51
|
Booth BA, Vidal Denham L, Bouhanik S, Jacob JT, Hill JM. Sustained-release ophthalmic drug delivery systems for treatment of macular disorders: present and future applications. Drugs Aging 2007; 24:581-602. [PMID: 17658909 DOI: 10.2165/00002512-200724070-00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Macular disease currently poses the greatest threat to vision in aging populations. Historically, most of this pathology could only be dealt with surgically, and then only after much damage to the macula had already occurred. Current pathophysiological insights into macular diseases have allowed the development of effective new pharmacotherapies. The field of drug delivery systems has advanced over the last several years with emphasis placed on controlled release of drug to specific areas of the eye. Its unique location and tendency toward chronic disease make the macula an important and attractive target for drug delivery systems, especially sustained-release systems. This review evaluates the current literature on the research and development of sustained-release posterior segment drug delivery systems that are primarily intended for macular disease with an emphasis on age-related macular degeneration.Current effective therapies include corticosteroids and anti-vascular endothelial growth factor compounds. Recent successes have been reported using anti-angiogenic drugs for therapy of age-related macular degeneration. This review also includes information on implantable devices (biodegradable and non-biodegradable), the use of injected particles (microspheres and liposomes) and future enhanced drug delivery systems, such as ultrasound drug delivery. The devices reviewed show significant drug release over a period of days or weeks. However, macular disorders are chronic diseases requiring years of treatment. Currently, there is no 'gold standard' for therapy and/or drug delivery. Future studies will focus on improving the efficiency and effectiveness of drug delivery to the posterior chamber. If successful, therapeutic modalities will significantly delay loss of vision and improve the quality of life for patients with chronic macular disorders.
Collapse
Affiliation(s)
- Blake A Booth
- Department of Ophthalmology, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
52
|
Bekeredjian R, Kroll RD, Fein E, Tinkov S, Coester C, Winter G, Katus HA, Kulaksiz H. Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1592-8. [PMID: 17618040 DOI: 10.1016/j.ultrasmedbio.2007.05.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/20/2007] [Accepted: 05/03/2007] [Indexed: 05/16/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) has evolved as a promising tool for organ-specific gene and drug delivery. Taking advantage of high local concentrations of therapeutic substances and transiently increased capillary permeability, UTMD could be used for the treatment of ultrasound accessible tumors. The aim of this study was to evaluate if UTMD can locally increase capillary permeability in a hepatoma model of the rat. Furthermore, we evaluated whether UTMD can transfect DNA into such tumors. Subcutaneous Morris hepatomas were induced in both hind limbs of ACI rats by cell injection. A total of 18 rats were divided into three groups. Only one tumor per rat was treated by ultrasound. The first group received injection of Evans blue, followed by UTMD. The second group received a phosphate-buffered saline solution infusion and ultrasound to the target tumor after Evans blue injection. The third group received UTMD first, followed by Evans blue injection. Tumors and control organs were harvested, and Evans blue extravasation was quantified. Another 12 rats received DNA-loaded microbubbles by UTMD to one tumor, encoding for luciferase. Evans blue injection followed by UTMD showed about fivefold higher Evans blue amount in the target tumors compared with the control tumors. In contrast, no significant difference in Evans blue content was detected between target and control tumors when ultrasound was applied without microbubbles or when UTMD was performed before Evans blue injection. Plasmid transfection was not successful. In conclusion, ultrasound targeted microbubble destruction is able to transiently increase capillary permeability in hepatomas. Using naked DNA, this technique does not seem to be feasible for noninvasive transfection of hepatomas.
Collapse
Affiliation(s)
- Raffi Bekeredjian
- Internal Medicine III, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
Interest in microbubbles as vehicles for drug delivery has grown in recent years, due in part to characteristics that make them well suited for this role and in part to the need the for localized delivery of drugs in a number of applications. Microbubbles are inherently small, allowing transvascular passage, they can be functionalized for targeted adhesion, and can be acoustically driven, which facilitates ultrasound detection, production of bioeffects and controlled release of the cargo. This article provides an overview of related microbubble biofluid mechanics and reviews recent developments in the application of microbubbles for targeted drug delivery. Additionally, related advances in non-bubble microparticles for drug delivery are briefly described in the context of targeted adhesion.
Collapse
Affiliation(s)
- Joseph L Bull
- The University of Michigan, Department of Biomedical Engineering, 2142 Lurie Biomedical Engineering Building, 1107 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
54
|
Yohannes FG, Hoffmann AK. Non-invasive low frequency vibration as a potential emergency adjunctive treatment for heart attack and stroke. An in vitro flow model. J Thromb Thrombolysis 2007; 25:251-8. [PMID: 17534694 DOI: 10.1007/s11239-007-0054-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Accepted: 05/08/2007] [Indexed: 12/24/2022]
Abstract
BACKGROUND Myocardial infarction and stroke (arterial thrombosis) comprise the leading killers and sources of disability in the developed world, and incomplete thrombolysis along with high bleeding rates (plus late presentations to cathlabs) have prompted an intensive search for alternative or adjunctive emergency therapies. Transcutaneous ultrasound has been studied in remediation of thrombosis, but has been problematic due to poor penetration, risk of arterial damage, plus the apparent need for a highly skilled approach. Surprisingly there has been no reported studies on the much simpler application of transcutaneous low frequency vibration (well known for its superior penetration and flow enhancing characteristics) to assist arterial thrombolysis. The aim of our experiment therefore was to test the hypothesis whether vibration (i.e. approximately 100 Hz, 0.5 mm), when applied across an attenuating barrier, would assist recanulization of a thrombosed flow system held at arterial like pressure. METHODS A teddy bear with a 2 cm slab of New York Steak placed upon its chest surface was used as a test subject with an in-dwelling catheter (approximately 4.0 mm lumen) cannulated through the bear's thorax. In a series of test runs (n=30), a 2 h old (or older) blood clot was injected into the catheter such as to occlude it at a stenosis site (approximately 90% luminal narrowing) created by a clamp placed along the catheter within the teddy's chest region. A pressurized heparinized IV system was in all cases connected to the catheter such as to yield an "arterial like" lumen pressure proximal the obstruction. For each test run, after a twenty minute observation period to confirm stability of the occlusion, test groups where randomized to receive vibration to the slab of steak upon the teddy's "chest wall" (generally overlying the site of the thrombotic obstruction), or no vibration for an evaluation period of up to 45 min. RESULTS Catheter reflow occurred rapidly (median reflow-time 90 s) in the vibration groups within the evaluation period (i.e. 15/17), while the system remained otherwise blocked in the control groups receiving no vibration (i.e. 0/13). The difference in flow system patency rate for the vibration groups vs. the control groups was statistically significant (P=0.0000009). CONCLUSIONS The frequent and generally rapid re-establishment of flow in vibration groups compared to the complete absence of reflow in control groups confirms the hypothesis that vibration applied across a physical barrier assists clearance of a blood clot in a stenosed flow system under systemic levels of pressure. We studied the incidence of clearance of a blood clot within a stenosed, heparanized catheter system held at arterial like pressure that was treated with externally delivered low frequency vibration (applied proximate the thrombotic occlusion across an attenuating medium--a 2 cm thick slab of New York Steak--at approximately 100 Hz, 0.5 mm), versus no vibration. Reflow in test runs incorporating vibration occurred faster, and resulted in significantly greater recanulization rates in the catheter system versus test runs without vibration (P=0.0000009). Non-invasive vibration holds potential as an adjunct to pharmacologic therapy in treatment of acute arterial thrombosis. Further study of this technique appears warranted in live animal models.
