51
|
Limaye PB, Bowen WC, Orr A, Apte UM, Michalopoulos GK. Expression of hepatocytic- and biliary-specific transcription factors in regenerating bile ducts during hepatocyte-to-biliary epithelial cell transdifferentiation. COMPARATIVE HEPATOLOGY 2010; 9:9. [PMID: 21126359 PMCID: PMC3014870 DOI: 10.1186/1476-5926-9-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 12/02/2010] [Indexed: 01/27/2023]
Abstract
BACKGROUND Under compromised biliary regeneration, transdifferentiation of hepatocytes into biliary epithelial cells (BEC) has been previously observed in rats, upon exposure to BEC-specific toxicant methylene dianiline (DAPM) followed by bile duct ligation (BDL), and in patients with chronic biliary liver disease. However, mechanisms promoting such transdifferentiation are not fully understood. In the present study, acquisition of biliary specific transcription factors by hepatocytes leading to reprogramming of BEC-specific cellular profile was investigated as a potential mechanism of transdifferentiation in two different models of compromised biliary regeneration in rats. RESULTS In addition to previously examined DAPM + BDL model, an experimental model resembling chronic biliary damage was established by repeated administration of DAPM. Hepatocyte to BEC transdifferentiation was tracked using dipetidyl dipeptidase IV (DDPIV) chimeric rats that normally carry DPPIV only in hepatocytes. Following DAPM treatment, ~20% BEC population turned DPPIV-positive, indicating that they are derived from DPPIV-positive hepatocytes. New ductules emerging after DAPM + BDL and repeated DAPM exposure expressed hepatocyte-associated transcription factor hepatocyte nuclear factor (HNF) 4α and biliary specific transcription factor HNF1β. In addition, periportal hepatocytes expressed biliary marker CK19 suggesting periportal hepatocytes as a potential source of transdifferentiating cells. Although TGFβ1 was induced, there was no considerable reduction in periportal HNF6 expression, as observed during embryonic biliary development. CONCLUSIONS Taken together, these findings indicate that gradual loss of HNF4α and acquisition of HNF1β by hepatocytes, as well as increase in TGFβ1 expression in periportal region, appear to be the underlying mechanisms of hepatocyte-to-BEC transdifferentiation.
Collapse
Affiliation(s)
- Pallavi B Limaye
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - William C Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Anne Orr
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Udayan M Apte
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - George K Michalopoulos
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
52
|
Turányi E, Dezsö K, Csomor J, Schaff Z, Paku S, Nagy P. Immunohistochemical classification of ductular reactions in human liver. Histopathology 2010; 57:607-14. [PMID: 20875072 DOI: 10.1111/j.1365-2559.2010.03668.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS Ductular reactions occur in a wide variety of liver diseases. Their origin and function is still debated. Our understanding of these histological reactions is impaired by their great diversity; therefore rational classification should precede further detailed analysis. The aim was to achieve a reproducible classification of hepatic ductular reactions based on their immunophenotype. METHODS AND RESULTS Sixty-nine liver specimens with ductular reactions were analysed by immunohistochemistry. The majority of the samples could be classified into three categories based on their immunophenotype. Type P(rimitive) reaction is characterized by CD56 immunoreactivity. Most primary biliary cirrhosis and focal nodular hyperplasia samples fall into this group; these ductules do not show any sign of differentiation. Type D(ifferentiating) ductules are positive for CD56, epithelial membrane antigen (EMA) and CD10. Cirrhotic samples and regenerating livers following fulminant hepatic failure contain such ductular reactions; this immunophenotype indicates hepatocytic differentiation. Biliary obstruction results in EMA-positive type O(bstructive) reactions; these ductules are similar to the normal interlobular bile ducts. CONCLUSION Ductular reactions can be classified based on their immunophenotype. Our results may initiate further, similar, studies resulting in a generally accepted rational classification. We believe that such categorization is necessary for elucidating their biological and clinical significance.
Collapse
Affiliation(s)
- Eszter Turányi
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
53
|
Hepatic progenitor cells in chronic hepatitis C: a phenomenon of older age and advanced liver disease. Virchows Arch 2010; 457:457-66. [DOI: 10.1007/s00428-010-0957-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/30/2010] [Accepted: 07/30/2010] [Indexed: 12/19/2022]
|
54
|
Sant'Anna LB, Cargnoni A, Ressel L, Vanosi G, Parolini O. Amniotic membrane application reduces liver fibrosis in a bile duct ligation rat model. Cell Transplant 2010; 20:441-53. [PMID: 20719087 DOI: 10.3727/096368910x522252] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biliary fibrosis and resultant cirrhosis are among the most common outcomes of chronic liver diseases. Currently, liver transplantation remains the only effective treatment. In seeking alternative therapeutic approaches, we focused on the potential use of the human amniotic membrane (AM). Indeed, AM has gained increasing importance for its antiscarring, anti-inflammatory, and wound-healing properties, as well as for the multipotent differentiation ability and immunomodulatory features of AM-derived cells. Intriguingly, we have recently demonstrated that placenta-derived cells reduce lung fibrosis in bleomycin-treated mice, and that AM patches reduce postischemic cardiac injury in rats. Hence, we have now investigated the effects of human AM on biliary fibrosis induced in rats through the bile duct ligation (BDL) procedure. A fragment of human AM was applied onto the liver surface after BDL and the effects on fibrosis establishment and progression were evaluated at different time points in comparison with fibrosis progression in control BDL rats. The degree of liver fibrosis was first assessed by the semiquantitative Knodell scoring system and, thereafter, by digital image morphometric analysis to quantify the area occupied by ductular reaction, activated myofibroblasts, and collagen deposition. We demonstrated a significant reduction in the severity of BDL-induced fibrosis in AM-treated rats. Indeed, while fibrosis progressed rapidly in control BDL rats, leading to cirrhosis within 6 weeks, AM-treated rats showed confined fibrosis at the portal/periportal area with no signs of cirrhosis, and a reduction in collagen deposition to about 50% of levels observed in control BDL rats. In addition, the AM was able to significantly slow the gradual progression of the ductular reaction and reduce, at all time points, the area occupied by activated myofibroblasts. These findings suggest that human AM, when applied as a patch onto the liver surface, might inhibit fibrosis progression in BDL-injured livers, and could protect against hepatic damage associated with fibrotic degeneration.
Collapse
Affiliation(s)
- Luciana B Sant'Anna
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Via Bissolati 57, Brescia, Italy
| | | | | | | | | |
Collapse
|
55
|
Abstract
Biliary atresia (BA) is the most common cholestatic liver disorder requiring liver transplantation in children. Hepatic fibrosis is not only a universal and prominent feature of BA, it is also the most important predictor of outcome following portoenterostomy (PE). Without PE, the progression of hepatic fibrosis is quite dramatic, such that liver cirrhosis is established within a few weeks after birth. Etiologies and molecular networks underpinning such an expeditious fibrogenic process have not been well established. However, immune and nonimmune factors implicated in the pathogenesis of BA, and the resultant cholestasis and oxidative stress, appear to be the main triggers of hepatic fibrosis in BA. Owing to a lack of validated noninvasive tools to monitor liver fibrosis, current prognostic models of BA entail clinical and biochemical variables reflecting liver dysfunction rather than hepatic fibrogenesis. Further work is necessary to validate the results of preliminary studies indicating a good relationship between liver fibrosis determined by transient elastography and other clinical and routinely performed biochemical parameters in pediatric patients. Although a prime candidate for a number of antifibrotic therapies on the horizon, owing to poor understanding of molecular mechanisms, a clear framework of antifibrotic targets has not been outlined in BA. Similarly, specific antifibrotic therapies have not yet been incorporated in clinical practice, limiting these measures to prompt diagnosis and PE operation, prevention and treatment of cholangitis and optimal nutritional support including the administration of fat-soluble vitamins.
Collapse
Affiliation(s)
- Allah B Haafiz
- University of Florida College of Medicine Pediatric Gastroenterology, Hepatology and Nutrition, 1600 SW Archer Road, PO Box 100296, Gainesville, FL 32610, USA.
| |
Collapse
|
56
|
Glaser S, Onori P, Wise C, Yang F, Marzioni M, Alvaro D, Franchitto A, Mancinelli R, Alpini G, Munshi MK, Gaudio E. Recent advances in the regulation of cholangiocyte proliferation and function during extrahepatic cholestasis. Dig Liver Dis 2010; 42:245-52. [PMID: 20153989 PMCID: PMC2836402 DOI: 10.1016/j.dld.2010.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 12/11/2022]
Abstract
Bile duct epithelial cells (i.e., cholangiocytes), which line the intrahepatic biliary epithelium, are the target cells in a number of human cholestatic liver diseases (termed cholangiopathies). Cholangiocyte proliferation and death is present in virtually all human cholangiopathies. A number of recent studies have provided insights into the key mechanisms that regulate the proliferation and function of cholangiocytes during the pathogenesis of cholestatic liver diseases. In our review, we have summarised the most important of these recent studies over the past 3 years with a focus on those performed in the animal model of extrahepatic bile duct ligation. In the first part of the review, we provide relevant background on the biliary ductal system. We then proceed with a general discussion of the factors regulating biliary proliferation performed in the cholestatic animal model of bile duct ligation. Further characterisation of the factors that regulate cholangiocyte proliferation and function will help in elucidating the mechanisms regulating the pathogenesis of biliary tract diseases in humans and in devising new treatment approaches for these devastating diseases.
Collapse
Affiliation(s)
- S.S. Glaser
- Digestive Disease Research Center, Scott & White, TX, United States
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - P. Onori
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - C. Wise
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - F. Yang
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
- Shengjing Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - M. Marzioni
- Department of Gastroenterology, Universita' Politecnica delle Marche, Ancona, Italy
| | - D. Alvaro
- Gastroenterology, University of Rome “La Sapienza”, Rome, Italy
| | - A. Franchitto
- Department of Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - R. Mancinelli
- Department of Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - G. Alpini
- Digestive Disease Research Center, Scott & White, TX, United States
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
- Central Texas Veterans Health Care System, Temple, TX, United States
| | - Md. K. Munshi
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - E. Gaudio
- Department of Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
57
|
Le Lay J, Kaestner KH. The Fox genes in the liver: from organogenesis to functional integration. Physiol Rev 2010; 90:1-22. [PMID: 20086072 DOI: 10.1152/physrev.00018.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Formation and function of the liver are highly controlled, essential processes. Multiple signaling pathways and transcriptional regulatory networks cooperate in this complex system. The evolutionarily conserved FOX, for Forkhead bOX, class of transcriptional regulators is critical to many aspects of liver development and function. The FOX proteins are small, mostly monomeric DNA binding factors containing the so-called winged helix DNA binding motif that distinguishes them from other classes of transcription factors. We discuss the biochemical and genetic roles of Foxa, Foxl1, Foxm1, and Foxo, as these have been shown to regulate many processes throughout the life of the organ, controlling both formation and function of the liver.
