51
|
Affiliation(s)
- Ali Naini
- H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related disorders, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
52
|
Kirby DM, Thorburn DR, Turnbull DM, Taylor RW. Biochemical assays of respiratory chain complex activity. Methods Cell Biol 2007; 80:93-119. [PMID: 17445690 DOI: 10.1016/s0091-679x(06)80004-x] [Citation(s) in RCA: 298] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Denise M Kirby
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | | | | |
Collapse
|
53
|
Vitetta L, Anton B. Lifestyle and nutrition, caloric restriction, mitochondrial health and hormones: scientific interventions for anti-aging. Clin Interv Aging 2007; 2:537-43. [PMID: 18225453 PMCID: PMC2686342 DOI: 10.2147/cia.s866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aging is a universal process to all life forms. The most current and widely accepted definition for aging in humans is that there is a progressive loss of function and energy production that is accompanied by decreasing fertility and increasing mortality with advancing age. The most obvious and commonly recognised consequence of aging and energy decline is a decrease in skeletal muscle function which affects every aspect of human life from the ability to play games, walk and run to chew, swallow and digest food. There is hence a recognised overall decline of an individuals' fitness for the environment that they occupy. In Westenised countries this decline is gradual and the signs become mostly noticeable after the 5th decade of life and henceforth, where the individual slowly progresses to death over the next three to four decades. Given that the aging process is slow and gradual, it presents with opportunities and options that may ameliorate and improve the overall functional capacity of the organism. Small changes in function may be more amenable and likely to further slow down and possibly reverse some of the deleterious effects of aging, rather, than when the incremental changes are large. This overall effect may then translate into a significant compression of the deleterious aspects of human aging with a resultant increase in human life expectancy.
Collapse
Affiliation(s)
- Luis Vitetta
- Unit of Health Integration, School of Medicine, University of Queensland, Australia.
| | | |
Collapse
|
54
|
Boelsterli UA, Lim PLK. Mitochondrial abnormalities--a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol 2006; 220:92-107. [PMID: 17275868 DOI: 10.1016/j.taap.2006.12.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/12/2006] [Accepted: 12/12/2006] [Indexed: 12/17/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a major clinical problem and poses a considerable challenge for drug development as an increasing number of successfully launched drugs or new potential drugs have been implicated in causing DILI in susceptible patient subsets. Although the incidence for a particular drug is very low (yet grossly underestimated), the outcome of DILI can be serious. Unfortunately, prediction has remained poor (both for patients at risk and for new chemical entities). The underlying mechanisms and the determinants of susceptibility have largely remained ill-defined. The aim of this review is to provide both clinical and experimental evidence for a major role of mitochondria both as a target of drugs causing idiosyncratic DILI and as mediators of delayed liver injury. We develop a unifying hypothesis that involves underlying genetic or acquired mitochondrial abnormalities as a major determinant of susceptibility for a number of drugs that target mitochondria and cause DILI. The mitochondrial hypothesis, implying gradually accumulating and initially silent mitochondrial injury in heteroplasmic cells which reaches a critical threshold and abruptly triggers liver injury, is consistent with the findings that typically idiosyncratic DILI is delayed (by weeks or months), that increasing age and female gender are risk factors and that these drugs are targeted to the liver and clearly exhibit a mitochondrial hazard in vitro and in vivo. New animal models (e.g., the Sod2(+/-) mouse) provide supporting evidence for this concept. However, genetic analyses of DILI patient samples are needed to ultimately provide the proof-of-concept.
Collapse
Affiliation(s)
- Urs A Boelsterli
- Molecular Toxicology Lab, Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore.
| | | |
Collapse
|
55
|
Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci U S A 2006; 103:19689-94. [PMID: 17170133 PMCID: PMC1750892 DOI: 10.1073/pnas.0609502103] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used engineered zinc finger peptides (ZFPs) to bind selectively to predetermined sequences in human mtDNA. Surprisingly, we found that engineered ZFPs cannot be reliably routed to mitochondria by using only conventional mitochondrial targeting sequences. We here show that addition of a nuclear export signal allows zinc finger chimeric enzymes to be imported into human mitochondria. The selective binding of mitochondria-specific ZFPs to mtDNA was exemplified by targeting the T8993G mutation, which causes two mitochondrial diseases, neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) and also maternally inherited Leigh's syndrome. To develop a system that allows the monitoring of site-specific alteration of mtDNA we combined a ZFP with the easily assayed DNA-modifying activity of hDNMT3a methylase. Expression of the mutation-specific chimeric methylase resulted in the selective methylation of cytosines adjacent to the mutation site. This is a proof of principle that it is possible to target and alter mtDNA in a sequence-specific manner by using zinc finger technology.
Collapse
Affiliation(s)
- Michal Minczuk
- *Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, United Kingdom
- To whom correspondence may be addressed. E-mail:
or
| | - Monika A. Papworth
- *Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and
| | - Paulina Kolasinska
- *Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and
| | - Michael P. Murphy
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, United Kingdom
| | - Aaron Klug
- *Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
56
|
Bowes T, Singh B, Gupta RS. Subcellular localization of fumarase in mammalian cells and tissues. Histochem Cell Biol 2006; 127:335-46. [PMID: 17111171 DOI: 10.1007/s00418-006-0249-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2006] [Indexed: 11/29/2022]
Abstract
Fumarase, a mitochondrial matrix protein, is previously indicated to be present in substantial amounts in the cytosol as well. However, recent studies show that newly synthesized human fumarase is efficiently imported into mitochondria with no detectable amount in the cytosol. To clarify its subcellular localization, the subcellular distribution of fumarase in mammalian cells/tissues was examined by a number of different methods. Cell fractionation using either a mitochondria fraction kit or extraction with low concentrations of digitonin, detected no fumarase in a 100,000 g supernatant fraction. Immunofluorescence labeling with an affinity-purified antibody to fumarase and an antibody to the mitochondrial Hsp60 protein showed identical labeling pattern with labeling seen mainly in mitochondria. Detailed studies were performed using high-resolution immunogold electron microscopy to determine the subcellular localization of fumarase in rat tissues, embedded in LR White resin. In thin sections from kidney, liver, heart, adrenal gland and anterior pituitary, strong and specific labeling due to fumarase antibody was only detected in mitochondria. However, in the pancreatic acinar cells, in addition to mitochondria, highly significant labeling was also observed in the zymogen granules and endoplasmic reticulum. The observed labeling in all cases was completely abolished upon omission of the primary antibody indicating that it was specific. In a western blot of purified zymogen granules, a fumarase-antibody cross-reactive protein of the same molecular mass as seen in the mitochondria was present. These results provide evidence that fumarase in mammalian cells/tissues is mainly localized in mitochondria and significant amounts of this protein are not present in the cytosol. However, these studies also reveal that in certain tissues, in addition to mitochondria, this protein is also present at specific extramitochondrial sites. Although the cellular function of fumarase at these extramitochondrial locations is not known, the appearance/localization of fumarase outside mitochondria may help explain how mutations in this mitochondrial protein can give rise to a number of different types of cancers.
Collapse
Affiliation(s)
- Timothy Bowes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8N 3Z5
| | | | | |
Collapse
|
57
|
Grazina M, Pratas J, Silva F, Oliveira S, Santana I, Oliveira C. Genetic basis of Alzheimer's dementia: role of mtDNA mutations. GENES BRAIN AND BEHAVIOR 2006; 5 Suppl 2:92-107. [PMID: 16681804 DOI: 10.1111/j.1601-183x.2006.00225.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder associated to dementia in late adulthood. Amyloid precursor protein, presenilin 1 and presenilin 2 genes have been identified as causative genes for familial AD, whereas apolipoprotein E epsilon4 allele has been associated to the risk for late onset AD. However, mutations on these genes do not explain the majority of cases. Mitochondrial respiratory chain (MRC) impairment has been detected in brain, muscle, fibroblasts and platelets of Alzheimer's patients, indicating a possible involvement of mitochondrial DNA (mtDNA) in the aetiology of the disease. Several reports have identified mtDNA mutations in Alzheimer's patients, suggesting the existence of related causal factors probably of mtDNA origin, thus pointing to the involvement of mtDNA in the risk contributing to dementia, but there is no consensual opinion in finding the cause for impairment. However, mtDNA mutations might modify age of onset, contributing to the neurodegenerative process, probably due to an impairment of MRC and/or translation mechanisms.