Collapse
Affiliation(s)
- Fesseha G Yohannes
- Department of Cardiology, Royal Columbian Hospital, 330 East Columbia St., New Westminster, British Columbia, Canada V3L 3W7.
| | | |
Collapse
|
55
|
Bertuglia S. Mechanisms by which low-intensity ultrasound improve tolerance to ischemia-reperfusion injury. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:663-71. [PMID: 17383799 DOI: 10.1016/j.ultrasmedbio.2006.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/25/2006] [Accepted: 11/02/2006] [Indexed: 05/14/2023]
Abstract
Recent studies show that low-intensity ultrasound (US) increases endothelial nitric oxide (NO) levels in different models both in vitro and in vivo. Ischemia-reperfusion (I/R) injury is characterized by endothelial cell dysfunction, mainly as a result of altered shear stress responses associated with vasoconstriction, reduced capillary perfusion and excessive oxidative stress. This review provides an overview of the microvascular effects of low-intensity US and suggests that US exposure can be a method to provide tolerance to I/R damage. The hamster cheek pouch, extensively used in studies of I/R-induced injury, has been characterized in terms of changes of arteriolar diameter, flow and shear stress. The low-intensity US exposure reduces vasoconstriction and leukocyte adhesion and increases capillary perfusion during postischemic reperfusion. These effects may be the result of enhanced fluctuations in shear stress exerted by the flowing blood on the vessel wall. The fluctuations in turn are due to mechanical perturbations arising from the difference in acoustical impedance between the endothelial cells and the vessel content. We believe that periodic pulses of US may also cause a sustained reduction of oxidative stress and an enhanced endothelial NO level by increasing oscillatory shear stress during postischemic reperfusion. Low-intensity US exposure may represent a safe and novel important therapeutic target for patients with acute coronary syndromes and for treatment of chronic myocardial ischemia.
Collapse
Affiliation(s)
- Silvia Bertuglia
- CNR Institute of Clinical Physiology, Faculty of Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
56
|
Bekeredjian R, Bohris C, Hansen A, Katus HA, Kuecherer HF, Hardt SE. Impact of microbubbles on shock wave-mediated DNA uptake in cells in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:743-50. [PMID: 17383800 DOI: 10.1016/j.ultrasmedbio.2006.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 10/31/2006] [Accepted: 11/07/2006] [Indexed: 05/14/2023]
Abstract
Gas-filled microbubbles have been successfully used as gene delivery reagents in combination with diagnostic ultrasound. Although shock wave exposure has been shown to transfect cells with naked DNA in vitro, it has not been tested whether the addition of microbubbles would augment DNA uptake under those conditions. Therefore, the aim of this study was to test the impact of microbubbles on transgene expression in vitro under shock wave exposure conditions. HEK 293 cells were treated with 60 or 120 pulses of shock waves at varying energy levels. Cells were mixed with either 100 microg/mL luciferase expressing plasmid DNA or with microbubbles that were produced with the same amount of this DNA. Cell death was evaluated after 1 h and transgene expression, after 24 h. In the presence of microbubbles, transgene expression was significantly higher (as much as 29-fold) relative to that obtained without microbubbles. Cells exposed to 120 pulses demonstrated higher transgene expression (as high as 2.7-fold) compared with cells exposed to 60 pulses. The use of microbubbles resulted in greater cell death, varying from 26% (low energy) to 78% (high energy). In conclusion, DNA-loaded microbubbles can significantly increase shock wave mediated gene transfer. However, this effect is associated with increased levels of cell destruction.
Collapse
Affiliation(s)
- Raffi Bekeredjian
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
57
|
Bekeredjian R, Kuecherer HF, Kroll RD, Katus HA, Hardt SE. Ultrasound-targeted microbubble destruction augments protein delivery into testes. Urology 2007; 69:386-9. [PMID: 17320694 DOI: 10.1016/j.urology.2006.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/15/2006] [Accepted: 12/08/2006] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Gas-filled microbubbles have become an important tool as ultrasound contrast agents. In recent years, ultrasound-targeted microbubble destruction (UTMD) has evolved into a new tool for organ-specific gene and drug delivery. Although many studies have been performed in well-perfused target organs such as the heart or kidney, no study has yet investigated the feasibility of UTMD for delivery of bioactive substances in the testis. Thus, the aim of this study was to determine whether UTMD is a feasible and safe technique to deliver a reporter protein to the testes. METHODS Different groups of rats received 2 microg of luciferase protein at varying protocols. One group received luciferase-loaded microbubbles infused intravenously while ultrasound was applied to the right testis. Another group received luciferase without microbubbles but with ultrasound applied to the right testis. Protein uptake was quantified by luciferase assay. Also, to rule out UTMD-induced damage, the testes were analyzed histologically. RESULTS The testes that received ultrasound and luciferase-loaded microbubbles showed about twofold greater luciferase activity compared with testes without ultrasound or without microbubbles. No hemorrhage or microscopic damage was detected. CONCLUSIONS The results of our study have shown that UTMD is a safe and feasible technique to augment delivery of bioactive substances to the testes.
Collapse
Affiliation(s)
- Raffi Bekeredjian
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
58
|
Hallow DM, Mahajan AD, Prausnitz MR. Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries. J Control Release 2007; 118:285-93. [PMID: 17291619 PMCID: PMC1892790 DOI: 10.1016/j.jconrel.2006.12.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/22/2006] [Accepted: 12/28/2006] [Indexed: 11/24/2022]
Abstract
This study tested the hypothesis that ultrasound can target intracellular uptake of drugs into vascular endothelial cells (ECs) at low to intermediate energy and into smooth muscle cells (SMCs) at high energy. Ultrasound-enhanced delivery has been shown to enhance and target intracellular drug and gene delivery in the vasculature to treat cardiovascular disease, but quantitative studies of the delivery process are lacking. Viable ex vivo porcine carotid arteries were placed in a solution containing a model drug, TO-PRO(R)-1, and Optison microbubbles. Arteries were exposed to ultrasound at 1.1 MHz and acoustic energies of 5.0, 66, or 630 J/cm(2). Using confocal microscopy and fluorescent labeling of cells, the artery endothelium and media were imaged to determine the localization and to quantify intracellular uptake and cell death. At low to intermediate ultrasound energy, ultrasound was shown to target intracellular delivery into viable cells that represented 9-24% of exposed ECs. These conditions also typically caused 7-25% EC death. At high energy, intracellular delivery was targeted to SMCs, which was associated with denuding or death of proximal ECs. This work represents the first known in-depth study to evaluate intracellular uptake into cells in tissue. We conclude that significant intracellular uptake of molecules can be targeted into ECs and SMCs by ultrasound-enhanced delivery suggesting possible applications for treatment of cardiovascular diseases and dysfunctions.
Collapse
MESH Headings
- Animals
- Carotid Arteries/cytology
- Carotid Arteries/drug effects
- Carotid Arteries/physiology
- Drug Delivery Systems/methods
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Female
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Organic Chemicals/administration & dosage
- Swine
- Ultrasonics
Collapse
Affiliation(s)
- Daniel M Hallow
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | | | | |
Collapse
|
59
|
Abstract
Ultrasonic biophysics is the study of mechanisms responsible for how ultrasound and biological materials interact. Ultrasound-induced bioeffect or risk studies focus on issues related to the effects of ultrasound on biological materials. On the other hand, when biological materials affect the ultrasonic wave, this can be viewed as the basis for diagnostic ultrasound. Thus, an understanding of the interaction of ultrasound with tissue provides the scientific basis for image production and risk assessment. Relative to the bioeffect or risk studies, that is, the biophysical mechanisms by which ultrasound affects biological materials, ultrasound-induced bioeffects are generally separated into thermal and non-thermal mechanisms. Ultrasonic dosimetry is concerned with the quantitative determination of ultrasonic energy interaction with biological materials. Whenever ultrasonic energy is propagated into an attenuating material such as tissue, the amplitude of the wave decreases with distance. This attenuation is due to either absorption or scattering. Absorption is a mechanism that represents that portion of ultrasonic wave that is converted into heat, and scattering can be thought of as that portion of the wave, which changes direction. Because the medium can absorb energy to produce heat, a temperature rise may occur as long as the rate of heat production is greater than the rate of heat removal. Current interest with thermally mediated ultrasound-induced bioeffects has focused on the thermal isoeffect concept. The non-thermal mechanism that has received the most attention is acoustically generated cavitation wherein ultrasonic energy by cavitation bubbles is concentrated. Acoustic cavitation, in a broad sense, refers to ultrasonically induced bubble activity occurring in a biological material that contains pre-existing gaseous inclusions. Cavitation-related mechanisms include radiation force, microstreaming, shock waves, free radicals, microjets and strain. It is more challenging to deduce the causes of mechanical effects in tissues that do not contain gas bodies. These ultrasonic biophysics mechanisms will be discussed in the context of diagnostic ultrasound exposure risk concerns.