Collapse
Affiliation(s)
- John Le Lay
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6145, USA
| | | |
Collapse
|
58
|
Pan PH, Lin SY, Ou YC, Chen WY, Chuang YH, Yen YJ, Liao SL, Raung SL, Chen CJ. Stearic acid attenuates cholestasis-induced liver injury. Biochem Biophys Res Commun 2010; 391:1537-1542. [PMID: 20036638 DOI: 10.1016/j.bbrc.2009.12.119] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 12/18/2009] [Indexed: 01/15/2023]
Abstract
Inflammation is involved in cholestasis-induced hepatic damage. Stearic acid has been shown to possess anti-inflammatory potential. We assessed whether stearic acid has protective effects against cholestasis-related liver damage. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3weeks. Daily administration of stearic acid was started 2weeks before injury and lasted for 5weeks. In comparison with the control group, the BDL group showed hepatic damage as evidenced by elevation in serum biochemicals, ductular reaction, fibrosis, and inflammation. These pathophysiological changes were attenuated by chronic stearic acid supplementation. The anti-fibrotic effect of stearic acid was accompanied by reductions in alpha-smooth muscle actin-positive matrix-producing cells and critical fibrogenic cytokine transforming growth factor beta-1 production. Stearic acid also attenuated BDL-induced leukocyte accumulation and NF-kappaB activation. The data indicate that stearic acid attenuates BDL-induced cholestatic liver injury. The hepatoprotective effect of stearic acid is associated with anti-inflammatory potential.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Pediatrics, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Wang H, Gao Y, Jin X, Xiao J. Expression of contactin associated protein-like 2 in a subset of hepatic progenitor cell compartment identified by gene expression profiling in hepatitis B virus-positive cirrhosis. Liver Int 2010; 30:126-38. [PMID: 19889080 DOI: 10.1111/j.1478-3231.2009.02151.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Hepatic progenitor cells (HPC), a cell compartment capable of differentiating into hepatocytic and biliary lineages, may give rise to the formation of intermediate hepatobiliary cells (IHBC) or ductular reactions (DR). AIMS The aim of this study was to analyse the gene expression profiles of DR in cirrhosis and further investigate novel proteins expressed by HPC and their intermediate progeny. METHODS DR in hepatitis B virus (HBV)-positive cirrhotic liver tissues adjacent to hepatocellular carcinoma and interlobular bile ducts (ILBDs) in normal liver tissues were isolated by laser capture microdissection and then subjected to microarray analysis. Differential gene expression patterns were verified by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry on serial sections. HPC and their intermediate progeny were recognized by immunostaining with hepatocytic and biliary markers [HepPar1, cytokeratin (CK)7, CK19, neural cell adhesion molecule (NCAM), epithelial cell adhesion molecule (EpCAM)]. RESULTS A total of 88 genes showed upregulation in DR compared with ILBDs. Gene ontology analyses revealed that these upregulated genes were mostly associated with cell adhesion, immune response and the metabolic process. Contactin associated protein-like 2 (CNTNAP2) was first confirmed to be a novel protein expressed in a subpopulation of DR that was positive for CK7, NCAM or EpCAM. In addition, immunoreactivity for CNTNAP2 was also noted in a subset of isolated CK7-positive HPC as well as some ductular IHBC positive for CK19 and HepPar1 in DR. CONCLUSION CNTNAP2 is specifically associated with the emergence of ductular populations and may be identified as a novel protein for defining a subset of HPC and their intermediate progeny in cirrhosis.
Collapse
Affiliation(s)
- Huafeng Wang
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | |
Collapse
|
60
|
Abstract
An informal review is presented by the author of his 50 years of involvement in practice and research in hepatopathology. Some background for the author's attitude and meandering pathway into his professional career serves as introduction to a short discussion of the main topics of his interest and expertise. Histogenesis of liver cancer was the theme of early work for a Ph.D. thesis, the results of which were lost into oblivion due to local rules and circumstances, but were rescued three decades later. His conclusions about the cells of origin of liver cancer remain concordant with the newer concepts in the field after nearly half a century. Studies in the field of chronic hepatitis became a long saga, involving the first classification of this syndrome by "the Gnomes" in 1968, histochemical investigations of viral antigens, lymphocyte subsets and adhesion molecules, and a quarter century later, the creation of a new classification presently in use. Cholestasis was a broadening field in diagnostic entities and involved the study of liver lesions, comprising pathways of bile regurgitation (including reversed secretory polarity of hepatocytes) and so-called ductular reaction. The latter topic has a high importance for the various roles it plays in modulating liver tissue of chronic cholestasis into biliary cirrhosis, and as the territory of hepatic progenitor cells, crucial for liver regeneration in adverse conditions and in development of liver cancer. Study of the embryology of intrahepatic bile ducts helped to clarify the strange appearance of the ducts in "ductal plate configuration" in several conditions, including some forms of biliary atresia with poor prognosis and all varieties of fibrocystic bile duct diseases with "ductal plate malformation" as the basic morphologic lesion.
Collapse
Affiliation(s)
- Valeer J Desmet
- Liver Research Unit, Department of Morphology and Molecular Pathology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
61
|
Dorn L, Menezes LF, Mikuz G, Otto HF, Onuchic LF, Sergi C. Immunohistochemical detection of polyductin and co-localization with liver progenitor cell markers during normal and abnormal development of the intrahepatic biliary system and in adult hepatobiliary carcinomas. J Cell Mol Med 2009; 13:1279-1290. [PMID: 19292732 PMCID: PMC4496142 DOI: 10.1111/j.1582-4934.2008.00519.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 09/23/2008] [Indexed: 12/25/2022] Open
Abstract
The longest open reading frame of PKHD1 (polycystic kidney and hepatic disease 1), the autosomal recessive polycystic kidney disease (ARPKD) gene, encodes a single-pass, integral membrane protein named polyductin or fibrocystin. A fusion protein comprising its intracellular C-terminus, FP2, was previously used to raise a polyclonal antiserum shown to detect polyductin in several human tissues, including liver. In the current study, we aimed to investigate by immunohistochemistry the detailed polyductin localization pattern in normal (ductal plate [DP], remodelling ductal plate [RDP], remodelled bile ducts) and abnormal development of the primitive intrahepatic biliary system, known as ductal plate malformation (DPM). This work also included the characterization of polyductin expression profile in various histological forms of neonatal and infantile cholestasis, and in cholangiocellular carcinoma (CCC) and hepatocellular carcinoma (HCC). We detected polyductin expression in the intrahepatic biliary system during the DP and the RDP stages as well as in DPM. No specific staining was found at the stage of remodelled bile ducts. Polyductin was also detected in liver biopsies with neonatal cholestasis, including mainly biliary atresia and neonatal hepatitis with ductular reaction as well as congenital hepatic fibrosis. In addition, polyductin was present in CCC, whereas it was absent in HCC. Polyductin was also co-localized in some DP cells together with oval stem cell markers. These results represent the first systematic study of polyductin expression in human pathologies associated with abnormal development of intrahepatic biliary tree, and support the following conclusions: (i) polyductin expression mirrors developmental properties of the primitive intrahepatic biliary system; (ii) polyductin is re-expressed in pathological conditions associated with DPM and (iii) polyductin might be a potential marker to distinguish CCC from HCC.
Collapse
Affiliation(s)
- Livia Dorn
- Institute of Pathology, University of InnsbruckInnsbruck, Austria
| | - Luís F Menezes
- Division of Nephrology, University of São Paulo, School of MedicineSão Paulo, Brazil
| | - Gregor Mikuz
- Institute of Pathology, University of InnsbruckInnsbruck, Austria
| | - Herwart F Otto
- Institute of Pathology, University of HeidelbergHeidelberg, Germany
| | - Luiz F Onuchic
- Division of Nephrology, University of São Paulo, School of MedicineSão Paulo, Brazil
| | - Consolato Sergi
- Institute of Pathology, University of InnsbruckInnsbruck, Austria
- Department of Paediatric Pathology, University of Bristol, BristolUnited Kingdom
- Department of Laboratory Medicine, University of AlbertaEdmonton, Canada
| |
Collapse
|
62
|
Chen WY, Chen CJ, Liao JW, Mao FC. Chromium attenuates hepatic damage in a rat model of chronic cholestasis. Life Sci 2009; 84:606-614. [PMID: 19302800 DOI: 10.1016/j.lfs.2009.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 12/21/2022]
Abstract
AIMS Oxidative stress is involved in cholestasis-induced hepatic damage. Therefore, antioxidant therapy is a recommended therapeutic strategy. Studies have illustrated that chromium can enhance antioxidative capacity leading to a resolution of oxidative stress. The aim of this study was to assess whether chromium has protective effects against cholestasis-related liver damage. MAIN METHODS Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Rats were randomly divided into four groups. Control and BDL groups were subjected to sham and BDL operation, respectively, and were supplemented with placebo for 3 weeks. The BDL-post Cr group was supplemented with chromium chloride for 3 weeks after BDL operation. The BDL-pre Cr group was supplemented with chromium chloride for 6 weeks starting from 3 weeks before BDL operation. KEY FINDINGS In comparison with the control group, the BDL group showed hepatic damage as evidenced by elevation in serum biochemicals, ductular reaction, and fibrosis. These pathophysiological changes were attenuated in the BDL-Pre Cr and BDL-Post Cr groups. However, there was no significant difference between these two groups. The anti-fibrotic effect of chromium was accompanied by reductions in alpha-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of transforming growth factor beta 1 (TGF-beta1). In addition, chromium effectively attenuated BDL-induced hepatic oxidative stress. SIGNIFICANCE The data indicate that chromium attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of chromium is associated with antioxidative potential.
Collapse
Affiliation(s)
- Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | | | | | | |
Collapse
|
63
|
Abstract
Cholangiocyte proliferation is triggered during extrahepatic bile duct obstruction induced by bile duct ligation, which is a common in vivo model used for the study of cholangiocyte proliferation and liver fibrosis. The proliferative response of cholangiocytes during cholestasis is regulated by the complex interaction of several factors, including gastrointestinal hormones, neuroendocrine hormones and autocrine or paracrine signalling mechanisms. Activation of biliary proliferation (ductular reaction) is thought to have a key role in the initiation and progression of liver fibrosis. The first part of this review provides an overview of the primary functions of cholangiocytes in terms of secretin-stimulated bicarbonate secretion--a functional index of cholangiocyte growth. In the second section, we explore the important regulators, both inhibitory and stimulatory, that regulate the cholangiocyte proliferative response during cholestasis. We discuss the role of proliferating cholangiocytes in the induction of fibrosis either directly via epithelial mesenchymal transition or indirectly via the activation of other liver cell types. The possibility of targeting cholangiocyte proliferation as potential therapy for reducing and/or preventing liver fibrosis, and future avenues for research into how cholangiocytes participate in the process of liver fibrogenesis are described.