Collapse
Affiliation(s)
- M Grazina
- Biochemistry Institute, Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
58
|
Li G, Chen S, Thompson MN, Greenberg ML. New insights into the regulation of cardiolipin biosynthesis in yeast: implications for Barth syndrome. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:432-41. [PMID: 16904369 DOI: 10.1016/j.bbalip.2006.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
Recent studies have revealed an array of novel regulatory mechanisms involved in the biosynthesis and metabolism of the phospholipid cardiolipin (CL), the signature lipid of mitochondria. CL plays an important role in cellular and mitochondrial function due in part to its association with a large number of mitochondrial proteins, including many which are unable to function optimally in the absence of CL. New insights into the complexity of regulation of CL provide further evidence of its importance in mitochondrial and cellular function. The biosynthesis of CL in yeast occurs via three enzymatic steps localized in the mitochondrial inner membrane. Regulation of this process by general phospholipid cross-pathway control and factors affecting mitochondrial development has been previously established. In this review, novel regulatory mechanisms that control CL biosynthesis are discussed. A unique form of inositol-mediated regulation has been identified in the CL biosynthetic pathway, independent of the INO2-INO4-OPI1 regulatory circuit that controls general phospholipid biosynthesis. Inositol leads to decreased activity of phosphatidylglycerolphosphate (PGP) synthase, which catalyzes the committed step of CL synthesis. Reduced enzymatic activity does not result from alteration of expression of the structural gene, but is instead due to increased phosphorylation of the enzyme. This is the first demonstration of phosphorylation in response to inositol and may have significant implications in understanding the role of inositol in other cellular regulatory pathways. Additionally, synthesis of CL has been shown to be dependent on mitochondrial pH, coordinately controlled with synthesis of mitochondrial phosphatidylethanolamine (PE), and may be regulated by mitochondrial DNA absence sensitive factor (MIDAS). Further characterization of these regulatory mechanisms holds great potential for the identification of novel functions of CL in mitochondrial and cellular processes.
Collapse
Affiliation(s)
- Guiling Li
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
59
|
Martorell L, Segués T, Folch G, Valero J, Joven J, Labad A, Vilella E. New variants in the mitochondrial genomes of schizophrenic patients. Eur J Hum Genet 2006; 14:520-8. [PMID: 16538224 DOI: 10.1038/sj.ejhg.5201606] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The impaired mitochondrial function hypothesis in schizophrenia is based on evidence of altered brain metabolism, morphology, biochemistry and gene expression. Mitochondria have their own genome, which is needed to synthesize some of the subunits of the respiratory chain enzymes. Mitochondrial DNA (mtDNA) is maternally inherited and we observed an excess of maternal transmission of schizophrenia in a set of parent-offspring affected pairs. We therefore hypothesized that mutations in the mtDNA may contribute to the complex genetic basis of schizophrenia. The entire mtDNA of six schizophrenic patients with an apparent maternal transmission of the disease was sequenced and compared to the reference sequence. We have identified 50 variants and among these six have not been previously reported. Three of them were missense variants: MTCO2 7750C>A, MTATP6 8857G>A and MTND4 12096T>A. These were maternally inherited because they were also present in the mtDNA of their respective schizophrenic mothers and none of them were found in 95 control individuals. The MTND4 12096T>A (Leu446His) is a heteroplasmic variant present in five of the six mother-offspring patient pairs that triggers a non-conservative substitution in the ND4 subunit of complex I. Sequence alignment of 110 ND4 peptides from all eukaryotic kingdoms shows that only hydrophobic amino acids are found in this position. Moreover, leucine was conserved or substituted by an isoleucine in all mammalian species. This indicates that the presence of histidine could affect complex I activity in patients with schizophrenia.
Collapse
Affiliation(s)
- Lourdes Martorell
- Departament de Formació i Investigació, Hospital Psiquiàtric Universitari Institut Pere Mata, Reus, Spain.
| | | | | | | | | | | | | |
Collapse
|
60
|
Amiott EA, Jaehning JA. Mitochondrial transcription is regulated via an ATP "sensing" mechanism that couples RNA abundance to respiration. Mol Cell 2006; 22:329-38. [PMID: 16678105 DOI: 10.1016/j.molcel.2006.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 12/16/2005] [Accepted: 03/30/2006] [Indexed: 11/29/2022]
Abstract
The information encoded in both the nuclear and mitochondrial genomes must be coordinately regulated to respond to changes in cellular growth and energy states. Despite identification of the mitochondrial RNA polymerase (mtRNAP) from several organisms, little is known about mitochondrial transcriptional regulation. Studying the shift from fermentation to respiration in Saccharomyces cerevisiae, we have demonstrated a direct correlation between in vivo changes in mitochondrial transcript abundance and in vitro sensitivity of mitochondrial promoters to ATP concentration (K(m)ATP). Consistent with the idea that the mtRNAP itself senses in vivo ATP levels, we found that transcript abundance correlates with respiration, but only when coupled to mitochondrial ATP synthesis. In addition, we characterized mutations in the mitochondrial promoter and the mtRNAP accessory factor Mtf1 that alter both in vitro K(m)ATP and in vivo transcription in response to respiratory changes. We propose that shifting cellular pools of ATP coordinately control nuclear and mitochondrial transcription.
Collapse
Affiliation(s)
- Elizabeth A Amiott
- Department of Biochemistry and Molecular Genetics and Molecular Biology Program, University of Colorado at Denver and Health Sciences Center, MS 8101, P.O. Box 6511, Aurora, 80045, USA
| | | |
Collapse
|
61
|
Storz P. Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a key to aging and radical-caused diseases. Sci Signal 2006; 2006:re3. [PMID: 16639035 DOI: 10.1126/stke.3322006re3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mitochondria-generated reactive oxygen species have been implicated as a common feature that connects aging of organisms and age-related diseases. Efficient elimination of these radicals by antioxidants correlates with increased life span. Understanding how the mitochondrion signals to the nucleus to regulate antioxidant proteins might be a key to aging processes and treatment of human diseases.
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
62
|
Guo X, Liu S, Liu Y. Evidence for recombination of mitochondrial DNA in triploid crucian carp. Genetics 2006; 172:1745-9. [PMID: 16322508 PMCID: PMC1456294 DOI: 10.1534/genetics.105.049841] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2005] [Accepted: 11/14/2005] [Indexed: 11/18/2022] Open
Abstract
In this study, we report the complete mitochondrial DNA (mtDNA) sequences of the allotetraploid and triploid crucian carp and compare the complete mtDNA sequences between the triploid crucian carp and its female parent Japanese crucian carp and between the triploid crucian carp and its male parent allotetraploid. Our results indicate that the complete mtDNA nucleotide identity (98%) between the triploid crucian carp and its male parent allotetraploid was higher than that (93%) between the triploid crucian carp and its female parent Japanese crucian carp. Moreover, the presence of a pattern of identity and difference at synonymous sites of mitochondrial genomes between the triploid crucian carp and its parents provides direct evidence that triploid crucian carp possessed the recombination mtDNA fragment (12,759 bp) derived from the paternal fish. These results suggest that mtDNA recombination was derived from the fusion of the maternal and paternal mtDNAs. Compared with the haploid egg with one set of genome from the Japanese crucian carp, the diploid sperm with two sets of genomes from the allotetraploid could more easily make its mtDNA fuse with the mtDNA of the haploid egg. In addition, the triple hybrid nature of the triploid crucian carp probably allowed its better mtDNA recombination. In summary, our results provide the first evidence of mtDNA combination in polyploid fish.
Collapse
Affiliation(s)
- Xinhong Guo
- College of Life Sciences, Hunan Normal University, ChangSha 410081, Hunan, People's Republic of China
| | | | | |
Collapse
|
63
|
|
64
|
Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:164-80. [PMID: 16236486 DOI: 10.1016/j.bbadis.2005.09.004] [Citation(s) in RCA: 451] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 08/09/2005] [Accepted: 09/13/2005] [Indexed: 01/23/2023]
Abstract
Mitochondrial creatine kinase (MtCK), together with cytosolic creatine kinase isoenzymes and the highly diffusible CK reaction product, phosphocreatine, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. Mitochondrial proteolipid complexes containing MtCK form microcompartments that are involved in channeling energy in form of phosphocreatine rather than ATP into the cytosol. Under situations of compromised cellular energy state, which are often linked to ischemia, oxidative stress and calcium overload, two characteristics of mitochondrial creatine kinase are particularly relevant: its exquisite susceptibility to oxidative modifications and the compensatory up-regulation of its gene expression, in some cases leading to accumulation of crystalline MtCK inclusion bodies in mitochondria that are the clinical hallmarks for mitochondrial cytopathies. Both of these events may either impair or reinforce, respectively, the functions of mitochondrial MtCK complexes in cellular energy supply and protection of mitochondria form the so-called permeability transition leading to apoptosis or necrosis.
