51
|
Pech M, Spreter T, Beckmann R, Beatrix B. Dual binding mode of the nascent polypeptide-associated complex reveals a novel universal adapter site on the ribosome. J Biol Chem 2010; 285:19679-87. [PMID: 20410297 DOI: 10.1074/jbc.m109.092536] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is present as a homodimer in archaea and as a highly conserved heterodimer in eukaryotes. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila melanogaster, and Caenorhabditis elegans. In the yeast Saccharomyces cerevisiae NAC is quantitatively associated with ribosomes. Here we show that NAC contacts several ribosomal proteins. The N terminus of betaNAC, however, specifically contacts near the tunnel exit ribosomal protein Rpl31, which is unique to eukaryotes and archaea. Moreover, the first 23 amino acids of betaNAC are sufficient to direct an otherwise non-associated protein to the ribosome. In contrast, alphaNAC (Egd2p) contacts Rpl17, the direct neighbor of Rpl31 at the ribosomal tunnel exit site. Rpl31 was also recently identified as a contact site for the SRP receptor and the ribosome-associated complex. Furthermore, in Escherichia coli peptide deformylase (PDF) interacts with the corresponding surface area on the eubacterial ribosome. In addition to the previously identified universal adapter site represented by Rpl25/Rpl35, we therefore refer to Rpl31/Rpl17 as a novel universal docking site for ribosome-associated factors on the eukaryotic ribosome.
Collapse
Affiliation(s)
- Markus Pech
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Gene Center Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | |
Collapse
|
52
|
alphaNAC depletion as an initiator of ER stress-induced apoptosis in hypoxia. Cell Death Differ 2009; 16:1505-14. [PMID: 19609276 DOI: 10.1038/cdd.2009.90] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Accumulation of unfolded proteins triggers endoplasmic reticulum (ER) stress and is considered a part of the cellular responses to hypoxia. The nascent polypeptide-associated complex (NAC) participates in the proper maturation of newly synthesized proteins. However, thus far, there have been no comprehensive studies on NAC involvement in hypoxic stress. Here, we show that hypoxia activates glycogen synthase kinase-3beta (GSK-3beta) and that the activated GSK-3beta destabilizes alphaNAC with the subsequent apoptosis of the cell. Hypoxia of various cell types and the mouse ischemic brain was associated with rapid downregulation of alphaNAC and ER stress responses involving PERK, ATF4, gamma-taxilin, elF2alpha, Bip, and CHOP. Depletion of alphaNAC by RNA interference specifically activated ER stress responses and caused mitochondrial dysfunction, which resulted in apoptosis through caspase activation. Interestingly, we found that the hypoxic conditions activated GSK-3beta, and that GSK-3beta inhibition prevented alphaNAC protein downregulation in hypoxic cells and rescued the cells from apoptosis. In addition, alphaNAC overexpression increased the viability of hypoxic cells. Taken together, these results suggest that alphaNAC degradation triggers ER stress responses and initiates apoptotic processes in hypoxic cells, and that GSK-3beta may participate upstream in this mechanism.
Collapse
|
53
|
Hua Y, Hu H, Peng X. Progress in studies on the DEK protein and its involvement in cellular apoptosis. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2009; 52:637-42. [PMID: 19641868 DOI: 10.1007/s11427-009-0088-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 03/30/2009] [Indexed: 12/12/2022]
Abstract
DEK protein is an ubiquitous phosphorylated nuclear protein. Specific binding of DEK to DNA could change the topology of DNA and then affect the gene activity of the underlying DNA sequences. It is speculated that there might be some potential relationship between the stress reaction of cells and DEK proteins. The phosphorylation status of DEK protein is altered during death-receptor-mediated cell apoptosis. Both phosphorylation and poly(ADP-ribosyl)ation could promote the release of DEK from apoptotic nuclei to extracellular environment, and in this case DEK becomes a potential autoantigen of some autoimmune diseases. The available evidence powerfully suggests that DEK protein is closely relevant to apoptosis. The overexpression of DEK protein has dual function in cell apoptosis, in terms of inhibiting or triggering cell apoptosis.
Collapse
Affiliation(s)
- Ying Hua
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | | | | |
Collapse
|
54
|
Kim DW, Chae JI, Kim JY, Pak JH, Koo DB, Bahk YY, Seo SB. Proteomic analysis of apoptosis related proteins regulated by proto-oncogene protein DEK. J Cell Biochem 2009; 106:1048-59. [PMID: 19229864 DOI: 10.1002/jcb.22083] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A nuclear phosphoprotein, DEK, is implicated in certain human diseases, such as leukemia and antoimmune disorders, and a major component of metazoan chromatin. Basically as a modulator of chromatin structure, it can involve in various DNA and RNA-dependent processes and function as either an activator or repressor. Despite of numerous efforts to suggest the biological role of DEK, direct target proteins of DEK in different physiological status remains elusive. To investigate if DEK protein triggers the changes in certain protein networks, DEK was knocked down at both types of cell clones using siRNA expression. Here we provide a catalogue of proteome profiles in total cell lysates derived from normal HeLa and DEK knock-down HeLa cells and a good in vitro model system for dissecting the protein networks due to this proto-oncogenic DEK protein. In this biological context, we compared total proteome changes by the combined methods of two-dimensional gel electrophoresis, quantitative image analysis and MALDI-TOF MS analysis. There were a large number of targets for DEK, which were differentially expressed in DEK knock-down cells and consisted of 58 proteins (41 up-regulated and 17 down-regulated) differentially regulated expression was further confirmed for some subsets of candidates by Western blot analysis using specific antibodies. In the identified 58 spots, 16% of proteins are known to be associated with apoptosis. Among others, we identified apoptosis related proteins such as Annexins, Enolase1, Lamin A, and Glutathione-S-transferase omega 1. These results are consistent with recent studies indicating the crucial role of DEK in apoptosis pathway. We further demonstrated by ChIP analysis that knock-down of DEK caused hyperacetylation of histones around Prx VI promoter which is upregulated in our profile. Using immunoblotting analysis, we have demonstrated the modulation of other caspase-dependent apoptosis related proteins by DEK knock-down and further implicate its role in apoptosis pathway.