Collapse
Affiliation(s)
- Shannon S Glaser
- Department of Medicine, Scott and White and Texas A&M Health Science Center, Temple, TX 76504, USA.
| | | | | | | | | |
Collapse
|
64
|
Marzioni M, Fava G, Alvaro D, Alpini G, Benedetti A. Control of cholangiocyte adaptive responses by visceral hormones and neuropeptides. Clin Rev Allergy Immunol 2009; 36:13-22. [PMID: 18548352 PMCID: PMC2628969 DOI: 10.1007/s12016-008-8090-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholangiocytes, the epithelial cells lining the biliary tree, are the target cells in several liver diseases, termed cholangiopathies. Cholangiopathies are a challenge for clinicians and an enigma for scientists, as the pathogenetic mechanisms by which they develop, and the therapeutic tools for these diseases are still undefined. Several studies demonstrate that many visceral hormones, neuropeptides, and neurotransmitters modulate the adaptive changes of cholangiocytes to chronic cholestatic injury. The aim of this review is to present the recent findings that contributed to clarify the role of visceral hormones and neuropeptides in the regulation of the pathophysiology of cholestasis. These studies helped to shed light on some aspects of cholangiocyte pathophysiology, revealing novel perspectives for the clinical managements of cholangiopathies.
Collapse
Affiliation(s)
- Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Miarche, Nuovo Polo Didattico, III piano, Via Tronto 10, 60020, Ancona, Italy.
| | | | | | | | | |
Collapse
|
65
|
Sung HJ, Ann BC, Lee JT, Kum YS, Park JB, Park KK. Immunohistochemical Study about the Origin of Bile Ductules Proliferation in Obstructive Liver Disease. THE KOREAN JOURNAL OF PATHOLOGY 2009; 43:126. [DOI: 10.4132/koreanjpathol.2009.43.2.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hyun-Jung Sung
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Byung-Chul Ann
- Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae-Tae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Yoon-Seup Kum
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Jae-Bok Park
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Kwan-Kyu Park
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, Korea
| |
Collapse
|
66
|
Svegliati-Baroni G, De Minicis S, Marzioni M. Hepatic fibrogenesis in response to chronic liver injury: novel insights on the role of cell-to-cell interaction and transition. Liver Int 2008; 28:1052-64. [PMID: 18783548 DOI: 10.1111/j.1478-3231.2008.01825.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Hepatic fibrosis represents the wound-healing response process of the liver to chronic injury, independently from aetiology. Advanced liver fibrosis results in cirrhosis that can lead to liver failure, portal hypertension and hepatocellular carcinoma. Currently, no effective therapies are available for hepatic fibrosis. After the definition of hepatic stellate cells (HSCs) as the main liver extracellular matrix-producing cells in the 1980s, the subsequent decade was dedicated to determine the role of specific cytokines and growth factors. Fibrotic progression of chronic liver diseases can be nowadays considered as a dynamic and highly integrated process of cellular response to chronic liver injury. The present review is dedicated to the novel mechanisms of cellular response to chronic liver injury leading to hepatic myofibroblasts' activation. The understanding of the cellular and molecular pathways regulating their function is crucial to counteract therapeutically the organ dysfunction caused by myofibroblasts' activation.
Collapse
Affiliation(s)
- Gianluca Svegliati-Baroni
- Department of Gastroenterology, Università Politecnica delle Marche and Ospedali Riuniti University Hospital, Ancona, Italy.
| | | | | |
Collapse
|
67
|
Limaye PB, Alarcón G, Walls AL, Nalesnik MA, Michalopoulos GK, Demetris AJ, Ochoa ER. Expression of specific hepatocyte and cholangiocyte transcription factors in human liver disease and embryonic development. J Transl Med 2008; 88:865-72. [PMID: 18574450 PMCID: PMC2631390 DOI: 10.1038/labinvest.2008.56] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transcription factors are major determinants of cell-specific gene expression in all cell types. Studies in rodent liver have shown that alterations in transcription factor expression determine lineage specification during fetal liver development and signify transdifferentiation of cells of the biliary compartment into 'oval' cells and eventually hepatocytes in adult liver. We examined the cellular localization of hepatocyte- or BEC-associated transcription factors in human fetal and adult liver and in diseases in which transdifferentiation between hepatocytes and biliary cells may play a role. In the normal adult human liver, hepatocyte nuclear factor (HNF)4 alpha and HNF6 appeared exclusively in hepatocytes; HNF1beta, HNF3alpha, and HNF3beta were observed only in BEC. During fetal development both BEC and hepatocytes expressed HNF3alpha, HNF3beta, and HNF6. HNF1alpha was expressed only in fetal hepatocytes. We further examined expression of transcription factors in massive hepatic necrosis and in specific types of chronic liver disease. Hepatocyte-associated transcription factors HNF4 alpha and HNF6 also appeared in BEC in massive hepatic necrosis and chronic hepatitis C virus infection. Similarly, HNF3beta that is expressed only in BEC in normal adult liver was also observed in hepatocytes in primary biliary cirrhosis and chronic biliary obstruction. These data mimic previous findings in rodents in which hepatocyte-associated transcription factors appear in biliary cells prior to emergence of oval cells, which function as progenitor cells for hepatocytes when the regenerative capacity of the latter is compromised.
Collapse
Affiliation(s)
- Pallavi B Limaye
- Department of Pathology, Division of Transplantation Pathology, Montefiore University Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213-2582, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Watanabe H, Hata M, Terada N, Ueda H, Yamada N, Yamanegi K, Ohyama H, Kakihana M, Okamura H, Nakasho K. Transdifferentiation into biliary ductular cells of hepatocytes transplanted into the spleen. Pathology 2008; 40:272-6. [PMID: 18428047 DOI: 10.1080/00313020801911546] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIMS Transplantation of rat hepatocytes into the syngeneic rat spleen results in the appearance of cytokeratin (CK)7 and CK19 positive biliary cells that form ductules. We examined whether hepatocytes are the origin of these biliary ductular cells. METHODS We transplanted rat dipeptidyl peptidase IV (DPPIV) positive hepatocytes into the liver of retrorsine-treated and partially hepatectomised DPPIV negative rats, which resulted in proliferation of DPPIV positive hepatocytes in the liver. Two months later, hepatocytes were prepared from chimaeric livers of these rats and transplanted into the spleen of DPPIV negative rats. Four weeks later, the expression of DPPIV in CK7 positive ductules in the spleen was examined by immunofluorescent double-staining. RESULTS In the spleen of DPPIV negative rats transplanted with hepatocytes prepared from the chimaeric livers, DPPIV was found to be expressed in some CK7 positive biliary ductules where only a fraction of cells expressed DPPIV, whereas in the spleen of DPPIV negative rats transplanted with hepatocytes from livers of DPPIV positive rats, DPPIV was expressed in all CK7 positive biliary ductules. CONCLUSION The present study indicates that hepatocytes transplanted into the spleen could transdifferentiate into biliary cells that aggregate to form ductular structures.
Collapse
|
69
|
Piscaglia AC, Novi M, Campanale M, Gasbarrini A. Stem cell-based therapy in gastroenterology and hepatology. MINIM INVASIV THER 2008; 17:100-18. [PMID: 18465445 DOI: 10.1080/13645700801969980] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protagonists of a new scientific era, stem cells are promising tools on which regenerative medicine relies for the treatment of human pathologies. Stem cells can be obtained from various sources, including embryos, fetal tissues, umbilical cord blood, and also terminally differentiated organs. Once forced to expand and differentiate into functional progenies, stem cells may become suitable for cell replacement and tissue engineering. The manipulation and/or stimulation of adult stem cells seems to be particularly promising, as it could improve the endogenous regenerative potential without risks of rejection and overcome the ethical and political issues related to embryonic stem cell research. Stem cells are already leaving the bench and reaching the bedside, despite an incomplete knowledge of the genetic control program driving their fate and plasticity. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy and acute or chronic hepatopaties. Nonetheless, critical aspects need to be further addressed, including the long-term safety, tolerability and efficacy of cell-based treatments, as well as their carcinogenic potential. Aim of this review is to summarize the state-of-the-arts on gastrointestinal and hepatic stem cells and on stem cell-based therapies in gastroenterology and hepatology, highlighting both the benefits and the potential risks of these new tools for the treatment and prevention of human diseases.
Collapse
Affiliation(s)
- Anna Chiara Piscaglia
- Gastrointestinal and Hepatic Stem Cell Research Group (G.H.S.C.) , Department of Internal Medicine and Gastroenterology, Gemelli Hospital, Catholic University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
70
|
Abstract
In an effort to review the evidence that liver cancer stem cells exist, two fundamental questions must be addressed. First, do hepatocellular carcinomas (HCC) arise from liver stem cells? Second, do HCCs contain cells that possess properties of cancer stem cells? For many years the finding of preneoplastic nodules in the liver during experimental induction of HCCs by chemicals was interpreted to support the hypothesis that HCC arose by dedifferentiation of mature liver cells. More recently, recognition of the role of small oval cells in the carcinogenic process led to a new hypothesis that HCC arises by maturation arrest of liver stem cells. Analysis of the cells in HCC supports the presence of cells with stem-cell properties (ie, immortality, transplantability, and resistance to therapy). However, definitive markers for these putative cancer stem cells have not yet been found and a liver cancer stem cell has not been isolated.
Collapse
Affiliation(s)
- Stewart Sell
- Wadsworth Center, Ordway Research Institute, University at Albany, Albany, NY 12201, USA.
| | | |
Collapse
|
71
|
Abstract
The biliary tree is a complex network of conduits that begins with the canals of Hering and progressively merges into a system of interlobular, septal, and major ducts which then coalesce to form the extrahepatic bile ducts, which finally deliver bile to the gallbladder and to the intestine. The biliary epithelium shows a morphological heterogeneity that is strictly associated with a variety of functions performed at the different levels of the biliary tree. In addition to funneling bile into the intestine, cholangiocytes (the epithelial cells lining the bile ducts) are actively involved in bile production by performing both absorbitive and secretory functions. More recently, other important biological properties restricted to cholangiocytes lining the smaller bile ducts have been outlined, with regard to their plasticity (i.e., the ability to undergo limited phenotypic changes), reactivity (i.e., the ability to participate in the inflammatory reaction to liver damage), and ability to behave as liver progenitor cells. Functional interactions with other branching systems, such as nerve and vascular structures, are crucial in the modulation of the different cholangiocyte functions.
