51
|
Chakravarthi VP, Sireesha Y, Kumar YN, Siva kumar AVN, Bhaskar M. cGMP and epigenetic factor in the suppression of apoptosis in ovarian follicles. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
52
|
Structural insights into Parkin substrate lysine targeting from minimal Miro substrates. Sci Rep 2016; 6:33019. [PMID: 27605430 PMCID: PMC5015425 DOI: 10.1038/srep33019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022] Open
Abstract
Hereditary Parkinson's disease is commonly caused by mutations in the protein kinase PINK1 or the E3 ubiquitin ligase Parkin, which function together to eliminate damaged mitochondria. PINK1 phosphorylates both Parkin and ubiquitin to stimulate ubiquitination of dozens of proteins on the surface of the outer mitochondrial membrane. However, the mechanisms by which Parkin recognizes specific proteins for modification remain largely unexplored. Here, we show that the C-terminal GTPase (cGTPase) of the Parkin primary substrate human Miro is necessary and sufficient for efficient ubiquitination. We present several new X-ray crystal structures of both human Miro1 and Miro2 that reveal substrate recognition and ubiquitin transfer to be specific to particular protein domains and lysine residues. We also provide evidence that Parkin substrate recognition is functionally separate from substrate modification. Finally, we show that prioritization for modification of a specific lysine sidechain of the cGTPase (K572) within human Miro1 is dependent on both its location and chemical microenvironment. Activation of Parkin by phosphorylation or by binding of pUb is required for prioritization of K572 for modification, suggesting that Parkin activation and acquisition of substrate specificity are coupled.
Collapse
|
53
|
Song T, Chu M, Lahlali R, Yu F, Peng G. Shotgun Label-free Proteomic Analysis of Clubroot (Plasmodiophora brassicae) Resistance Conferred by the Gene Rcr1 in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2016; 7:1013. [PMID: 27462338 PMCID: PMC4939851 DOI: 10.3389/fpls.2016.01013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/27/2016] [Indexed: 05/23/2023]
Abstract
Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR) genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of Brassica rapa carrying and not carrying the CR gene Rcr1 in response to P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs) were identified between the resistant (with Rcr1) and susceptible (without Rcr1) samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses are triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant-pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well-defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome found to be related to abiotic stresses, especially the cold-stress tolerance in other studies. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism was observed in plants carrying Rcr1, and these functions may all contribute to the CR mediated by Rcr1. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and CR at large, and identified candidate metabolites or pathways related to specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of CR.
Collapse
Affiliation(s)
- Tao Song
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| | - Mingguang Chu
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| | - Rachid Lahlali
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
- Canadian Light Source Inc.Saskatoon, SK, Canada
| | - Fengqun Yu
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| | - Gary Peng
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| |
Collapse
|
54
|
Davydov IV, Woods D, Safiran YJ, Oberoi P, Fearnhead HO, Fang S, Jensen JP, Weissman AM, Kenten JH, Vousden KH. Assay for Ubiquitin Ligase Activity: High-Throughput Screen for Inhibitors of HDM2. ACTA ACUST UNITED AC 2016; 9:695-703. [PMID: 15634796 DOI: 10.1177/1087057104267956] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An assay for the autoubiquitination activity of the E3 ligaseHDM2 (Mdm2) was developed and adapted to a high-throughput format to identify inhibitors of this activity. The assay can also be used tomeasure the activity of other E3s andmay be useful in finding both inhibitors and activators of a wide range of different ubiquitin ligases.
Collapse
Affiliation(s)
- I V Davydov
- Meso-Scale Discovery, Meso-Scale Diagnostics, LLC, Gaithersburg, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Ghannam A, Jacques A, de Ruffray P, Kauffmann S. NtRING1, putative RING-finger E3 ligase protein, is a positive regulator of the early stages of elicitin-induced HR in tobacco. PLANT CELL REPORTS 2016; 35:415-28. [PMID: 26542819 DOI: 10.1007/s00299-015-1893-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE NtRING1 is a RING-finger protein with a putative E3 ligase activity. NtRING1 regulates HR establishment against different pathogens. Loss-/gain-of-function of NtRING1 altered early stages of HR phenotype establishment. Plant defence responses against pathogens often involve the restriction of pathogens by inducing a hypersensitive response (HR). cDNA clones DD11-39, DD38-11 and DD34-26 were previously obtained from a differential screen aimed at characterising tobacco genes with an elicitin-induced HR-specific pattern of expression. Our precedent observations suggested that DD11-39, DD38-11 and DD34-26 might play roles in the HR establishment. Only for DD11-39 a full-length cDNA sequence was obtained and the corresponding protein encoded for a type-HC RING-finger/putative E3 ligase protein which we termed NtRING1. The expression of NtRING1 was upregulated upon HR induction by elicitin, Ralstonia solanacearum, or tobacco mosaic virus (TMV) in tobacco. Silencing of NtRING1 remarkably delayed the establishment of elicitin-induced HR in tobacco as well as the expression of different early induction genes in tissues undergoing HR. Accordingly, transient overexpression of NtRING1 accelerated the HR launching upon elicitin treatment. Taking together, our data suggests that NtRING1 plays a functional role in the early establishment of HR.
Collapse
Affiliation(s)
- Ahmed Ghannam
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France.
- Laboratory Functional Genomics for Plant Immunomodulation, Plant Pathology Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria.
| | - Alban Jacques
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
- Ecole d'ingénieurs de Purpan, Laboratoire d'Agro-Physiologie, 75 voie du TOEC, 31076, Toulouse Cedex 3, France
| | - Patrice de Ruffray
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Serge Kauffmann
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
56
|
Liu J, Zhang C, Wei C, Liu X, Wang M, Yu F, Xie Q, Tu J. The RING Finger Ubiquitin E3 Ligase OsHTAS Enhances Heat Tolerance by Promoting H2O2-Induced Stomatal Closure in Rice. PLANT PHYSIOLOGY 2016; 170:429-43. [PMID: 26564152 PMCID: PMC4704569 DOI: 10.1104/pp.15.00879] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/11/2015] [Indexed: 05/18/2023]
Abstract
Heat stress often results in the generation of reactive oxygen species, such as hydrogen peroxide, which plays a vital role as a secondary messenger in the process of abscisic acid (ABA)-mediated stomatal closure. Here, we characterized the rice (Oryza sativa) HEAT TOLERANCE AT SEEDLING STAGE (OsHTAS) gene, which plays a positive role in heat tolerance at the seedling stage. OsHTAS encodes a ubiquitin ligase localized to the nucleus and cytoplasm. OsHTAS expression was detected in all tissues surveyed and peaked in leaf blade, in which the expression was concentrated in mesophyll cells. OsHTAS was responsive to multiple stresses and was strongly induced by exogenous ABA. In yeast two-hybrid assays, OsHTAS interacted with components of the ubiquitin/26S proteasome system and an isoform of rice ascorbate peroxidase. OsHTAS modulated hydrogen peroxide accumulation in shoots, altered the stomatal aperture status of rice leaves, and promoted ABA biosynthesis. The results suggested that the RING finger ubiquitin E3 ligase OsHTAS functions in leaf blade to enhance heat tolerance through modulation of hydrogen peroxide-induced stomatal closure and is involved in both ABA-dependent and DROUGHT AND SALT TOLERANCE-mediated pathways.
Collapse
Affiliation(s)
- Jianping Liu
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China (J.L., C.Z., C.W., X.L., M.W., J.T.); andState Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China (F.Y., Q.X.)
| | - Cuicui Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China (J.L., C.Z., C.W., X.L., M.W., J.T.); andState Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China (F.Y., Q.X.)
| | - Chuchu Wei
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China (J.L., C.Z., C.W., X.L., M.W., J.T.); andState Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China (F.Y., Q.X.)
| | - Xin Liu
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China (J.L., C.Z., C.W., X.L., M.W., J.T.); andState Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China (F.Y., Q.X.)
| | - Mugui Wang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China (J.L., C.Z., C.W., X.L., M.W., J.T.); andState Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China (F.Y., Q.X.)
| | - Feifei Yu
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China (J.L., C.Z., C.W., X.L., M.W., J.T.); andState Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China (F.Y., Q.X.)
| | - Qi Xie
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China (J.L., C.Z., C.W., X.L., M.W., J.T.); andState Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China (F.Y., Q.X.)
| | - Jumin Tu
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China (J.L., C.Z., C.W., X.L., M.W., J.T.); andState Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China (F.Y., Q.X.)