Collapse
Affiliation(s)
- Dong-Wook Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, South Korea
| | | | | | | | | | | | | |
Collapse
|
55
|
Wise-Draper TM, Mintz-Cole RA, Morris TA, Simpson DS, Wikenheiser-Brokamp KA, Currier MA, Cripe TP, Grosveld GC, Wells SI. Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res 2009; 69:1792-9. [PMID: 19223548 PMCID: PMC2650744 DOI: 10.1158/0008-5472.can-08-2304] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High levels of expression of the human DEK gene have been correlated with numerous human malignancies. Intracellular DEK functions have been described in vitro and include DNA supercoiling, DNA replication, RNA splicing, and transcription. We have shown that DEK also suppresses cellular senescence, apoptosis, and differentiation, thus promoting cell growth and survival in monolayer and organotypic epithelial raft models. Such functions are likely to contribute to cancer, but direct evidence to implicate DEK as an oncogene has remained elusive. Here, we show that in line with an early role in tumorigenesis, murine papilloma formation in a classical chemical carcinogenesis model was reduced in DEK knockout mice. Additionally, human papillomavirus E6/E7, hRas, and DEK cooperated in the transformation of keratinocytes in soft agar and xenograft establishment, thus also implicating DEK in tumor promotion at later stages. Finally, adenoviral DEK depletion via short hairpin RNA expression resulted in cell death in human tumor cells in vitro and in vivo, but did not significantly affect differentiated epithelial cells. Taken together, our data uncover oncogenic DEK activities as postulated from its frequent up-regulation in human malignancies, and suggest that the targeted suppression of DEK may become a strategic approach to the treatment of cancer.
Collapse
Affiliation(s)
- Trisha M Wise-Draper
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Down-regulation of ribosomal protein L7A in human osteosarcoma. J Cancer Res Clin Oncol 2009; 135:1025-31. [DOI: 10.1007/s00432-008-0538-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
|
57
|
Wise-Draper TM, Morreale RJ, Morris TA, Mintz-Cole RA, Hoskins EE, Balsitis SJ, Husseinzadeh N, Witte DP, Wikenheiser-Brokamp KA, Lambert PF, Wells SI. DEK proto-oncogene expression interferes with the normal epithelial differentiation program. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:71-81. [PMID: 19036808 PMCID: PMC2631320 DOI: 10.2353/ajpath.2009.080330] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 09/18/2008] [Indexed: 01/14/2023]
Abstract
Overexpression of the DEK gene is associated with multiple human cancers, but its specific roles as a putative oncogene are not well defined. DEK transcription was previously shown to be induced by the high-risk human papillomavirus (HPV) E7 oncogene via E2F and Rb pathways. Transient DEK overexpression was able to inhibit both senescence and apoptosis in cultured cells. In at least the latter case, this mechanism involved the destabilization of p53 and the decreased expression of p53 target genes. We show here that DEK overexpression disrupts the normal differentiation program in a manner that is independent of either p53 or cell death. DEK expression was distinctly repressed upon the differentiation of cultured primary human keratinocytes, and stable DEK overexpression caused epidermal thickening in an organotypic raft model system. The observed hyperplasia involved a delay in keratinocyte differentiation toward a more undifferentiated state, and expansion of the basal cell compartment was due to increased proliferation, but not apoptosis. These phenotypes were accompanied by elevated p63 expression in the absence of p53 destabilization. In further support of bona fide oncogenic DEK activities, we report here up-regulated DEK protein levels in both human papilloma virus-positive hyperplastic murine skin and a subset of human squamous cell carcinomas. We suggest that DEK up-regulation may contribute to carcinoma development at least in part through increased proliferation and retardation of differentiation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Cell Differentiation/genetics
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Chromosomal Proteins, Non-Histone/biosynthesis
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA-Binding Proteins/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/pathology
- Epithelial Cells/virology
- Epithelium/metabolism
- Epithelium/pathology
- Fluorescent Antibody Technique
- Foreskin/cytology
- Gene Expression
- Humans
- Hyperplasia/genetics
- Hyperplasia/metabolism
- Hyperplasia/virology
- Keratinocytes/cytology
- Keratinocytes/pathology
- Keratinocytes/virology
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Oncogene Proteins/biosynthesis
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Papillomavirus E7 Proteins/genetics
- Poly-ADP-Ribose Binding Proteins
- Proto-Oncogene Mas
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
Collapse
Affiliation(s)
- Trisha M Wise-Draper
- Division of Pediatric Hematology/Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
The purpose of the present paper was to investigate the significance of DEK protein expression in uterine cervical lesions and its relationship with HPV infection status. DEK protein expression was studied in 253 cervical lesions, including 30 non-neoplastic cervix with or without squamous metaplasia, 64 cervical intra-epithelial neoplasias (CIN; CIN-1, n = 28; CIN-2, n = 17; CIN-3, n = 19), 102 squamous cell carcinomas (SCC), 51 adenocarcinomas, and six adenosquamous cell carcinomas (adenoSCC) on immunohistochemistry. For comparison, HPV-positive and -negative cervical cancer cell lines were also included. The HPV screening was performed using TaKaRa polymerase chain reaction. On immunohistochemistry DEK was found to be negative in all 30 non-neoplastic cervical epithelia, but it was positive in 96.1% of SCC (98/102), 92.2% of adenocarcinomas (47/51), 100% of adenoSCC (6/6), 85.7% of CIN-1 (24/28), 94.1% of CIN-2 (16/17), and 89.5% of CIN-3 (17/19). There was no significant difference between HPV-positive and -negative cervical lesions. Also, strongly positive staining was observed in all aforementioned cervical cancer cell lines regardless of HPV infection, according to immunocytochemistry. In summary, DEK plays an important role in the carcinogenesis of cervical cancers, and can be helpful for early diagnosis, and is a potential therapeutic target.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma/virology
- Biomarkers, Tumor/metabolism
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/pathology
- Carcinoma, Adenosquamous/virology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA, Viral/analysis
- Female
- HeLa Cells
- Humans
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Papillomaviridae/genetics
- Papillomaviridae/isolation & purification
- Papillomavirus Infections/genetics
- Papillomavirus Infections/metabolism
- Papillomavirus Infections/virology
- Poly-ADP-Ribose Binding Proteins
- Polymerase Chain Reaction
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
- Uterine Cervical Neoplasms/virology
- Uterine Cervical Dysplasia/metabolism
- Uterine Cervical Dysplasia/pathology
- Uterine Cervical Dysplasia/virology
Collapse
Affiliation(s)
- Qunying Wu
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | | | | | | | | | | |
Collapse
|
59
|
Kappes F, Fahrer J, Khodadoust MS, Tabbert A, Strasser C, Mor-Vaknin N, Moreno-Villanueva M, Bürkle A, Markovitz DM, Ferrando-May E. DEK is a poly(ADP-ribose) acceptor in apoptosis and mediates resistance to genotoxic stress. Mol Cell Biol 2008; 28:3245-57. [PMID: 18332104 PMCID: PMC2423161 DOI: 10.1128/mcb.01921-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/08/2008] [Accepted: 03/04/2008] [Indexed: 12/28/2022] Open
Abstract
DEK is a nuclear phosphoprotein implicated in oncogenesis and autoimmunity and a major component of metazoan chromatin. The intracellular cues that control the binding of DEK to DNA and its pleiotropic functions in DNA- and RNA-dependent processes have remained mainly elusive so far. Our recent finding that the phosphorylation status of DEK is altered during death receptor-mediated apoptosis suggested a potential involvement of DEK in stress signaling. In this study, we show that in cells committed to die, a portion of the cellular DEK pool is extensively posttranslationally modified by phosphorylation and poly(ADP-ribosyl)ation. Through interference with DEK expression, we further show that DEK promotes the repair of DNA lesions and protects cells from genotoxic agents that typically trigger poly(ADP-ribose) polymerase activation. The posttranslational modification of DEK during apoptosis is accompanied by the removal of the protein from chromatin and its release into the extracellular space. Released modified DEK is recognized by autoantibodies present in the synovial fluids of patients affected by juvenile rheumatoid arthritis/juvenile idiopathic arthritis. These findings point to a crucial role of poly(ADP-ribosyl)ation in shaping DEK's autoantigenic properties and in its function as a promoter of cell survival.