Collapse
Affiliation(s)
- William D O'Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois, 405 N. Mathews, Urbana, IL 61801, USA.
| |
Collapse
|
60
|
Paliwal S, Mitragotri S. Ultrasound-induced cavitation: applications in drug and gene delivery. Expert Opin Drug Deliv 2006; 3:713-26. [PMID: 17076594 DOI: 10.1517/17425247.3.6.713] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ultrasound, which has been conventionally used for diagnostics until recently, is now being extensively used for drug and gene delivery. This transformation has come about primarily due to ultrasound-mediated acoustic cavitation - particularly transient cavitation. Acoustic cavitation has been used to facilitate the delivery of small molecules, as well as macromolecules, including proteins and DNA. Controlled generation of cavitation has also been used for targeting drugs to diseased tissues, including skin, brain, eyes and endothelium. Ultrasound has also been employed for the treatment of several diseases, including thromboembolism, arteriosclerosis and cancer. This review provides a detailed account of mechanisms, current status and future prospects of ultrasonic cavitation in drug and gene delivery applications.
Collapse
Affiliation(s)
- Sumit Paliwal
- University of California, Department of Chemical Engineering, Santa Barbara, CA 93106, USA.
| | | |
Collapse
|
61
|
Zen K, Okigaki M, Hosokawa Y, Adachi Y, Nozawa Y, Takamiya M, Tatsumi T, Urao N, Tateishi K, Takahashi T, Matsubara H. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J Mol Cell Cardiol 2006; 40:799-809. [PMID: 16678200 DOI: 10.1016/j.yjmcc.2006.03.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 03/14/2006] [Indexed: 12/19/2022]
Abstract
Application of ultrasound-mediated destruction of microbubbles (US + Bubble) to skeletal muscle creates capillary ruptures leading to leakage of the cell components. We studied whether US + Bubble combined with bone-marrow-derived mononuclear cells (BM-MNCs) infusion enables the targeted delivery of endothelial-lineage cells into the myocardium and improves cardiac function of the cardiomyopathy model due to the paucity of neocapillary formation. Pulsed US was applied to the anterior chest of BIOTO2 cardiomyopathy hamsters for 90 s after the intravenous injection of microbubble (Optison) followed by infusion of BM-MNCs. Cardiac samples from US + microbubble + BM-MNCs (US + Bubble + BM), US + Bubble, US + BM without Bubble, and saline infusion control groups were analyzed 12 weeks after treatment. Labeled BM-MNCs transplanted by US + Bubble were found to be mainly localized in the microvessels, but not by US stimulation without microbubble (121.2 +/- 24.5 vs. 2.80 +/- 1.30 cells/mm2, P < 0.001). Capillary densities in US + Bubble + BM group were increased 1.7-fold (P < 0.05) over the control, and neither US + Bubble nor US + BM enhanced neocapillary formation. 99mTc-Tetrofosmin scintigraphy revealed that blood perfusion area in the US + Bubble + BM group was 48% greater than the control (P < 0.01). US + Bubble stimulation induces the expression of adhesion molecules (VCAM-1 and ICAM-1) in capillaries, and the US + Bubble-mediated supply of BM-MNCs increased the myocardial content of VEGF and bFGF. The left ventricular wt/body wt, area of cardiac fibrosis, and apoptotic cell numbers in the US + Bubble + BM group significantly (P < 0.05) decreased by 82%, 73%, and 64% relative to the control, respectively. The cardiac function in myopathic hamsters (assessed by fractional shortening) was markedly improved 36% (P < 0.05) by US + Bubble + BM treatment. Targeted delivery of BM-MNCs by US + Bubble to the myocardium of the cardiomyopathic hamster increased the capillary densities and regional blood flow and inhibited cardiac remodeling, resulting in the prevention of heart failure. This non-invasive cell delivery system may be useful as a novel efficient approach for angiogenic cell therapy to the myocardium.
Collapse
Affiliation(s)
- Kan Zen
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Ressner M, Brodin LA, Jansson T, Hoff L, Ask P, Janerot-Sjoberg B. Effects of Ultrasound Contrast Agents on Doppler Tissue Velocity Estimation. J Am Soc Echocardiogr 2006; 19:154-64. [PMID: 16455419 DOI: 10.1016/j.echo.2005.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Indexed: 11/29/2022]
Abstract
The combination of Doppler tissue imaging and myocardial contrast echocardiography has the potential to provide information about motion and perfusion of the myocardium in a single examination. The purpose of this study was to establish how the presence of ultrasound contrast agent (UCA) affects measurements of Doppler tissue velocities in vivo and in vitro. We performed echocardiography in 12 patients with ischemic heart disease before and immediately after a slow intravenous infusion of the UCA Optison, using color Doppler tissue imaging to examine the effect of contrast agents in vivo. The myocardial peak systolic velocities and their integrals were analyzed in digitally stored cineloops before and after contrast administration. To distinguish between methodologic and physiologic factors affecting the measurement of tissue velocity in vitro, experiments with a rotating disk and a flow cone phantom were also carried out for the 3 contrast agents: Optison, Sonovue, and Sonazoid. In vivo results show that the values for peak systolic velocity increased by about 10% during contrast infusion, from mean 5.2 +/- 1.8 to 5.7 +/- 2.3 cm/s (P = .02, 95% confidence interval 2%-16%). The increase in myocardial peak systolic velocities was verified in experimental models in which the UCA increased the estimated mean velocity in the order of 5% to 20% for the motion interval of 5 to 7 cm/s, corresponding to the myocardial velocities studied in vivo. The response was similar for all 3 contrast agents and was not affected by moderate variations in concentration of the agent. We have shown that the presence UCA will affect Doppler tissue measurements in vivo and in vitro. The observed bias is presumed to be an effect of harmonic signal contribution from rupturing contrast agent microbubbles and does not indicate biologic or physiologic effects.
Collapse
Affiliation(s)
- Marcus Ressner
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
63
|
Chappell JC, Price RJ. Targeted Therapeutic Applications of Acoustically Active Microspheres in the Microcirculation. Microcirculation 2006; 13:57-70. [PMID: 16393947 DOI: 10.1080/10739680500383381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The targeted delivery of intravascular drugs and genes across the endothelial barrier with only minimal side effects remains a significant obstacle in establishing effective therapies for many pathological conditions. Recent investigations have shown that contrast agent microbubbles, which are typically used for image enhancement in diagnostic ultrasound, may also be promising tools in emergent, ultrasound-based therapies. Explorations of the bioeffects generated by ultrasound-microbubble interactions indicate that these phenomena may be exploited for clinical utility such as in the targeted revascularization of flow-deficient tissues. Moreover, development of this treatment modality may also include using ultrasound-microbubble interactions to deliver therapeutic material to tissues, and reporter genes and therapeutic agents have been successfully transferred from the microcirculation to tissue in various animal models of normal and pathological function. This article reviews the recent studies aimed at using interactions between ultrasound and contrast agent microbubbles in the microcirculation for therapeutic purposes. Furthermore, the authors present investigations involving microspheres that are of a different design compared to current microbubble contrast agents, yet are acoustically active and demonstrate potential as tools for targeted delivery. Future directions necessary to address current challenges and advance these techniques to clinical practicality are also discussed.
Collapse
Affiliation(s)
- John C Chappell
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
64
|
Rahim AA, Taylor SL, Bush NL, ter Haar GR, Bamber JC, Porter CD. Spatial and acoustic pressure dependence of microbubble-mediated gene delivery targeted using focused ultrasound. J Gene Med 2006; 8:1347-57. [PMID: 16981246 DOI: 10.1002/jgm.962] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Ultrasound/microbubble-mediated gene delivery has the potential to be targeted to tissue deep in the body by directing the ultrasound beam following vector administration. Application of this technology would be minimally invasive and benefit from the widespread clinical experience of using ultrasound and microbubble contrast agents. In this study we evaluate the targeting ability and spatial distribution of gene delivery using focused ultrasound. METHODS Using a custom-built exposure tank, Chinese hamster ovary cells in the presence of SonoVue microbubbles and plasmid encoding beta-galactosidase were exposed to ultrasound in the focal plane of a 1 MHz transducer. Gene delivery and cell viability were subsequently assessed. Characterisation of the acoustic field and high-resolution spatial analysis of transfection were used to examine the relationship between gene delivery efficiency and acoustic pressure. RESULTS In contrast to that seen in the homogeneous field close to the transducer face, gene delivery in the focal plane was concentrated on the ultrasound beam axis. Above a minimum peak-to-peak value of 0.1 MPa, transfection efficiency increased as acoustic pressure increased towards the focus, reaching a maximum above 1 MPa. Delivery was microbubble-dependent and cell viability was maintained. CONCLUSIONS Gene delivery can be targeted using focused ultrasound and microbubbles. Since delivery is dependent on acoustic pressure, the degree of targeting can be determined by appropriate transducer design to modify the ultrasound field. In contrast to other physical gene delivery approaches, the non-invasive targeting ability of ultrasound makes this technology an attractive option for clinical gene therapy.