Collapse
Affiliation(s)
- Uwe Schlattner
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH Zürich), Hönggerberg HPM, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
65
|
Nicoletti VG, Marino VM, Cuppari C, Licciardello D, Patti D, Purrello VS, Stella AMG. Effect of antioxidant diets on mitochondrial gene expression in rat brain during aging. Neurochem Res 2006; 30:737-52. [PMID: 16187210 DOI: 10.1007/s11064-005-6867-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Abstract
Age-related increase of reactive oxygen species (ROS) is particularly detrimental in postmitotic tissues. Calorie restriction (CR) has been shown to exert beneficial effects, consistent with reduced ROS generation by mitochondria. Many antioxidant compounds also mimic such effects. N-acetyl cysteine (NAC) provides thiol groups to glutathione and to mitochondrial respiratory chain proteins; thus, it may counteract both ROS generation and effects. In the present study we investigated, in different rat brain areas during aging (6, 12, and 28 months), the effect of 1-year treatment with CR and dietary supplementation with NAC on the expression of subunit 39 kDa and ND-1 (mitochondrial respiratory complex I), subunit IV (complex IV), subunit alpha of F0F1-ATP synthase (complex V) and of adenine nucleotide translocator, isoform 1 (ANT-1). The observed age-related changes of expression were prevented by the dietary treatments. The present study provides further evidence for the critical role of mitochondria in the aging process.
Collapse
Affiliation(s)
- V G Nicoletti
- Department of Chemical Sciences, Section of Biochemistry & Molecular Biology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
66
|
Zahedi RP, Sickmann A, Boehm AM, Winkler C, Zufall N, Schönfisch B, Guiard B, Pfanner N, Meisinger C. Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Mol Biol Cell 2006; 17:1436-50. [PMID: 16407407 PMCID: PMC1382330 DOI: 10.1091/mbc.e05-08-0740] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondria consist of four compartments-outer membrane, intermembrane space, inner membrane, and matrix--with crucial but distinct functions for numerous cellular processes. A comprehensive characterization of the proteome of an individual mitochondrial compartment has not been reported so far. We used a eukaryotic model organism, the yeast Saccharomyces cerevisiae, to determine the proteome of highly purified mitochondrial outer membranes. We obtained a coverage of approximately 85% based on the known outer membrane proteins. The proteome represents a rich source for the analysis of new functions of the outer membrane, including the yeast homologue (Hfd1/Ymr110c) of the human protein causing Sjögren-Larsson syndrome. Surprisingly, a subclass of proteins known to reside in internal mitochondrial compartments were found in the outer membrane proteome. These seemingly mislocalized proteins included most top scorers of a recent genome-wide analysis for mRNAs that were targeted to mitochondria and coded for proteins of prokaryotic origin. Together with the enrichment of the precursor form of a matrix protein in the outer membrane, we conclude that the mitochondrial outer membrane not only contains resident proteins but also accumulates a conserved subclass of preproteins destined for internal mitochondrial compartments.
Collapse
Affiliation(s)
- Rene P Zahedi
- Rudolf-Virchow-Center for Experimental Biomedicine, Universität Würzburg, D-97078 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Papworth M, Kolasinska P, Minczuk M. Designer zinc-finger proteins and their applications. Gene 2006; 366:27-38. [PMID: 16298089 DOI: 10.1016/j.gene.2005.09.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/18/2005] [Indexed: 10/25/2022]
Abstract
The Cys(2)His(2) zinc finger is one of the most common DNA-binding motifs in Eukaryota. A simple mode of DNA recognition by the Cys(2)His(2) zinc finger domain provides an ideal scaffold for designing proteins with novel sequence specificities. The ability to bind specifically to virtually any DNA sequence combined with the potential of fusing them with effector domains has led to the technology of engineering of chimeric DNA-modifying enzymes and transcription factors. This in turn has opened the possibility of using the engineered zinc finger-based factors as novel human therapeutics. One such synthetic factor-designer zinc finger transcription activator of the vascular endothelial growth factor A gene-has recently entered clinical trials to evaluate the ability of stimulating the growth of blood vessels in treating the peripheral arterial obstructive disease. This review concentrates on the aspects of natural Cys(2)His(2) zinc fingers evolution and fundamental steps in design of engineered zinc finger proteins. The applications of engineered zinc finger proteins are discussed in a context of the mechanism mediating their effect on the targeted DNA. Furthermore, the regulation of the expression of zinc finger proteins and their targeting to various cellular compartments and to chromatin and non-chromatin target templates are described. Also possible future applications of designer zinc finger proteins are discussed.
Collapse
Affiliation(s)
- Monika Papworth
- MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, UK.
| | | | | |
Collapse
|
68
|
Tominaga M, Kurihara H, Honda S, Amakawa G, Sakai T, Tomooka Y. Molecular characterization of mitocalcin, a novel mitochondrial Ca2+-binding protein with EF-hand and coiled-coil domains. J Neurochem 2005; 96:292-304. [PMID: 16336229 DOI: 10.1111/j.1471-4159.2005.03554.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we have identified and characterized a novel mitochondrial Ca2+-binding protein, mitocalcin. Western blot analysis demonstrated that mitocalcin was widely expressed in mouse tissues. The expression in brain was increased during post-natal to adult development. Further analyses were carried out in newly established neural cell lines. The protein was expressed specifically in neurons but not in glial cells. Double-labeling studies revealed that mitocalcin was colocalized with mitochondria in neurons differentiated from 2Y-3t cells. In addition, mitocalcin was enriched in the mitochondrial fraction purified from the cells. Immunohistochemical studies on mouse cerebellum revealed that the expression pattern of mitocalcin in glomeruli of the internal granular and molecular layers was well overlapped by the distribution pattern of mitochondria. Immunogold electron microscopy showed that mitocalcin was associated with mitochondrial inner membrane. Overexpression of mitocalcin in 2Y-3t cells resulted in neurite extension. Inhibition of the expression in 2Y-3t cells caused suppression of neurite outgrowth and then cell death. These findings suggest that mitocalcin may play roles in neuronal differentiation and function through the control of mitochondrial function.
Collapse
Affiliation(s)
- Mitsutoshi Tominaga
- Department of Biological Science and Technology and Tissue Engineering Research Center, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
69
|
Breton S, Burger G, Stewart DT, Blier PU. Comparative analysis of gender-associated complete mitochondrial genomes in marine mussels (Mytilus spp.). Genetics 2005; 172:1107-19. [PMID: 16322521 PMCID: PMC1456209 DOI: 10.1534/genetics.105.047159] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine mussels of the genus Mytilus have an unusual mode of mitochondrial DNA (mtDNA) transmission termed doubly uniparental inheritance (DUI). Female mussels are homoplasmic for the F mitotype, which is inherited maternally, while males are usually heteroplasmic, carrying a mixture of the maternal F mitotype and the paternally inherited M genome. Two classes of M genomes have been observed: "standard" M genomes and "recently masculinized" M genomes. The latter are more similar to F genomes at the sequence level but are transmitted paternally like standard M genomes. In this study we report the complete sequences of two standard male M. edulis and one recently masculinized male M. trossulus mitochondrial genome. A comparative analysis, including the previously sequenced M. edulis F and M. galloprovincialis F and M mtDNAs, reveals that these genomes are identical in gene order, but highly divergent in nucleotide and amino acid sequence. The large amount (>20%) of nucleotide substitutions that fall in coding regions implies that there are several amino acid replacements between the F and M genomes, which likely have an impact on the structural and functional properties of the mitochondrial proteome. Correlation of the divergence rate of different protein-coding genes indicates that mtDNA-encoded proteins of the M genome are still under selective constraints, although less highly than genes of the F genome. The mosaic F/M control region of the masculinized F genome provides evidence for lineage-specific sequences that may be responsible for the different mode of transmission genetics. This analysis shows the value of comparative genomics to better understand the mechanisms of maintenance and segregation of mtDNA sequence variants in mytilid mussels.