Collapse
Affiliation(s)
- F Kappes
- University of Konstanz, Department of Biology, Box X911, D-78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Devany M, Kappes F, Chen KM, Markovitz DM, Matsuo H. Solution NMR structure of the N-terminal domain of the human DEK protein. Protein Sci 2008; 17:205-15. [PMID: 18227428 PMCID: PMC2222715 DOI: 10.1110/ps.073244108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/09/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
The human DEK protein has a long-standing association with carcinogenesis since the DEK gene was originally identified in the t(6:9) chromosomal translocation in a subtype of patients with acute myelogenous leukemia (AML). Recent studies have partly unveiled DEK's cellular functions including apoptosis inhibition in primary cells as well as cancer cells, determination of 3' splice site of transcribed RNA, and suppression of transcription initiation by polymerase II. It has been previously shown that the N-terminal region of DEK, spanning residues 68-226, confers important in vitro and in vivo functions of DEK, which include double-stranded DNA (ds-DNA) binding, introduction of constrained positive supercoils into closed dsDNA, and apoptosis inhibition. In this paper, we describe the three-dimensional structure of the N-terminal domain of DEK (DEKntd) as determined using solution NMR. The C-terminal part of DEKntd, which contains a putative DNA-binding motif (SAF/SAP motif), folds into a helix-loop-helix structure. Interestingly, the N-terminal part of DEKntd shows a very similar structure to the C-terminal part, although the N-terminal and the C-terminal part differ distinctively in their amino acid sequences. As a consequence, the structure of DEKntd has a pseudo twofold plane symmetry. In addition, we tested dsDNA binding of DEKntd by monitoring changes of NMR chemical shifts upon addition of dsDNAs. We found that not only the C-terminal part containing the SAF/SAP motif but the N-terminal part is also involved in DEKntd's dsDNA binding. Our study illustrates a new structural variant and reveals novel dsDNA-binding properties for proteins containing the SAP/SAF motif.
Collapse
Affiliation(s)
- Matthew Devany
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
61
|
Ageberg M, Drott K, Olofsson T, Gullberg U, Lindmark A. Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer 2008; 47:276-87. [PMID: 18181180 DOI: 10.1002/gcc.20531] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
MESH Headings
- Apoptosis
- Blotting, Western
- Eukaryotic Initiation Factor-4E/metabolism
- Flow Cytometry
- Gene Expression Regulation, Leukemic/physiology
- Genes, Reporter
- Genetic Vectors
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Luciferases/metabolism
- Neoplasm Proteins/biosynthesis
- Oncogene Proteins, Fusion/physiology
- Phosphorylation
- Protein Biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Deletion
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Malin Ageberg
- Division of Hematology and Transfusion Medicine, Faculty of Medicine, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
62
|
Abba MC, Sun H, Hawkins KA, Drake JA, Hu Y, Nunez MI, Gaddis S, Shi T, Horvath S, Sahin A, Aldaz CM. Breast cancer molecular signatures as determined by SAGE: correlation with lymph node status. Mol Cancer Res 2007; 5:881-90. [PMID: 17855657 PMCID: PMC4186709 DOI: 10.1158/1541-7786.mcr-07-0055] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Global gene expression measured by DNA microarray platforms have been extensively used to classify breast carcinomas correlating with clinical characteristics, including outcome. We generated a breast cancer Serial Analysis of Gene Expression (SAGE) high-resolution database of approximately 2.7 million tags to perform unsupervised statistical analyses to obtain the molecular classification of breast-invasive ductal carcinomas in correlation with clinicopathologic features. Unsupervised statistical analysis by means of a random forest approach identified two main clusters of breast carcinomas, which differed in their lymph node status (P=0.01); this suggested that lymph node status leads to globally distinct expression profiles. A total of 245 (55 up-modulated and 190 down-modulated) transcripts were differentially expressed between lymph node (+) and lymph node (-) primary breast tumors (fold change, >or=2; P<0.05). Various lymph node (+) up-modulated transcripts were validated in independent sets of human breast tumors by means of real-time reverse transcription-PCR (RT-PCR). We validated significant overexpression of transcripts for HOXC10 (P=0.001), TPD52L1 (P=0.007), ZFP36L1 (P=0.011), PLINP1 (P=0.013), DCTN3 (P=0.025), DEK (P=0.031), and CSNK1D (P=0.04) in lymph node (+) breast carcinomas. Moreover, the DCTN3 (P=0.022) and RHBDD2 (P=0.002) transcripts were confirmed to be overexpressed in tumors that recurred within 6 years of follow-up by real-time RT-PCR. In addition, meta-analysis was used to compare SAGE data associated with lymph node (+) status with publicly available breast cancer DNA microarray data sets. We have generated evidence indicating that the pattern of gene expression in primary breast cancers at the time of surgical removal could discriminate those tumors with lymph node metastatic involvement using SAGE to identify specific transcripts that behave as predictors of recurrence as well.
Collapse
Affiliation(s)
- Martín C. Abba
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | - Hongxia Sun
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | - Kathleen A. Hawkins
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | - Jeffrey A. Drake
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | - Yuhui Hu
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | - Maria I. Nunez
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | - Sally Gaddis
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | - Tao Shi
- Ortho-Clinical Diagnostics, San Diego, California
| | - Steve Horvath
- Human Genetics and Biostatistics, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Aysegul Sahin
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - C. Marcelo Aldaz
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| |
Collapse
|
63
|
Corson TW, Gallie BL. One hit, two hits, three hits, more? Genomic changes in the development of retinoblastoma. Genes Chromosomes Cancer 2007; 46:617-34. [PMID: 17437278 DOI: 10.1002/gcc.20457] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The childhood eye cancer retinoblastoma is initiated by the loss of both alleles of the prototypic tumor suppressor gene, RB1. However, a large number of cytogenetic and comparative genomic hybridization (CGH) studies have shown that these M1 and M2 mutational events--although necessary for initiation--are not the only genomic changes in retinoblastoma. Some of these subsequent changes, which we have termed M3 to Mn, are likely crucial for tumor progression not only in retinoblastoma but also in other cancers. Moreover, genes showing genomic change in cancer are more stable markers and, therefore, possible therapeutic targets than genes simply differentially expressed. In this review, we provide the first comprehensive summary of the genomic evidence implicating gain of 1q, 2p, 6p, and 13q, and loss of 16q in retinoblastoma oncogenesis, including karyotype, CGH, and microarray CGH data. We discuss the search for candidate oncogenes and tumor suppressor genes within these regions, including the candidates (KIF14, MDM4, MYCN, E2F3, DEK, CDH11, and others), plus associations between genomic changes and clinical parameters. We also review studies of other regions of the retinoblastoma genome, the epigenetic changes of aberrant methylation of MGMT, RASSF1A, CASP8, and MLH1, and the roles microRNAs might play in this cancer. Although many candidate genes have yet to be functionally validated in retinoblastoma, work in this field lays out a molecular cytogenetic pathway of retinoblastoma development. Candidate cancer genes carry diagnostic, prognostic, and therapeutic implications beyond retinoblastoma.