Collapse
Affiliation(s)
- Mario Strazzabosco
- Department of Internal Medicine, Yale University, New Haven 06504, Connecticut, USA.
| | | |
Collapse
|
72
|
Limaye PB, Bowen WC, Orr AV, Luo J, Tseng GC, Michalopoulos GK. Mechanisms of hepatocyte growth factor-mediated and epidermal growth factor-mediated signaling in transdifferentiation of rat hepatocytes to biliary epithelium. Hepatology 2008; 47:1702-13. [PMID: 18398918 PMCID: PMC2615562 DOI: 10.1002/hep.22221] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
UNLABELLED Previous studies from our laboratory have demonstrated that hepatocytes can transdifferentiate into biliary epithelium (BE) both in vivo and in vitro; however, the mechanisms are unclear. The current study was designed to investigate the mechanisms of hepatocyte transdifferentiation in vitro. Rat hepatocytes were cultured in roller bottles to obtain hepatocyte organoid cultures, which were stimulated with various growth factors (GFs) including hepatocyte growth factor (HGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), stem cell factor (SCF), macrophage-stimulating protein (MSP), fibroblast growth factor-a (FGF-a), fibroblast growth factor-b (FGF-b), and fibroblast growth factor-8b (FGF-8b). Only the cultures treated with HGF, EGF, and their combination exhibited formation of hepatocyte-derived biliary epithelium (BE) despite the presence and activation of all the pertinent cognate membrane receptors of the rest of the GFs. Microarray analysis of the organoid cultures identified specific up-regulation of approximately 500 target genes induced by HGF and EGF, including members of the extracellular matrix (ECM) protein family, Wnt/beta-catenin pathway, transforming growth factor beta (TGF-beta)/bone morphogenetic protein (BMP) pathway, and CXC (cysteine-any amino acid-cysteine) chemokines. To investigate the downstream signaling involved in hepatocyte to biliary epithelial cell (BEC) transdifferentiation, we investigated expression and activities of mitogen-activated protein (MAP) kinases [extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK)] as well as serine/threonine kinase AKT. The analysis indicated that AKT phosphorylation was particularly increased in cultures treated with HGF, EGF, and their combination. Whereas phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 completely inhibited biliary epithelium formation, AKT inhibitor could only moderately reduce formation of BE in the organoid cultures treated with HGF+EGF. Most of the HGF+EGF target genes were altered by LY294002. CONCLUSION Taken together, these data indicate that hepatocyte to BE transdifferentiation is regulated by HGF and EGF receptors and that PI3 kinase-mediated signaling independent of AKT is a crucial component of the transdifferentiation process.
Collapse
Affiliation(s)
- Pallavi B. Limaye
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - William C. Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Anne V. Orr
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jianhua Luo
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - George C. Tseng
- Department of Biostatistics and Human Genetics, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - George K. Michalopoulos
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
73
|
Fabris L, Cadamuro M, Libbrecht L, Raynaud P, Spirlì C, Fiorotto R, Okolicsanyi L, Lemaigre F, Strazzabosco M, Roskams T. Epithelial expression of angiogenic growth factors modulate arterial vasculogenesis in human liver development. Hepatology 2008; 47:719-28. [PMID: 18157837 DOI: 10.1002/hep.22015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED Intrahepatic bile ducts maintain a close anatomical relationship with hepatic arteries. During liver ontogenesis, the development of the hepatic artery appears to be modulated by unknown signals originating from the bile duct. Given the capability of cholangiocytes to produce angiogenic growth factors and influence peribiliary vascularization, we studied the immunohistochemical expression of vascular endothelial growth factor (VEGF), angiopoietin-1, angiopoietin-2, and their cognate receptors (VEGFR-1, VEGFR-2, Tie-2) in fetal human livers at different gestational ages and in mice characterized by defective biliary morphogenesis (Hnf6(-/-)). The results showed that throughout the different developmental stages, VEGF was expressed by developing bile ducts and angiopoietin-1 by hepatoblasts, whereas their cognate receptors were variably expressed by vascular cells according to the different maturational stages. Precursors of endothelial and mural cells expressed VEGFR-2 and Tie-2, respectively. In immature hepatic arteries, endothelial cells expressed VEGFR-1, whereas mural cells expressed both Tie-2 and Angiopoietin-2. In mature hepatic arteries, endothelial cells expressed Tie-2 along with VEGFR-1. In early postnatal Hnf6(-/-) mice, VEGF-expressing ductal plates failed to incorporate into the portal mesenchyma, resulting in severely altered arterial vasculogenesis. CONCLUSION The reciprocal expression of angiogenic growth factors and receptors during development supports their involvement in the cross talk between liver epithelial cells and the portal vasculature. Cholangiocytes generate a VEGF gradient that is crucial during the migratory stage, when it determines arterial vasculogenesis in their vicinity, whereas angiopoietin-1 signaling from hepatoblasts contributes to the remodeling of the hepatic artery necessary to meet the demands of the developing epithelium.
Collapse
Affiliation(s)
- Luca Fabris
- CeLiveR, Center for Liver Research, Ospedali Riuniti di Bergamo, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kuver R, Savard CE, Lee SK, Haigh WG, Lee SP. Murine gallbladder epithelial cells can differentiate into hepatocyte-like cells in vitro. Am J Physiol Gastrointest Liver Physiol 2007; 293:G944-55. [PMID: 17717044 DOI: 10.1152/ajpgi.00263.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We determined whether extrahepatic biliary epithelial cells can differentiate into cells with phenotypic features of hepatocytes. Gallbladders were removed from transgenic mice expressing hepatocyte-specific beta-galactosidase (beta-Gal) and cultured under standard conditions and under experimental conditions designed to induce differentiation into a hepatocyte-like phenotype. Gallbladder epithelial cells (GBEC) cultured under standard conditions exhibited no beta-Gal activity. beta-Gal expression was prominent in 50% of cells cultured under experimental conditions. Similar morphological changes were observed in GBEC from green fluorescent protein transgenic mice cultured under experimental conditions. These cells showed higher levels of mRNA for genes expressed in hepatocytes, but not in GBEC, including aldolase B, albumin, hepatocyte nuclear factor-4alpha, aldehyde dehydrogenase 1, and glutamine synthetase, and they synthesized bile acids. Additional functional evidence of a hepatocyte-like phenotype included LDL uptake and enhanced benzodiazepine metabolism. Connexin-32 expression was evident in murine hepatocytes and in cells cultured under experimental conditions, but not in cells cultured under standard conditions. Notch 1, 2, and 3 and Notch ligand Jagged 1 mRNAs were downregulated in these cells compared with cells cultured under standard conditions. CD34, alpha-fetoprotein, and Sca-1 mRNA were not expressed in cells cultured under standard conditions, suggesting that the hepatocyte-like cells did not arise from hematopoietic stem cells or oval cells. These results point to future avenues for investigation into the potential use of GBEC in the treatment of liver disease.
Collapse
Affiliation(s)
- Rahul Kuver
- Division of Gastroenterology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
75
|
Omenetti A, Yang L, Li YX, McCall SJ, Jung Y, Sicklick JK, Huang J, Choi S, Suzuki A, Diehl AM. Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation. J Transl Med 2007; 87:499-514. [PMID: 17334411 DOI: 10.1038/labinvest.3700537] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In bile duct-ligated (BDL) rodents, as in humans with chronic cholangiopathies, biliary obstruction triggers proliferation of bile ductular cells that are surrounded by fibrosis produced by adjacent myofibroblastic cells in the hepatic mesenchyme. The proximity of the myofibroblasts and cholangiocytes suggests that mesenchymal-epithelial crosstalk promotes the fibroproliferative response to cholestatic liver injury. Studying BDL mice, we found that bile duct obstruction induces activity of the Hedgehog (Hh) pathway, a system that regulates the viability and differentiation of various progenitors during embryogenesis. After BDL, many bile ductular cells and fibroblastic-appearing cells in the portal stroma express Hh ligands, receptor and/or target genes. Transwell cocultures of an immature cholangiocyte line that expresses the Hh receptor, Patched (Ptc), with liver myofibroblastic cells demonstrated that both cell types produced Hh ligands that enhanced each other's viability and proliferation. Further support for the concept that Hh signaling modulates the response to BDL was generated by studying PtcLacZ mice, which have an impaired ability to constrain Hh signaling due to a heterozygous deficiency of Ptc. After BDL, PtcLacZ mice upregulated fibrosis gene expression earlier than wild-type controls and manifested an unusually intense ductular reaction, more expanded fibrotic portal areas, and a greater number of lobular necrotic foci. Our findings reveal that adult livers resurrect developmental signaling systems, such as the Hh pathway, to guide remodeling of the biliary epithelia and stroma after cholestatic injury.
Collapse
MESH Headings
- Animals
- Bile Ducts/metabolism
- Bile Ducts/pathology
- Bile Ducts/surgery
- Biomarkers/metabolism
- Cell Survival
- Cells, Cultured
- Disease Models, Animal
- Epithelium/metabolism
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Hydroxyproline/metabolism
- Kruppel-Like Transcription Factors/metabolism
- Kupffer Cells/metabolism
- Kupffer Cells/pathology
- Ligation
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Biliary/etiology
- Liver Cirrhosis, Biliary/metabolism
- Liver Cirrhosis, Biliary/pathology
- Mesoderm/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Patched Receptors
- Patched-1 Receptor
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
- Zinc Finger Protein Gli2
Collapse
Affiliation(s)
- Alessia Omenetti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Vuppalanchi R, Chalasani N, Saxena R. Restoration of bile ducts in drug-induced vanishing bile duct syndrome due to zonisamide. Am J Surg Pathol 2007; 30:1619-23. [PMID: 17122520 DOI: 10.1097/01.pas.0000213342.78475.48] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prolonged drug-induced cholestasis may be due to destruction and disappearance of bile ducts, sometimes referred to as vanishing bile duct syndrome. Although some of these cases progress to fibrosis, cirrhosis, and liver failure, others improve with time. We report a case of a 35-year-old man who developed vanishing bile duct syndrome after ingestion of zonisamide, an antiepileptic drug that is also prescribed for weight loss. His liver biopsy showed complete absence of bile ducts 3 weeks after starting treatment. There was no ductular reaction. The drug was stopped and a follow-up biopsy 3 months later showed strands of intermediate hepatobiliary cells at the periphery of the portal tracts that extended into lobules; these structures lacked lumina and expressed biliary cytokeratins, CK7 and CK19. A third biopsy, 7 months later, showed the presence of ductules with lumina located within portal tracts. Intermediate hepatobiliary cells were rare; although sparse clusters of hepatocytes with membrane staining for CK7 were present. Cholestasis and levels of bilirubin improved over time. The histologic features in this case document the sequence of events in restoration of the biliary tree after loss of bile ducts, which seems to be a process of maturation of intermediate hepatobiliary cells that arise from a proliferative compartment at the porto-hepatic interface.