Collapse
Affiliation(s)
- Sophie Breton
- Laboratoire de Biologie Evolutive, Département de Biologie, Université du Quebec, Rimouski, Canada
| | | | | | | |
Collapse
|
70
|
Nakashima-Kamimura N, Asoh S, Ishibashi Y, Mukai Y, Shidara Y, Oda H, Munakata K, Goto YI, Ohta S. MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction. J Cell Sci 2005; 118:5357-67. [PMID: 16263763 DOI: 10.1242/jcs.02645] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the regulatory system in mitochondrial biogenesis involving crosstalk between the mitochondria and nucleus, we found a factor named MIDAS (mitochondrial DNA absence sensitive factor) whose expression was enhanced by the absence of mitochondrial DNA (mtDNA). In patients with mitochondrial diseases, MIDAS expression was increased only in dysfunctional muscle fibers. A majority of MIDAS localized to mitochondria with a small fraction in the Golgi apparatus in HeLa cells. To investigate the function of MIDAS, we stably transfected HeLa cells with an expression vector carrying MIDAS cDNA or siRNA. Cells expressing the MIDAS protein and the siRNA constitutively showed an increase and decrease in the total mass of mitochondria, respectively, accompanying the regulation of a mitochondria-specific phospholipid, cardiolipin. In contrast, amounts of the mitochondrial DNA, RNA and proteins did not depend upon MIDAS. Thus, MIDAS is involved in the regulation of mitochondrial lipids, leading to increases of total mitochondrial mass in response to mitochondrial dysfunction.
Collapse
MESH Headings
- Cardiolipins/metabolism
- Cell Nucleus/genetics
- Cells, Cultured
- Cloning, Molecular
- DNA, Mitochondrial/analysis
- DNA, Mitochondrial/genetics
- Golgi Apparatus/metabolism
- HeLa Cells
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitochondria, Muscle/ultrastructure
- Mitochondrial Proteins/metabolism
- Mitochondrial Swelling
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Protein Transport
- RNA/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
- Naomi Nakashima-Kamimura
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-cho, Kawasaki, Kanagawa 211-8533, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Pagliarini DJ, Wiley SE, Kimple ME, Dixon JR, Kelly P, Worby CA, Casey PJ, Dixon JE. Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells. Mol Cell 2005; 19:197-207. [PMID: 16039589 DOI: 10.1016/j.molcel.2005.06.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/13/2005] [Accepted: 06/02/2005] [Indexed: 12/01/2022]
Abstract
Reversible phosphorylation is the cell's most prevalent form of posttranslational modification, yet its role in the regulation of mitochondrial functions is poorly understood. We have discovered that a member of the dual-specific protein tyrosine phosphatase (DS-PTP) family, PTPMT1 (PTP localized to the Mitochondrion 1) resides nearly exclusively in mitochondria. PTPMT1 is targeted to the mitochondrion by an N-terminal signal sequence and is found anchored to the matrix face of the inner membrane. Knockdown of PTPMT1 expression in the pancreatic insulinoma cell line INS-1 832/13 alters the mitochondrial phosphoprotein profile and markedly enhances both ATP production and insulin secretion. These data define PTPMT1 as a potential drug target for the treatment of type II diabetes and strengthen the notion that mitochondria are an underappreciated site of signaling by reversible phosphorylation.
Collapse
Affiliation(s)
- David J Pagliarini
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Sadacharan SK, Singh B, Bowes T, Gupta RS. Localization of mitochondrial DNA encoded cytochrome c oxidase subunits I and II in rat pancreatic zymogen granules and pituitary growth hormone granules. Histochem Cell Biol 2005; 124:409-21. [PMID: 16133117 DOI: 10.1007/s00418-005-0056-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
Cytochrome c oxidase (COX) complex is an integral part of the electron transport chain. Three subunits of this complex (COX I, COX II and COX III) are encoded by mitochondrial (mit-) DNA. High-resolution immunogold electron microscopy has been used to study the subcellular localization of COX I and COX II in rat tissue sections, embedded in LR Gold resin, using monoclonal antibodies for these proteins. Immunofluorescence labeling of BS-C-1 monkey kidney cells with these antibodies showed characteristic mitochondrial labeling. In immunogold labeling studies, the COX I and COX II antibodies showed strong and specific mitochondrial labeling in the liver, kidney, heart and pancreas. However, in rat pancreatic acinar tissue, in addition to mitochondrial labeling, strong and specific labeling was also observed in the zymogen granules (ZGs). In the anterior pituitary, strong labeling with these antibodies was seen in the growth hormone secretory granules. In contrast to these compartments, the COX I or COX II antibodies showed only minimal labeling (five- to tenfold lower) of the cytoplasm, endoplasmic reticulum and the nucleus. Strong labeling with the COX I or COX II antibodies was also observed in highly purified ZGs from bovine pancreas. The observed labeling, in all cases, was completely abolished upon omission of the primary antibodies. These results provide evidence that, similar to a number of other recently studied mit-proteins, COX I and COX II are also present outside the mitochondria. The presence of mit-DNA encoded COX I and COX II in extramitochondrial compartments, provides strong evidence that proteins can exit, or are exported, from the mitochondria. Although the mechanisms responsible for protein exit/export remain to be elucidated, these results raise fundamental questions concerning the roles of mitochondria and mitochondrial proteins in diverse cellular processes in different compartments.
Collapse
Affiliation(s)
- Skanda K Sadacharan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada, L8N 3Z5
| | | | | | | |
Collapse
|
73
|
Shadel GS. Mitochondrial DNA, aconitase 'wraps' it up. Trends Biochem Sci 2005; 30:294-6. [PMID: 15950872 DOI: 10.1016/j.tibs.2005.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/30/2005] [Accepted: 04/22/2005] [Indexed: 11/26/2022]
Abstract
Mitochondria are the sites of many essential biochemical reactions, an important subset of which require proteins encoded in the mitochondrial DNA (mtDNA). How mtDNA is regulated in response to changing cellular demands is largely unknown. A recent study documents that the mitochondrial TCA-cycle enzyme aconitase is associated with protein-mtDNA complexes called nucleoids. In this novel context, aconitase functions to stabilize mtDNA, perhaps by reversibly remodeling nucleoids to directly influence mitochondrial gene expression in response to changing cellular metabolism.
Collapse
Affiliation(s)
- Gerald S Shadel
- Department of Pathology, Yale University School of Medicine, P.O. Box 208023, New Haven, CT 06520-8023, USA.
| |
Collapse
|
74
|
Herrmann JM, Funes S. Biogenesis of cytochrome oxidase—Sophisticated assembly lines in the mitochondrial inner membrane. Gene 2005; 354:43-52. [PMID: 15905047 DOI: 10.1016/j.gene.2005.03.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 02/02/2005] [Accepted: 03/23/2005] [Indexed: 11/18/2022]
Abstract
Biogenesis of the cytochrome oxidase complex in the mitochondrial inner membrane depends on the concerted action of a variety of proteins. Recent studies shed light on this biological assembly process revealing an astonishingly complex procedure by which the different subunits of the enzymes are put together and the required cofactors are supplied. In this review we present a hypothetical model for the assembly process of cytochrome oxidase based on the current knowledge of the functions of specific assembly factors. According to this model the two largest subunits of the complex are first equipped with their respective cofactors on independent assembly lines. Prior to their assembly with the residual subunits that complete the whole complex, these two subcomplexes remain bound to substrate-specific chaperones. We propose that these chaperones, Mss51 for subunit 1 and Cox20 for subunit 2, control the coordinate assembly process to prevent potentially harmful redox reactions of unassembled or misassembled subunits.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Institute of Physiological Chemistry, Butenandtstrasse 5, 81377 München, University of Munich, Germany.
| | | |
Collapse
|
75
|
Disorders of the mitochondrial respiratory chain. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
76
|
Abstract
Despite recent epidemiological studies confirming that mitochondrial respiratory chain disorders due to mutations in either the mitochondrial or nuclear genome are amongst the most common inherited human diseases, realistic therapeutic strategies for these patients remain limited. The disappointing response to various vitamins, cofactors and electron acceptors that have been administered to patients in an attempt to bypass the underlying respiratory chain defect, coupled with the complexities of human mitochondrial genetics, means that novel and innovative means are required to offer realistic treatments. Several 'gene therapy' strategies have therefore been proposed to treat patients with pathogenic mitochondrial DNA mutations, and although these are not without their own inherent problems, several exciting approaches promise much in the near future. This review will provide a basic background to mitochondrial genetics and mitochondrial DNA disorders before introducing the various strategies being tested in vitro at present, in cell culture and animal models, and, in the example of therapeutic exercise, in patients themselves.