Collapse
Affiliation(s)
- Timothy W Corson
- Division of Applied Molecular Oncology, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | | |
Collapse
|
64
|
Henrich S, Cordwell SJ, Crossett B, Baker MS, Christopherson RI. The nuclear proteome and DNA-binding fraction of human Raji lymphoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:413-32. [PMID: 17369005 DOI: 10.1016/j.bbapap.2006.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/26/2006] [Accepted: 12/20/2006] [Indexed: 12/17/2022]
Abstract
Purification of organelles and analysis of their proteins is an important initial step for biological proteomics, simplifying the proteome prior to analysis by established techniques such as two-dimensional liquid chromatography (2-DLC) or two-dimensional gel electrophoresis (2-DE). Nuclear proteins play a central role in regulating gene expression, but are often under-represented in proteomic studies due to their lower abundance in comparison to cellular 'housekeeping' metabolic enzymes and structural proteins. A reliable procedure for separation and proteomic analysis of nuclear proteins would be useful for investigations of cell proliferation and differentiation during disease processes (e.g., human cancer). In this study, we have purified nuclei from the human Burkitt's lymphoma B-cell line, Raji, using sucrose density gradient centrifugation. The integrity and purity of the nuclei were assessed by light microscopy and proteins from the nuclear fractions were separated by 2-DE and identified using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). A total of 124 unique proteins were identified, of which 91% (n=110) were predicted to be nuclear using PSORT. Proteins from the nuclear fraction were subjected to affinity chromatography on DNA-agarose to isolate DNA-binding proteins. From this purified fraction, 131 unique proteins were identified, of which 69% (n=90) were known or predicted DNA-binding proteins. Purification of nuclei and subsequent enrichment of DNA-binding proteins allowed identification of a total of 209 unique proteins, many involved in transcription and/or correlated with lymphoma, leukemia or cancer in general. The data obtained should be valuable for identification of biomarkers and targets for cancer therapy, and for furthering our understanding of the molecular mechanisms underlying lymphoma development and progression.
Collapse
Affiliation(s)
- Silke Henrich
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
65
|
Mor-Vaknin N, Punturieri A, Sitwala K, Faulkner N, Legendre M, Khodadoust MS, Kappes F, Ruth JH, Koch A, Glass D, Petruzzelli L, Adams BS, Markovitz DM. The DEK nuclear autoantigen is a secreted chemotactic factor. Mol Cell Biol 2006; 26:9484-96. [PMID: 17030615 PMCID: PMC1698538 DOI: 10.1128/mcb.01030-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/13/2006] [Accepted: 09/15/2006] [Indexed: 12/17/2022] Open
Abstract
The nuclear DNA-binding protein DEK is an autoantigen that has been implicated in the regulation of transcription, chromatin architecture, and mRNA processing. We demonstrate here that DEK is actively secreted by macrophages and is also found in synovial fluid samples from patients with juvenile arthritis. Secretion of DEK is modulated by casein kinase 2, stimulated by interleukin-8, and inhibited by dexamethasone and cyclosporine A, consistent with a role as a proinflammatory molecule. DEK is secreted in both a free form and in exosomes, vesicular structures in which transcription-modulating factors such as DEK have not previously been found. Furthermore, DEK functions as a chemotactic factor, attracting neutrophils, CD8+ T lymphocytes, and natural killer cells. Therefore, the DEK autoantigen, previously described as a strictly nuclear protein, is secreted and can act as an extracellular chemoattractant, suggesting a direct role for DEK in inflammation.
Collapse
Affiliation(s)
- Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, MI 48109-0640, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Tabbert A, Kappes F, Knippers R, Kellermann J, Lottspeich F, Ferrando-May E. Hypophosphorylation of the architectural chromatin protein DEK in death-receptor-induced apoptosis revealed by the isotope coded protein label proteomic platform. Proteomics 2006; 6:5758-72. [PMID: 17001602 DOI: 10.1002/pmic.200600197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During apoptosis nuclear morphology changes dramatically due to alterations of chromatin architecture and cleavage of structural nuclear proteins. To characterize early events in apoptotic nuclear dismantling we have performed a proteomic study of apoptotic nuclei. To this end we have combined a cell-free apoptosis system with a proteomic platform based on the differential isotopic labeling of primary amines with N-nicotinoyloxy-succinimide. We exploited the ability of this system to produce nuclei arrested at different stages of apoptosis to analyze proteome alterations which occur prior to or at a low level of caspase activation. We show that the majority of proteins affected at the onset of apoptosis are involved in chromatin architecture and RNA metabolism. Among them is DEK, an architectural chromatin protein which is linked to autoimmune disorders. The proteomic analysis points to the occurrence of multiple PTMs in early apoptotic nuclei. This is confirmed by showing that the level of phosphorylation of DEK is decreased following apoptosis induction. These results suggest the unexpected existence of an early crosstalk between cytoplasm and nucleus during apoptosis. They further establish a previously unrecognized link between DEK and cell death, which will prove useful in the elucidation of the physiological function of this protein.
Collapse
Affiliation(s)
- Anja Tabbert
- University of Konstanz, Molecular Toxicology Group, Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
67
|
Wise-Draper TM, Allen HV, Jones EE, Habash KB, Matsuo H, Wells SI. Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol Cell Biol 2006; 26:7506-19. [PMID: 16894028 PMCID: PMC1636856 DOI: 10.1128/mcb.00430-06] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Revised: 04/26/2006] [Accepted: 07/26/2006] [Indexed: 11/20/2022] Open
Abstract
The DEK proto-oncogene has been associated with human carcinogenesis-either as a fusion with the CAN nucleoporin protein or when transcriptionally upregulated. Mechanisms of intracellular DEK functions, however, have remained relatively unexplored. We have recently demonstrated that DEK expression is induced by the high-risk human papillomavirus (HPV) E7 protein in a manner which is dependent upon retinoblastoma protein function and have implicated DEK in the inhibition of cellular senescence. Additionally, overexpression of DEK resulted in significant life span extension of primary human keratinocytes. In order to determine whether DEK expression is required for cellular proliferation and/or survival, we monitored cellular responses to the knockdown of DEK in cancer and primary cells. The results indicate that DEK expression protects both HPV-positive cancer and primary human cells from apoptotic cell death. Cell death in response to DEK depletion was accompanied by increased protein stability and transcriptional activity of the p53 tumor suppressor and consequent upregulation of known p53 target genes such as p21CIP and Bax. Consistent with a possible role for p53 in DEK-mediated cell death inhibition, the p53-negative human osteosarcoma cell line SAOS-2 was resistant to the knockdown of DEK. Finally, expression of a dominant negative p53 miniprotein inhibited DEK RNA interference-induced p53 transcriptional induction, as well as cell death, thus directly implicating p53 activation in the observed apoptotic phenotype. These findings suggest a novel role for DEK in cellular survival, involving the destabilization of p53 in a manner which is likely to contribute to human carcinogenesis.
