the odhA coding region may be associated with putrescine production. The comparative proteomic analysis reveals that the pentose phosphate and anaplerotic pathway, the glyoxylate cycle, and the ornithine biosynthetic pathway were upregulated in the evolved strain C. glutamicum PUT-ALE. The aspartate family, aromatic, and branched chain amino acid and fatty acid biosynthetic pathways were also observed to be downregulated in C. glutamicum PUT-ALE. Reducing OdhA activity by replacing the odhA native start codon GTG with TTG and overexpression of cgmA or pyc458 further improved putrescine production. Repressing the carB, ilvH, ilvB and aroE expression via CRISPRi also increased putrescine production by 5, 9, 16 and 19%, respectively.
Collapse
|
95
|
Henke NA, Wiebe D, Pérez-García F, Peters-Wendisch P, Wendisch VF. Coproduction of cell-bound and secreted value-added compounds: Simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2018; 247:744-752. [PMID: 30060409 DOI: 10.1016/j.biortech.2017.09.167] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 06/08/2023]
Abstract
Corynebacterium glutamicum is used for production of the food and feed amino acids l-glutamate and l-lysine at the million-ton-scale. One feed formulation of l-lysine simply involves spray-drying of the fermentation broth, thus, including secreted l-lysine and C. glutamicum cells which are pigmented by the C50 carotenoid decaprenoxanthin. C. glutamicum has been engineered for overproduction of various compounds including carotenoids. In this study, C. glutamicum was engineered for coproduction of a secreted amino acid with a cell-bound carotenoid. Asa proof of principle, coproduction of l-glutamate with the industrially relevant astaxanthin was shown. This strategy was applied to engineer l-lysine overproducing strains for combined overproduction of secreted l-lysine with the cell-bound carotenoids decaprenoxanthin, lycopene, β-carotene, zeaxanthin, canthaxanthin and astaxanthin. By fed-batch fermentation 48g/Ll-lysine and 10mg/L astaxanthin were coproduced. Moreover, C. glutamicum was engineered for coproduction of l-lysine and β-carotene from xylose and arabinose as alternative feedstocks.
Collapse
Affiliation(s)
- Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstraße 25, Bielefeld, Germany
| | - Daniela Wiebe
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstraße 25, Bielefeld, Germany
| | - Fernando Pérez-García
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstraße 25, Bielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstraße 25, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstraße 25, Bielefeld, Germany.
| |
Collapse
|
96
|
Henke NA, Frohwitter J, Peters-Wendisch P, Wendisch VF. Carotenoid Production by Recombinant Corynebacterium glutamicum: Strain Construction, Cultivation, Extraction, and Quantification of Carotenoids and Terpenes. Methods Mol Biol 2018; 1852:127-141. [PMID: 30109629 DOI: 10.1007/978-1-4939-8742-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Corynebacterium glutamicum is a workhorse of industrial amino acid production employed for more than five decades for the million-ton-scale production of L-glutamate and L-lysine. This bacterium is pigmented due to the biosynthesis of the carotenoid decaprenoxanthin. Decaprenoxanthin is a carotenoid with 50 carbon atoms, and, thus, C. glutamicum belongs to the rare group of bacteria that produce long-chain C50 carotenoids. C50 carotenoids have been mainly isolated from extremely halophilic archaea (Kelly and Jensen, Acta Chem Scand 21:2578, 1967; Pfander, Pure Appl Chem 66:2369-2374, 1994) and from Gram-positive bacteria of the order Actinomycetales (Netzer et al., J Bacteriol 192:5688-5699, 2010). The characteristic yellow phenotype of C. glutamicum is due to the cyclic C50 carotenoid decaprenoxanthin and its glycosides. Decaprenoxanthin production has been improved by plasmid-borne overexpression of endogenous genes of carotenogenesis. Gene deletion resulted in the production of the C40 carotenoid lycopene, an intermediate of decaprenoxanthin biosynthesis. Heterologous gene expression was required to develop strains overproducing nonnative carotenoids and terpenes, such as astaxanthin (Henke et al., Mar Drugs 14:E124, 2016) and (+)-valencene (Frohwitter et al., J Biotechnol 191:205-213, 2014). Integration of additional copies of endogenous genes expressed from strong promoters improved isoprenoid biosynthesis. Here, we describe C. glutamicum strains, plasmids, and methods for overexpression of endogenous and heterologous genes, gene deletion, replacement, and genomic integration. Moreover, strain cultivation as well as extraction, identification, and quantitative determination of terpenes and carotenoids produced by C. glutamicum is detailed.