Collapse
Affiliation(s)
- Robert W Taylor
- University of Newcastle upon Tyne, Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
77
|
Miller C, Saada A, Shaul N, Shabtai N, Ben-Shalom E, Shaag A, Hershkovitz E, Elpeleg O. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann Neurol 2005; 56:734-8. [PMID: 15505824 DOI: 10.1002/ana.20282] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mitochondrial respiratory chain comprises 85 subunits, 13 of which are mitochondrial encoded. The synthesis of these 13 proteins requires many nuclear-encoded proteins that participate in mitochondrial DNA replication, transcript production, and a distinctive mitochondrial translation apparatus. We report a patient with agenesis of corpus callosum, dysmorphism, and fatal neonatal lactic acidosis with markedly decreased complex I and IV activity in muscle and liver and a generalized mitochondrial translation defect identified in pulse-label experiments. The defect was associated with marked reduction of the 12S rRNA transcript level likely attributed to a nonsense mutation in the MRPS16 gene. A new group of mitochondrial respiratory chain disorders is proposed, resulting from mutations in nuclear encoded components of the mitochondrial translation apparatus.
Collapse
Affiliation(s)
- Chaya Miller
- Metabolic Disease Unit, Shaare-Zedek Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Greenberg SA, Walsh RJ. Molecular diagnosis of inheritable neuromuscular disorders. Part I: Genetic determinants of inherited disease and their laboratory detection. Muscle Nerve 2005; 31:418-30. [PMID: 15704142 DOI: 10.1002/mus.20278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding of the genetic basis of inheritable neuromuscular disorders has grown rapidly over the last decade, resulting in improved classification and understanding of their pathogenesis. A consequence of these advances has been the development of genetic tests of blood specimens for the diagnosis of many of these diseases. For many patients, these blood tests have eliminated the need for other more invasive diagnostic tests such as muscle or nerve biopsy, and for some patients, reduced exposure to immunosuppressive medication and its complications. The first part of this review focuses on the nature of genetic disorders, the laboratory methods used in the performance of genetic tests, and general practical aspects of their use and interpretation. The second part discusses the applicability of these tests to the range of neuromuscular disorders.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Division of Neuromuscular Disease, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
79
|
Abstract
Mitochondria are the central processing units for cellular energy metabolism and, in addition to carrying out oxidative phosphorylation, regulate important processes such as apoptosis and calcium homeostasis. Because mitochondria possess a genome that is central to their multiple functions, an understanding of the mechanism of mitochondrial gene expression is required to decipher the many ways mitochondrial dysfunction contributes to human disease. Towards this end, two human transcription factors that are related to rRNA methyltransferases have recently been characterized, providing new insight into the mechanism of mitochondrial transcription and a novel link to maternally inherited deafness. Furthermore, studies in the Saccharomyces cerevisiae model system have revealed a functional coupling of transcription and translation at the inner mitochondrial membrane, where assembly of the oxidative phosphorylation system commences. Defects in an analogous coupling mechanism in humans might underlie the cytochrome oxidase deficiency that causes a form of Leigh Syndrome.
Collapse
Affiliation(s)
- Gerald S Shadel
- Department of Pathology, Yale University School of Medicine, 300 Cedar Street, PO Box 208023, New Haven, CT 06520-8023, USA.
| |
Collapse
|
80
|
Abdrakhmanova A, Zickermann V, Bostina M, Radermacher M, Schägger H, Kerscher S, Brandt U. Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:148-56. [PMID: 15282186 DOI: 10.1016/j.bbabio.2004.04.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 04/29/2004] [Accepted: 04/29/2004] [Indexed: 12/15/2022]
Abstract
Here we present a first assessment of the subunit inventory of mitochondrial complex I from the obligate aerobic yeast Yarrowia lipolytica. A total of 37 subunits were identified. In addition to the seven central, nuclear coded, and the seven mitochondrially coded subunits, 23 accessory subunits were found based on 2D electrophoretic and mass spectroscopic analysis in combination with sequence information from the Y. lipolytica genome. Nineteen of the 23 accessory subunits are clearly conserved between Y. lipolytica and mammals. The remaining four accessory subunits include NUWM, which has no apparent homologue in any other organism and is predicted to contain a single transmembrane domain bounded by highly charged extramembraneous domains. This structural organization is shared among a group of 7 subunits in the Y. lipolytica and 14 subunits in the mammalian enzyme. Because only five of these subunits display significant evolutionary conservation, their as yet unknown function is proposed to be structure- rather than sequence-specific. The NUWM subunit could be assigned to a hydrophobic subcomplex obtained by fragmentation and sucrose gradient centrifugation. Its position within the membrane arm was determined by electron microscopic single particle analysis of Y. lipolytica complex I decorated with a NUWM-specific monoclonal antibody.
Collapse
Affiliation(s)
- Albina Abdrakhmanova
- Fachbereich Medizin, Institut für Biochemie I, ZBC, Universität Frankfurt, Theodor-Stern-Kai 7, Haus 25B, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
81
|
Kerscher S, Bénit P, Abdrakhmanova A, Zwicker K, Rais I, Karas M, Rustin P, Brandt U. Processing of the 24 kDa subunit mitochondrial import signal is not required for assembly of functional complex I in Yarrowia lipolytica. ACTA ACUST UNITED AC 2004; 271:3588-95. [PMID: 15317595 DOI: 10.1111/j.0014-2956.2004.04296.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A small deletion in the second intron of human NDUFV2 (IVS2+5_+8delGTAA) has been shown to cause hypertrophic cardiomyopathy and encephalomyopathy [Bénit, P., Beugnot, R., Chretien, D., Giurgea, I., de Lonlay-Debeney, P., Issartel, J.P., Kerscher, S., Rustin, P., Rötig, A. & Munnich, A. (2003) Human Mutat.21, 582-586]. Skipping of exon 2 results in a partial deletion of the mitochondrial targeting sequence of the precursor for the 24 kDa subunit of respiratory chain complex I. Immunoreactivity of the 24 kDa subunit and complex I activity, both present at 30-50% of normal levels in patient mitochondria, raised the question of how the mutant 24 kDa subunit precursor can be imported and assembled into functional complex I. In the present study, we have remodelled the human NDUFV2 mutation by deleting codons 17-32 from the orthologous NUHM gene of the obligate aerobic yeast Yarrowia lipolytica. The resulting mutant enzyme was indistinguishable from parental complex I with regard to activity, inhibitor sensitivity and EPR signature. Size, isoelectric point and presumably also N-terminal acetylation were altered, indicating that the residual targeting sequence was retained on the mature 24 kDa protein. Complete removal of the NUHM presequence resulted in the absence of complex I activity, strongly arguing against the presence of an internal mitochondrial targeting sequence within the 24 kDa protein.
Collapse
Affiliation(s)
- Stefan Kerscher
- Universität Frankfurt, Fachbereich Medizin, Institut für Biochemie I, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Xu F, Morin C, Mitchell G, Ackerley C, Robinson B. The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA. Biochem J 2004; 382:331-6. [PMID: 15139850 PMCID: PMC1133946 DOI: 10.1042/bj20040469] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 04/23/2004] [Accepted: 05/13/2004] [Indexed: 11/17/2022]
Abstract
Leigh syndrome French Canadian (LSFC) is a variant of cytochrome oxidase deficiency found in Québec and caused by mutations in the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene. Northern blots showed that the LRPPRC mRNA levels seen in skeletal muscle>heart>placenta>kidney>liver>lung=brain were proportionally almost opposite in strength to the severity of the enzymic cytochrome oxidase defect. The levels of COX (cytochrome c oxidase) I and COX III mRNA visible on Northern blots were reduced in LSFC patients due to the common (A354V, Ala354-->Val) founder mutation. The amount of LRPPRC protein found in both fibroblast and liver mitochondria from LSFC patients was consistently reduced to <30% of control levels. Import of [(35)S]methionine LRPPRC into rat liver mitochondria was slower for the mutant (A354V) protein. A titre of LRPPRC protein was also found in nuclear fractions that could not be easily accounted for by mitochondrial contamination. [35S]Methionine labelling of mitochondrial translation products showed that the translation of COX I, and perhaps COX III, was specifically reduced in the presence of the mutation. These results suggest that the gene product of LRPPRC, like PET 309p, has a role in the translation or stability of the mRNA for mitochondrially encoded COX subunits. A more diffuse distribution of LRPPRC in LSFC cells compared with controls was evident when viewed by immunofluorescence microscopy, with less LRPPRC present in peripheral mitochondria.