Collapse
Affiliation(s)
- Trisha M Wise-Draper
- Division of Pediatric Hematology/Oncology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
68
|
Klener P, Szynal M, Cleuter Y, Merimi M, Duvillier H, Lallemand F, Bagnis C, Griebel P, Sotiriou C, Burny A, Martiat P, Van den Broeke A. Insights into gene expression changes impacting B-cell transformation: cross-species microarray analysis of bovine leukemia virus tax-responsive genes in ovine B cells. J Virol 2006; 80:1922-38. [PMID: 16439548 PMCID: PMC1367148 DOI: 10.1128/jvi.80.4.1922-1938.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Large-animal models for leukemia have the potential to aid in the understanding of networks that contribute to oncogenesis. Infection of cattle and sheep with bovine leukemia virus (BLV), a complex retrovirus related to human T-cell leukemia virus type 1 (HTLV-1), is associated with the development of B-cell leukemia. Whereas the natural disease in cattle is characterized by a low tumor incidence, experimental infection of sheep leads to overt leukemia in the majority of infected animals, providing a model for studying the pathogenesis associated with BLV and HTLV-1. Tax(BLV), the major oncoprotein, initiates a cascade of events leading toward malignancy, although the basis of transformation is not fully understood. We have taken a cross-species ovine-to-human microarray approach to identify Tax(BLV)-responsive transcriptional changes in two sets of cultured ovine B cells following retroviral vector-mediated delivery of Tax(BLV). Using cDNA-spotted microarrays comprising 10,336 human genes/expressed sequence tags, we identified a cohort of differentially expressed genes, including genes related to apoptosis, DNA transcription, and repair; proto-oncogenes; cell cycle regulators; transcription factors; small Rho GTPases/GTPase-binding proteins; and previously reported Tax(HTLV-1)-responsive genes. Interestingly, genes known to be associated with human neoplasia, especially B-cell malignancies, were extensively represented. Others were novel or unexpected. The results suggest that Tax(BLV) deregulates a broad network of interrelated pathways rather than a single B-lineage-specific regulatory process. Although cross-species approaches do not permit a comprehensive analysis of gene expression patterns, they can provide initial clues for the functional roles of genes that participate in B-cell transformation and pinpoint molecular targets not identified using other methods in animal models.
Collapse
Affiliation(s)
- Pavel Klener
- Laboratory of Experimental Hematology, Bordet Institute, 121 Blvd. de Waterloo, 1000 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Orlic M, Spencer CE, Wang L, Gallie BL. Expression analysis of 6p22 genomic gain in retinoblastoma. Genes Chromosomes Cancer 2006; 45:72-82. [PMID: 16180235 DOI: 10.1002/gcc.20263] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To identify gene(s) targeted by 6p22 genomic gain, present in more than 50% retinoblastoma tumors, we used real-time RT-PCR to quantify the expression of seven genes in normal human retina and retinoblastoma. Six genes are located in the quantitative multiplex PCR-defined 0.6 Mb minimal region of gain at 6p22 (DEK, AOF1, TPMT, NHLRC1, KIF13A, and NUP153), and E2F3 is 2 Mb away from the minimal region of gain on 6p22. E2F3, DEK, KIF13A, and NUP153 were most frequently overexpressed in retinoblastoma with 6p genomic gain, compared with the normal adult human retina. E2F3 and DEK mRNA levels were increased in all human tumors showing 6p22 gain, as well as in mouse retinoblastoma induced by SV40 large T antigen expression in developing retina, compared with the normal controls (adult human retina and 7-day-old mouse retina, respectively). Only DEK showed statistically significant correlation of expression and genomic copy number (P = 0.019). E2F3 and DEK, but not NUP153, showed developmental regulation. E2F3 and DEK mRNA overexpression was always associated with protein overexpression, determined by immunoblotting or immunofluorescent staining of primary tumors, relative to the adjacent normal retina. E2F3 was strongly expressed in actively proliferating cells, while DEK was overexpressed in all tumor cells. Taking into account the proliferation-promoting role of E2F3, implication of E2F3 in bladder and prostate cancer, and the translocation and overexpression of DEK in leukemia, we conclude that either DEK or E2F3 (or both) are targeted by the 6p22 gain in retinoblastoma.