Collapse
Affiliation(s)
- Raj Vuppalanchi
- Department of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
77
|
Alvaro D, Mancino MG, Glaser S, Gaudio E, Marzioni M, Francis H, Alpini G. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology 2007; 132:415-31. [PMID: 17241889 DOI: 10.1053/j.gastro.2006.07.023] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 07/12/2006] [Indexed: 12/16/2022]
Abstract
In the last 15 years, the intrahepatic biliary tree has become the object of extensive studies, which highlighted the extraordinary biologic properties of cholangiocytes involved in bile formation, proliferation, injury repair, fibrosis, angiogenesis, and regulation of blood flow. Proliferation is a "typical" property of cholangiocytes and is key as a mechanism of repair responsible for maintaining the integrity of the biliary tree. Cholangiocyte proliferation occurs virtually in all pathologic conditions of liver injury where it is associated with inflammation, regeneration, and repair, thus conditioning the evolution of liver damage. Interestingly, proliferating cholangiocytes acquire the phenotype of neuroendocrine cells, and secrete different cytokines, growth factors, neuropeptides, and hormones, which represent potential mechanisms for cross talk with other liver cells. Many studies suggest the generation of a neuroendocrine compartment in the injured liver, mostly constituted by cells with cholangiocyte features, which functionally conditions the progression of liver disease. These insights on cholangiocyte pathophysiology will provide new potential strategies for the management of chronic liver diseases. The purpose of this review is to summarize the recent findings on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte biology.
Collapse
Affiliation(s)
- Domenico Alvaro
- Division of Gastroenterology, Department of Clinical Medicine, University La Sapienza, via R. Rossellini 51, 00137 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
78
|
Onori P, Alvaro D, Floreani AR, Mancino MG, Franchitto A, Guido M, Carpino G, De Santis A, Angelico M, Attili AF, Gaudio E. Activation of the IGF1 system characterizes cholangiocyte survival during progression of primary biliary cirrhosis. J Histochem Cytochem 2006; 55:327-34. [PMID: 17164408 DOI: 10.1369/jhc.6r7125.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We evaluated the IGF1 system in cholangiocytes of primay biliary cirrhosis (PBC) patients and investigated the relationships with apoptosis. Biopsies of PBC patients (n=32) and normal subjects (n=5) were investigated by immunohistochemistry for expression in cholangiocytes of IGF1, IGF1-R, pAKT, terminal deoxynucleotide transferase end labeling (TUNEL), Bax (proapoptotic protein), and Bcl2 (antiapoptotic protein). Whereas normal cholangiocytes were almost negative, cholangiocytes of PBC patients showed strong IHC staining for IGF1, IGF1-R, and pAKT, which increases from stage I to stage IV, where >70% of cholangiocytes were positive. Bax/Bcl2 ratio reached the highest value (4.6) in PBC stage III when apoptosis is maximal (24% TUNEL positivity), whereas it declines in stage IV (1.4) when only 7.8% cholangiocytes were TUNEL positive. In PBC stages III and IV, expression of IGF1, IGF1-R, and pAKT in cholangiocytes was directly correlated with the antiapoptotic Bcl2 and inversely correlated with proapoptotic Bax, Bax/Bcl2 ratio, and TUNEL positivity. In conclusion, cholangiocytes of PBC patients showed a marked increase in IGF1, IGF1-R, and pAKT expression involving most cholangiocytes surviving in the terminal ductopenic stage. This was associated and correlated with a balance of pro- and antiapoptotic proteins favoring survival rather than apoptosis, suggesting a major role of IGF1 system in promoting cholangiocyte survival.
Collapse
Affiliation(s)
- Paolo Onori
- Department of Experimental Medicine, University of L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Stefano JT, Correa-Giannella ML, Ribeiro CMF, Alves VAF, Massarollo PCB, Machado MCC, Giannella-Neto D. Increased hepatic expression of insulin-like growth factor-I receptor in chronic hepatitis C. World J Gastroenterol 2006; 12:3821-8. [PMID: 16804965 PMCID: PMC4087928 DOI: 10.3748/wjg.v12.i24.3821] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Although increased insulin-like growth factor-I receptor (IGF-IR) gene expression has been reported in hepatocellular carcinoma, studies assessing IGF-IR in chronic hepatitis C (CHC) and cirrhosis are scarce. We therefore aimed to evaluate IGF-IR and IGF-I mRNA expression in liver from patient with CHC.
METHODS: IGF-IR and IGF-I mRNA content were determined by semi-quantitative RT-PCR and IGF-IR protein expression was determined by immunohisto-chemistry in hepatic tissue obtained from patients with CHC before (34 patients) and after (10 patients) therapy with interferon-α and ribavirin.
RESULTS: An increase of IGF-IR mRNA content was observed in hepatic tissue obtained from all CHC patients as well as from 6 cadaveric liver donors following orthopic transplantation (an attempt to evaluate normal livers) in comparison to normal liver, while no relevant modifications were detected in IGF-I mRNA content. The immunohistochemical results showed that the raise in IGF-IR mRNA content was related both to ductular reaction and to increased IGF-IR expression in hepatocytes. A decrease in IGF-IR mRNA content was observed in patients who achieved sustained virological response after therapy, suggesting an improvement in hepatic damage.
CONCLUSION: The up-regulation of IGF-IR expression in hepatocytes of patients with CHC could constitute an attempt to stimulate hepatocyte regeneration. Considering that liver is the organ with the highest levels of IGF-I, our finding of increased IGF-IR expression after both acute and chronic hepatic damage highlights the need for additional studies to elucidate the role of IGF-I in liver regeneration.
Collapse
Affiliation(s)
- Jose Tadeu Stefano
- Laboratory for Cellular and Molecular Endocrinology, University of Sao Paulo Medical School, Diabetes Unit, Division of Endocrinology, Brazil
| | | | | | | | | | | | | |
Collapse
|
80
|
Svegliati-Baroni G, Ghiselli R, Marzioni M, Alvaro D, Mocchegiani F, Saccomanno S, Sisti V, Ugili L, Orlando F, Alpini G, Saba V, Benedetti A. Estrogens maintain bile duct mass and reduce apoptosis after biliodigestive anastomosis in bile duct ligated rats. J Hepatol 2006; 44:1158-1166. [PMID: 16481066 DOI: 10.1016/j.jhep.2005.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 10/05/2005] [Accepted: 10/14/2005] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS Disapperacence of bile ducts (ductopenia) represents the terminal, common stage of human cholangiopathies, and estrogens exert a major role in stimulating cholangiocyte proliferation. We thus evaluated whether estrogen administration protect from the bile duct loss induced by the biliary-digestive diversion in bile duct ligated (BDL) rats. METHODS After 3 weeks of BDL, rats were subjected to biliary-digestive diversion and treated with daily injections of 17beta-estradiol or a control solution. RESULTS Both after 7 and 14 days from the biliary-digestive diversion a marked increase of the number of apoptotic cholangiocytes was observed. In contrast, 17beta-estradiol significantly reduced cholangiocyte apoptosis. 17beta-estradiol also prevented the biliary-digestive diversion-induced loss of PCNA-positive cholangiocytes and of the bile duct mass. Biliary-digestive diversion determined a marked reduction of ERK1/2 phopsphorylation in cholangiocytes that was reversed by the administration of 17beta-estradiol. CONCLUSIONS This study indicates that estrogens prevent the increase of cholangiocyte apoptosis and loss of cholangiocyte proliferation induced by the biliary-digestive diversion in the BDL rat. In parallel, 17beta-estradiol also enhanced ERK1/2 phosphorylation, which is instead strongly reduced by the biliary-digestive diversion. These novel findings suggest that estrogens could prevent the evolution of cholangiopathies toward ductopenia.
Collapse
Affiliation(s)
- Gianluca Svegliati-Baroni
- Clinica di Gastroenterologia, Università Politecnica delle Marche, INRCA, IRCCS, Via Tronto, Ancona, 60020, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Nagaya M, Kubota S, Suzuki N, Akashi K, Mitaka T. Thermoreversible gelation polymer induces the emergence of hepatic stem cells in the partially injured rat liver. Hepatology 2006; 43:1053-1062. [PMID: 16628635 DOI: 10.1002/hep.21153] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Focal injury of the adult liver causes formation of granulomatous tissue and fibrosis. When thermoreversible gelation polymer (TGP) was applied to such defects of the rat liver, complete recovery of hepatic tissues was observed without granulation. We analyzed the mechanism of the regeneration. TGP is a chemically synthesized biocompatible polymer material whose sol-gel transition is reversible by changing the temperature. Cooled TGP was poured into a penetration lesion of the rat liver. Immunohistochemistry and polymerase chain reaction were carried out using tissues and cultured cells isolated from ductular structures. Immunocytochemical and ultrastructural analyses were also conducted. Seven days after TGP treatment, ductular reactions were observed around the wound and ductules elongated to the injured area. Cells in the structures were alpha-fetoprotein (AFP) positive, albumin+, CK19+, c-Kit+, and Thyl+. Hepatocyte-like cells possessing glycogen appeared around the tips of the ductules from day 9. The defect was completely replaced with hepatocytes by day 28. Cells isolated from the ductules expressed Musashi-1, c-Kit, Thyl, AFP, albumin, transferrin, connexin 43, and CK19. When the cultured cells were covered by TGP, they rapidly proliferated to form colonies, whereas without TGP cells gradually died. Morphologically and ultrastructurally the cells were similar to hepatocytes. They expressed not only albumin and transferrin but TAT, CYP2E1, and CCAAT/enhancer binding protein a. Some cells formed bile canaliculus-like structures. In conclusion, TGP may trigger the initiation of hepatic stem cells in biliary ductules, and stem cell activation may occur even in the regeneration of the normal liver.
Collapse
Affiliation(s)
- Masaki Nagaya
- Department of Emergency and Critical Care Medicine, St. Marianna University, School of Medicine, Kawasaki, Japan.
| | | | | | | | | |
Collapse
|
82
|
Santoni-Rugiu E, Jelnes P, Thorgeirsson SS, Bisgaard HC. Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion. APMIS 2006; 113:876-902. [PMID: 16480456 DOI: 10.1111/j.1600-0463.2005.apm_386.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although normally quiescent, the adult mammalian liver possesses a great capacity to regenerate after different types of injuries in order to restore the lost liver mass and ensure maintenance of the multiple liver functions. Major players in the regeneration process are mature residual cells, including hepatocytes, cholangiocytes and stromal cells. However, if the regenerative capacity of mature cells is impaired by liver-damaging agents, hepatic progenitor cells are activated and expand into the liver parenchyma. Upon transit amplification, the progenitor cells may generate new hepatocytes and biliary cells to restore liver homeostasis. In recent years, hepatic progenitor cells have been the subject of increasing interest due to their therapeutic potential in numerous liver diseases as alternative or supportive/complementary tools to liver transplantation. While the first investigations on hepatic progenitor cells have focused on their origin and phenotypic characterization, recent attention has focused on the influence of the hepatic microenvironment on their activation and proliferation. This microenvironment comprises the extracellular matrix, epithelial and non-epithelial resident liver cells, and recruited inflammatory cells as well as the variety of growth-modulating molecules produced and/or harboured by these elements. The cellular and molecular responses to different regenerative stimuli seem to depend on the injury inflicted and consequently on the molecular microenvironment created in the liver by a certain insult. This review will focus on molecular responses controlling activation and expansion of the hepatic progenitor cell niche, emphasizing similarities and differences in the microenvironments orchestrating regeneration by recruitment of progenitor cell populations or by replication of mature cells.