Collapse
Affiliation(s)
- Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Jonas Frohwitter
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
97
|
Lange J, Müller F, Takors R, Blombach B. Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum. Microb Biotechnol 2018; 11:257-263. [PMID: 29115043 PMCID: PMC5743825 DOI: 10.1111/1751-7915.12879] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/09/2023] Open
Abstract
A successful bioeconomy depends on the manifestation of biorefineries that entirely convert renewable resources to valuable products and energies. Here, the poorly exploited hemicellulose fraction (HF) from beech wood organosolv processing was applied for isobutanol production with Corynebacterium glutamicum. To enable growth of C. glutamicum on HF, we integrated genes required for D-xylose and l-arabinose metabolization into two of 16 systematically identified and novel chromosomal integration loci. Under aerobic conditions, this engineered strain CArXy reached growth rates up to 0.34 ± 0.02 h-1 on HF. Based on CArXy, we developed the isobutanol producer strain CIsArXy, which additionally (over)expresses genes of the native l-valine biosynthetic and the heterologous Ehrlich pathway. CIsArXy produced 7.2 ± 0.2 mM (0.53 ± 0.02 g L-1 ) isobutanol on HF at a carbon molar yield of 0.31 ± 0.02 C-mol isobutanol per C-mol substrate (d-xylose + l-arabinose) in an anaerobic zero-growth production process.
Collapse
Affiliation(s)
- Julian Lange
- Institute of Biochemical EngineeringUniversity of StuttgartD‐70569StuttgartGermany
| | - Felix Müller
- Institute of Biochemical EngineeringUniversity of StuttgartD‐70569StuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartD‐70569StuttgartGermany
| | - Bastian Blombach
- Institute of Biochemical EngineeringUniversity of StuttgartD‐70569StuttgartGermany
| |
Collapse
|
98
|
Dostálová H, Holátko J, Busche T, Rucká L, Rapoport A, Halada P, Nešvera J, Kalinowski J, Pátek M. Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB Express 2017. [PMID: 28651382 PMCID: PMC5483222 DOI: 10.1186/s13568-017-0436-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Corynebacterium glutamicum is an important industrial producer of various amino acids and other metabolites. The C. glutamicum genome encodes seven sigma subunits (factors) of RNA polymerase: the primary sigma factor SigA (σA), the primary-like σB and five alternative sigma factors (σC, σD, σE, σH and σM). We have developed in vitro and in vivo methods to assign particular sigma factors to individual promoters of different classes. In vitro transcription assays and measurements of promoter activity using the overexpression of a single sigma factor gene and the transcriptional fusion of the promoter to the gfpuv reporter gene enabled us to reliably define the sigma factor dependency of promoters. To document the strengths of these methods, we tested examples of respective promoters for each C. glutamicum sigma factor. Promoters of the rshA (anti-sigma for σH) and trxB1 (thioredoxin) genes were found to be σH-dependent, whereas the promoter of the sigB gene (sigma factor σB) was σE- and σH-dependent. It was confirmed that the promoter of the cg2556 gene (iron-regulated membrane protein) is σC-dependent as suggested recently by other authors. The promoter of cmt1 (trehalose corynemycolyl transferase) was found to be clearly σD-dependent. No σM-dependent promoter was identified. The typical housekeeping promoter P2sigA (sigma factor σA) was proven to be σA-dependent but also recognized by σB. Similarly, the promoter of fba (fructose-1,6-bisphosphate aldolase) was confirmed to be σB-dependent but also functional with σA. The study provided demonstrations of the broad applicability of the developed methods and produced original data on the analyzed promoters.
Collapse
|
99
|
Jorge JMP, Pérez-García F, Wendisch VF. A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources. BIORESOURCE TECHNOLOGY 2017; 245:1701-1709. [PMID: 28522202 DOI: 10.1016/j.biortech.2017.04.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Here, a new metabolic pathway for the production of 5-aminovalerate (5AVA) from l-lysine via cadaverine as intermediate was established and this three-step-pathway comprises l-lysine decarboxylase (LdcC), putrescine transaminase (PatA) and γ-aminobutyraldehyde dehydrogenase (PatD). Since Corynebacterium glutamicum is used for industrial l-lysine production, the pathway was established in this bacterium. Upon expression of ldcC, patA and patD from Escherichia coli in C. glutamicum wild type, production 5AVA was achieved. Enzyme assays revealed that PatA and PatD also converted cadaverine to 5AVA. Eliminating the by-products cadaverine, N-acetylcadaverine and glutarate in a genome-streamlined l-lysine producing strain expressing ldcC, patA and patD improved 5AVA production to a titer of 5.1gL-1, a yield of 0.13gg-1 and a volumetric productivity of 0.12gL-1h-1. Moreover, 5AVA production from the alternative feedstocks starch, glucosamine, xylose and arabinose was established.
Collapse
Affiliation(s)
- João M P Jorge
- Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Fernando Pérez-García
- Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Volker F Wendisch
- Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
100
|
Current advances of succinate biosynthesis in metabolically engineered Escherichia coli. Biotechnol Adv 2017; 35:1040-1048. [DOI: 10.1016/j.biotechadv.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/19/2023]
|