Collapse
Affiliation(s)
- Marija Orlic
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
70
|
Schmidt M, Schler G, Gruensfelder P, Hoppe F. Differential gene expression in a paclitaxel-resistant clone of a head and neck cancer cell line. Eur Arch Otorhinolaryngol 2005; 263:127-34. [PMID: 16380805 DOI: 10.1007/s00405-005-0936-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 12/15/2004] [Indexed: 10/25/2022]
Abstract
The anti-neoplastic drug paclitaxel (taxol), which is known to block cells in the G2/M phase of the cell cycle through stabilization of microtubules, is meanwhile commonly used for chemotherapy of advanced head and neck cancer. Chemotherapy is primarily used in order to preserve laryngeal and/or pharyngeal structures. Although paclitaxel generally seems to be a powerful agent, it failed to reach a loco-regional tumor control in a sufficient percentage of patients. In order to investigate molecular resistance mechanisms, we have established a paclitaxel-resistant subline originating from the larynx carcinoma cell line HLaC79, which seemed to be partially dependent on taxol. The original and the descendant cell line were characterized by growth inhibition assays. We used western blotting and the cDNA subtraction (SSH) technique to identify genes differentially expressed in the taxol-resistant cell clone. cDNA subtraction revealed increased expression of six genes, including clathrin heavy chain, alpha3-tubulin, a neuroblastoma-specific Thymosin beta, the ribosomal protein L7a, HLA-B associated transcript 3 and collagen IIIalpha1 in the taxol-resistant cell line. Furthermore, western blots showed an overexpression of MDR-1 in the taxol-resistant clone, while alpha- and beta-tubulins and p48/IRF9 were expressed in equal amounts in both cell lines.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Blotting, Western
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Genes, MDR/genetics
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Humans
- Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics
- Paclitaxel/therapeutic use
- RNA, Neoplasm/genetics
- Tubulin/genetics
- Tubulin Modulators/therapeutic use
Collapse
Affiliation(s)
- Marianne Schmidt
- Department of Otorhinolaryngology, University of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | | | | | | |
Collapse
|
71
|
Wise-Draper TM, Allen HV, Thobe MN, Jones EE, Habash KB, Münger K, Wells SI. The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J Virol 2005; 79:14309-17. [PMID: 16254365 PMCID: PMC1280217 DOI: 10.1128/jvi.79.22.14309-14317.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 08/19/2005] [Indexed: 12/24/2022] Open
Abstract
The human DEK proto-oncogene is a nucleic acid binding protein with suspected roles in human carcinogenesis, autoimmune disease, and viral infection. Intracellular DEK functions, however, are poorly understood. In papillomavirus-positive cervical cancer cells, downregulation of viral E6/E7 oncogene expression results in cellular senescence. We report here the specific repression of DEK message and protein levels in senescing human papillomavirus type 16- (HPV16-) and HPV18-positive cancer cell lines as well as in primary cells undergoing replicative senescence. Cervical cancer cell senescence was partially overcome by DEK overexpression, and DEK overexpression was sufficient for extending the life span of primary keratinocytes, supporting critical roles for this molecule as a senescence regulator. In order to determine whether DEK is a bona fide HPV oncogene target in primary cells, DEK expression was monitored in human keratinocytes transduced with HPV E6 and/or E7. The results identify high-risk HPV E7 as a positive DEK regulator, an activity that is not shared by low-risk HPV E7 protein. Experiments in mouse embryo fibroblasts recapitulated the observed E7-mediated DEK induction and demonstrated that both basal and E7-induced regulation of DEK expression are controlled by the retinoblastoma protein family. Taken together, our results suggest that DEK upregulation may be a common event in human carcinogenesis and may reflect its senescence inhibitory function.
Collapse
Affiliation(s)
- Trisha M Wise-Draper
- Division of Hematology/Oncology, Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Boudreau CR, Yang I, Liau LM. Gliomas: advances in molecular analysis and characterization. ACTA ACUST UNITED AC 2005; 64:286-94; discussion 294. [PMID: 16229087 DOI: 10.1016/j.surneu.2005.03.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gliomas represent the most common primary brain tumor. Despite recent advances in diagnostic imaging, neurosurgical technique, radiation therapy, and chemotherapy, significant advances in accurate prognosis and improved survival have not been achieved. Nevertheless, new developments in molecular biology could have potential impact on the clinical management of patients with these brain tumors. This review will describe the technological advances being used to enrich the classification of gliomas, present specific studies that have successfully used the new technologies to identify molecular subtypes of glioblastoma, and discuss the implications of such enhanced classification and molecular characterizations for the prediction of therapeutic response and the design of future brain tumor therapies. RESULTS Innovative techniques using complementary DNA and oligonucleotide microarrays (gene chips), tissue microarrays (tissue chips), and differential immunoabsorption have provided high throughput and potentially comprehensive approaches for the molecular characterization of human gliomas. Alterations of several tumor suppressor genes and oncogenes have already been identified as being critical to glioma transformation and progression. These approaches have led to the subclassification of glioblastoma multiforme into distinct subtypes based on the molecular signatures of the tumors. CONCLUSIONS Classifications of gliomas can now be enhanced with new techniques for comprehensive molecular characterization. Improved and efficient molecular profiling of brain tumors is advancing diagnosis/prognosis and identifying targets for novel and rational therapeutic approaches. Neurosurgeons and neuro-oncologists should be aware of these new developments so they can better advise and treat their patients.
Collapse
Affiliation(s)
- Christine R Boudreau
- Division of Neurosurgery, Brain Research Institute, Geffen School of Medicine at UCLA, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
73
|
Cleary J, Sitwala KV, Khodadoust MS, Kwok RPS, Mor-Vaknin N, Cebrat M, Cole PA, Markovitz DM. p300/CBP-associated factor drives DEK into interchromatin granule clusters. J Biol Chem 2005; 280:31760-7. [PMID: 15987677 DOI: 10.1074/jbc.m500884200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DEK is a mammalian protein that has been implicated in the pathogenesis of autoimmune diseases and cancer, including acute myeloid leukemia, melanoma, glioblastoma, hepatocellular carcinoma, and bladder cancer. In addition, DEK appears to participate in multiple cellular processes, including transcriptional repression, mRNA processing, and chromatin remodeling. Sub-nuclear distribution of this protein, with the attendant functional ramifications, has remained a controversial topic. Here we report that DEK undergoes acetylation in vivo at lysine residues within the first 70 N-terminal amino acids. Acetylation of DEK decreases its affinity for DNA elements within the promoter, which is consistent with the involvement of DEK in transcriptional repression. Furthermore, deacetylase inhibition results in accumulation of DEK within interchromatin granule clusters (IGCs), sub-nuclear structures that contain RNA processing factors. Overexpression of P/CAF acetylase drives DEK into IGCs, and addition of a newly developed, synthetic, cell-permeable P/CAF inhibitor blocks this movement. To our knowledge, this is the first reported example of acetylation playing a direct role in relocation of a protein to IGCs, and this may explain how DEK can function in multiple pathways that take place in distinct sub-nuclear compartments. These findings also suggest that DEK-associated malignancies and autoimmune diseases might be amenable to treatment with agents that alter acetylation.
Collapse
Affiliation(s)
- Joanne Cleary
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109-0640, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Carralot JP, Weide B, Schoor O, Probst J, Scheel B, Teufel R, Hoerr I, Garbe C, Rammensee HG, Pascolo S. Production and characterization of amplified tumor-derived cRNA libraries to be used as vaccines against metastatic melanomas. GENETIC VACCINES AND THERAPY 2005; 3:6. [PMID: 16115316 PMCID: PMC1215502 DOI: 10.1186/1479-0556-3-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 08/22/2005] [Indexed: 01/11/2023]
Abstract
Background Anti-tumor vaccines targeting the entire tumor antigen repertoire represent an attractive immunotherapeutic approach. In the context of a phase I/II clinical trial, we vaccinated metastatic melanoma patients with autologous amplified tumor mRNA. In order to provide the large quantities of mRNA needed for each patient, the Stratagene Creator™ SMART™ cDNA library construction method was modified and applied to produce libraries derived from the tumors of 15 patients. The quality of those mRNA library vaccines was evaluated through sequencing and microarray analysis. Results Random analysis of bacterial clones of the library showed a rate of 95% of recombinant plasmids among which a minimum of 51% of the clones contained a full-Open Reading Frame. In addition, despite a biased amplification toward small abundant transcripts compared to large rare fragments, we could document a relatively conserved gene expression profile between the total RNA of the tumor of origin and the corresponding in vitro transcribed complementary RNA (cRNA). Finally, listing the 30 most abundant transcripts of patient MEL02's library, a large number of tumor associated antigens (TAAs) either patient specific or shared by several melanomas were found. Conclusion Our results show that unlimited amounts of cRNA representing tumor's transcriptome could be obtained and that this cRNA was a reliable source of a large variety of tumor antigens.