| |
Collapse
|
57
|
McDowell G, Philpott A. New Insights Into the Role of Ubiquitylation of Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:35-88. [DOI: 10.1016/bs.ircmb.2016.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
58
|
Zou C, Synan MJ, Li J, Xiong S, Manni ML, Liu Y, Chen BB, Zhao Y, Shiva S, Tyurina YY, Jiang J, Lee JS, Das S, Ray A, Ray P, Kagan VE, Mallampalli RK. LPS impairs oxygen utilization in epithelia by triggering degradation of the mitochondrial enzyme Alcat1. J Cell Sci 2015; 129:51-64. [PMID: 26604221 DOI: 10.1242/jcs.176701] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
Cardiolipin (also known as PDL6) is an indispensable lipid required for mitochondrial respiration that is generated through de novo synthesis and remodeling. Here, the cardiolipin remodeling enzyme, acyl-CoA:lysocardiolipin-acyltransferase-1 (Alcat1; SwissProt ID, Q6UWP7) is destabilized in epithelia by lipopolysaccharide (LPS) impairing mitochondrial function. Exposure to LPS selectively decreased levels of carbon 20 (C20)-containing cardiolipin molecular species, whereas the content of C18 or C16 species was not significantly altered, consistent with decreased levels of Alcat1. Alcat1 is a labile protein that is lysosomally degraded by the ubiquitin E3 ligase Skp-Cullin-F-box containing the Fbxo28 subunit (SCF-Fbxo28) that targets Alcat1 for monoubiquitylation at residue K183. Interestingly, K183 is also an acetylation-acceptor site, and acetylation conferred stability to the enzyme. Histone deacetylase 2 (HDAC2) interacted with Alcat1, and expression of a plasmid encoding HDAC2 or treatment of cells with LPS deacetylated and destabilized Alcat1, whereas treatment of cells with a pan-HDAC inhibitor increased Alcat1 levels. Alcat1 degradation was partially abrogated in LPS-treated cells that had been silenced for HDAC2 or treated with MLN4924, an inhibitor of Cullin-RING E3 ubiquitin ligases. Thus, LPS increases HDAC2-mediated Alcat1 deacetylation and facilitates SCF-Fbxo28-mediated disposal of Alcat1, thus impairing mitochondrial integrity.
Collapse
Affiliation(s)
- Chunbin Zou
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew J Synan
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jin Li
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sheng Xiong
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Michelle L Manni
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuan Liu
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yutong Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jianfei Jiang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Janet S Lee
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sudipta Das
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anuradha Ray
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Prabir Ray
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Valerian E Kagan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rama K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Cell Biology and Physiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
59
|
Abstract
HIV type 1 (HIV-1) has a very narrow host range that is limited to humans and chimpanzees. HIV-1 cannot replicate well in Old World monkey cells such as rhesus and cynomolgus monkeys. Tripartite motif (TRIM)5α is a key molecule that confers potent resistance against HIV-1 infection and is composed of really interesting new gene, B-box2, coiled-coil and PRYSPRY domains. Interaction between TRIM5α PRYSPRY domains and HIV-1 capsid core triggers the anti-HIV-1 activity of TRIM5α. Analysis of natural HIV variants and extensive mutational experiments has revealed the presence of critical amino acid residues in both the PRYSPRY domain and HIV capsid for potent HIV suppression by TRIM5α. Genetic manipulation of the human TRIM5 gene could establish human cells totally resistant to HIV-1, which may lead to a cure for HIV-1 infection in the future.
Collapse
|
60
|
Yang ZP, Xie YH, Ling DY, Li JR, Jiang J, Fan YH, Zheng JL, Wu WX. SCYL1BP1 has tumor-suppressive functions in human lung squamous carcinoma cells by regulating degradation of MDM2. Asian Pac J Cancer Prev 2015; 15:7467-71. [PMID: 25227860 DOI: 10.7314/apjcp.2014.15.17.7467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SCY1-like 1-binding protein 1 (SCYL1BP1) is a newly identified transcriptional activator domain containing protein with many unknown biological functions. Recently emerging evidence has revealed that it is a novel regulator of the p53 pathway, which is very important for the development of human cancer. However, the effects of SCYL1BP1 on human lung squamous carcinoma cell biological behavior remain poorly understood. In this study, we present evidence that SCYL1BP1 can promote the degradation of MDM2 protein and further inhibit the G1/S transition of lung squamous carcinoma cell lines. Functional assays found that reintroduction of SCYL1BP1 into lung squamous carcinoma cell lines significantly inhibited cell proliferation, migration, invasion and tumor formation in nude mice, suggesting strong tumor suppressive function of SCYL1BP1 in lung squamous carcinoma. Taken together, our data suggest that the interaction of SCYL1BP1/MDM2 could accelerate MDM2 degradation, and may function as an important tumor suppressor in lung squamous carcinomas.
Collapse
Affiliation(s)
- Zhi-Ping Yang
- Department of Oncology and Pathology, The First Hospital of Jiaxing, Jiaxing, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Hsia EYC, Gui Y, Zheng X. Regulation of Hedgehog signaling by ubiquitination. FRONTIERS IN BIOLOGY 2015; 10:203-220. [PMID: 26366162 PMCID: PMC4564008 DOI: 10.1007/s11515-015-1343-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hedgehog (Hh) signaling pathway plays crucial roles both in embryonic development and in adult stem cell function. The timing, duration and location of Hh signaling activity need to be tightly controlled. Abnormalities of Hh signal transduction lead to birth defects or malignant tumors. Recent data point to ubiquitination-related posttranslational modifications of several key Hh pathway components as an important mechanism of regulation of the Hh pathway. Here we review how ubiquitination regulates the localization, stability and activity of the key Hh signaling components.
Collapse
Affiliation(s)
- Elaine Y. C. Hsia
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Yirui Gui
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Xiaoyan Zheng
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
62
|
Qian G, Hu B, Zhou D, Xuan Y, Bai L, Duan C. NIRF, a Novel Ubiquitin Ligase, Inhibits Hepatitis B Virus Replication Through Effect on HBV Core Protein and H3 Histones. DNA Cell Biol 2015; 34:327-32. [PMID: 25664994 DOI: 10.1089/dna.2014.2714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Np95/ICBP90-like RING finger protein (NIRF), a novel E3 ubiquitin ligase, has been shown to interact with HBc and promote its degradation. This study investigated the effects of NIRF on replication of hepatitis B virus (HBV) and the mechanisms. We have shown that NIRF inhibits replication of HBV DNA and secretion of HBsAg and HBeAg in HepG2 cells transfected with pAAV-HBV1.3. NIRF also inhibits the replication and secretion of HBV in a mouse model that expressed HBV. NIRF reduces acetylation of HBV cccDNA-bound H3 histones. These results showed that NIRF is involved in the HBV replication cycle not only through direct interaction with HBc but also reduces acetylation of HBV cccDNA-bound H3 histones.
Collapse
Affiliation(s)
- Guanhua Qian
- 1 Department of Cell Biology and Medical Genetics, Chongqing Medical University , Chongqing, China
| | | | | | | | | | | |
Collapse
|
63
|
Abstract
Ubiquitination has traditionally been viewed in the context of polyubiquitination that is essential for marking proteins for degradation via the proteasome. Recent discoveries have shed light on key cellular roles for monoubiquitination, including as a post-translational modification (PTM) of histones such as histone H2B. Monoubiquitination plays a significant role as one of the largest histone PTMs, alongside smaller, better-studied modifications such as methylation, acetylation and phosphorylation. Monoubiquitination of histone H2B at lysine 120 (H2Bub1) has been shown to have key roles in transcription, the DNA damage response and stem cell differentiation. The H2Bub1 enzymatic cascade involves E3 RING finger ubiquitin ligases, with the main E3 generally accepted to be the RNF20-RNF40 complex, and deubiquitinases including ubiquitin-specific protease 7 (USP7), USP22 and USP44. H2Bub1 has been shown to physically disrupt chromatin strands, fostering a more open chromatin structure accessible to transcription factors and DNA repair proteins. It also acts as a recruiting signal, actively attracting proteins with roles in transcription and DNA damage. H2Bub1 also appears to play central roles in histone cross-talk, influencing methylation events on histone H3, including H3K4 and H3K79. Most significantly, global levels of H2Bub1 are low to absent in advanced cancers including breast, colorectal, lung and parathyroid, marking H2Bub1 and the enzymes that regulate it as key molecules of interest as possible new therapeutic targets for the treatment of cancer. This review offers an overview of current knowledge regarding H2Bub1 and highlights links between dysregulation of H2Bub1-associated enzymes, stem cells and malignancy.