Collapse
Affiliation(s)
- Fenghao Xu
- *Metabolism Research Programme, The Research Institute, The Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8
| | - Charles Morin
- †Department of Pediatrics and Clinical Research Unit, Hôpital de Chicoutimi, 305 St-Vallier, Chicoutimi, QC, Canada G7H 5H6
| | - Grant Mitchell
- ‡Service de Génétique Medicale, Hôpital Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC, Canada H3T 1C5
| | - Cameron Ackerley
- §Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8
| | - Brian H. Robinson
- *Metabolism Research Programme, The Research Institute, The Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8
- ∥Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A9
| |
Collapse
|
83
|
DeHaan C, Habibi-Nazhad B, Yan E, Salloum N, Parliament M, Allalunis-Turner J. Mutation in mitochondrial complex I ND6 subunit is associated with defective response to hypoxia in human glioma cells. Mol Cancer 2004; 3:19. [PMID: 15248896 PMCID: PMC481082 DOI: 10.1186/1476-4598-3-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 07/12/2004] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hypoxia-tolerant human glioma cells reduce oxygen consumption rate in response to oxygen deficit, a defense mechanism that contributes to survival under moderately hypoxic conditions. In contrast, hypoxia-sensitive cells lack this ability. As it has been previously shown that hypoxia-tolerant (M006x, M006xLo, M059K) and -sensitive (M010b) glioma cells express differences in mitochondrial function, we investigated whether mitochondrial DNA-encoded mutations are associated with differences in the initial response to oxygen deficit. RESULTS The mitochondrial genome was sequenced and 23 mtDNA alterations were identified, one of which was an unreported mutation (T-C transition in base pair 14634) in the hypoxia-sensitive cell line, M010b, that resulted in a single amino acid change in the gene encoding the ND6 subunit of NADH:ubiquinone oxidoreductase (Complex I). The T14634C mutation did not abrogate ND6 protein expression, however, M010b cells were more resistant to rotenone, an agent used to screen for Complex I mutations, and adriamycin, an agent activated by redox cycling. The specific function of mtDNA-encoded, membrane-embedded Complex I ND subunits is not known at present. Current models suggest that the transmembrane arm of Complex I may serve as a conformationally driven proton channel. As cellular respiration is regulated, in part, by proton flux, we used homology-based modeling and computational molecular biology to predict the 3D structure of the wild type and mutated ND6 proteins. These models predict that the T14634C mutation alters the structure and orientation of the trans-membrane helices of the ND6 protein. CONCLUSION Complex I ND subunits are mutational hot spots in tumor mtDNA. Genetic changes that alter Complex I structure and function may alter a cell's ability to respond to oxygen deficit and consolidate hypoxia rescue mechanisms, and may contribute to resistance to chemotherapeutic agents that require redox cycling for activation.
Collapse
Affiliation(s)
- Carrie DeHaan
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
- Department of Medicine St. Vincent's, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Bahram Habibi-Nazhad
- Departments of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Elizabeth Yan
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
- Department of Radiation Oncology, Tom Baker Cancer Centre, 1331 29 St. NW, Calgary AB, Canada T2N 4N2
| | - Nicole Salloum
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| | - Matthew Parliament
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| | - Joan Allalunis-Turner
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| |
Collapse
|
84
|
Kato C, Umekage T, Tochigi M, Otowa T, Hibino H, Ohtani T, Kohda K, Kato N, Sasaki T. Mitochondrial DNA polymorphisms and extraversion. Am J Med Genet B Neuropsychiatr Genet 2004; 128B:76-9. [PMID: 15211636 DOI: 10.1002/ajmg.b.20141] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mitochondria is the major site of energy production in cells, therefore, mitochondrial abnormality may affect functions of organs including the brain, which constantly requires high levels of energy consumption. Previous studies have suggested a role of mitochondria and their DNA polymorphisms in neuro-psychiatric disorders, including Alzheimer's disease, Parkinson's disease, schizophrenia and bipolar mood disorder. Thus, we hypothesized that mitochondrial DNA polymorphisms might be related with the development of personality. The present study investigated a role of two mitochondrial DNA polymorphisms, the C5178A and A10398G, in personality traits evaluated using the NEO PI-R scores in 238 healthy Japanese volunteers. Subjects with the 5178A genotype showed significantly higher extraversion score than those with the 5178C genotype (P = 0.027), while no significant association was observed between the C5178A polymorphism and other scores. No significant association was found between the A10398G polymorphism and any scores. Regarding the 5178-10398 haplotype, the score of extraversion, not other scores, was significantly associated with the A-G haplotype (P = 0.042). Although further studies are recommended for the confirmation, the result may suggest a role of the mitochondrial DNA polymorphism in the personality trait.
Collapse
Affiliation(s)
- Chieko Kato
- Department of Psychiatry, Health Service Center, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Wanrooij S, Luoma P, van Goethem G, van Broeckhoven C, Suomalainen A, Spelbrink JN. Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res 2004; 32:3053-64. [PMID: 15181170 PMCID: PMC434440 DOI: 10.1093/nar/gkh634] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 04/06/2004] [Accepted: 05/12/2004] [Indexed: 01/07/2023] Open
Abstract
Autosomal dominant and/or recessive progressive external ophthalmoplegia (ad/arPEO) is associated with mtDNA mutagenesis. It can be caused by mutations in three nuclear genes, encoding the adenine nucleotide translocator 1, the mitochondrial helicase Twinkle or DNA polymerase gamma (POLG). How mutations in these genes result in progressive accumulation of multiple mtDNA deletions in post- mitotic tissues is still unclear. A recent hypothesis suggested that mtDNA replication infidelity could promote slipped mispairing, thereby stimulating deletion formation. This hypothesis predicts that mtDNA of ad/arPEO patients will contain frequent mutations throughout; in fact, our analysis of muscle from ad/arPEO patients revealed an age-dependent, enhanced accumulation of point mutations in addition to deletions, but specifically in the mtDNA control region. Both deleted and non-deleted mtDNA molecules showed increased point mutation levels, as did mtDNAs of patients with a single mtDNA deletion, suggesting that point mutations do not cause multiple deletions. Deletion breakpoint analysis showed frequent breakpoints around homopolymeric runs, which could be a signature of replication stalling. Therefore, we propose replication stalling as the principal cause of deletion formation.
Collapse
Affiliation(s)
- Sjoerd Wanrooij
- Institute of Medical Technology and Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
86
|
González-Halphen D, Funes S, Pérez-Martínez X, Reyes-Prieto A, Claros MG, Davidson E, King MP. Genetic Correction of Mitochondrial Diseases: Using the Natural Migration of Mitochondrial Genes to the Nucleus in Chlorophyte Algae as a Model System. Ann N Y Acad Sci 2004; 1019:232-9. [PMID: 15247021 DOI: 10.1196/annals.1297.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondrial diseases display great diversity in clinical symptoms and biochemical characteristics. Although mtDNA mutations have been identified in many patients, there are currently no effective treatments. A number of human diseases result from mutations in mtDNA-encoded proteins, a group of proteins that are hydrophobic and have multiple membrane-spanning regions. One method that has great potential for overcoming the pathogenic consequences of these mutations is to place a wild-type copy of the affected gene in the nucleus, and target the expressed protein to the mitochondrion to function in place of the defective protein. Several respiratory chain subunit genes, which are typically mtDNA encoded, are nucleus encoded in the chlorophyte algae Chlamydomonas reinhardtii and Polytomella sp. Analysis of these genes has revealed adaptations that facilitated their expression from the nucleus. The nucleus-encoded proteins exhibited diminished physical constraints for import as compared to their mtDNA-encoded homologues. The hydrophobicity of the nucleus-encoded proteins is diminished in those regions that are not involved in subunit-subunit interactions or that contain amino acids critical for enzymatic reactions of the proteins. In addition, these proteins have unusually large mitochondrial targeting sequences. Information derived from these studies should be applicable toward the development of genetic therapies for human diseases resulting from mutations in mtDNA-encoded polypeptides.