Collapse
Affiliation(s)
- Ahad A Rahim
- The Institute of Cancer Research, Gene Therapy Group, Department of Cell and Molecular Biology, 237 Fulham Road, Chelsea, London SW3 6JB, UK.
| | | | | | | | | | | |
Collapse
|
65
|
Miao CH, Brayman AA, Loeb KR, Ye P, Zhou L, Mourad P, Crum LA. Ultrasound enhances gene delivery of human factor IX plasmid. Hum Gene Ther 2005; 16:893-905. [PMID: 16000070 DOI: 10.1089/hum.2005.16.893] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Delivery of plasmid DNA can be enhanced by treatment with ultrasound (US); acoustic cavitation appears to play an important role in the process. Ultrasound contrast agents (UCAs; stabilized microbubbles) nucleate acoustic cavitation, and lower the acoustic pressure threshold for inertial cavitation occurrence. Fifty micrograms of a liver-specific, high-expressing human factor IX plasmid, pBS-HCRHP-FIXIA, mixed with UCA or phosphate-buffered saline was delivered to mouse livers by intrahepatic injection, with simultaneous exposure to 1 MHz-pulsed US using various acoustic protocols. Variable pulse duration (PD) at constant treatment time, pulse repetition frequency, and an acoustic peak negative pressure amplitude of 1.8 MPa produced 2- to 13-fold enhancements in hFIX gene expression, but PD was not a strong determinant. In contrast, a dose-response relationship was demonstrated for the peak negative pressure (P-), with significant enhancement of gene transduction at P- >/= 2 MPa. Up to 63 ng/ml (approaching the therapeutic range for treating hemophilia patients) could be achieved by transducing one liver lobe at 4-MPa P-, corresponding to a 66- fold increment relative to treatment with naked DNA alone. Under the same conditions, mouse livers could also be transduced with a GFP plasmid. Histology showed transient liver damage caused by intrahepatic injection and US exposure at 4-MPa P-; however, the damage was repaired in a few days. We conclude that therapeutic US in combination with UCA has the potential to promote safe and efficient nonviral gene transfer of hFIX for the treatment of hemophilia.
Collapse
Affiliation(s)
- Carol H Miao
- Department of Pediatrics, University of Washington and Children's Hospital and Regional Medical Center, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
66
|
Chappell JC, Klibanov AL, Price RJ. Ultrasound-microbubble-induced neovascularization in mouse skeletal muscle. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:1411-22. [PMID: 16223645 DOI: 10.1016/j.ultrasmedbio.2005.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 06/09/2005] [Accepted: 06/14/2005] [Indexed: 05/04/2023]
Abstract
Ultrasound-microbubble (US-MB) interactions stimulate neovascularization in rat gracilis muscle (GM). We examined microvascular remodeling (MVR) in GMs of C57BL/6 and balb/C mice following ultrasonic MB destruction. A range of MB dosages were administered IV, and exposed GMs received US. Muscles harvested 3, 7 and 14 d posttreatment were stained for vascular markers and assessed for changes in microvessel number, diameter and length. Muscles receiving a low MB dose (LMBD) and US showed significant increases in microvascular density after 3 d, returning to sham levels after one week. A MB dose producing maximum capillary disruptions was then established. This high MB dose (HMBD) facilitated significant MVR in C57BL/6 mice after one week. Balb/C GMs exhibited neovascularization 3 d, but not 7 or 14 d, following US-HMBD treatment. We conclude that HMBD in C57BL/6 mice induces a more sustained neovascularization response compared to balb/C or LMBD-treated C57BL/6 muscles; however, this response is still impermanent.
Collapse
Affiliation(s)
- John C Chappell
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
67
|
Bertuglia S. Increase in capillary perfusion following low-intensity ultrasound and microbubbles during postischemic reperfusion. Crit Care Med 2005; 33:2061-7. [PMID: 16148481 DOI: 10.1097/01.ccm.0000178356.90173.73] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We postulated that the increase in shear stress caused by microbubbles in the presence of low-intensity ultrasound increases vasodilation in ischemia/reperfusion. DESIGN Prospective, randomized, and blinded experimental study. SETTING Research laboratory. SUBJECTS Forty hamsters were subjected to ischemia/reperfusion and observed by intravital microscopy. INTERVENTIONS Ultrasound (2.5 MHz, 1.3 mechanical index, 2.0 peak pressure) was applied to the hamster cheek pouch in ischemia/reperfusion with and without microbubbles (Levovist or Sono Vue) at baseline (15 mins) and at the beginning (15 mins) of reperfusion after ischemia (30 mins). MEASUREMENTS AND MAIN RESULTS Arterial diameter (A2-A3, 38.5 +/- 5.3 microm; A4,15.0 +/- 7.0 microm), red blood cell velocity, wall shear stress, permeability, perfused capillary length, and adherent leukocytes in venules were evaluated. Lipid peroxides were also determined in the systemic blood. Ultrasound and microbubbles in reperfusion significantly increased the diameter (A2-A3 Sono Vue, 33%; Levovist, 53% vs. ischemia/reperfusion, p < .05; A4, Sono Vue, 93%; Levovist, 104% vs. ischemia/reperfusion, p < .05), red blood cell velocity, flow, and shear stress in both A4 and A2-A3 arterioles. Shear stress was significantly higher with Levovist (A2-A3, 105%; A4, 185%) and Sono Vue (A2, 108%; A4, 140% vs. ischemia/reperfusion, p < .05) than ultrasound alone in arterioles. With ischemia/reperfusion, perfused capillary length was reduced significantly, whereas it increased with Levovist and Sono Vue (43%, 41% vs. ischemia/reperfusion p < .05). Lipid peroxides increased early during reperfusion and remained at increased levels throughout reperfusion. Lipid peroxides were unchanged after ultrasound alone or ultrasound with Sono Vue or Levovist during ischemia/reperfusion. With ultrasound there was a significant increase in vascular permeability vs. ischemia/reperfusion. Treatment with Sono Vue (-36%) and Levovist (-57%) decreased permeability vs. ischemia/reperfusion in reperfusion (p < .001). Ischemia/reperfusion had significantly increased leukocyte adhesion. Ultrasound alone (-39%) or with Sono Vue (-64%) and Levovist (-57%) caused smaller increases in leukocyte adhesion than ischemia/reperfusion (p < .05). CONCLUSIONS Ultrasound and microbubbles equilibrate microvascular shear stress, thus avoiding the failure of capillary perfusion in postischemic reperfusion.