Collapse
|
83
|
Chiarini LB, Takiya CM, Borojevic R, Monteiro ANA. Long-term culture of cholangiocytes from liver fibro-granulomatous lesions. BMC Gastroenterol 2006; 6:13. [PMID: 16584555 PMCID: PMC1448193 DOI: 10.1186/1471-230x-6-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 04/03/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extensive bile duct proliferation is a key feature of the tissue reaction to clinical and experimental forms of liver injury. Experimental infection of mice by Schistosoma mansoni is a well-studied model of liver fibrosis with bile duct hyperplasia. However, the regulatory mechanisms of bile duct changes are not well understood. In this study we report the reproducible isolation of long-term cultures of cholangiocytes from mice livers with schistosomal fibrosis. METHODS We have isolated a cholangiocyte cell line from Schistosoma-induced liver granulomas using a combination of methods including selective adhesion and isopyknic centrifugation in Percoll. RESULTS The cell line was characterized by morphological criteria in optical and transmission electron microscopy, ability to form well differentiated ductular structures in collagen gels and by a positive staining for cytokeratin 18 and cytokeratin 19. To our knowledge, this is the first murine cholangiocyte cell line isolated from schistosomal fibrosis reported in the literature. CONCLUSION After 9 months and 16 passages this diploid cell line maintained differentiated characteristics and a high proliferative capacity. We believe the method described here may be a valuable tool to study bile duct changes during hepatic injury.
Collapse
Affiliation(s)
- Luciana B Chiarini
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949, Brazil
| | - Christina M Takiya
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941, Brazil
| | - Radovan Borojevic
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949, Brazil
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941, Brazil
| | - Alvaro NA Monteiro
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949, Brazil
| |
Collapse
|
84
|
Alvaro D, Metalli VD, Alpini G, Onori P, Franchitto A, Barbaro B, Glaser SS, Francis H, Cantafora A, Blotta I, Attili AF, Gaudio E. The intrahepatic biliary epithelium is a target of the growth hormone/insulin-like growth factor 1 axis. J Hepatol 2005; 43:875-83. [PMID: 16083987 DOI: 10.1016/j.jhep.2005.04.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 03/11/2005] [Accepted: 04/07/2005] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS We evaluated the role and mechanisms by which the GH/IGF1 axis modulates cholangiocyte proliferation. METHODS GH-receptors (GH-R), IGF1, IGFBP3 (binding protein 3), IGF1-R and receptor substrates (IRS) were evaluated in cholangiocytes of normal or bile duct-ligated (BDL) rat livers. The effects of GH and IGF1 on proliferation of normal quiescent cholangiocytes and the transduction pathways involved were investigated. RESULTS IGF1, GH-R, IGF1-R, IRS-1/2 were expressed in normal cholangiocytes and overexpressed in cholangiocytes proliferating after BDL which also secrete IGF1 in a higher amount than normal cells. IGFBP3, which may counter-regulate IGF1 effects, was decreased in BDL cholangiocytes. IGF1 promoted cholangiocyte proliferation in association with overexpression of p-IGF1R, IRS1, IRS-2, p-ERK1/2 and p-AKT. GH induced IGF1 expression and release in isolated cholangiocytes, and reproduced the effects of IGF1 but GH effects were abolished by IGF1-R blocking antibody, suggesting IGF1 as a mediator of GH. Finally, IGF1 and 17beta-estradiol reciprocally potentiated their proliferative effects on cholangiocytes, and by interacting at both receptor and post-receptor levels. CONCLUSIONS Cholangiocytes respond to GH with production and release of IGF1 that modulates cell proliferation by transduction pathways involving IGF1-R, IRS1/2 and both ERK and PI3-kinase pathways. The biliary epithelium is a target of GH/IGF1 liver axis.
Collapse
Affiliation(s)
- Domenico Alvaro
- Division of Gastroenterology, University of Rome, La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Marra F, DeFranco R, Robino G, Novo E, Efsen E, Pastacaldi S, Zamara E, Vercelli A, Lottini B, Spirli C, Strazzabosco M, Pinzani M, Parola M. Thiazolidinedione treatment inhibits bile duct proliferation and fibrosis in a rat model of chronic cholestasis. World J Gastroenterol 2005; 11:4931-8. [PMID: 16124041 PMCID: PMC4321905 DOI: 10.3748/wjg.v11.i32.4931] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of troglitazone (TGZ), an anti-diabetic drug which activates peroxisome proliferator-activated receptor-γ (PPAR-γ), for liver tissue repair, and the development of ductular reaction, following common bile duct ligation (BDL) in rats.
METHODS: Rats were supplemented with TGZ (0.2% w/w in the pelleted food) for 1 wk before BDL or sham operation. Animals were killed at 1, 2, or 4 wk after surgery.
RESULTS: The development of liver fibrosis was reduced in rats receiving TGZ, as indicated by significant decreases of procollagen type I gene expression and liver hydroxy-proline levels. Accumulation of α-smooth-muscle actin (SMA)-expressing cells surrounding newly formed bile ducts following BDL, as well as total hepatic levels of SMA were partially inhibited by TGZ treatment, indicating the presence of a reduced number and/or activation of hepatic stellate cells (HSC) and myofibroblasts. Development of the ductular reaction was inhibited by TGZ, as indicated by histochemical evaluation and hepatic activity of γ-glutamyl-transferase (GGT).
CONCLUSION: Treatment with thiazolidinedione reduces ductular proliferation and fibrosis in a model of chronic cholestasis, and suggests that limiting cholangiocyte proliferation may contribute to the lower development of scarring in this system.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento di Medicina Interna, University of Florence, Viale Morgagni 85, Florence I-50134, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Yoshioka K, Mori A, Taniguchi K, Mutoh K. Cell proliferation activity of proliferating bile duct after bile duct ligation in rats. Vet Pathol 2005; 42:382-5. [PMID: 15872390 DOI: 10.1354/vp.42-3-382] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cell proliferation activity of proliferating bile ducts produced by bile duct ligation (BDL) in rats was examined histologically, immunohistochemically, and ultrastructurally. Proliferating bile ducts, which were similar to normal bile ducts, increased with time after BDL. The cell proliferation activity of proliferating bile ducts, measured using proliferating-cell nuclear antigen and 5-bromo-2'-deoxyuridine antibodies, tended to be high at 1 and 3 days after BDL and decreased progressively at 2 to 4 weeks after BDL. On the other hand, alpha-smooth muscle actin-positive myofibroblast-like cells increased continuously after BDL. These findings indicate that there is a negative correlation between the cell proliferation activity of proliferating bile ducts and that of myofibroblast-like cells.
Collapse
Affiliation(s)
- K Yoshioka
- Department of Veterinary Anatomy, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada Aomori 034, Japan.
| | | | | | | |
Collapse
|
87
|
Affiliation(s)
- David Tosh
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | |
Collapse
|
88
|
Nishikawa Y, Doi Y, Watanabe H, Tokairin T, Omori Y, Su M, Yoshioka T, Enomoto K. Transdifferentiation of mature rat hepatocytes into bile duct-like cells in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1077-88. [PMID: 15793288 PMCID: PMC1602375 DOI: 10.1016/s0002-9440(10)62328-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the mechanism of phenotypic plasticity of hepatocytes in a three-dimensional organoid culture system, in which hepatocytic spheroids were embedded within a collagen gel matrix. Hepatocytes expressed several bile duct markers including cytokeratin (CK) 19 soon after culture and underwent branching morphogenesis within the matrix in the presence of insulin and epidermal growth factor. Cultured hepatocytes did not express Delta-like, a specific marker for oval cells and hepatoblasts. Furthermore, hepatocytes isolated from c-kit mutant rats (Ws/Ws), which are defective in proliferation of oval cells, showed essentially the same phenotypic changes as those isolated from control rats. The bile duct-like differentiation of hepatocytes was associated with increased expression of Jagged1, Jagged2, Notch1, and several Notch target genes. CK19 expression and branching morphogenesis were inhibited by dexamethasone, a mitogen-activated protein kinase kinase 1 (MEK1) inhibitor (PD98059), and a phosphatidyl inositol 3-kinase inhibitor (LY294002). After being cultured for more than 3 weeks within the gels, hepatocytes transformed into ductular structures surrounded by basement membranes. Our results suggest that hepatocytes might have the potential to transdifferentiate into bile duct-like cells without acquiring a stem-like phenotype and that this is mediated through specific protein tyrosine phosphorylation pathways.
Collapse
Affiliation(s)
- Yuji Nishikawa
- Department of Pathology and Immunology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Eleazar JA, Memeo L, Jhang JS, Mansukhani MM, Chin S, Park SM, Lefkowitch JH, Bhagat G. Progenitor cell expansion: an important source of hepatocyte regeneration in chronic hepatitis. J Hepatol 2004; 41:983-91. [PMID: 15582132 DOI: 10.1016/j.jhep.2004.08.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 07/02/2004] [Accepted: 08/01/2004] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Progenitor cell activation with subsequent maturation to hepatocytes and cells of the biliary lineage has been demonstrated in a variety of chronic liver diseases but the kinetics and magnitude of the progenitor cell response has not been adequately studied in detail in chronic hepatitis. We undertook this study to evaluate factors responsible for the progenitor cell/ductular response and further dissect the role of disease grade and stage as determinants of hepatocellular differentiation of bipotential progenitor cells in chronic hepatitis. METHODS Cytokeratin 7 (and 19) stained biopsies from patients with chronic hepatitis C (n = 47), hepatitis B (n = 20), and autoimmune hepatitis (n = 20) were studied. Ploidy analysis and proliferation indices were evaluated in a subset of cases. RESULTS Ductular reactions were present in the majority of cases (97%), appeared early in disease, and correlated with disease activity, while progenitor cell derived hepatocyes appeared later in disease and their extent correlated with disease stage. Proliferation indices of all cell types correlated with disease activity. CONCLUSIONS Progenitor cell derived hepatocytes accrue in chronic hepatitis, possibly related to native hepatocellular dysfunction. However, the fate of these hepatocytes is unclear.