Collapse
Affiliation(s)
- Alexander J Cole
- Hormones and Cancer GroupKolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Roderick Clifton-Bligh
- Hormones and Cancer GroupKolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Deborah J Marsh
- Hormones and Cancer GroupKolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales 2065, Australia
| |
Collapse
|
64
|
Xiong Y, Liu C, Zhao Y. Decoding Ci: from partial degradation to inhibition. Dev Growth Differ 2014; 57:98-108. [PMID: 25495033 DOI: 10.1111/dgd.12187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/28/2022]
Abstract
Hedgehog is a morphogen, which is widely involved in the regulation of cell proliferation, differentiation and tissue patterning during development in both vertebrate and invertebrate, such as in coordination of eye, brain, gonad, gut and tracheal development. In invertebrate, Cubitus interruptus (Ci) modification process is the last identified step before transcriptional activation in the Hh signaling pathway. Ci can form a truncated repressor (Ci(R) /Ci75) or act as an activator (Ci(A) /Ci155) based on Hh gradient to regulate the expressions of target genes. The activity of Ci is mediated by different mechanisms, including processing, trafficking and degradation. While in vertebrate, Glioblastomas (Glis), homologs of Ci, play similar but more complex roles in the regulation of mammals Hh pathway. Hh signaling is responsible for a wide variety of processes during embryonic development and adult tissue homeostasis. Malfunction of Hh signaling could cause various diseases including birth defects and cancers. Enormous efforts were made in the past decades to explore the Hh pathway regulation and the results have provided us important insights into disease diagnosis and therapeutic treatment. In this review, we focus on a small branch of Hh pathway regulation based on studies in the Drosophila system, mainly about Ci degradation, aiming to explain how Ci is modified by different ubiquitin ligases due to the strong or moderate Hh signals and then been subjected to complete or partial degradation by proteasomes. Overall, we intend to offer an overview on how Ci responds to and relays Hh signals in a precise manner to control target genes expressions and ensures proper Hh signal transduction.
Collapse
Affiliation(s)
- Yue Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | |
Collapse
|
65
|
Ambivero CT, Cilenti L, Main S, Zervos AS. Mulan E3 ubiquitin ligase interacts with multiple E2 conjugating enzymes and participates in mitophagy by recruiting GABARAP. Cell Signal 2014; 26:2921-9. [PMID: 25224329 DOI: 10.1016/j.cellsig.2014.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022]
Abstract
Mulan is an E3 ubiquitin ligase embedded in the outer mitochondrial membrane (OMM) with its RING finger facing the cytoplasm and a large domain located in the intermembrane space (IMS). Mulan is known to have an important role in cell growth, cell death, and more recently in mitophagy. The mechanism of its function is poorly understood; but as an E3 ligase it is expected to interact with specific E2 ubiquitin conjugating enzymes and these complexes will bind and ubiquitinate specific substrates. The unique topology of Mulan can provide a direct link of communicating mitochondrial signals to the cytoplasm. Our studies identified four different E2 conjugating enzymes (Ube2E2, Ube2E3, Ube2G2 and Ube2L3) as specific interactors of Mulan. Each of these E2 conjugating enzymes was fused to the RING finger domain of Mulan and used in a modified yeast two-hybrid screen. Several unique interactors for each Mulan-E2 complex were isolated. One such specific interactor of Mulan-Ube2E3 was the GABARAP (GABAA receptor-associated protein). GABARAP is a member of the Atg8 family of proteins that plays a major role in autophagy/mitophagy. The interaction of GABARAP with Mulan-Ube2E3 required an LC3-interacting region (LIR) located in the RING finger domain of Mulan as well as the presence of Ube2E3. The isolation of four different E2 conjugating enzymes, as specific partners of Mulan E3 ligase, suggests that Mulan is involved in multiple biological pathways. In addition, the interaction of GABARAP with Mulan-Ube2E3 supports the role of Mulan as an important regulator of mitophagy and provides a plausible mechanism for its function in this process.
Collapse
Affiliation(s)
- Camilla T Ambivero
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | - Lucia Cilenti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | - Stacey Main
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | - Antonis S Zervos
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
66
|
Doshi A, Mishra P, Sharma M, Prabha CR. Functional characterization of dosage-dependent lethal mutation of ubiquitin in Saccharomyces cerevisiae. FEMS Yeast Res 2014; 14:1080-9. [PMID: 25195938 DOI: 10.1111/1567-1364.12209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 11/28/2022] Open
Abstract
Ubiquitin is a eukaryotic protein with 96% sequence conservation from yeast to human. Ubiquitin plays a central role in protein homeostasis and regulation of protein function. We have reported on the generation of variants of ubiquitin by in vitro evolution in Saccharomyces cerevisiae to advance our understanding of the role of the invariant amino acid residues of ubiquitin in relation to its function. One of the mutants generated, namely UbEP42, was a dosage-dependent lethal form of the ubiquitin gene, causing lethality to UBI4-deficient cells but not to ubiquitin wild-type cells. In the present study we investigated the functional reasons for the observed lethality. Expression of UbEP42 in a UBI4-deleted stress-sensitive strain resulted in an increased generation time due to a delayed S phase caused by decreased levels of Cdc28 protein kinase. Cells expressing UbEP42 displayed heightened sensitivity towards heat stress and exposure to cycloheximide. Furthermore, its expression had a negative effect on the degradation of substrates of the ubiquitin fusion degradation pathway. However, UbEP42 is incorporated into polyubiquitin chains. Collectively, our results establish that the effects seen with the mutant ubiquitin protein UbEP42 are not due to malfunction at the stage of polyubiquitination.
Collapse
Affiliation(s)
- Ankita Doshi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | | | | | | |
Collapse
|
67
|
Islamian JP, Mohammadi M, Baradaran B. Inhibition of human esophageal squamous cell carcinomas by targeted silencing of tumor enhancer genes: an overview. Cancer Biol Med 2014; 11:78-85. [PMID: 25009749 PMCID: PMC4069799 DOI: 10.7497/j.issn.2095-3941.2014.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/08/2014] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer has been reported as the ninth most common malignancy and ranks as the sixth most frequent cause of death worldwide. Esophageal cancer treatment involves surgery, chemotherapy, radiation therapy, or combination therapy. Novel strategies are needed to boost the oncologic outcome. Recent advances in the molecular biology of esophageal cancer have documented the role of genetic alterations in tumorigenesis. Oncogenes serve a pivotal function in tumorigenesis. Targeted therapies are directed at the unique molecular signature of cancer cells for enhanced efficacy with low toxicity. RNA interference (RNAi) technology is a powerful tool for silencing endogenous or exogenous genes in mammalian cells. Related results have shown that targeting oncogenes with siRNAs, specifically the mRNA, effectively reduces tumor cell proliferation and induces apoptotic cell death. This article will briefly review studies on silencing tumor enhancer genes related to the induction of esophageal cancer.
Collapse
Affiliation(s)
- Jalil Pirayesh Islamian
- 1 Tabriz University of Medical Sciences, School of Medicine, Tabriz, East Asarbeidjan, Iran ; 2 Department of Radiation, School of Paramedicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; 3 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Mohammadi
- 1 Tabriz University of Medical Sciences, School of Medicine, Tabriz, East Asarbeidjan, Iran ; 2 Department of Radiation, School of Paramedicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; 3 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- 1 Tabriz University of Medical Sciences, School of Medicine, Tabriz, East Asarbeidjan, Iran ; 2 Department of Radiation, School of Paramedicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; 3 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
68
|
Liu L, Jin L, Huang X, Geng Y, Li F, Qin Q, Wang R, Ji S, Zhao S, Xie QI, Wei C, Xie C, Ding B, Li YI. OsRFPH2-10, a ring-H2 finger E3 ubiquitin ligase, is involved in rice antiviral defense in the early stages of rice dwarf virus infection. MOLECULAR PLANT 2014; 7:1057-1060. [PMID: 24482434 DOI: 10.1093/mp/ssu007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Lifang Liu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Lian Jin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiahe Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yongtao Geng
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Feng Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingqing Qin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Rui Wang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Shaoyi Ji
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Shanshan Zhao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Q I Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Chunhong Wei
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Can Xie
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Biao Ding
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Y I Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
69
|
Pan F, Barbi J. Ubiquitous points of control over regulatory T cells. J Mol Med (Berl) 2014; 92:555-69. [PMID: 24777637 DOI: 10.1007/s00109-014-1156-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
Posttranslational modification by ubiquitin tagging is crucial for regulating the stability, activity and cellular localization of many target proteins involved in processes including DNA repair, cell cycle progression, protein quality control, and signal transduction. It has long been appreciated that ubiquitin-mediated events are important for certain signaling pathways leading to leukocyte activation and the stimulation of effector function. Now it is clear that the activities of molecules and pathways central to immune regulation are also modified and controlled by ubiquitin tagging. Among the mechanisms of immune control, regulatory T cells (or Tregs) are themselves particularly sensitive to such regulation. E3 ligases and deubiquitinases both influence Tregs through their effects on the signaling pathways pertinent to these cells or through the direct, posttranslational regulation of Foxp3. In this review, we will summarize and discuss several examples of ubiquitin-mediated control over multiple aspects of Treg biology including the generation, function and phenotypic fidelity of these cells. Fully explored and exploited, these potential opportunities for Treg modulation may lead to novel immunotherapies for both positive and negative fine-tuning of immune restraint.