Collapse
Affiliation(s)
- Jean-Philippe Carralot
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
- University of Tübingen, Institute for Cell Biology, Department of Immunology; Auf der Morgenstelle 15; 72076 Tübingen, Germany
| | - Benjamin Weide
- Section for Dermatological Oncology, Tübingen University Hospital, Liebermeisterstraße 25, 72076 Tübingen, Germany
| | - Oliver Schoor
- University of Tübingen, Institute for Cell Biology, Department of Immunology; Auf der Morgenstelle 15; 72076 Tübingen, Germany
| | - Jochen Probst
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
- University of Tübingen, Institute for Cell Biology, Department of Immunology; Auf der Morgenstelle 15; 72076 Tübingen, Germany
| | - Birgit Scheel
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
| | - Regina Teufel
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
| | - Ingmar Hoerr
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
| | - Claus Garbe
- Section for Dermatological Oncology, Tübingen University Hospital, Liebermeisterstraße 25, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- University of Tübingen, Institute for Cell Biology, Department of Immunology; Auf der Morgenstelle 15; 72076 Tübingen, Germany
| | - Steve Pascolo
- CureVac, Paul Ehrlich Strasse 15, 72076 Tübingen, Germany
- University of Tübingen, Institute for Cell Biology, Department of Immunology; Auf der Morgenstelle 15; 72076 Tübingen, Germany
| |
Collapse
|
75
|
Abstract
The mechanisms of the attachment and penetration of hepatitis B virus remain obscure. It has been demonstrated that the preS1 region is essential for viral assembly and infectivity, however, as its cellular receptor has still not been identified unequivocally, we used a yeast two-hybrid system to screen the cellular proteins that can interact with preS1 protein. The protein recovered from a human liver cDNA library was nascent polypeptide-associated complex alpha polypeptide. The interaction between preS1 and nascent polypeptide-associated complex alpha polypeptide was verified by mating experiment and coimmunoprecipitation of COS7 cell lysates expressing both proteins. Based on these results, we speculate that nascent polypeptide-associated complex alpha polypeptide is a functional target of hepatitis B virus preS1 protein in cells.
Collapse
Affiliation(s)
- Dan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | | | | | | |
Collapse
|
76
|
Devany M, Kotharu NP, Matsuo H. Expression and isotopic labeling of structural domains of the human protein DEK. Protein Expr Purif 2005; 40:244-7. [PMID: 15766865 DOI: 10.1016/j.pep.2004.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 07/06/2004] [Indexed: 11/19/2022]
Abstract
The 375 amino acid human protein DEK has been expressed in two functional, structured domains. DEK is an abundant nuclear protein that associates with chromatin and alters its topology by introducing positive supercoiling in DNA, which results in lower replication efficiency. DEK has clinical importance as transfection of the cDNA of the C-terminal region of DEK can partially reverse the abnormal DNA-mutagen sensitivity in fibroblasts derived from ataxia-telangiectasia (A-T) patients, and elevated levels of DEK mRNA are observed in various forms of cancer. Because high-level expression of full-length DEK has proved elusive, we sought an alternative for structural studies that would provide insights on DEK's function. We have discovered that DEK contains two structured domains and have expressed these domains at a high level in Escherichia coli in M9 minimal media. The N-terminal domain (amino acids 68-226) includes the region responsible for introducing supercoils into DNA, and the C-terminal domain (amino acids 309-375) includes the region that can reverse the abnormal DNA-mutagen sensitivity of A-T cells. 1H-15N correlation nuclear magnetic resonance spectra of these two fragments reveal the characteristic signature of folded proteins.
Collapse
Affiliation(s)
- Matthew Devany
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
77
|
Spreter T, Pech M, Beatrix B. The Crystal Structure of Archaeal Nascent Polypeptide-associated Complex (NAC) Reveals a Unique Fold and the Presence of a Ubiquitin-associated Domain. J Biol Chem 2005; 280:15849-54. [PMID: 15665334 DOI: 10.1074/jbc.m500160200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is highly conserved from yeast to humans. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila, and Caenorhabditis elegans. NAC was suggested to protect the nascent chain from inappropriate early interactions with cytosolic factors. Eukaryotic NAC is a heterodimer with two subunits sharing substantial homology with each other. All sequenced archaebacterial genomes exhibit only one gene homologous to the NAC subunits. Here we present the first archaebacterial NAC homolog. It forms a homodimer, and as eukaryotic NAC it is associated with ribosomes and contacts the emerging nascent chain on the ribosome. We present the first crystal structure of a NAC protein revealing two structural features: (i) a novel unique protein fold that mediates dimerization of the complex, and (ii) a ubiquitin-associated domain that suggests a yet unidentified role for NAC in the cellular protein quality control system via the ubiquitination pathway. Based on the presented structure we propose a model for the eukaryotic heterodimeric NAC domain.
Collapse
Affiliation(s)
- Thomas Spreter
- Institute for Chemistry-Crystallography, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | | | |
Collapse
|
78
|
Waldmann T, Scholten I, Kappes F, Hu HG, Knippers R. The DEK protein--an abundant and ubiquitous constituent of mammalian chromatin. Gene 2004; 343:1-9. [PMID: 15563827 DOI: 10.1016/j.gene.2004.08.029] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/09/2004] [Accepted: 08/25/2004] [Indexed: 11/21/2022]
Abstract
The protein DEK is an abundant and ubiquitous chromatin protein in multicellular organisms (not in yeast). It is expressed in more than a million copies/nucleus of rapidly proliferating mammalian cells. DEK has two DNA binding modules of which one includes a SAP box, a sequence motif that DEK shares with a number of other chromatin proteins. DEK has no apparent affinity to specific DNA sequences, but preferentially binds to superhelical and cruciform DNA, and induces positive supercoils into closed circular DNA. The available evidence strongly suggests that DEK could function as an architectural protein in chromatin comparable to the better known classic architectural chromatin proteins, the high-mobility group or HMG proteins.
Collapse
Affiliation(s)
- Tanja Waldmann
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
79
|
Devany M, Kotharu NP, Matsuo H. Solution NMR structure of the C-terminal domain of the human protein DEK. Protein Sci 2004; 13:2252-9. [PMID: 15238633 PMCID: PMC2279821 DOI: 10.1110/ps.04797104] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 05/03/2004] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
The chromatin-associated protein DEK was first identified as a fusion protein in patients with a subtype of acute myelogenous leukemia. It has since become associated with diverse human ailments ranging from cancers to autoimmune diseases. Despite much research effort, the biochemical basis for these clinical connections has yet to be explained. We have identified a structural domain in the C-terminal region of DEK [DEK(309-375)]. DEK(309-375) implies clinical importance because it can reverse the characteristic abnormal DNA-mutagen sensitivity in fibroblasts from ataxia-telangiectasia (A-T) patients. We determined the solution structure of DEK(309-375) by nuclear magnetic resonance spectroscopy, and found it to be structurally homologous to the E2F/DP transcription factor family. On the basis of this homology, we tested whether DEK(309-375) could bind DNA and identified the DNA-interacting surface. DEK presents a hydrophobic surface on the side opposite the DNA-interacting surface. The structure of the C-terminal region of DEK provides insights into the protein function of DEK.