Collapse
Affiliation(s)
- Jennifer A Eleazar
- Department of Pathology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Alvaro D, Invernizzi P, Onori P, Franchitto A, De Santis A, Crosignani A, Sferra R, Ginanni-Corradini S, Mancino MG, Maggioni M, Attili AF, Podda M, Gaudio E. Estrogen receptors in cholangiocytes and the progression of primary biliary cirrhosis. J Hepatol 2004; 41:905-12. [PMID: 15645536 DOI: 10.1016/j.jhep.2004.08.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Estrogen receptors (ER) in cholangiocytes of primary biliary cirrhosis (PBC) patients and their relationship with cell proliferation and death were evaluated. METHODS Liver biopsies from PBC patients with different histological stages were investigated by immunohistochemistry for ER-alpha and -beta, cytokeratin-19, proliferating cellular nuclear antigen (PCNA), Fas and terminal deoxynucleotide transferase end labelling (TUNEL). Normal livers and livers from primary sclerosing cholangitis and alcoholic cirrhosis were investigated as controls. RESULTS ER-alpha and -beta were observed in cholangiocytes of PBC patients but not in normal liver. In PBC, positivity for ER-beta was high (50-65 %) in all histological stages while, positivity for ER-alpha increased from 1% in stage I to 12 % in stage III (positivity correlated and co-localized in the same cell with PCNA). In stage IV of PBC, cholangiocytes were negative for ER-alpha in association with a lower PCNA positivity and with maximal degree of ductopenia. ER-alpha positivity in cholangiocytes of PBC patients was markedly lower than primary sclerosing cholangitis and alcoholic cirrhosis. CONCLUSIONS ER are expressed in PBC and other pathologies associated with cholangiocyte proliferation but not in normal subjects. The low expression of ER-alpha in PBC and their disappearance in the advanced histological stages suggests that an estrogenic deficiency could favour the evolution of this disease toward ductopenia.
Collapse
MESH Headings
- Apoptosis
- Bile Ducts, Intrahepatic/metabolism
- Bile Ducts, Intrahepatic/pathology
- Biomarkers/metabolism
- Case-Control Studies
- Cell Division
- Cholangitis, Sclerosing/metabolism
- Cholangitis, Sclerosing/pathology
- Cholangitis, Sclerosing/physiopathology
- Disease Progression
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/metabolism
- Humans
- Immunohistochemistry
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Alcoholic/metabolism
- Liver Cirrhosis, Alcoholic/pathology
- Liver Cirrhosis, Alcoholic/physiopathology
- Liver Cirrhosis, Biliary/metabolism
- Liver Cirrhosis, Biliary/pathology
- Liver Cirrhosis, Biliary/physiopathology
- Proliferating Cell Nuclear Antigen/metabolism
Collapse
Affiliation(s)
- Domenico Alvaro
- Division of Gastroenterology, Department of Clinical Medicine, University of Rome, La Sapienza, via R. Rossellini 51, 00137 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Gigliozzi A, Alpini G, Baroni GS, Marucci L, Metalli VD, Glaser SS, Francis H, Mancino MG, Ueno Y, Barbaro B, Benedetti A, Attili AF, Alvaro D. Nerve growth factor modulates the proliferative capacity of the intrahepatic biliary epithelium in experimental cholestasis. Gastroenterology 2004; 127:1198-209. [PMID: 15480997 DOI: 10.1053/j.gastro.2004.06.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS We evaluated the expression of neurotrophins in rat cholangiocytes and the role and mechanisms by which nerve growth factor (NGF) modulates cholangiocyte proliferation. METHODS The expression of neurotrophins and their receptors was investigated by immunohistochemistry in liver sections and reverse-transcription polymerase chain reaction and immunoblots in isolated cholangiocytes. In vitro, the effect of NGF on cholangiocyte proliferation and signal transduction was investigated by immunoblotting for proliferating cell nuclear antigen, phosphorylated AKT (p-AKT), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), phosphorylated c-jun-N-terminal kinase, and phosphorylated p38. In vivo, rats that had undergone bile duct ligation (BDL) were treated with an anti-NGF antibody to immunoneutralize NGF and bile duct mass, proliferation, apoptosis, and inflammation were investigated by immunohistochemistry. RESULTS NGF and its TrkA receptor were expressed by normal rat cholangiocytes and up-regulated following BDL. Cholangiocytes secrete NGF, and secretion is increased in proliferating BDL cholangiocytes. In vitro, NGF stimulated cholangiocyte proliferation, which was associated with enhanced p-AKT and p-ERK1/2 expression. NGF proliferation in vitro was partially blocked by the MEK inhibitor (UO126) and completely ablated by the phosphatidylinositol 3-kinase inhibitor (wortmannin). In vitro, NGF and estrogens have an additive effect on cholangiocyte proliferation by acting on phosphorylated TrkA and p-ERK1/2. In vivo, immunoneutralization of NGF decreased bile duct mass in BDL rats, which was associated with depressed proliferation and enhanced apoptosis and with increased portal inflammation. CONCLUSIONS Cholangiocytes secrete NGF and express NGF receptors. NGF induces cholangiocyte proliferation by activating the ERK and, predominantly, the phosphatidylinositol 3-kinase pathway and exerts an additive effect in combination with estrogens on proliferation.
Collapse
Affiliation(s)
- Alessandro Gigliozzi
- Division of Gastroenterology, Department of Clinical Medicine, University of Rome La Sapienza, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P, Brunt EM, Crawford JM, Crosby HA, Desmet V, Finegold MJ, Geller SA, Gouw ASH, Hytiroglou P, Knisely AS, Kojiro M, Lefkowitch JH, Nakanuma Y, Olynyk JK, Park YN, Portmann B, Saxena R, Scheuer PJ, Strain AJ, Thung SN, Wanless IR, West AB. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 2004; 39:1739-45. [PMID: 15185318 DOI: 10.1002/hep.20130] [Citation(s) in RCA: 518] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The work of liver stem cell biologists, largely carried out in rodent models, has now started to manifest in human investigations and applications. We can now recognize complex regenerative processes in tissue specimens that had only been suspected for decades, but we also struggle to describe what we see in human tissues in a way that takes into account the findings from the animal investigations, using a language derived from species not, in fact, so much like our own. This international group of liver pathologists and hepatologists, most of whom are actively engaged in both clinical work and scientific research, seeks to arrive at a consensus on nomenclature for normal human livers and human reactive lesions that can facilitate more rapid advancement of our field.
Collapse
Affiliation(s)
- Tania A Roskams
- Department of Pathology, University Hospitals, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Sonzogni A, Colloredo G, Fabris L, Cadamuro M, Paris B, Roffi L, Pozzi M, Bovo G, Del Poggio P, Portmann BC, Strazzabosco M. Isolated idiopathic bile ductular hyperplasia in patients with persistently abnormal liver function tests. J Hepatol 2004; 40:592-8. [PMID: 15030974 DOI: 10.1016/j.jhep.2003.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Revised: 12/04/2003] [Accepted: 12/17/2003] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS In routine examination of liver biopsies isolated ductular hyperplasia (IDH) may be the only histopathological change. Here we describe the clinical and immunophenotypic features of a number of cases retrospectively identified reviewing consecutive liver biopsies from five Italian centers over 4 years. METHODS We reviewed 1235 cases biopsied for chronic liver disease (1078 for viral hepatitis). Records of cases fulfilling the inclusion criteria for IDH were reviewed to identify possible aetiologies. Biopsies showing IDH and control biopsies were studied by immunohistochemistry for cytokeratin-7, epithelial-membrane-antigen (EMA), neural-cell-adhesion-molecule (NCAM), Ki-67. RESULTS Out of 70 biopsies fulfilling IDH criteria, 16 (22.8%) were of unknown aetiology. Patients with idiopathic IDH (age 38.2+/-11 years) were asymptomatic with mild, long-lasting ALT and/or gammaGT increases. A significant increase of well-differentiated (EMA-positive; NCAM-negative) bile ductules localized at the portal interface and inside the lobule was found in idiopathic IDH. CONCLUSIONS Idiopathic IDH was present in 10% of adults biopsied for persistent mild liver function test abnormalities unrelated to viral hepatitis. In contrast with the ductular reaction seen in many forms of liver disease, it is characterized by well-differentiated hyperplastic ductules in absence of significant inflammation, and may represent a non-specific pattern of reaction to mild liver damages.
Collapse
|
94
|
Abstract
Progressive liver fibrosis is the main cause of organ failure in chronic liver diseases of any aetiology. Fibrosis develops with different spatial patterns and is a consequence of different prevalent mechanisms according to the diverse causes of parenchymal damage. Indeed, fibrosis, observed as a consequence of chronic viral infection is initially concentrated within and around the portal tract, while fibrosis secondary to toxic/metabolic damage is located mainly in the centrolobular areas. In addition, it is increasingly evident that different cell types are involved in the deposition of fibrillar extracellular matrix during active hepatic fibrogenesis: hepatic stellate cells are mainly involved when hepatocellular damage is limited or concentrated within the liver lobule, whereas portal myofibroblasts and fibroblasts provide a predominant contribution when the damage is located in the proximity of the portal tracts. In the later stages of evolution (septal fibrosis) it is likely that all extracellular matrix-producing cells contribute to fibrogenesis. Recruitment and activation of extracellular matrix-producing cells to the site of tissue damage can be due to different major mechanisms: (1) Chronic activation of the tissue repair process. In this case, as a consequence of the reiterated damage, accumulation of fibrillar extracellular matrix reflects the impossibility of an effective remodelling and regeneration. (2) Effect of oxidative stress products, including reactive oxygen intermediates and reactive aldehydes. These products, whose concentration become critical in toxic/metabolic liver injury, are able to induce the synthesis of fibrillar extracellular matrix even in the absence of significant hepatocyte damage and inflammation. (3) Derangement of normal the epithelial/mesenchymal interaction. This typically occurs in all conditions characterised by cholangiocyte damage/proliferation, where a consensual proliferation of extracellular matrix-producing cells and progressive fibrogenesis is commonly observed. A major advancement towards the understanding of the molecular mechanisms of fibrogenesis is derived from a consistent number of in vitro studies investigating the biological role of growth factors/cytokines and other soluble factors and their intracellular signalling pathways. The relevance of these factors has been confirmed by studies performed on animal models and by studies performed on pathological human liver. Along these lines, the elucidation of a consistent number of cellular and molecular mechanisms responsible for the progression of liver fibrosis has provided sound basis for the development of pharmacological strategies able to modulate this important pathophysiological process. Finally, there are several clinically relevant issues that need re-evaluation and/or further investigation, and in particular: (1) the need of an accurate and effective monitoring of the fibrotic progression of chronic liver diseases and of the effectiveness of the currently proposed treatments; (2) the identification of general or individual factors potentially relevant for a faster progression of the disease.