Collapse
Affiliation(s)
- Fan Pan
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
70
|
The role of E3 ligases in the ubiquitin-dependent regulation of spermatogenesis. Semin Cell Dev Biol 2014; 30:27-35. [PMID: 24632385 DOI: 10.1016/j.semcdb.2014.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/02/2014] [Indexed: 12/23/2022]
Abstract
The ubiquitination of proteins is a post-translational modification that was first described as a means to target misfolded or unwanted proteins for degradation by the proteasome. It is now appreciated that the ubiquitination of proteins also serves as a mechanism to modify protein function and cellular functions such as protein trafficking, cell signaling, DNA repair, chromatin modifications, cell-cycle progression and cell death. The ubiquitination of proteins occurs through the hierarchal transfer of ubiquitin from an E1 ubiquitin-activating enzyme to an E2 ubiquitin-conjugating enzyme and finally to an E3 ubiquitin ligase that transfers the ubiquitin to its target protein. It is the final E3 ubiquitin ligase that confers the substrate specificity for ubiquitination and is the focus of this review. Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells undergo mitotic proliferation and expansion of the diploid spermatogonial population, differentiate into spermatocytes and progress through two meiotic divisions to produce haploid spermatids that proceed through a final morphogenesis to generate mature spermatozoa. The ubiquitination of proteins in the cells of the testis occurs in many of the processes required for the progression of mature spermatozoa. Since it is the E3 ubiquitin ligase that recognizes the target protein and provides the specificity and selectivity for ubiquitination, this review highlights known examples of E3 ligases in the testis and the differing roles that they play in maintaining functional spermatogenesis.
Collapse
|
71
|
Gandini MA, Henríquez DR, Grimaldo L, Sandoval A, Altier C, Zamponi GW, Felix R, González-Billault C. CaV2.2 channel cell surface expression is regulated by the light chain 1 (LC1) of the microtubule-associated protein B (MAP1B) via UBE2L3-mediated ubiquitination and degradation. Pflugers Arch 2014; 466:2113-26. [PMID: 24566975 DOI: 10.1007/s00424-014-1476-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/18/2022]
Abstract
Microtubule-associated protein B is a cytoskeleton protein consisting of heavy and light (LC) chains that play important roles in the regulation of neuronal morphogenesis and function. LC1 is also well known to interact with diverse ionotropic receptors at postsynapse. Much less is known, however, regarding the role of LC1 at presynaptic level where voltage-gated N-type Ca(2+) channels couple membrane depolarization to neurotransmitter release. Here, we investigated whether LC1 interacts with the N-type channels. Co-localization analysis revealed spatial proximity of the two proteins in hippocampal neurons. The interaction between LC1 and the N-type channel was demonstrated using co-immunoprecipitation experiments and in vitro pull-down assays. Detailed biochemical analysis suggested that the interaction occurs through the N-terminal of LC1 and the C-terminal of the pore-forming CaVα1 subunit of the channels. Patch-clamp studies in HEK-293 cells revealed a significant decrease in N-type currents upon LC1 expression, without apparent changes in kinetics. Recordings performed in the presence of MG132 prevented the actions of LC1 suggesting enhanced channel proteasomal degradation. Interestingly, using the yeast two-hybrid system and immunoprecipitation assays in HEK-293 cells, we revealed an interaction between LC1 and the ubiquitin-conjugating enzyme UBE2L3. Furthermore, we found that the LC1/UBE2L3 complex could interact with the N-type channels, suggesting that LC1 may act as a scaffold protein to increase UBE2L3-mediated channel ubiquitination. Together these results revealed a novel functional coupling between LC1 and the N-type channels.
Collapse
Affiliation(s)
- María A Gandini
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, (Cinvestav-IPN), Avenida IPN 2508, Colonia Zacatenco, Mexico DF, 07360, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Mechanism underlying IκB kinase activation mediated by the linear ubiquitin chain assembly complex. Mol Cell Biol 2014; 34:1322-35. [PMID: 24469399 DOI: 10.1128/mcb.01538-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) ligase, consisting of HOIL-1L, HOIP, and SHARPIN, specifically generates linear polyubiquitin chains. LUBAC-mediated linear polyubiquitination has been implicated in NF-κB activation. NEMO, a component of the IκB kinase (IKK) complex, is a substrate of LUBAC, but the precise molecular mechanism underlying linear chain-mediated NF-κB activation has not been fully elucidated. Here, we demonstrate that linearly polyubiquitinated NEMO activates IKK more potently than unanchored linear chains. In mutational analyses based on the crystal structure of the complex between the HOIP NZF1 and NEMO CC2-LZ domains, which are involved in the HOIP-NEMO interaction, NEMO mutations that impaired linear ubiquitin recognition activity and prevented recognition by LUBAC synergistically suppressed signal-induced NF-κB activation. HOIP NZF1 bound to NEMO and ubiquitin simultaneously, and HOIP NZF1 mutants defective in interaction with either NEMO or ubiquitin could not restore signal-induced NF-κB activation. Furthermore, linear chain-mediated activation of IKK2 involved homotypic interaction of the IKK2 kinase domain. Collectively, these results demonstrate that linear polyubiquitination of NEMO plays crucial roles in IKK activation and that this modification involves the HOIP NZF1 domain and recognition of NEMO-conjugated linear ubiquitin chains by NEMO on another IKK complex.
Collapse
|
73
|
McDonald WJ, Thomas LN, Koirala S, Too CKL. Progestin-inducible EDD E3 ubiquitin ligase binds to α4 phosphoprotein to regulate ubiquitination and degradation of protein phosphatase PP2Ac. Mol Cell Endocrinol 2014; 382:254-261. [PMID: 24145130 DOI: 10.1016/j.mce.2013.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
Abstract
Mammalian α4 phosphoprotein binds to the protein phosphatase 2A catalytic subunit (PP2Ac) to regulate PP2A activity, and to poly(A)-binding protein (PABP) and progestin-inducible EDD E3 ubiquitin ligase. This study showed induction of the EDD protein by progesterone, 17β-estradiol and prolactin in breast cancer cells. Co-immunoprecipitation analyses, using lysates of COS-1 cells transfected with α4-deletion constructs, showed the α4 N-terminus binding to endogenous PP2Ac and PABP, and the C-terminus to EDD. Monoubiquitinated α4 in MCF-7 cells was unaffected by EDD-targeting siRNA (siEDD) nor by non-targetting siNT, thus, EDD does not ubiquitinate α4. PP2Ac is polyubiquitinated, and 36-kDa PP2Ac only was detected in siEDD- or siNT-transfected cells. However, treatment with proteasomal inhibitor MG132 showed polyubiquitinated-PP2Ac molecules (∼65-250kDa) abundantly in siNT controls but low in siEDD-transfectants, implicating PP2Ac as an EDD substrate. Finally, progesterone induction of EDD in MCF-7 cells correlated with decreased PP2Ac levels, further implicating hormone-inducible EDD in PP2Ac turnover.
Collapse
Affiliation(s)
- William J McDonald
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Lynn N Thomas
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Samir Koirala
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Catherine K L Too
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Obstetrics & Gynaecology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
74
|
Tanaka T, Iino M. Knockdown of Sec8 promotes cell-cycle arrest at G1/S phase by inducing p21 via control of FOXO proteins. FEBS J 2014; 281:1068-84. [PMID: 24299491 DOI: 10.1111/febs.12669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/06/2013] [Accepted: 11/29/2013] [Indexed: 11/30/2022]
Abstract
p21(Cip1) protein inhibits the activity of cyclins at the G(1) checkpoint and influences transition of cells from the G(1) to the S phase of the cell cycle. Moreover, expression of members of the FOXO family (active form of forkhead transcription factors of the O class) in dividing cells promotes cell-cycle arrest at the G(1)/S boundary via regulation of p21(Cip1). Recently, the exocyst complex, including Sec8, has been implicated in various roles independent of its role in secretion, such as cell migration, invadopodia formation, cytokinesis, glucose uptake and neural development. Given the essential roles of the exocyst complex in cellular and developmental processes, disruption of its function may be involved in various diseases such as cancer, diabetes and neuronal disorders. However, the relationship between Sec8 and the cell cycle remains to be elucidated. In this study, knockdown of Sec8 inhibited cell growth and promoted cell-cycle arrest at the G(1)/S phase by control of p21 expression and retinoblastoma protein phosphorylation. Furthermore, Sec8 regulated FOXO family proteins via ubiquitin-proteasome degradation by regulating the expression of the murine double minute 2 (Mdm2) protein but not S-phase kinase-associated protein 2 (Skp2).
