51
|
Shen Y, Sun JL, Zhang A, Hu J, Xu LX. Shape recovering of live endothelial cell under atomic force microscopy imaging. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:2603-6. [PMID: 17270808 DOI: 10.1109/iembs.2004.1403748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
When live endothelial cells imaged using atomic force microscopy (AFM), distortion of the cell shape could be caused by the interaction between the probe and cell membrane, which depends on the force and the scanning speed used. In this study, a shape recovering method was developed. Two forces were considered in the method: the vertical and the lateral force of the tip exerted on the cell membrane during the scanning. The cell membrane was modeled as an elastic material. Results show that the recovering is necessary to reveal the original cell shape. The AFM tip effect should be taken into consideration in the live cell morphological study using AFM.
Collapse
Affiliation(s)
- Y Shen
- Sch. of Life Sci. & Biotechnol., Shanghai Jiao Tong Univ., China
| | | | | | | | | |
Collapse
|
52
|
Anselmetti D, Hansmeier N, Kalinowski J, Martini J, Merkle T, Palmisano R, Ros R, Schmied K, Sischka A, Toensing K. Analysis of subcellular surface structure, function and dynamics. Anal Bioanal Chem 2007; 387:83-9. [PMID: 17082883 DOI: 10.1007/s00216-006-0789-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
Analytics of single biological cells allows quantitative investigation from a structural, functional and dynamical point of view and opens novel possibilities to an unamplified subcellular analysis. In this article, we report on three different experimental methods and their applications to single cellular systems with a subcellular sensitivity down to the single molecule level. First, the subcellular surface structure of living bacteria (Corynebacterium glutamicum) was investigated with atomic force microscopy (AFM) at the resolution of individual surface layer (S-layer) proteins; discrimination of bacterial strains that lack the expression of hexagonally packed surface layer proteins was possible. Second, quantitative measurement of individual recognition events of membrane-bound receptors on living B-cells was achieved in single cell manipulation and probing experiments with optical tweezers (OT) force spectroscopy. And third, intracellular dynamics of translocating photoactivatable GFP in plant protoplasts (Nicotiana tabacum BY-2) was quantitatively monitored by two-photon laser scanning microscopy (2PLSM).
Collapse
Affiliation(s)
- D Anselmetti
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Karreman RJ, Dague E, Gaboriaud F, Quilès F, Duval JFL, Lindsey GG. The stress response protein Hsp12p increases the flexibility of the yeast Saccharomyces cerevisiae cell wall. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:131-7. [PMID: 17161030 DOI: 10.1016/j.bbapap.2006.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/03/2006] [Accepted: 10/19/2006] [Indexed: 10/24/2022]
Abstract
The yeast S. cerevisiae cell wall comprising a 10 nm thick layer of polysaccharides, predominantly beta(1,3)-glucan and proteins, is the interface between the cell and the neighbouring environment. As such it is not a static entity but rather one that is dynamically remodelled in response to changes in the environmental conditions. We have recently proposed from studies using yeast cells lacking the gene encoding Hsp12p (Deltahsp12 yeast) and from incorporation of Hsp12p into agarose, used as a model system for the beta-glucan layer of the cell wall, that the hydrophilic stress response cell wall protein Hsp12p acts as a cell wall plasticizer. In this report we have used force spectroscopy to confirm that Deltahsp12 yeast are indeed less flexible than the wild type strain. The spring constant of the cell wall of Deltahsp12 yeast, kcw was determined to be 72+/-3 mN m-1 as compared to 17+/-5 mN m-1 obtained for the wild type strain. A similar result was found on the basis of a quantitative analysis of the electrophoretic mobilities measured for the two yeast strains. Those indicated that the hydrodynamic permeability quantified through the softness parameter of the external layer of Deltahsp12 cells was smaller than the one of wild type cells. We proposed from surface infrared spectroscopy measurements that yeast compensate for the lack of Hsp12p by reducing the carbohydrate/proteins ratio of the cell wall or increasing the cell wall chitin content.