Collapse
Affiliation(s)
- Matthew Devany
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
80
|
Evans AJ, Gallie BL, Jewett MAS, Pond GR, Vandezande K, Underwood J, Fradet Y, Lim G, Marrano P, Zielenska M, Squire JA. Defining a 0.5-mb region of genomic gain on chromosome 6p22 in bladder cancer by quantitative-multiplex polymerase chain reaction. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:285-93. [PMID: 14695341 PMCID: PMC1602217 DOI: 10.1016/s0002-9440(10)63118-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Metaphase-based comparative genomic hybridization (CGH) has identified recurrent regions of gain on different chromosomes in bladder cancer, including 6p22. These regions may contain activated oncogenes important in disease progression. Using quantitative multiplex polymerase chain reaction (QM-PCR) to study DNA from 59 bladder tumors, we precisely mapped the focal region of genomic gain on 6p22. The marker STS-X64229 had copy number increases in 38 of 59 (64%) tumors and the flanking markers, RH122450 and A009N14, had copy number gains in 33 of 59 (56%) and 26 of 59 (45%) respectively. Contiguous gain was present for all three markers in 14 of 59 (24%) and for two (RH122450 and STS-X64229) in 25 of 59 (42%). The genomic distance between the markers flanking STS-X64229 is 0.5 megabases, defining the minimal region of gain on 6p22. Locus-specific interphase fluorescence in situ hybridization confirmed the increased copy numbers detected by QM-PCR. Current human genomic mapping data indicates that an oncogene, DEK, is centrally placed within this minimal region. Our findings demonstrate the power of QM-PCR to narrow the regions identified by CGH to facilitate identifying specific candidate oncogenes. This also represents the first study identifying DNA copy number increases for DEK in bladder cancer.
Collapse
Affiliation(s)
- Andrew J Evans
- Department of Pathology, University Health Network/Princess Margaret Hospital, Toronto. Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
In order to better understand how tumor cells develop resistance to chemotherapy drugs, we screened a human cDNA expression library in Jurkat cells for cDNA's that conferred resistance to doxorubicin-induced cell death. One of the cDNA's isolated in the screen codes for ribosomal protein L35a, a component of the large subunit of the ribosome. Jurkat cells engineered to overexpress L35a protein were more resistant not only to doxorubicin but also to UV-irradiation, anti-Fas antibody, and serum starvation compared to Jurkat cells expressing endogenous levels of L35a. Jurkat cells overexpressing L35a did not have increased levels of the anti-apoptotic proteins Bcl-2 or Bcl-xL, the drug efflux pump P-glycoprotein, nor altered cellular growth kinetics or total protein synthesis. Our results provide new insight into L35a function and suggest that it may have a role in the cellular response to cytotoxic damage. Since L35a RNA is overexpressed in a significant number of glioblastoma multiforme (GBM) brain tumors, our results may stimulate further investigation into the possible role of L35a in the resistance of GBM to cytotoxic therapy.
Collapse
Affiliation(s)
- Charles D Lopez
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, MC L586, Portland, OR 97201-3098, USA.
| | | | | |
Collapse
|
82
|
Monji M, Senju S, Nakatsura T, Yamada K, Sawatsubashi M, Inokuchi A, Nishimura Y. Head and neck cancer antigens recognized by the humoral immune system. Biochem Biophys Res Commun 2002; 294:734-41. [PMID: 12056832 DOI: 10.1016/s0006-291x(02)00543-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Head and neck cancer in advanced stages are difficult to treat. Therefore, development of new treatment modalities and preventive measures are required. We now report the identification of human head and neck cancer antigens recognized by the humoral immune system. We used the serological analysis of recombinant cDNA expression libraries (SEREX) approach. cDNA libraries from cell lines of squamous cell carcinoma of head and neck (SCCHN) and a normal testicle tissue were screened using sera from six allogeneic SCCHN patients. Total 28 positive clones belonging to 19 different genes were identified, including 12 known genes and 7 unknown ones. Expression analysis on 13 normal tissues and 13 cancer tissues using reverse transcription-PCR (RT-PCR) revealed eight ubiquitously expressed genes, nine of which were expressed preferentially in cancer tissues and two cancer/testis antigens. These antigens we defined may be pertinent candidate antigens for future cancer-diagnosis and related immunotherapy.
Collapse
Affiliation(s)
- Mikio Monji
- Division of Immunogenetics, Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences, 2-2-1 Honjo, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
83
|
Zhu Y, Lin H, Li Z, Wang M, Luo J. Modulation of expression of ribosomal protein L7a (rpL7a) by ethanol in human breast cancer cells. Breast Cancer Res Treat 2001; 69:29-38. [PMID: 11759826 DOI: 10.1023/a:1012293507534] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epidemiological studies indicate that there is a positive correlation between alcohol consumption and the risk of breast cancer. Experimental results demonstrate that ethanol is a tumor promoter and chronic ethanol exposure enhances metastasis and growth of breast cancer. The present study used an in vitro model to investigate the molecular mechanism(s) underlying tumor promoting effects of ethanol. With differential display reverse transcription polymerase chain reaction, we demonstrated that human ribosomal large subunit protein L7a (rpL7a) was an ethanol-responsive factor in T47D breast cancer cells. The results of northern blot hybridization revealed that the effect of ethanol on L7a expression was duration- and concentration-dependent. Initial exposure resulted in a 2-fold increase in rpL7a level, whereas a longer exposure period produced a down-regulation. Ethanol had little effect on the stability of rpL7a mRNA; however, the transcription rate of rpL7a was significantly increased by ethanol. Ethanol-induced up-regulation of rpL7a was not a simple stress response, because other stress inducers, such as heat shock, did not affect the expression of rpL7a. Furthermore, breast cancer cells expressed higher level of rpL7a than normal mammary epithelial cells. Ribosomal proteins are known to play an important role in translational regulation, and they have been implicated in the control of cellular transformation, tumor growth, aggressiveness and metastasis. Specially, rpL7a activates the trk oncogene by contributing an amino-terminal-activating sequence to the receptor kinase domain of trk. Thus, ethanol-induced alteration of rpL7a expression may mediate the promoting effects of ethanol on breast cancer development.
Collapse
Affiliation(s)
- Y Zhu
- Department of Anatomy, West Virginia University School of Medicine, Morgantown 26506-9128, USA
| | | | | | | | | |
Collapse
|