Collapse
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Yamagata University, Japan; Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, Faculty of Medicine, School of Medicine, Yamagata University, Japan
| | | |
Collapse
|
75
|
Arrestin interaction with E3 ubiquitin ligases and deubiquitinases: functional and therapeutic implications. Handb Exp Pharmacol 2014; 219:187-203. [PMID: 24292831 DOI: 10.1007/978-3-642-41199-1_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arrestins constitute a small family of four homologous adaptor proteins (arrestins 1-4), which were originally identified as inhibitors of signal transduction elicited by the seven-transmembrane G protein-coupled receptors. Currently arrestins (especially arrestin2 and arrestin3; also called β-arrestin1 and β-arrestin2) are known to be activators of cell signaling and modulators of endocytic trafficking. Arrestins mediate these effects by binding to not only diverse cell-surface receptors but also by associating with a variety of critical signaling molecules in different intracellular compartments. Thus, the functions of arrestins are multifaceted and demand interactions with a host of proteins and require an array of selective conformations. Furthermore, receptor ligands that specifically induce signaling via arrestins are being discovered and their physiological roles are emerging. Recent evidence suggests that the activity of arrestin is regulated in space and time by virtue of its dynamic association with specific enzymes of the ubiquitination pathway. Ubiquitin-dependent, arrestin-mediated signaling could serve as a potential platform for developing novel therapeutic strategies to target transmembrane signaling and physiological responses.
Collapse
|
76
|
Wertz I, Dixit V. A20--a bipartite ubiquitin editing enzyme with immunoregulatory potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:1-12. [PMID: 25302362 DOI: 10.1007/978-1-4939-0398-6_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proper regulation of inflammation is essential for combating pathogen invasion and maintaining homeostasis. While hyporesponsive hosts succumb to infections, unchecked inflammatory reactions promote debilitating and fatal conditions including septic shock, autoimmune disease, atherosclerosis, graft rejection, and cancer. Pathogens, host immune cell ligands, and pro-inflammatory cytokines such as Tumor Necrosis Factor-alpha (TNF-alpha), Interleukin-1-beta (IL1-beta), and Lipopolysaccharide (LPS) induce an array of inflammatory responses by activating a variety of cell types. Although much is known about how inflammatory responses are initiated and sustained, less is known about how inflammation is attenuated to maintain a homeostatic balance. In this chapter, we review the key role played by A20, also referred to as Tumor Necrosis Factor Inducible Protein 3 (TNFAIP3) in restoring cellular homeostasis through NF-kappaB inhibition, and discuss the molecular basis for its potent anti-inflammatory function as related to the ubiquitin editing and ubiquitin binding activities of A20.
Collapse
|
77
|
Mirzayans R, Andrais B, Scott A, Wang YW, Murray D. Ionizing radiation-induced responses in human cells with differing TP53 status. Int J Mol Sci 2013; 14:22409-35. [PMID: 24232458 PMCID: PMC3856071 DOI: 10.3390/ijms141122409] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022] Open
Abstract
Ionizing radiation triggers diverse responses in human cells encompassing apoptosis, necrosis, stress-induced premature senescence (SIPS), autophagy, and endopolyploidy (e.g., multinucleation). Most of these responses result in loss of colony-forming ability in the clonogenic survival assay. However, not all modes of so-called clonogenic cell "death" are necessarily advantageous for therapeutic outcome in cancer radiotherapy. For example, the crosstalk between SIPS and autophagy is considered to influence the capacity of the tumor cells to maintain a prolonged state of growth inhibition that unfortunately can be succeeded by tumor regrowth and disease recurrence. Likewise, endopolyploid giant cells are able to segregate into near diploid descendants that continue mitotic activities. Herein we review the current knowledge on the roles that the p53 and p21(WAF1) tumor suppressors play in determining the fate of human fibroblasts (normal and Li-Fraumeni syndrome) and solid tumor-derived cells after exposure to ionizing radiation. In addition, we discuss the important role of WIP1, a p53-regulated oncogene, in the temporal regulation of the DNA damage response and its contribution to p53 dynamics post-irradiation. This article highlights the complexity of the DNA damage response and provides an impetus for rethinking the nature of cancer cell resistance to therapeutic agents.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - Bonnie Andrais
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - April Scott
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - Ying W. Wang
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - David Murray
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| |
Collapse
|
78
|
Sakamoto T, Kitano H, Fujioka S. An E3 ubiquitin ligase, ERECT LEAF1, functions in brassinosteroid signaling of rice. PLANT SIGNALING & BEHAVIOR 2013; 8:e27117. [PMID: 24299927 PMCID: PMC4091358 DOI: 10.4161/psb.27117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A spontaneous rice mutant, erect leaf1 (elf1-1), produced a dwarf phenotype with erect leaves and short grains. Physiological analyses suggested that elf1-1 is brassinosteroid-insensitive, so we hypothesized that ELF1 encodes a positive regulator of brassinosteroid signaling. ELF1, identified by means of positional cloning, encodes a protein with both a U-box domain and ARMADILLO (ARM) repeats. U-box proteins have been shown to function as E3 ubiquitin ligases; in fact, ELF1 possessed E3 ubiquitin ligase activity in vitro. However, ELF1 itself does not appear to be polyubiquitinated. Mutant phenotypes of 2 more elf1 alleles indicate that the entire ARM repeats is indispensable for ELF1 activity. These results suggest that ELF1 ubiquitinates target proteins through an interaction mediated by ARM repeats. Similarities in the phenotypes of elf1 and d61 mutants (mutants of brassinosteroid receptor gene OsBRI1), and in the regulation of ELF1 and OsBRI1 expression, imply that ELF1 functions as a positive regulator of brassinosteroid signaling in rice.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Faculty of Bioresources and Environmental Sciences; Ishikawa Prefectural University; Ishikawa, Japan
- Correspondence to: Tomoaki Sakamoto,
| | - Hidemi Kitano
- Bioscience and Biotechnology Center; Nagoya University; Aichi, Japan
| | | |
Collapse
|
79
|
Miyata M, Yamakawa H, Hayashi K, Kuribayashi H, Yamazoe Y, Yoshinari K. Ileal apical sodium-dependent bile acid transporter protein levels are down-regulated through ubiquitin-dependent protein degradation induced by bile acids. Eur J Pharmacol 2013; 714:507-14. [PMID: 23872411 DOI: 10.1016/j.ejphar.2013.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/15/2013] [Accepted: 06/21/2013] [Indexed: 12/15/2022]
Abstract
The ileal apical sodium-dependent bile acid transporter (ASBT or SLC10A2) has a crucial role in intestinal bile acid absorption. We previously reported that enterobacteria-mediated bile acid conversion was involved in the alteration of ileal ASBT expression levels. In the present study, to investigate the hypothesis that ileal ASBT protein levels are post-translationally regulated by enterobacteria-associated bile acids, alteration of ileal ASBT protein levels was analysed in mice 12 h and 24 h after anti-bacterial drug ampicillin (ABPC) treatment (100 mg/kg, single shot) that altered bile acid composition in the intestinal lumen. In ABPC-treated mice, enterobacteria-biotransformed bile acid, taurodeoxycholic acid (TDCA) and cholic acid (CA) levels were decreased, whereas taurocholic acid (TCA) and tauro-β-muricholic acid levels were increased in the intestinal lumen. Ileal ASBT protein levels in brush-border membrane vesicles (BBMVs), but not ileal Asbt mRNA levels, were significantly increased in the ABPC-treated mice, and the extent of ubiquitination of the ileal ASBT protein was reduced in the ABPC-treated mice. Treatment of ABPC-pretreated mice with CA or TDCA, but not TCA, significantly decreased ileal ASBT protein levels and increased the extent of ubiquitination of ileal ASBT protein. Treatment of mice with the lysosome inhibitor, chloroquine, or the proteasome inhibitor, MG132, increased ileal ASBT protein levels in BBMVs. CA-mediated reduction of ASBT protein levels in the ABPC-pretreated mice was attenuated by co-treatment with chloroquine or MG132. These results suggest that ileal ASBT protein is degraded by a ubiquitin-dependent pathway in response to enterobacteria-associated bile acids.
Collapse
Affiliation(s)
- Masaaki Miyata
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | | | |
Collapse
|
80
|
McDowell GS, Philpott A. Non-canonical ubiquitylation: mechanisms and consequences. Int J Biochem Cell Biol 2013; 45:1833-42. [PMID: 23732108 DOI: 10.1016/j.biocel.2013.05.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/10/2013] [Accepted: 05/22/2013] [Indexed: 01/04/2023]
Abstract
Post-translational protein modifications initiate, regulate, propagate and terminate a wide variety of processes in cells, and in particular, ubiquitylation targets substrate proteins for degradation, subcellular translocation, cell signaling and multiple other cellular events. Modification of substrate proteins is widely observed to occur via covalent linkages of ubiquitin to the amine groups of lysine side-chains. However, in recent years several new modes of ubiquitin chain attachment have emerged. For instance, covalent modification of non-lysine sites in substrate proteins is theoretically possible according to basic chemical principles underlying the ubiquitylation process, and evidence is building that sites such as the N-terminal amine group of a protein, the hydroxyl group of serine and threonine residues and even the thiol groups of cysteine residues are all employed as sites of ubiquitylation. However, the potential importance of this "non-canonical ubiquitylation" of substrate proteins on sites other than lysine residues has been largely overlooked. This review aims to highlight the unusual features of the process of non-canonical ubiquitylation and the consequences of these events on the activity and fate of a protein.