Collapse
Affiliation(s)
- Silvia Bertuglia
- CNR Institute of Clinical Physiology, Faculty of Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
68
|
Nixdorff U, Schmidt A, Morant T, Stilianakis N, Voigt JU, Flachskampf FA, Daniel WG, Garlichs CD. Dose-dependent disintegration of human endothelial monolayers by contrast echocardiography. Life Sci 2005; 77:1493-501. [PMID: 15935397 DOI: 10.1016/j.lfs.2005.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 04/14/2005] [Indexed: 11/23/2022]
Abstract
Biological effects on endothelium induced by contrast ultrasound (US) may be relevant for transferring drugs into the tissue. An in vitro tissue-mimicking phantom was developed to simulate clinical precordial echocardiography of three modalities (two-dimensional (2DE), pulsed wave (PW), and Power Doppler echocardiography) with gradual increases of acoustic output (mechanical index (MI) 0.0-1.6 and thermal index soft tissue (TIS) 0.0-1.3, respectively; transmit-frequency 1.8 MHz in second harmonic mode (SHI) by 2DE, 1.8 MHz for PW-Doppler, and 3.2 MHz for Power Doppler) as well as contrast agent (CA) concentrations (0.002-4 mg/mL Levovist). Disintegration of the endothelial monolayer was quantitatively analyzed by counting intercellular gaps in light microscopy. No gaps were observed in CA application without sonication. Only few gaps appeared at sonication without CA application in 2DE at MI=1.6 and in PW- and Power Doppler at TIS > or =0.4 and MI > or =0.4. The number of gaps increased significantly with the gradual increase of US output and to a comparably lesser but also significant extent with CA concentrations. Diagnostic contrast echocardiography may induce endothelial disintegrations dependent on US output as well as on CA concentrations. This aspect might be helpful in further in vivo series on local drug delivery.
Collapse
Affiliation(s)
- U Nixdorff
- 2nd Medical Clinic, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Chapman S, Windle J, Xie F, McGrain A, Porter TR. Incidence of cardiac arrhythmias with therapeutic versus diagnostic ultrasound and intravenous microbubbles. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2005; 24:1099-107. [PMID: 16040825 DOI: 10.7863/jum.2005.24.8.1099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
OBJECTIVE The purpose of this study was to determine the type of arrhythmias induced with therapeutic versus diagnostic transthoracic low-frequency ultrasound (TLFUS) transducers in the presence of intravenous microbubbles. METHODS Intravenous perfluorocarbon-exposed sonicated dextrose albumin (PESDA) microbubbles were infused or given as a bolus injection while TLFUS was applied in the standard parasternal and apical views with either a 1-MHz therapeutic ultrasound transducer or high-mechanical-index diagnostic ultrasound (1.7 MHz). RESULTS Significantly more ectopy was produced by the therapeutic transducer, especially at higher-intensity settings in the continuous wave mode after bolus injections of PESDA (P < .001 compared with lower intensities and lower continuous infusion rates). Six patients (15%) had either clinical supraventricular tachycardia or nonsustained ventricular tachycardia after intravenous PESDA with therapeutic TLFUS. In comparison, diagnostic high-mechanical-index ultrasound produced only isolated ventricular ectopy and no sustained ventricular arrhythmias. CONCLUSIONS Intravenously injected microbubbles and low-frequency therapeutic transducers operating at longer duty cycles and wide beam widths have the capability of eliciting clinically important arrhythmias in patients at high risk for such events.
Collapse
Affiliation(s)
- Scott Chapman
- University of Nebraska Medical Center, Omaha, 68198-1165, USA
| | | | | | | | | |
Collapse
|
70
|
Miao CH, Brayman AA, Loeb KR, Ye P, Zhou L, Mourad P, Crum LA. Ultrasound Enhances Gene Delivery of Human Factor IX Plasmid. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
71
|
Bekeredjian R, Chen S, Grayburn PA, Shohet RV. Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:687-91. [PMID: 15866418 DOI: 10.1016/j.ultrasmedbio.2004.08.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 07/28/2004] [Accepted: 08/05/2004] [Indexed: 05/02/2023]
Abstract
Gas-filled microbubbles have become an important tool as ultrasonic contrast agents. We have previously shown that ultrasound-targeted microbubble destruction (UTMD) can direct plasmids to the heart. The aim of this study was to evaluate UTMD for protein delivery. Six different groups of rats received 1 microg of luciferase protein with varying protocols: (1) luciferase-loaded microbubbles and ultrasound; (2) luciferase only; (3) luciferase and ultrasound; (4) luciferase-loaded microbubbles; (5) unloaded microbubbles incubated with luciferase and ultrasound; (6) unloaded microbubbles with ultrasound followed by luciferase. Relative luminescence units per mg protein per s were determined in hearts and control organs. The rats that received ultrasound and luciferase-loaded bubbles showed a six-fold higher cardiac luciferase uptake compared with control groups that did not include bubbles. None of the other groups significantly augmented cardiac luciferase activity. We conclude that ultrasound-targeted microbubble destruction can substantially and noninvasively augment organ-specific delivery of proteins.
Collapse
Affiliation(s)
- Raffi Bekeredjian
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, NB 11.200, Dallas, TX 75390-8573, USA
| | | | | | | |
Collapse
|
72
|
Zhigang W, Zhiyu L, Haitao R, Hong R, Qunxia Z, Ailong H, Qi L, Chunjing Z, Hailin T, Lin G, Mingli P, Shiyu P. Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats. Clin Imaging 2005; 28:395-8. [PMID: 15531137 DOI: 10.1016/j.clinimag.2004.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate the possibility of improving the delivery of vascular endothelial growth factor (VEGF) gene to the myocardium in rats by using ultrasound-mediated microbubble destruction (UMMD). METHODS Fifteen male Wistar rats underwent left anterior descending coronary artery ligation in this study. The rats were divided into three groups 3 days after ligation. Ultrasound microbubble vectors (UMVs) attaching to pcD2VEGF121 gene were injected into the tail vein of rats with or without simultaneous echocardiographic microbubble destruction in two groups. The third group was used as control group. VEGF protein expression and formation of new blood vessels were evaluated by immunohistochemical technique during autopsy on 15 rats at 2 weeks after gene transformation. Microvascular density (MVD) in the area with myocardial infarction was counted under a microscope. RESULTS VEGF protein expression and MVD in the ischemic myocardium were higher in the rats receiving UMMD than in the group that did not receive UMMD. CONCLUSION UMMD is a noninvasive method to effectively improve the delivery of targeted genes to the heart.
Collapse
Affiliation(s)
- Wang Zhigang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Bekeredjian R, Grayburn PA, Shohet RV. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 2005; 45:329-35. [PMID: 15680708 DOI: 10.1016/j.jacc.2004.08.067] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/16/2004] [Accepted: 08/17/2004] [Indexed: 11/19/2022]
Abstract
The clinical utility of ultrasound contrast agents has been established in diagnostic echocardiography. Recently, the use of such agents has been promoted for transport and delivery of various bioactive substances, thus providing a technique for non-invasive gene therapy and organ-specific drug delivery. In this review, we give a critical update of published studies using ultrasound contrast agents for therapeutic use. We discuss the potential applications and limitations of this technique and suggest future applications in cardiovascular medicine.
Collapse
Affiliation(s)
- Raffi Bekeredjian
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
74
|
Bian AN, Gao YH, Tan KB, Liu P, Zeng GJ, Zhang X, Liu Z. Preparation of human hepatocellular carcinoma-targeted liposome microbubbles and their immunological properties. World J Gastroenterol 2004; 10:3424-7. [PMID: 15526360 PMCID: PMC4576222 DOI: 10.3748/wjg.v10.i23.3424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To prepare the human hepatocellular carcinoma-(HCC)-targeted liposome microbubbles and to investigate their immunological properties.
METHODS: Human hepatocarcinoma specific monoclonal antibody HAb18 was attached to the surface of home-made liposome microbubbles by static attraction to prepare the targeted liposome microbubbles. The combination of HAb18 with liposome microbubbles was confirmed by the slide agglutination test and immunofluorescent assay. Their immunological activity was measured by ELISA. Rosette formation test, rosette formation blocking test and immun-ofluorescent assay were used to identify the specific binding of targeted liposome microbubbles to SMMC-7721 hepatoma cells, and cytotoxicity assay was used to detect their effect on human hepatocytes.
RESULTS: The targeted liposome microbubbles were positive in the slide agglutination test and immunofluorescent assay. ELISA indicated that the immunological activity of HAb18 on the liposome microbubbles was similar to that of free HAb18. SMMC-7721 cells were surrounded by the targeting liposome microbubbles to form rosettes, while the control SGC-7901 gastric cancer cells were not. Proliferation of SMMC-7721 cells and normal human hepatocytes was not influenced by the targeted liposome microbubbles.
CONCLUSION: The targeted liposome microbubbles with a high specific biological activity have been successfully prepared, which specifically bind to human hepatocarcinoma cells, and are non-cytotoxic to hepatocytes. These results indicate that the liposome microbubbles can be used as a HCC-targeted ultrasound contrast agent that may enhance ultrasound images and thus improve the diagnosis of HCC, especially at the early stage.