Collapse
Affiliation(s)
- Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico D.F., Mexico
| | | | | | | | | | | | | |
Collapse
|
87
|
Bartmann AK, Romão GS, Ramos EDS, Ferriani RA. Why do older women have poor implantation rates? A possible role of the mitochondria. J Assist Reprod Genet 2004; 21:79-83. [PMID: 15202735 PMCID: PMC3455407 DOI: 10.1023/b:jarg.0000027018.02425.15] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondria are organelles responsible for oxidative phosphorylation, the main energy source for all eukaryotic cells. In oocytes and embryos, it seems that mitochondria provide sufficient energy for fecundation by supporting spindle formation during meiosis II, and for implantation. Since mitochondria are inherited from mother to child, it is important that oocyte mitochondria should be intact. Older women seem to have more mitochondrial DNA mutations, which can be responsible for poor implantation and aneuploidy, two conditions that occur more often in this group. In the present report we propose a new model to explain why older women have poor implantation rates.
Collapse
Affiliation(s)
- Ana Karina Bartmann
- Department of Obstetrics/Gynecology, Service of Human Reproduction, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | | | | | | |
Collapse
|
88
|
McConnell JML, Petrie L. Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors. Reprod Biomed Online 2004; 9:418-24. [PMID: 15511342 DOI: 10.1016/s1472-6483(10)61277-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
There is increasing evidence in humans that abnormal mitochondrial DNA (mtDNA) is associated with common degenerative disorders of the twenty-first century. MtDNA is exclusively female in origin and abnormalities in mtDNA can either be inherited, or generated de novo by adverse environmental factors that disturb mitochondrial DNA synthesis or destabilize mtDNA. The preimplantation period of development in mammals was thought to be relatively immune from environmentally induced changes to mtDNA, since no replication of mtDNA was thought to occur at this stage. This study demonstrates that there is a very short period of mtDNA synthesis immediately after fertilization, which can be affected by environmental stress. Adverse culture conditions during this phase of development could therefore alter the mitochondrial genome, with possible long-term consequences for the health of the offspring. The findings have relevance for all assisted reproduction programmes and for the rapidly emerging field of stem cell technologies.
Collapse
Affiliation(s)
- Josie M L McConnell
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, UK.
| | | |
Collapse
|
89
|
Pickles JO. Mutation in Mitochondrial DNA as a Cause of Presbyacusis. Audiol Neurootol 2003; 9:23-33. [PMID: 14676471 DOI: 10.1159/000074184] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 06/20/2003] [Indexed: 11/19/2022] Open
Abstract
Much of the hearing loss that occurs in old age is likely to be due to the long-term deterioration of the mitochondria in the different structures of the cochlea. The current review surveys some of the basic information on mitochondria and mitochondrial DNA, as a background to their possible involvement in presbyacusis. It is likely that oxygen radicals damage mitochondrial DNA and other components of the mitochondria, such as their proteins and lipids. This further compromises both oxidative phosphorylation and the repair processes in mitochondria, setting up a vicious cycle of degradation. Evidence is presented from inherited point mutations on the possibly most critical sites for mutations in mitochondrial DNA associated with hearing loss. It is suggested that random sorting and clonal expansion of mutations both maintain the integrity of the pool of mitochondrial DNA molecules and give rise to the apoptosis that leads to loss of vulnerable cells, and hence to deafness. It is moreover suggested that apoptosis of the vulnerable cells of the inner ear may to some extent be preventable, or at least delayed.
Collapse
Affiliation(s)
- James O Pickles
- Vision, Touch and Hearing Research Centre, School of Biomedical Sciences, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
90
|
Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schönfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 2003; 100:13207-12. [PMID: 14576278 PMCID: PMC263752 DOI: 10.1073/pnas.2135385100] [Citation(s) in RCA: 703] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Indexed: 01/10/2023] Open
Abstract
We performed a comprehensive approach to determine the proteome of Saccharomyces cerevisiae mitochondria. The proteins of highly pure yeast mitochondria were separated by several independent methods and analyzed by tandem MS. From >20 million MS spectra, 750 different proteins were identified, indicating an involvement of mitochondria in numerous cellular processes. All known components of the oxidative phosphorylation machinery, the tricarboxylic acid cycle, and the stable mitochondria-encoded proteins were found. Based on the mitochondrial proteins described in the literature so far, we calculate that the identified proteins represent approximately 90% of all mitochondrial proteins. The function of a quarter of the identified proteins is unknown. The mitochondrial proteome will provide an important database for the analysis of new mitochondrial and mitochondria-associated functions and the characterization of mitochondrial diseases.
Collapse
Affiliation(s)
- Albert Sickmann
- Rudolf-Virchow-Center for Experimental Biomedicine, Universität Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Roubertoux PL, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Chérif C, Marican C, Arrechi P, Godin F, Jamon M, Verrier B, Cohen-Salmon C. Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 2003; 35:65-9. [PMID: 12923532 DOI: 10.1038/ng1230] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 07/29/2003] [Indexed: 11/08/2022]
Abstract
Several lines of evidence indicate an association between mitochondrial DNA (mtDNA) and the functioning of the nervous system. As neuronal development and structure as well as axonal and synaptic activity involve mitochondrial genes, it is not surprising that most mtDNA diseases are associated with brain disorders. Only one study has suggested an association between mtDNA and cognition, however. Here we provide direct evidence of mtDNA involvement in cognitive functioning. Total substitution of mtDNA was achieved by 20 repeated backcrosses in NZB/BlNJ (N) and CBA/H (H) mice with different mtDNA origins. All 13 mitochondrial genes were expressed in the brains of the congenic quartet. In interaction with nuclear DNA (nDNA), mtDNA modified learning, exploration, sensory development and the anatomy of the brain. The effects of mtDNA substitution persisted with age, increasing in magnitude as the mice got older. We observed different effects with input of mtDNA from N versus H mice, varying according to the phenotypes. Exchanges of mtDNA may produce phenotypes outside the range of scores observed in the original mitochondrial and nuclear combinations. These findings show that mitochondrial polymorphisms are not as neutral as was previously believed.
Collapse
|
92
|
Joyce OJP, Farmer MK, Tipton KF, Porter RK. Oxidative phosphorylation by in situ synaptosomal mitochondria from whole brain of young and old rats. J Neurochem 2003; 86:1032-41. [PMID: 12887700 DOI: 10.1046/j.1471-4159.2003.01915.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synaptosomes, isolated from the whole brain of young (3 months) and old (24 months) rats were used to study the major bioenergetic systems of neuronal mitochondria in situ, within the synaptosome. Approximately 85% of the resting oxygen consumption of synaptosomes from both young and old rats was a result of proton leak (and possibly other ion cycling) across the mitochondrial inner membrane. There were no significant differences between synaptosomes from the young and old rats in the kinetic responses of the substrate oxidation system, the mitochondrial proton leak and the phosphorylation system to changes in the proton electrochemical gradient. Flux control coefficients of 0.71, 0.27 and 0.02 were calculated for substrate oxidation system, phosphorylation system and the proton leak, respectively, at maximal ATP producing capacity in synaptosomes from young animals. The corresponding values calculated for synaptosomes from old animals were 0.53, 0.43 and 0.05. Thus substrate oxidation had greatest control over oxygen consumption at maximal phosphorylating capacity for synaptosomes from whole brain, with proton leak, having little control under maximal ATP producing capacity. The uncoupled rate of oxygen consumption, in the presence of the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), was significantly lower (p = 0.0124) in synaptosomes from old rats (6.08 +/- 0.42, n = 11) when compared with those from the young rats (7.87 +/- 0.48, n = 8). Thus, there is an impaired flux through the substrate oxidation system is synaptosomes from old rats, as compared to synaptosomes from the young animals. These in situ results may have important implications for the interpretation of theories that age-dependent impairment of mitochondrial energy production may result in increased susceptibility to neurodegeneration.