Collapse
Affiliation(s)
- Gary S McDowell
- Department of Oncology, University of Cambridge, Hutchison/Medical Research Council (MRC) Research Centre, Cambridge, UK
| | | |
Collapse
|
81
|
Ubiquitinations in the notch signaling pathway. Int J Mol Sci 2013; 14:6359-81. [PMID: 23519106 PMCID: PMC3634445 DOI: 10.3390/ijms14036359] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/22/2022] Open
Abstract
The very conserved Notch pathway is used iteratively during development and adulthood to regulate cell fates. Notch activation relies on interactions between neighboring cells, through the binding of Notch receptors to their ligands, both transmembrane molecules. This inter-cellular contact initiates a cascade of events eventually transforming the cell surface receptor into a nuclear factor acting on the transcription of specific target genes. This review highlights how the various processes undergone by Notch receptors and ligands that regulate the pathway are linked to ubiquitination events.
Collapse
|
82
|
Mdm2 increases cellular invasiveness by binding to and stabilizing the Slug mRNA. Cancer Lett 2013; 335:270-7. [PMID: 23438693 DOI: 10.1016/j.canlet.2013.02.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 02/01/2023]
Abstract
Mdm2 is an oncoprotein that induces the degradation of the tumor suppressor, p53. Here, we show that Mdm2 increases the mRNA levels of Slug by binding to and stabilizing the Slug mRNA. While this effect of Mdm2 was observed in both p53-null and p53-expressing cancer cells, it increased the protein levels of Slug only in the former cells. Mdm2 consistently induced Slug-dependent events, such as decreases in E-cadherin levels and increases in cellular invasiveness, only in p53-null cells. Therefore, the binding of Mdm2 to the Slug mRNA appears to provide a novel mechanism through which Mdm2 promotes tumor progression in a manner independent of the presence of p53.
Collapse
|
83
|
Eaton HE, Ferreira Lacerda A, Desrochers G, Metcalf J, Angers A, Brunetti CR. Cellular LITAF interacts with frog virus 3 75L protein and alters its subcellular localization. J Virol 2013; 87:716-23. [PMID: 23097445 PMCID: PMC3554103 DOI: 10.1128/jvi.01857-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/17/2012] [Indexed: 02/06/2023] Open
Abstract
Iridoviruses are a family of large double-stranded DNA (dsDNA) viruses that are composed of 5 genera, including the Lymphocystivirus, Ranavirus, Megalocytivirus, Iridovirus, and Chloriridovirus genera. The frog virus 3 (FV3) 75L gene is a nonessential gene that is highly conserved throughout the members of the Ranavirus genus but is not found in other iridoviruses. FV3 75L shows high sequence similarity to a conserved domain found in the C terminus of LITAF, a small cellular protein with unknown function. Here we show that FV3 75L localizes to early endosomes, while LITAF localizes to late endosomes/lysosomes. Interestingly, when FV3 75L and LITAF are cotransfected into cells, LITAF can alter the subcellular localization of FV3 75L to late endosomes/lysosomes, where FV3 75L then colocalizes with LITAF. In addition, we demonstrated that virally produced 75L colocalizes with LITAF. We confirmed a physical interaction between LITAF and FV3 75L but found that this interaction was not mediated by two PPXY motifs in the N terminus of LITAF. Mutation of two PPXY motifs in LITAF did not affect the colocalization of LITAF and FV3 75L but did change the location of the two proteins from late endosomes/lysosomes to early endosomes.
Collapse
Affiliation(s)
- Heather E. Eaton
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | | | - Guillaume Desrochers
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Julie Metcalf
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Annie Angers
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Craig R. Brunetti
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
84
|
Abstract
Proteasomes are ATP-dependent protein degradation machines present in all archaea and eukaryotes, and found in several bacterial species of the order Actinomycetales. Mycobacterium tuberculosis (Mtb), an Actinomycete pathogenic to humans, requires proteasome function to cause disease. In this chapter, we describe what is currently understood about the biochemistry of the Mtb proteasome and its role in virulence. The characterization of the Mtb proteasome has led to the discovery that proteins can be targeted for degradation by a small protein modifier in bacteria as they are in eukaryotes. Furthermore, the understanding of proteasome function in Mtb has helped reveal new insight into how the host battles infections.
Collapse
Affiliation(s)
- Marie I Samanovic
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, NY, 10016, USA
| | | | | |
Collapse
|
85
|
Gjernes MH, Schlenk D, Arukwe A. Estrogen receptor-hijacking by dioxin-like 3,3'4,4',5-pentachlorobiphenyl (PCB126) in salmon hepatocytes involves both receptor activation and receptor protein stability. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:197-208. [PMID: 22982498 DOI: 10.1016/j.aquatox.2012.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 05/20/2023]
Abstract
Several hypotheses have been proposed explaining the interactions between estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) signaling pathways in both fish and mammalian systems. In both piscine and mammalian systems, ligand-activated AhR may recruit basal ER (i.e. hijack) in the absence of ER ligand and bind to the estrogen responsive elements (ERE) to activate ER-responsive genes. We have evaluated, the roles of receptor activation and receptor-protein stability on dioxin-like [3,3'4,4',5-pentachlorobiphenyl: PCB 126] mediated ER-hijacking in a salmon in vitro system. Primary salmon hepatocytes were exposed to PCB126 (1, 10 and 50 nM) with or without an ER-antagonist (ICI), putative AhR inhibitor (3',4'-dimethoxyflavone; DMF) or protein synthesis inhibitor (cycloheximide; CHX). Hepatocytes were exposed for 6, 12 and 24h. The expression of genes and proteins involved in ER (ERα, ERβ and vitellogenin) and AhR (CYP1A1, AhR-repressor, AhR2-isotypes and cofactors) pathways were analysed using qPCR and immunochemical methods. PCB126 induced transcripts of ER and AhR signalling pathways that were variably influenced by protein synthesis and receptor inhibitors. CHX stimulated a coordinated recruitment of the proteasome complex, resulting in the ubiquitination and degradation of ER and AhR isoforms and downstream protein products. Interestingly, DMF produced differential effects on the AhR signalling pathway, in the presence or absence of PCB126. Overall, ER-hijacking by dioxin-like compounds and subsequent activation of ER responsive genes involves both receptor activation/deactivation and receptor-protein degradation/destabilization (stability). Given that the Per-AhR/Arnt-Sim homology sequence of transcription factors usually associate with each other to form heterodimers and bind the XRE or ERE sequences in the promoter regions of target genes to regulate their expression, the complete mechanism of interactions between dioxin-like and estrogenic compounds in vertebrate systems may require additional characterization.
Collapse
Affiliation(s)
- Martine H Gjernes
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | |
Collapse
|
86
|
Intrinsically disordered proteins undergo and assist folding transitions in the proteome. Arch Biochem Biophys 2012; 531:80-9. [PMID: 23142500 DOI: 10.1016/j.abb.2012.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 11/20/2022]
Abstract
The common notion in the protein world holds that proteins are synthesized as a linear polypeptide chain, followed by folding into a unique, functional 3D-structure. As outlined in many articles of this volume, this is in fact the case for a great proportion of the proteome. Many proteins and protein domains, however, are intrinsically disordered (IDPs), i.e., they cannot fold on their own, but often undergo a folding transition in the presence of a binding partner. This binding-induced folding process shows strong conceptual parallels with the folding of globular proteins, in a sense that it can proceed via two routes, either induction of the folded conformation from an initial random state or selection of a pre-formed state already present in the ensemble. In addition, we show that IDPs not only undergo folding themselves, they also assist the folding process of other proteins as chaperones, and even contribute to the quality control processes of the cell, in which irreparably misfolded proteins are recognized and tagged for proteasomal degradation. These various mechanisms suggest that structural disorder, in a biological context, is linked with protein folding in several ways, in which both the IDP and its partner may undergo reciprocal structural transitions.