Collapse
Affiliation(s)
- M Pinzani
- Laboratory of Hepatology, Department of Internal Medicine, University of Florence, Viale G.B. Morgagni, 85, 50134 Florence, Italy.
| | | |
Collapse
|
95
|
Yoshioka K, Enaga S, Taniguchi K, Fukushima U, Uechi M, Mutoh K. Morphological Characterization of Ductular Reactions in Canine Liver Disease. J Comp Pathol 2004; 130:92-8. [PMID: 15003464 DOI: 10.1016/j.jcpa.2003.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Accepted: 08/20/2003] [Indexed: 11/22/2022]
Abstract
Intrahepatic bile duct proliferation (ductular reaction) was examined histologically, immunohistochemically and ultrastructurally in four cases of canine liver disease, diagnosed as chronic hepatitis, liver fibrosis, cirrhosis and cholangiocellular carcinoma. Ductular reaction was a common finding in all cases. Most of the proliferated bile ducts were similar to normal bile ducts. In addition, duct-like structures occurred, consisting of hepatocytes and of intermediate cells that had phenotypic characteristics of both cholangiocytes and hepatocytes. The proliferated bile ducts were immunohistochemically negative for proliferating cell nuclear antigen (PCNA) and stem cell factor (SCF). The proliferated bile ducts in these four cases of canine liver disease thus showed both typical ductular reactions, such as elongation and tortuosity of the existing bile ducts, and atypical ductular reactions resulting from metaplasia of hepatocytes.
Collapse
Affiliation(s)
- K Yoshioka
- Department of Veterinary Anatomy, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada Aomori 034, Japan
| | | | | | | | | | | |
Collapse
|
96
|
Zhong Z, Froh M, Lehnert M, Schoonhoven R, Yang L, Lind H, Lemasters JJ, Thurman RG. Polyphenols from Camellia sinenesis attenuate experimental cholestasis-induced liver fibrosis in rats. Am J Physiol Gastrointest Liver Physiol 2003; 285:G1004-13. [PMID: 12791596 DOI: 10.1152/ajpgi.00008.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Accumulation of hydrophobic bile acids during cholestasis leads to generation of oxygen free radicals in the liver. Accordingly, this study investigated whether polyphenols from green tea Camellia sinenesis, which are potent free radical scavengers, decrease hepatic injury caused by experimental cholestasis. Rats were fed a standard chow or a diet containing 0.1% polyphenolic extracts from C. sinenesis starting 3 days before bile duct ligation. After bile duct ligation, serum alanine transaminase increased to 760 U/l after 1 day in rats fed a control diet. Focal necrosis and bile duct proliferation were also observed after 1-2 days, and fibrosis developed 2-3 wk after bile duct ligation. Additionally, procollagen-alpha1(I) mRNA increased 30-fold 3 wk after bile duct ligation, accompanied by increased expression of alpha-smooth muscle actin and transforming growth factor-beta and the accumulation of 4-hydroxynenonal, an end product of lipid peroxidation. Polyphenol feeding blocked or blunted all of these bile duct ligation-dependent changes by 45-73%. Together, the results indicate that cholestasis due to bile duct ligation causes liver injury by mechanisms involving oxidative stress. Polyphenols from C. sinenesis scavenge oxygen radicals and prevent activation of stellate cells, thereby minimizing liver fibrosis.
Collapse
Affiliation(s)
- Zhi Zhong
- Dept. of Cell and Developmental Biology, CB# 7090, Univ. of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Kyokane T, Nagino M, Kamiya J, Nimura Y, Nagasaka T. Simultaneous segmental obstruction of bile duct and portal vein markedly changes a population of biliary and hepatic cells in human liver. Langenbecks Arch Surg 2003; 388:270-5. [PMID: 12750893 DOI: 10.1007/s00423-003-0380-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Accepted: 04/05/2003] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS No studies have investigated histologic changes caused by simultaneous segmental obstruction of the bile duct and portal vein in human liver. PATIENTS/METHODS Liver tissues with simultaneous obstruction of the segmental bile duct and portal vein (O(+/+) liver), with segmental bile duct obstruction alone (O(+/-) liver), and without obstruction (O(-/-) liver) were obtained from patients who underwent hepatectomy, and studied morphologically and immunohistochemically. RESULTS In O(+/+) liver, the proportional area consisting of hepatocytes was significantly less (31.0+/-25.8%) than in O(+/-) liver (78.4+/-18.9%) or O(-/-) liver (86.5+/-9.2%). In contrast, the proportional area consisting of biliary epithelial cells was significantly higher in O(+/+) liver (9.1+/-6.1%) than in O(+/-) liver (1.6+/-1.5%) or O(-/-) liver (0.7+/-0.6%). The proportional area consisting of fibrous tissue also was significantly higher in O(+/+) liver than in the other two groups. In O(+/+) liver, some cells located at the periphery of hepatocyte areas were immunoreactive for both hepatocyte and biliary epithelial cell markers. CONCLUSION Simultaneous segmental obstruction of the bile duct and portal vein induces a marked ductular increase, periportal fibrosis, and a reduction in the number of hepatocytes in human liver tissue.
Collapse
Affiliation(s)
- Takanori Kyokane
- First Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, 466-8550 Nagoya, Japan.
| | | | | | | | | |
Collapse
|
98
|
Ros JE, Libbrecht L, Geuken M, Jansen PLM, Roskams TAD. High expression of MDR1, MRP1, and MRP3 in the hepatic progenitor cell compartment and hepatocytes in severe human liver disease. J Pathol 2003; 200:553-60. [PMID: 12898590 DOI: 10.1002/path.1379] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An increase in bile ductular structures is observed in diverse human liver diseases. These structures harbour the progenitor cell compartment of the liver. Since ATP-binding cassette (ABC) transporters may have a cytoprotective role in liver disease, an immunohistochemical study was performed on human liver specimens from patients with primary biliary cirrhosis (PBC), chronic hepatitis C virus (HCV) infection, submassive cell necrosis, and normal liver. The expression of MDR1, MDR3, BSEP, MRP1, MRP2, and MRP3 was determined using specific antibodies. Dilution series were constructed to determine the critical staining level in order to estimate the factor of up-regulation. In normal liver, hepatocytes showed canalicular staining for MDR3, BSEP, and MRP2. MDR1 stained the canalicular membrane of hepatocytes as well as that of cholangiocytes. MRP3 showed low immunoreactivity of bile duct epithelial cells and centrilobular hepatocytes only. Normal liver showed no immunoreactivity for MRP1. In diseased liver, the expression of MDR3, BSEP, and MRP2 was relatively stable. In PBC, HCV, and submassive necrosis, the expression levels of MDR1, MRP1, and MRP3 were increased. The strongest immunoreactivity was seen after submassive necrosis, where remaining islands of hepatocytes showed strong canalicular staining for MDR1 and MRP3. Regenerating bile ductules at the interface of portal tracts and necrotic areas stained intensely for MDR1, MRP1, and MRP3. In conclusion, MDR1, MRP1, and MRP3 are up-regulated in hepatocytes in severe human liver disease. Strong MDR1, MRP1, and MRP3 reactivity is seen in regenerating human bile ductules.
Collapse
Affiliation(s)
- Jenny E Ros
- Center for the Study of Liver, Digestive and Metabolic Diseases, Groningen University Institute for Drug Exploration (GUIDE), University Hospital Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
99
|
Abstract
Stem cells play a key role in tissue homeostasis and renewal after damage, so learning more about them may become a sort of 'Pandora's box', which when opened will make it possible to clarify the nature and the pathophysiology of several human diseases and to find new treatments for pathologies, such as cancers, degenerative, autoimmune and genetic disorders, that are currently untreatable. The characteristics of the gastrointestinal tract and of the liver, in terms of genesis and regeneration and their special relationship with the haemolymphopoietic system, allow stem cell research to outline interesting therapeutic perspectives in these fields. We aim to summarize the knowledge acquired on gastrointestinal and hepatic stem cell biology, focusing attention on the issues that remain to be addressed, and to present the main perspectives of treatment offered by these 'new tools' in gastroenterology and hepatology.
Collapse
Affiliation(s)
- A C Piscaglia
- Department of Internal Medicine & Gastroenterology, Catholic University of Rome, Largo Gemelli 8, 00168 Rome, Italy
| | | | | | | |
Collapse
|
100
|
Kinnman N, Francoz C, Barbu V, Wendum D, Rey C, Hultcrantz R, Poupon R, Housset C. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. J Transl Med 2003; 83:163-73. [PMID: 12594232 DOI: 10.1097/01.lab.0000054178.01162.e4] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The origin of myofibroblasts and the factors promoting their differentiation during liver fibrogenesis remain uncertain. During biliary-type fibrogenesis, the proliferation and chemoattraction of hepatic stellate cells (HSC) toward bile ducts is mediated by platelet-derived growth factor (PDGF), while myofibroblastic conversion of peribiliary cells distinct from HSC also occurs. We herein examined the phenotype of these peribiliary myofibroblasts as compared with myofibroblastic HSC and tested whether their differentiation was affected by PDGF. Biliary-type liver fibrogenesis was induced by common bile duct ligation in rats. After 48 hours, periductular fibrosis in portal tracts colocalized with smooth muscle alpha-actin-immunoreactive myofibroblasts, the majority of which were desmin negative. Simultaneously, in sinusoids, desmin immunoreactivity was induced in a large number of HSC, which were smooth muscle alpha-actin negative. Cultures of peribiliary myofibroblasts were expanded from isolated bile duct segments and compared with myofibroblastic HSC. Peribiliary myofibroblasts outgrowing from bile duct segments expressed smooth muscle alpha-actin, alpha1 (I) collagen mRNA, and PDGF receptor-beta subunit. Desmin immunoreactivity gradually decreased in cultured peribiliary myofibroblasts, contrasting with constant labeling of all myofibroblastic HSC. In addition, IL-6 expression in peribiliary myofibroblasts was up to 100-fold lower than in myofibroblastic HSC, whereas the expression of the complement-activating protease P100 in both cell types showed little difference and that of the extracellular matrix component fibulin 2 was similar. The expression of smooth muscle alpha-actin protein in cultured peribiliary myofibroblasts was stimulated by PDGF-BB and inhibited by STI571, a PDGF receptor tyrosine kinase inhibitor, whereas in bile duct-ligated rats, the administration of STI571 caused a significant decrease in peribiliary smooth muscle alpha-actin immunoreactivity, and to a lesser extent, a decrease in peribiliary fibrosis. These results indicate that peribiliary cells distinct from HSC undergo a PDGF-mediated conversion into myofibroblasts expressing IL-6 at lower levels than myofibroblastic HSC and contribute to the initial formation of biliary-type liver fibrosis.
Collapse
Affiliation(s)
- Nils Kinnman
- Institut National de la Santé et de la Recherche Médicale Unité 402, Faculté de Médecine Saint-Antoine, Hôpital Saint-Antoine, and Service AP-HP de Biochimie (CH), Hôpital Tenon, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|