Collapse
Affiliation(s)
- O J P Joyce
- Department of Biochemistry, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
93
|
Affiliation(s)
- Yau-Huei Wei
- Department of Biochemistry, Center for Cellular and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
94
|
Functional genetics of Yarrowia lipolytica. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/3-540-37003-x_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
95
|
James AM, Blaikie FH, Smith RAJ, Lightowlers RN, Smith PM, Murphy MP. Specific targeting of a DNA-alkylating reagent to mitochondria. Synthesis and characterization of [4-((11aS)-7-methoxy-1,2,3,11a-tetrahydro-5H-pyrrolo[2,1-c][1,4]benzodiazepin-5-on-8-oxy)butyl]-triphenylphosphonium iodide. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2827-36. [PMID: 12823553 DOI: 10.1046/j.1432-1033.2003.03660.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The selective manipulation of the expression and replication of mitochondrial DNA (mtDNA) within mammalian cells has proven difficult. In progressing towards this goal we synthesized a novel mitochondria-targeted DNA-alkylating reagent. The active alkylating moiety [(11aS)-8-hydroxy-7-methoxy-1,2,3,11a-tetrahydro-5H-pyrrolo[2,1-c][1,4]benzodiazepin-5-one (DC-81)], irreversibly alkylates guanine bases in DNA (with a preference for AGA triplets), preventing its expression and replication. To target this compound to mitochondria it was covalently coupled to the lipophilic triphenylphosphonium (TPP) cation to form a derivative referred to as mitoDC-81. Incorporation of this lipophilic cation led to the rapid uptake of mitoDC-81 by mitochondria, driven by the large membrane potential across the inner membrane. This compound efficiently alkylated isolated supercoiled, relaxed-circular or linear plasmid DNA and isolated mtDNA. However mitoDC-81 did not alkylate mtDNA within isolated mitochondria or cells, even though it accessed the mitochondrial matrix at concentrations up to 100-fold higher than those required to alkylate isolated DNA. This surprising finding suggests that mtDNA within intact mitochondria may not be accessible to this class of alkylating reagent. This inability to alkylate mtDNA in situ has significant implications for the design of therapies for mtDNA diseases and for studies on the packaging, expression and turnover of mtDNA in general.
Collapse
Affiliation(s)
- Andrew M James
- MRC-Dunn Human Nutrition Unit, Wellcome Trust-MRC Building, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
96
|
Smith RAJ, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 2003; 100:5407-12. [PMID: 12697897 PMCID: PMC154358 DOI: 10.1073/pnas.0931245100] [Citation(s) in RCA: 548] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial dysfunction contributes to many human degenerative diseases but specific treatments are hampered by the difficulty of delivering bioactive molecules to mitochondria in vivo. To overcome this problem we developed a strategy to target bioactive molecules to mitochondria by attachment to the lipophilic triphenylphosphonium cation through an alkyl linker. These molecules rapidly permeate lipid bilayers and, because of the large mitochondrial membrane potential (negative inside), accumulate several hundredfold inside isolated mitochondria and within mitochondria in cultured cells. To determine whether this strategy could lead to the development of mitochondria-specific therapies, we investigated the administration and tissue distribution in mice of simple alkyltriphenylphosphonium cations and of mitochondria-targeted antioxidants comprising a triphenylphosphonium cation coupled to a coenzyme Q or vitamin E derivative. Significant doses of these compounds could be fed safely to mice over long periods, coming to steady-state distributions within the heart, brain, liver, and muscle. Therefore, mitochondria-targeted bioactive molecules can be administered orally, leading to their accumulation at potentially therapeutic concentrations in those tissues most affected by mitochondrial dysfunction. This finding opens the way to the testing of mitochondria-specific therapies in mouse models of human degenerative diseases.
Collapse
Affiliation(s)
- Robin A J Smith
- Medical Research Council-Dunn Human Nutrition Unit, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | |
Collapse
|
97
|
Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. Mitochondrial threshold effects. Biochem J 2003; 370:751-62. [PMID: 12467494 PMCID: PMC1223225 DOI: 10.1042/bj20021594] [Citation(s) in RCA: 590] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Revised: 12/04/2002] [Accepted: 12/06/2002] [Indexed: 01/20/2023]
Abstract
The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases.
Collapse
Affiliation(s)
- Rodrigue Rossignol
- INSERM-EMI 9929, Physiologie mitochondriale, Université Victor Segalen-Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux-cedex, France.
| | | | | | | | | | | |
Collapse
|
98
|
Qi X, Lewin AS, Hauswirth WW, Guy J. Suppression of complex I gene expression induces optic neuropathy. Ann Neurol 2003; 53:198-205. [PMID: 12557286 DOI: 10.1002/ana.10426] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Optic nerve degeneration is a feature common to diseases with mutations in genes that encode complex I of the respiratory chain. Vulnerability of this central nervous system tract is a mystery, because of the paucity of animal models used to investigate effects of the mutated DNA in tissues rather than isolated in cultured cells. Using a ribozyme designed to degrade the mRNA encoding a critical nuclear-encoded subunit gene of complex I (NDUFA1), we tested whether oxidative phosphorylation deficiency can recapitulate the optic neuropathy of mitochondrial disease. Injection of adenoassociated virus expressing this ribozyme led to axonal destruction and demyelination, the hallmarks of Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville 32610, USA
| | | | | | | |
Collapse
|
99
|
Hoarau G, Holla S, Lescasse R, Stam WT, Olsen JL. Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Platichthys flesus. Mol Biol Evol 2002; 19:2261-4. [PMID: 12446816 DOI: 10.1093/oxfordjournals.molbev.a004049] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The general assumption that mitochondrial DNA (mtDNA) does not undergo recombination has been challenged recently in invertebrates. Here we present the first direct evidence for recombination in the mtDNA of a vertebrate, the flounder Platichthys flesus. The control region in the mtDNA of this flatfish is characterized by the presence of a variable number of tandem repeats and a high level of heteroplasmy. Two types of repeats were recognized, differing by two C-T point mutations. Most individuals carry a pure "C" or a pure "T" array, but one individual showed a compound "CT" array. Such a compound array is evidence for recombination in the mtDNA control region from the flounder.
Collapse
Affiliation(s)
- Galice Hoarau
- Department of Marine Biology, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | | | |
Collapse
|
100
|
Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS. Rescue of a mitochondrial deficiency causing Leber Hereditary Optic Neuropathy. Ann Neurol 2002; 52:534-42. [PMID: 12402249 DOI: 10.1002/ana.10354] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A G to A transition at nucleotide 11778 in the ND4 subunit gene of complex I was the first point mutation in the mitochondrial genome linked to a human disease. It causes Leber Hereditary Optic Neuropathy, a disorder with oxidative phosphorylation deficiency. To overcome this defect, we made a synthetic ND4 subunit compatible with the "universal" genetic code and imported it into mitochondria by adding a mitochondrial targeting sequence. For detection we added a FLAG tag. This gene was inserted in an adeno-associated viral vector. The ND4FLAG protein was imported into the mitochondria of cybrids harboring the G11778A mutation, where it increased their survival rate threefold, under restrictive conditions that forced the cells to rely predominantly on oxidative phosphorylation to produce ATP. Since assays of complex I activity were normal in G11778A cybrids we focused on changes in ATP synthesis using complex I substrates. The G11778A cybrids showed a 60% reduction in the rate of ATP synthesis. Relative to mock-transfected G11778A cybrids, complemented G11778A cybrids showed a threefold increase in ATP synthesis, to a level indistinguishable from that in cybrids containing normal mitochondrial DNA. Restoration of respiration by allotopic expression opens the door for gene therapy of Leber Hereditary Optic Neuropathy.
Collapse
MESH Headings
- Adenosine Triphosphate/biosynthesis
- Cell Survival
- Cells, Cultured
- DNA, Mitochondrial/genetics
- Dependovirus/genetics
- Electron Transport Complex I
- Gene Transfer Techniques
- Genetic Therapy
- Genetic Vectors
- Humans
- Hybrid Cells/physiology
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/metabolism
- Optic Atrophy, Hereditary, Leber/therapy
- Oxidative Phosphorylation
- Point Mutation
- Sequence Tagged Sites
Collapse
Affiliation(s)
- John Guy
- Department of Ophthalmology, Neuro-Opthalmology Service, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|