Collapse
|
87
|
Xing C, Zhou W, Ding S, Xie H, Zhang W, Yang Z, Wei B, Chen K, Su R, Cheng J, Zheng S, Zhou L. Reversing effect of ring finger protein 43 inhibition on malignant phenotypes of human hepatocellular carcinoma. Mol Cancer Ther 2012; 12:94-103. [PMID: 23136185 DOI: 10.1158/1535-7163.mct-12-0672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been shown that Ring finger protein 43 (RNF43) is overexpressed in colorectal cancer and mediates cancer cell proliferation; however, its role in hepatocellular carcinoma (HCC) remains unknown. In this study, we found that RNF43 was frequently overexpressed in HCCs, and this overexpression was correlated with positive vascular invasion, poor tumor differentiation, and advanced tumor stage. Functional studies showed that knockdown of RNF43 could induce apoptosis and inhibit proliferation, invasion, colony formation, and xenograft growth of HCCs. Microarray-based gene profiling showed a total of 229 genes differentially expressed after RNF43 knockdown, many of which are involved in oncogenic processes such as cell proliferation, cell adhesion, cell motility, cell death, DNA repair, and so on. These results suggest that RNF43 is involved in tumorigenesis and progression of HCCs and that antagonism of RNF43 may be beneficial for HCC treatment.
Collapse
Affiliation(s)
- Chunyang Xing
- Key Lab of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Nagpal P, Plant PJ, Correa J, Bain A, Takeda M, Kawabe H, Rotin D, Bain JR, Batt JAE. The ubiquitin ligase Nedd4-1 participates in denervation-induced skeletal muscle atrophy in mice. PLoS One 2012; 7:e46427. [PMID: 23110050 PMCID: PMC3482220 DOI: 10.1371/journal.pone.0046427] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/29/2012] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle atrophy is a consequence of muscle inactivity resulting from denervation, unloading and immobility. It accompanies many chronic disease states and also occurs as a pathophysiologic consequence of normal aging. In all these conditions, ubiquitin-dependent proteolysis is a key regulator of the loss of muscle mass, and ubiquitin ligases confer specificity to this process by interacting with, and linking ubiquitin moieties to target substrates through protein∶protein interaction domains. Our previous work suggested that the ubiquitin-protein ligase Nedd4-1 is a potential mediator of skeletal muscle atrophy associated with inactivity (denervation, unloading and immobility). Here we generated a novel tool, the Nedd4-1 skeletal muscle-specific knockout mouse (myoCre;Nedd4-1flox/flox) and subjected it to a well validated model of denervation induced skeletal muscle atrophy. The absence of Nedd4-1 resulted in increased weights and cross-sectional area of type II fast twitch fibres of denervated gastrocnemius muscle compared with wild type littermates controls, at seven and fourteen days following tibial nerve transection. These effects are not mediated by the Nedd4-1 substrates MTMR4, FGFR1 and Notch-1. These results demonstrate that Nedd4-1 plays an important role in mediating denervation-induced skeletal muscle atrophy in vivo.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Endosomal Sorting Complexes Required for Transport/genetics
- Endosomal Sorting Complexes Required for Transport/metabolism
- Female
- Immunohistochemistry
- Male
- Mice
- Mice, Knockout
- Muscle Denervation
- Muscular Atrophy/genetics
- Muscular Atrophy/metabolism
- Myoblasts/cytology
- Myoblasts/metabolism
- Nedd4 Ubiquitin Protein Ligases
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Preena Nagpal
- Keenan Research Centre of the LiKaShing Knowledge Institute, St Michaels Hospital, Toronto, Ontario, Canada
- Clinical Science Division, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pamela J. Plant
- Keenan Research Centre of the LiKaShing Knowledge Institute, St Michaels Hospital, Toronto, Ontario, Canada
| | - Judy Correa
- Keenan Research Centre of the LiKaShing Knowledge Institute, St Michaels Hospital, Toronto, Ontario, Canada
| | - Alexandra Bain
- Clinical Science Division, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michiko Takeda
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany
| | - Daniela Rotin
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James R. Bain
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Jane A. E. Batt
- Keenan Research Centre of the LiKaShing Knowledge Institute, St Michaels Hospital, Toronto, Ontario, Canada
- Clinical Science Division, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
89
|
The ends and means of artificially induced targeted protein degradation. Appl Microbiol Biotechnol 2012; 96:1111-23. [PMID: 23070648 DOI: 10.1007/s00253-012-4471-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022]
Abstract
Studies on knockout mutants and conditional mutants are invaluable to biological research and have been used extensively to probe the intricacies of biological systems through loss of function associated with attenuation of a particular protein. Besides, RNAi technology has been developed in recent years to further aid the process of scientific inquiry. Even though, the methods, dealing with DNA and RNA have met with great success, are not without their shortcomings. In order to overcome the inadequacies of existing methods, a host of new techniques, aimed at knockdowns at the protein rather than the nucleic acid level, have been devised. Essentially, these methods can achieve rapid degradation of cellular pools of a target protein in response to an inducible signal coupled with dose-dependent modulation and exquisite temporal control, features which are absent from techniques involving manipulations at the DNA or RNA level. This review aims to provide a broad overview of a gamut of these methods, while highlighting the strengths and weaknesses of each one. Last two decades of advances presented here in the field of targeted protein degradation serve as a beacon to further research and are likely to find applications in the areas of medicine and allied fields of biology.
Collapse
|
90
|
Mao MG, Lei JL, Alex PM, Hong WS, Wang KJ. Characterization of RAG1 and IgM (mu chain) marking development of the immune system in red-spotted grouper (Epinephelus akaara). FISH & SHELLFISH IMMUNOLOGY 2012; 33:725-735. [PMID: 22796426 DOI: 10.1016/j.fsi.2012.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/18/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
In vertebrates, lymphoid-specific recombinase protein encoded by recombination-activating genes (RAG1/2) plays a key role in V(D)J recombination of the T-cell receptor and B-cell receptor. In this study, both RAG1 and the immunoglobulin M (IgM) mu chain were cloned to characterize their potential role in the immune defense at developmental stages of red-spotted grouper, Epinephelus akaara. The open reading frame (ORF) of E. akaara RAG1 included 2778 nucleotide residues encoding a putative protein of 925 amino acids, while the ORF of the IgM mu chain had 1734 nucleotide residues encoding 578 amino acids including variable (VH) and constant (CH1-CH2-CH3-CH4) regions. E. akaara RAG1 was composed of a zinc-binding dimerization domain (ZDD) with a RING finger and zinc finger A (ZFA) in the non-core region and a nonamer-binding region (NBR), with a zinc finger B (ZFB), the central and C-terminal domains in the core region. Tridimensional models of the ZDD and NBR of E. akaara RAG1 were constructed for the first time in fishes, while a 3D model of the E. akaara IgM mu chain was also clarified. The RAG1 mRNA was only detected in the thymus and kidney of 4-month and 1.5-year old groupers using qPCR, and the RAG1 protein was confirmed using western blotting and immunohistochemistry. The IgM mu mRNA was examined in most tissues except the gonad. RAG1 and IgM mu gene expression were observed at 15 dph (days post-hatching) and 23 dph respectively, and increased to a higher level at 37 dph. In addition, this was the first time that the morphology of the E. akaara thymus was characterized. The oval-shaped thymus of 4-month old fish was clearly seen and there were amounts of T lymphocytes present. The results suggested that the immune action of E. akaara was likely to start to develop around 15 dph to 29 dph. The transcript level of the RAG1 gene and the number of lymphocytes in the thymus between 4-month and 1.5-year old groupers indicated that age-related thymic atrophy also occurs in fishes. The similar functional structures of RAG1 and IgM protein between fish and mammals indicated that teleost species share a similar mechanism of V(D)J recombination with higher vertebrates.
Collapse
Affiliation(s)
- Ming-Guang Mao
- State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, Fujian, China
| | | | | | | | | |
Collapse
|
91
|
Abstract
In order to metastasize, cancer cells must first detach from the primary tumor, migrate, invade through tissues, and attach to a second site. Hakai was discovered as an E3 ubiquitin-ligase that mediates the posttranslational downregulation of E-cadherin, a major component of adherens junctions in epithelial cells that is characterized as a potent tumor suppressor and is modulated during various processes including epithelial–mesenchymal transition. Recent data have provided evidences for novel biological functional role of Hakai during tumor progression and other diseases. Here, we will review the knowledge that has been accumulated since Hakai discovery 10 years ago and its implication in human cancer disease. We will highlight the different signaling pathways leading to the influence on Hakai and suggest its potential usefulness as therapeutic target for cancer.