Collapse
Affiliation(s)
- Ai-Na Bian
- Department of Ultrasonic Diagnosis, Xinqiao Hospital, the Third Military Medical University, Chongqing 400037, China
| | | | | | | | | | | | | |
Collapse
|
75
|
Tsutsui JM, Xie F, Porter RT. The use of microbubbles to target drug delivery. Cardiovasc Ultrasound 2004; 2:23. [PMID: 15546496 PMCID: PMC538251 DOI: 10.1186/1476-7120-2-23] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 11/16/2004] [Indexed: 11/16/2022] Open
Abstract
Ultrasound-mediated microbubbles destruction has been proposed as an innovative method for noninvasive delivering of drugs and genes to different tissues. Microbubbles are used to carry a drug or gene until a specific area of interest is reached, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. Furthermore, the ability of albumin-coated microbubbles to adhere to vascular regions with glycocalix damage or endothelial dysfunction is another possible mechanism to deliver drugs even in the absence of ultrasound. This review focuses on the characteristics of microbubbles that give them therapeutic properties and some important aspects of ultrasound parameters that are known to influence microbubble-mediated drug delivery. In addition, current studies involving this novel therapeutical application of microbubbles will be discussed.
Collapse
Affiliation(s)
- Jeane M Tsutsui
- Department of Internal Medicine, Section of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Feng Xie
- Department of Internal Medicine, Section of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Richard Thomas Porter
- Department of Internal Medicine, Section of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
76
|
Tsutsui JM, Grayburn PA, Xie F, Porter TR. Drug and gene delivery and enhancement of thrombolysis using ultrasound and microbubbles. Cardiol Clin 2004; 22:299-312, vii. [PMID: 15158941 DOI: 10.1016/j.ccl.2004.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This article reviews some important characteristics of microbubbles that give them therapeutic properties. It discusses the use of microbubbles and ultrasound for targeted delivery of adenovirus and nonviral vectors to myocytes and endothelial cells and for the dissolution of thrombus or potentiation of fibrinolytic agents for acutely thrombosed vessels. Potential applications, such as induction of angiogenesis, inhibition of neointimal hyperplasia, and in the setting of acute myocardial infarction and ischemic stroke,are discussed briefly.
Collapse
Affiliation(s)
- Jeane Mike Tsutsui
- Section of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, 600 South 42nd Street, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
77
|
Song J, Cottler PS, Klibanov AL, Kaul S, Price RJ. Microvascular remodeling and accelerated hyperemia blood flow restoration in arterially occluded skeletal muscle exposed to ultrasonic microbubble destruction. Am J Physiol Heart Circ Physiol 2004; 287:H2754-61. [PMID: 15319212 DOI: 10.1152/ajpheart.00144.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We showed previously that microbubble destruction with pulsed 1-MHz ultrasound creates a bioeffect that stimulates arteriogenesis and a chronic increase in hyperemia blood flow in normal rat muscle. Here we tested whether ultrasonic microbubble destruction can be used to create a microvascular remodeling response that restores hyperemia blood flow to rat skeletal muscle affected by arterial occlusion. Pulsed ultrasound (1 MHz) was applied to gracilis muscles in which the lateral feed artery was occluded but the medial feed artery was left intact. Control muscles were similarly occluded but did not receive ultrasound, microbubbles, or both. Hyperemia blood flow and number of smooth muscle (SM) alpha-actin-positive vessels, >30-mum arterioles, and capillaries per fiber were determined 7, 14, and 28 days after treatment. In ultrasound-microbubble-treated muscles, lateral region hyperemia blood flow was increased at all time points and restored to normal at day 28. The number of SM alpha-actin vessels per fiber was increased over control in this region at days 7 and 14 but decreased by day 28, when larger-diameter arterioles became more prevalent in the medial region. The number of capillaries per fiber was increased over control only at day 7 in the lateral region and only at days 7 and 14 in the medial region, indicating that the angiogenesis response was transient and likely did not contribute significantly to flow restoration at day 28. We conclude that ultrasonic microbubble destruction can be tailored to stimulate an arteriogenesis response that restores hyperemia blood flow to skeletal muscle in a rat model of arterial occlusion.
Collapse
Affiliation(s)
- Ji Song
- Dept. of Biomedical Engineering, Univ. of Virginia, Box 800759, UVA Health System, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
78
|
García MJ. Therapeutic Application of Ultrasound Contrast Agents. CONTRAST ECHOCARDIOGRAPHY IN CLINICAL PRACTICE 2004:263-286. [DOI: 10.1007/978-88-470-2125-9_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
79
|
Guzmán HR, McNamara AJ, Nguyen DX, Prausnitz MR. Bioeffects caused by changes in acoustic cavitation bubble density and cell concentration: a unified explanation based on cell-to-bubble ratio and blast radius. ULTRASOUND IN MEDICINE & BIOLOGY 2003; 29:1211-1222. [PMID: 12946524 DOI: 10.1016/s0301-5629(03)00899-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acoustic cavitation has been shown to load drugs, proteins and DNA into viable cells as a complex function of acoustic and nonacoustic parameters. To better understand and quantify this functionality, DU145 prostate cancer cell suspensions at different cell concentrations (2.5 x 10(5) to 4.0 x 10(7) cells/mL) were exposed to 500 kHz ultrasound (US) over a range of acoustic energy exposures (2 to 817 J/cm(2); peak negative pressures of 0.64 to 2.96 MPa; exposure times of 120 to 2000 ms) in the presence of different initial concentrations of Optison contrast agent bubbles (3.6 x 10(4) to 9.3 x 10(7) bubbles/mL). As determined by flow cytometry, molecular uptake of calcein and cell viability both increased with increasing cell density; viability decreased and uptake was unaffected by increasing initial contrast agent concentration. When normalized relative to the initial contrast agent concentration (e.g., cells killed per bubble), bioeffects increased with increasing cell density and decreased with increasing bubble concentration. These varying effects of contrast agent concentration and cell density were unified through an overall correlation with cell-to-bubble ratio. Additional analysis led to estimation of "blast radii" over which bubbles killed or permeabilized cells; these radii were as much as 3 to 90 times the bubble radius. Combined, these results suggest that extensive molecular uptake into cells at high viability occurs for low-energy exposure US applied at a high cell-to-bubble ratio.
Collapse
Affiliation(s)
- Héctor R Guzmán
- School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | | | | | | |
Collapse
|
80
|
Szatmári V, Harkányi Z, Vörös K. A review of nonconventional ultrasound techniques and contrast-enhanced ultrasonography of noncardiac canine disorders. Vet Radiol Ultrasound 2003; 44:380-91. [PMID: 12939054 DOI: 10.1111/j.1740-8261.2003.tb00474.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Modern ultrasound contrast media are gas-containing stabilized microbubbles that remain intact in the circulating blood for several minutes after intravenous injection and increase the intensity of the backscattered ultrasound. When the microbubbles disappear from the blood, they can be detected in the parenchyma of the liver and the spleen for about 30 more minutes (late liver- and spleen-specific phase). The insonated microbubbles produce second harmonic ultrasound frequencies, whose detection requires nonconventional ultrasound modalities such as pulsed inversion imaging. Nonconventional ultrasound techniques can also be used without microbubbles because second harmonics can be generated by ultrasound in tissues as well. The physical principles and advantages of nonconventional ultrasound techniques are described. The circulating microbubbles can be used not only to enhance weak Doppler signals, but also to perform dynamic contrast studies. Contrast-enhanced dynamic ultrasound studies--similar to contrast-enhanced CT and MRI examinations--have been used in humans to characterize lesions noninvasively (i.e., without biopsies) found during conventional ultrasound examinations. To map the distribution of contrast medium in a nodule or in an organ, specific scanning techniques such as stimulated acoustic emission have been developed. Stimulated acoustic emission occurs when high acoustic pressure ultrasonic waves disrupt the stationary or slowly moving microbubbles. This results in the release of a large amount of harmonic ultrasound frequencies. When the stimulated acoustic emission technique is used for dynamic studies, scanning must be interrupted several times to allow the microvasculature of the lesion to refill with microbubbles (interval delay imaging). The contrast patterns of malignant and benign hepatic nodules in humans have been the most intensively studied. Another type of dynamic study in humans measures the transit time of the contrast medium; that is, how fast the peripherally injected microbubbles reach the hepatic veins. Hepatic cirrhosis can be differentiated from other diffuse parenchymal liver diseases by a shorter transit time. Introducing nonconventional ultrasound techniques and ultrasound contrast media in veterinary diagnostic imaging may have potential value; however, intensive research should be carried out before ultrasound contrast agents can routinely be used in clinical practice.
Collapse
Affiliation(s)
- Viktor Szatmári
- Szent István University, Faculty of Veterinary Science, Clinic and Department of Internal Medicine, H-1078, Budapest, István u. 2., Hungary.
| | | | | |
Collapse
|
81
|
Rim SJ. Contrast Echocardiography. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2003. [DOI: 10.5124/jkma.2003.46.11.987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Se-Joong Rim
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Korea.
| |
Collapse
|
82
|
Abstract
BACKGROUND The application of ultrasound to microbubbles in skeletal muscle creates capillary ruptures. We tested the hypothesis that this bioeffect could be used to stimulate the growth and remodeling of new arterioles via natural repair processes, resulting in an increase in skeletal muscle nutrient blood flow. METHODS AND RESULTS Pulsed ultrasound (1 MHz) was applied to exposed rat gracilis muscle after intravenous microbubble injection. Capillary rupturing was visually verified by the presence of red blood cells in the muscle, and animals were allowed to recover. Ultrasound-microbubble-treated and contralateral sham-treated muscles were harvested 3, 7, 14, and 28 days later. Arterioles were assessed by smooth muscle alpha-actin staining, and skeletal muscle blood flow was measured with 15- micro m fluorescent microspheres. An approximately 65% increase in arterioles per muscle fiber was noted in treated muscles compared with paired sham-treated control muscles at 7 and 14 days after treatment. This increase in arterioles occurred across all studied diameter ranges at both 7 and 14 days after treatment. Arterioles per muscle fiber in sham-treated and untreated control muscles were comparable, indicating that the surgical intervention itself had no significant effect. Hyperemia nutrient blood flow in treated muscles was increased 57% over that in paired sham-treated control muscles. CONCLUSIONS Capillary rupturing via microbubble destruction with ultrasound enhances arterioles per muscle fiber, arteriole diameters, and maximum nutrient blood flow in skeletal muscle. This method has the potential to become a clinical tool for stimulating blood flow to organs affected by occlusive vascular disease.
Collapse
Affiliation(s)
- Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
83
|
Kobayashi N, Yasu T, Yamada S, Kudo N, Kuroki M, Kawakami M, Miyatake K, Saito M. Endothelial cell injury in venule and capillary induced by contrast ultrasonography. ULTRASOUND IN MEDICINE & BIOLOGY 2002; 28:949-956. [PMID: 12208339 DOI: 10.1016/s0301-5629(02)00532-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aim of the present study was to test the hypothesis that microvascular endothelial cells (EC) are subject to the bioeffects induced by contrast ultrasound (US) because of their proximity to the circulating microbubbles. We examined EC injury in each microvessel section (arteriole, capillary or venule) in rat mesenteries among the following five groups: three controls (sham operation, microbubble injection alone, US exposure with saline injection), and two contrast-US groups (US exposure at a 1-Hz or 30-Hz frame rate with microbubble injection). Propidium iodide (PI), a fluorescent indicator of cell injury, was employed to visualize impaired EC. PI-positive nuclei were equally few among the three controls. Contrast-US increased PI-positive cells in capillaries (1-Hz frame rate, 2.4 +/- 2.2 cells per 0.1-mm vessel length, p = 0.09; 30-Hz frame rate, 4.3 +/- 1.8 cells, p < 0.01) and in venules (1-Hz frame rate, 4.1 +/- 2.5 cells, p < 0.05; 30-Hz frame rate, 13.8 +/- 3.6 cells, p < 0.01) compared with sham operation (0.10 +/- 0.22 cells). The finding indicates that diagnostic contrast US potentially causes EC injury, particularly in venules and capillaries.
Collapse
Affiliation(s)
- Nobuhiko Kobayashi
- First Department of Integrated Medicine, Omiya Medical Center, Jichi Medical School, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Price RJ, Kaul S. Contrast ultrasound targeted drug and gene delivery: an update on a new therapeutic modality. J Cardiovasc Pharmacol Ther 2002; 7:171-80. [PMID: 12232566 DOI: 10.1177/107424840200700307] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effective delivery of intravascular drugs and genes to regions of pathology is dependent on a number of factors that are often difficult to control. Foremost is the site-specific delivery of the payload to the region of pathology and the subsequent transport of the payload across the endothelial barrier. Ultrasound contrast agent microbubbles, which are typically used for image enhancement, are capable of amplifying both the targeting and transport of drugs and genes to tissue. Microbubble targeting can be achieved by the intrinsic binding properties of the microbubble shells or through the attachment of site-specific ligands. Once microbubbles have been targeted to the region of interest, microvessel walls can be permeabilized by destroying the microbubbles with low-frequency, high-power ultrasound. A second level of targeting specificity can be achieved by carefully controlling the ultrasound field and limiting microbubble destruction to the region of interest. When microbubbles are destroyed, drugs or genes that are housed within them or bound to their shells can be released to the blood stream and then delivered to tissue by convective forces through the permeabilized microvessels. An alternative strategy is to increase payload volume by coinjecting drug- or gene-bearing vehicles, such as liposomes, with the microbubbles. In this manifestation, microbubbles are used for creating sites of microvessel permeabilization that facilitate drug or gene vehicle transport. Recent work in the emerging field of contrast ultrasound-based therapeutics, with particular emphasis on the delivery of drugs and genes to tissue through microvascular networks is reviewed.
Collapse
Affiliation(s)
- Richard J Price
- Department of Biomedical Engineering, University of Virginia, Health Sciences Center, Charlottesville, VA 22908, USA
| | | |
Collapse
|
85
|
Askari AT, Penn MS. Targeted gene therapy for the treatment of cardiac dysfunction. Semin Thorac Cardiovasc Surg 2002; 14:167-77. [PMID: 11988956 DOI: 10.1053/stcs.2002.32320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Congestive heart failure (CHF), one of the leading cardiovascular disorders in developed countries, remains a significant therapeutic challenge. Efficacious therapies are few, and the incidence of CHF and associated death rates continue to rise. An interest in the novel therapeutic approach of gene therapy for the treatment of CHF has emerged. Essential elements of successful gene therapy include an appropriate vector for delivering and expressing the gene within the target cell, an optimal protocol for delivery of the gene, and the identification of relevant pathways and molecular targets. Interest in gene therapy for CHF has been directed towards improving cardiomyocyte function through optimization of calcium homeostasis and beta-adrenoreceptor function, and preclinical studies have shown encouraging results. This review will discuss the vectors and mechanisms of gene delivery as well as potential molecular targets for the treatment of CHF.
Collapse
Affiliation(s)
- Arman T Askari
- Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
86
|
Teupe C, Richter S, Fisslthaler B, Randriamboavonjy V, Ihling C, Fleming I, Busse R, Zeiher AM, Dimmeler S. Vascular gene transfer of phosphomimetic endothelial nitric oxide synthase (S1177D) using ultrasound-enhanced destruction of plasmid-loaded microbubbles improves vasoreactivity. Circulation 2002; 105:1104-9. [PMID: 11877363 DOI: 10.1161/hc0902.104720] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Local gene therapy has enormous potential for the treatment of vascular disease. We determined whether diagnostic ultrasound-mediated destruction of plasmid-loaded albumin microbubbles is a feasible and efficient technique for local vascular gene delivery. For gene transfer, we used a phosphomimetic, active endothelial nitric oxide synthase (eNOS) construct in which Ser1177 was replaced by aspartic acid (S1177D) and exhibits a 2-fold higher basal activity than the wild-type enzyme. METHODS AND RESULTS Gas-filled microbubbles (3.0 +/- 1.2 microm) were created by sonication of 5% human albumin in the presence of plasmid DNA encoding for LacZ or eNOS S1177D. Porcine coronary arteries were perfused with DNA-loaded albumin microbubbles in vitro, exposed to diagnostic ultrasound (5 seconds), and incubated for a further 24 hours. Detection of the beta-galactosidase in LacZ-transfected vessels revealed a predominant staining of endothelial cells without any functional impairment of vasoreactivity. Western blotting demonstrated the expression of the eNOS S1177D construct in extracts from the transfected segments. Vascular responsiveness was tested with prostaglandin F(2alpha) and the NOS inhibitor N(omega)nitro-L-arginine. Compared with segments treated with the expression plasmid alone, the contractile response to prostaglandin F(2alpha) was impaired in segments transfected with eNOS S1177D, whereas the contractile response to the administration of N(omega)nitro-L-arginine was markedly enhanced. CONCLUSIONS Ultrasound-mediated destruction of eNOS S1177D DNA-loaded albumin microbubbles is a feasible and efficient method for vascular gene transfection. Transfection resulted in significant protein expression and enhanced NO-mediated relaxation of bradykinin-stimulated porcine coronary arteries.