Collapse
|
92
|
Molecular cloning and characterization of a novel RING zinc-finger protein gene up-regulated under in vitro salt stress in cassava. Mol Biol Rep 2012; 39:6513-9. [PMID: 22307786 DOI: 10.1007/s11033-012-1479-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 01/24/2012] [Indexed: 01/14/2023]
Abstract
Cassava (Manihot esculenta Crantz) is one of the world's most important food crops. It is cultivated mainly in developing countries of tropics, since its root is a major source of calories for low-income people due to its high productivity and resistance to many abiotic and biotic factors. A previous study has identified a partial cDNA sequence coding for a putative RING zinc finger in cassava storage root. The RING zinc finger protein is a specialized type of zinc finger protein found in many organisms. Here, we isolated the full-length cDNA sequence coding for M. esculenta RZF (MeRZF) protein by a combination of 5' and 3' RACE assays. BLAST analysis showed that its deduced amino acid sequence has a high level of similarity to plant proteins of RZF family. MeRZF protein contains a signature sequence motif for a RING zinc finger at its C-terminal region. In addition, this protein showed a histidine residue at the fifth coordination site, likely belonging to the RING-H2 subgroup, as confirmed by our phylogenetic analysis. There is also a transmembrane domain in its N-terminal region. Finally, semi-quantitative RT-PCR assays showed that MeRZF expression is increased in detached leaves treated with sodium chloride. Here, we report the first evidence of a RING zinc finger gene of cassava showing potential role in response to salt stress.
Collapse
|
93
|
Nakayama EE, Shioda T. TRIM5α and Species Tropism of HIV/SIV. Front Microbiol 2012; 3:13. [PMID: 22291694 PMCID: PMC3264904 DOI: 10.3389/fmicb.2012.00013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/09/2012] [Indexed: 12/03/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects humans and chimpanzees but not old world monkeys (OWMs) such as the rhesus monkey (Rh) and cynomolgus monkey (CM). HIV-1 efficiently enters cells of OWMs but encounters a block before reverse transcription. This narrow host range is attributed to a barrier in the host cell. In 2004, the screening of a Rh cDNA library identified tripartite motif 5α (TRIM5α) as a cellular antiviral factor. TRIM5α is one of splicing variants produced by TRIM5 gene and TRIM5 proteins are members of the TRIM family containing RING, B-box 2, and coiled-coil domains. The RING domain is frequently found in E3 ubiquitin ligase and TRIM5α is degraded via the ubiquitin–proteasome-dependent pathway. Among TRIM5 splicing variants, TRIM5α alone has an additional C-terminal PRYSPRY (B30.2) domain. Previous studies have shown that sequence variation in variable regions of the PRYSPRY domain among different monkey species affects species-specific retrovirus infection, while amino acid sequence differences in the viral capsid protein determine viral sensitivity to restriction. TRIM5α recognizes the multimerized capsid proteins (viral core) of an incoming virus by its PRYSPRY domain and is thus believed to control retroviral infection. There are significant intraspecies variations in the Rh-TRIM5 gene. It has also been reported that some Rh and CM individuals have retrotransposed cyclophilin A open reading frame in the TRIM5 gene, which produces TRIM5–cyclophilin A fusion protein (TRIMCyp). TRIMCyp, which was originally identified as an anti-HIV-1 factor of New World owl monkeys, is an interesting example of the gain of a new function by retrotransposition. As different TRIM5 genotypes of Rh showed different levels of simian immunodeficiency virus replication in vivo, the TRIM5 genotyping is thought to be important in acquired immunodeficiency syndrome monkey models.
Collapse
Affiliation(s)
- Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University Suita, Osaka, Japan
| | | |
Collapse
|
94
|
Lee J, Cho YD, Heo YK, Kwon Y, Kim DG, Choi BS, Kim SS, Kim YB. Reduction of N-tropic mutant porcine endogenous retrovirus infectivity by human tripartite motif-containing 5-isoform alpha. Transplant Proc 2012; 43:2774-8. [PMID: 21911161 DOI: 10.1016/j.transproceed.2011.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/19/2011] [Indexed: 10/17/2022]
Abstract
In cases of retroviral infection, the host cell deploys antiviral proteins as a type of innate immunity. Tripartite motif-containing 5-isoform alpha (TRIM5α) is a potent antiviral protein. TRIM5α has been reported to restrict human immunodeficiency virus (HIV) 1 infection in rhesus monkey cells by targeting the incoming viral capsid at the postentry or preintegration stage of the viral life cycle. As a consequence, virus replication and reverse transcription are interrupted. TRIM5α of human origin has also been shown to inhibit N-tropic murine leukemia virus infection. To investigate the inhibitory effect of TRIM5α on porcine endogenous retrovirus (PERV) infection in humans, we constructed a 293T cell line stably expressing human TRIM5α (293T-huTRIM5α) and tested the infectivity of vesicular stomatitis virus glycoprotein envelope pseudotyped viruses (wild-type PERV [wt-PERV], N-tropic mutant PERV, N-tropic murine leukemia virus, and MoMLV). Infectivity of N-tropic mutant PERV was reduced by 43.3% in 293T-huTRIM5α cells, a decrease in efficiency that was more than 3-fold greater than that of wt-PERV in 293T-huTRIM5α cells. Human TRIM5α exhibited inhibitory activity against N-tropic MLV and N-tropic mutant PERV, but showed no antiviral activity against Moloney murine leukemia virus or wt-PERV.
Collapse
Affiliation(s)
- J Lee
- Department of Animal Biotechnology, College of Animal Bioscience & Technology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Kästle M, Grune T. Interactions of the Proteasomal System with Chaperones. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:113-60. [DOI: 10.1016/b978-0-12-397863-9.00004-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
96
|
Kumar P, Pradhan K, Karunya R, Ambasta RK, Querfurth HW. Cross-functional E3 ligases Parkin and C-terminus Hsp70-interacting protein in neurodegenerative disorders. J Neurochem 2011; 120:350-70. [DOI: 10.1111/j.1471-4159.2011.07588.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
97
|
Hao Z, Zhang H, Cowell J. Ubiquitin-conjugating enzyme UBE2C: molecular biology, role in tumorigenesis, and potential as a biomarker. Tumour Biol 2011; 33:723-30. [PMID: 22170434 DOI: 10.1007/s13277-011-0291-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/01/2011] [Indexed: 01/28/2023] Open
Abstract
Ubiquitin-conjugating enzyme 2C (UBE2C) participates in cell cycle progression and checkpoint control by targeted degradation of short-lived proteins. As a conjugating enzyme, it directs polyubiquitination to preferred lysine in the substrates. In addition to its well-known role in cyclin B destruction that is essential for exit from mitosis, UBE2C also plays an important role in mitotic spindle checkpoint control. Cells overexpressing UBE2C ignore the mitotic spindle checkpoint signals and lose genomic stability, which is a hallmark of cancer. UBE2C expression is upregulated upon malignant transformation, and amplification of UBE2C is often seen at the chromosome level in cancers in a manner similar to c-Myc, which is directly upstream of UBE2C. UBE2C levels are upregulated in a wide range of solid tumors and hematological malignancies. The level of expression correlates with the aggressiveness of the tumor. High UBE2C expression is predictive of poor survival and perhaps high risk for relapse. UBE2C immunochemistry may be integrated into the diagnosis of thyroid malignancy and gliomas. This minireview summarizes what is known about the function of UBE2C focusing on its role in the regulation of spindle assembly checkpoint, its part in tumorigenesis, and its potential as a tumor marker for various cancers.
Collapse
Affiliation(s)
- Zhonglin Hao
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, 1120 15th street, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
98
|
Abstract
Bacterial infections cause substantial mortality and burden of disease globally. Induction of a strong innate inflammatory response is the first common host mechanism required for elimination of the invading pathogens. The host transcription factor, nuclear factor kappa B (NF-κB) is essential for immune activation. Conversely, bacterial pathogens have evolved strategies to interfere directly with host cell signalling by regulating or mimicking host proteins. Given the key role of NF-κB in the host inflammatory response, bacteria have expectedly developed virulence effectors interfering with NF-κB signalling pathways. In this review, we explore the bacterial mechanisms utilized to prevent effective NF-κB signalling, which in turn usurp the host inflammatory response.
Collapse
Affiliation(s)
- Gaëlle Le Negrate
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
99
|
NIRF, a novel ubiquitin ligase, interacts with hepatitis B virus core protein and promotes its degradation. Biotechnol Lett 2011; 34:29-36. [DOI: 10.1007/s10529-011-0751-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 09/21/2011] [Indexed: 12/29/2022]
|
100
|
Roy AL. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later. Gene 2011; 492:32-41. [PMID: 22037610 DOI: 10.1016/j.gene.2011.10.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/08/2011] [Accepted: 10/11/2011] [Indexed: 12/12/2022]
Abstract
Exactly twenty years ago TFII-I was discovered as a biochemical entity that was able to bind to and function via a core promoter element called the Initiator (Inr). Since then several different properties of this signal-induced multifunctional factor were discovered. Here I update these ever expanding functions of TFII-I--focusing primarily on the last ten years since the first review appeared in this journal.
Collapse
Affiliation(s)
- Ananda L Roy
- Department of Pathology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|