Collapse
Affiliation(s)
- Claudius Teupe
- Molecular Cardiology, Department of Medicine IV, Institut für Kardiovaskuläre Physiologie, University of Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Song J, Chappell JC, Qi M, VanGieson EJ, Kaul S, Price RJ. Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle. J Am Coll Cardiol 2002; 39:726-31. [PMID: 11849875 DOI: 10.1016/s0735-1097(01)01793-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Our objective was to test the hypothesis that the ultrasound pulsing interval (PI), microbubble injection site and microvascular pressure significantly influence the transport of 100-nm microspheres to muscle through extravasation sites created by the destruction of microbubbles with ultrasound. BACKGROUND Microbubbles show promise as targeted drug and gene delivery agents; however, designing optimal microbubble-based therapies will require an understanding of the factors that influence the transport of microbubble-delivered, gene-bearing vehicles to tissue. METHODS Ultrasound at 1 MHz, with a peak negative pressure amplitude of 0.75 MPa, was applied to microbubbles and 100-nm microspheres in exteriorized rat spinotrapezius muscle. Ultrasound PIs of 1, 3, 5 and 10 s, arterial microsphere injection times of 10 or 40 s and arterial versus venous injection sites were tested. RESULTS Extravasation point creation and microsphere delivery were greatest when the ultrasound PI was 5 or 10 s. No significant differences in extravasation point creation or microsphere delivery were observed with arterial versus venous microbubble injection, but a trend toward increased microsphere delivery with arterial injection may exist. Decreasing the arterial injection time from 40 to 10 s increased microvascular pressure, which, in turn, substantially enhanced microsphere transport to tissue, without a concomitant increase in the number of extravasation points. CONCLUSIONS The ultrasound PI and microvascular pressure significantly influence the creation of extravasation points and the transport of microspheres to tissue. These factors may be important in designing and optimizing contrast ultrasound-based therapies.
Collapse
Affiliation(s)
- Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | |
Collapse
|
88
|
Jansson T, Persson HW, Lindström K. Movement artefact suppression in blood perfusion measurements using a multifrequency technique. ULTRASOUND IN MEDICINE & BIOLOGY 2002; 28:69-79. [PMID: 11879954 DOI: 10.1016/s0301-5629(01)00476-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The standard way of suppressing movement artefacts in Doppler measurements is by means of a high-pass filter. This is because artefacts usually are of high amplitude, but have low frequencies. The immediate drawback is, then, that low-velocity blood flow is also filtered out. In this paper, a method to reduce movement artefacts in blood perfusion measurements is proposed, using simultaneous transmission and reception of multiple frequencies in a continuous-wave Doppler system. It is shown that Doppler signals originating from blood may be considered uncorrelated for a large enough frequency separation between channels, and tissue movements are more correlated. By subtracting perfusion estimates obtained by time-domain processing, correlated signals can be suppressed. The subtraction algorithm is shown to produce a linear perfusion estimate, but with twice the standard deviation compared to an estimate obtained by simply averaging channels. Movement artefacts in both in vitro and in vivo models are shown to be reduced by the algorithm. Imbalance between channels does, however, cause the artefacts to be only partly reduced. The problem can be alleviated by filtering the signals prior to subtraction, but this results in a nonlinear estimate, especially for large time constants in the filter. Some amount of filtering can still be desirable to suppress partly correlated artefacts, even if identical time-domain processing units are implemented, as could be done digitally.
Collapse
Affiliation(s)
- Tomas Jansson
- Department of Electrical Measurements, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
89
|
Amabile PG, Waugh JM, Lewis TN, Elkins CJ, Janas W, Dake MD. High-efficiency endovascular gene delivery via therapeutic ultrasound. J Am Coll Cardiol 2001; 37:1975-80. [PMID: 11401141 DOI: 10.1016/s0735-1097(01)01253-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES We studied enhancement of local gene delivery to the arterial wall by using an endovascular catheter ultrasound (US). BACKGROUND Ultrasound exposure is standard for enhancement of in vitro gene delivery. We postulate that in vivo endovascular applications can be safely developed. METHODS We used a rabbit model of arterial mechanical overdilation injury. After arterial overdilation, US catheters were introduced in bilateral rabbit femoral arteries and perfused with plasmidor adenovirus-expressing blue fluorescent protein (BFP) or phosphate buffered saline. One side received endovascular US (2 MHz, 50 W/cm2, 16 min), and the contralateral artery did not. RESULTS Relative to controls, US exposure enhanced BFP expression measured via fluorescence 12-fold for plasmid (1,502.1+/-927.3 vs. 18,053.9+/-11,612 microm2, p < 0.05) and 19-fold for adenovirus (877.1+/-577.7 vs. 17,213.15+/-3,892 microm2, p < 0.05) while increasing cell death for the adenovirus group only (26+/-5.78% vs. 13+/-2.55%, p < 0.012). CONCLUSIONS Endovascular US enhanced vascular gene delivery and increased the efficiency of nonviral platforms to levels previously attained only by adenoviral strategies.
Collapse
Affiliation(s)
- P G Amabile
- Department of Cardiovascular and Interventional Radiology, Stanford University Medical Center, California 94305, USA
| | | | | | | | | | | |
Collapse
|
90
|
Gruberg L, Waksman R, Satler LF, Pichard AD, Kent KM. Novel approaches for the prevention of restenosis. Expert Opin Investig Drugs 2000; 9:2555-78. [PMID: 11060820 DOI: 10.1517/13543784.9.11.2555] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Restenosis, the re-narrowing of the lumen of the coronary artery, in the months following a successful percutaneous balloon angioplasty or stenting, remains the main limitation to percutaneous coronary revascularisation. Serial intravascular ultrasound studies have shown that restenosis after conventional balloon angioplasty represents a complex interplay between elastic recoil, smooth muscle proliferation and vascular remodelling, while restenosis after stent deployment is due almost entirely to smooth muscle hyperplasia and matrix proliferation. Despite intensive investigation in animal models and in clinical trials, most pharmacological agents have been found to be ineffective in preventing restenosis after percutaneous balloon angioplasty or stenting. Although studies frequently report success in the suppression of neointimal proliferation in animal models of balloon vascular injury, few of them have been successful in clinical trials. Lately, the advent of endovascular radiation, new antiproliferative agents, recombinant DNA, growth factor regulators and novel local drug delivery systems have shown promising results. In the past five years, intracoronary radiation with gamma- and beta-emitting sources has been evaluated intensively with very encouraging results. This is the first potent non-pharmacological approach that has been successful in a large number of patients in controlling excessive tissue proliferation. It is very likely that a combination of stents and pharmacological and/or non-pharmacological inhibition of neointimal hyperplasia will likely result in further reductions in the incidence if restenosis. The continued attractiveness of percutaneous coronary revascularisation, as an alternative to medical treatment or bypass surgery for patients with coronary artery disease, will depend upon our ability to control the restenotic process. Due to the vast literature on the subject, this review will focus mainly on clinical trials that show the most promise and will highlight those that warrant further investigation.
Collapse
Affiliation(s)
- L Gruberg
- Cardiac Catheterization Laboratory, Washington Hospital Center, Washington, DC, USA.
| | | | | | | | | |
Collapse
|