Collapse
Affiliation(s)
- Robert J Karreman
- Department of Molecular and Cellular Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | | | | | | | | | | |
Collapse
|
54
|
Abu-Lail NI, Camesano TA. Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by poisson statistical analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:7296-301. [PMID: 16893229 DOI: 10.1021/la0533415] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The nature of the physical interactions between Escherichia coli JM109 and a model surface (silicon nitride) was investigated in water via atomic force microscopy (AFM). AFM force measurements on bacteria can represent the combined effects of van der Waals and electrostatic forces, hydrogen bonding, steric interactions, and perhaps ligand-receptor type bonds. It can be difficult to decouple these forces into their individual components since both specific (chemical or short-range forces such as hydrogen bonding) and nonspecific (long-range colloidal) forces may be present in the overall profiles. An analysis is presented based on the application of Poisson statistics to AFM adhesion data, to decouple the specific and nonspecific interactions. Comparisons with classical DLVO theory and a modified form of a van der Waals expression for rough surfaces were made in order to help explain the nature of the interactions. The only specific forces in the system were due to hydrogen bonding, which from the Poisson analysis were found to be -0.125 nN. The nonspecific forces of 0.155 nN represent an overall repulsive interaction. These nonspecific forces are comparable to the forces calculated from DLVO theory, in which electrostatic-double layer interactions are added to van der Waals attractions calculated at the distance of closest approach, as long as the van der Waals model for "rough" spherical surfaces is used. Calculated electrostatic-double layer and van der Waals interactions summed to 0.116 nN. In contrast, if the classic (i.e., smooth) sphere-sphere model was used to predict the van der Waals forces, the sum of electrostatic and van der Waals forces was -7.11 nN, which appears to be a large overprediction. The Poisson statistical analysis of adhesion forces may be very useful in applications of bacterial adhesion, because it represents an easy way to determine the magnitude of hydrogen bonding in a given system and it allows the fundamental forces to be easily broken into their components.
Collapse
Affiliation(s)
- Nehal I Abu-Lail
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | | |
Collapse
|
55
|
Abu-Lail NI, Camesano TA. The effect of solvent polarity on the molecular surface properties and adhesion of Escherichia coli. Colloids Surf B Biointerfaces 2006; 51:62-70. [PMID: 16814529 DOI: 10.1016/j.colsurfb.2006.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 04/21/2006] [Accepted: 05/09/2006] [Indexed: 11/26/2022]
Abstract
The elasticity and molecular surface characteristics of Escherichia coli JM109 were investigated via atomic force microscopy (AFM) in solvents expressing different polarities. The nature of bacterial adhesion and surface characteristics was probed in formamide, water, and methanol, with dielectric constants of 111, 80, and 33, respectively. Solvent polarity affected the elasticity of the bacterium, the conformation of the cell surface biopolymers, the height of the surface biopolymers, and measured adhesion forces between the bacterium and silicon nitride. By applying the Hertz model to force-indentation data, we determined that the Young's modulus was greatest in the least polar solvent, with values of 182 +/- 34.6, 12.8 +/- 0.1, and 0.8 +/- 0.3 MPa in methanol, water, and formamide, respectively. The thickness of the biopolymer brush layer on the bacterial surface was quantified using a steric model, and these values increased as polarity increased, with values of 27, 93, and 257 nm in methanol, water, and formamide, respectively. The latter results suggest that highly polar conditions favor extension of the biopolymer brush layer. Cross-sectional analysis performed on tapping mode images of the bacterial cells in methanol, water, and formamide further supported this hypothesis. The image height values are larger, since the image analysis measures the height of the bacterium and the polymer layer, but the trend with respect to solvent polarity was the same as was obtained from the steric model of the brush length. Measured adhesion forces scaled inversely with solvent polarity, with greatest adhesion observed in the least polar solvent, methanol. The combined conformational changes to the bacterial surface and biopolymer layer result in different presentations of macromolecules to a substrate surface, and therefore affect the adhesion forces between the bacterial molecules and the substrate. These results suggest that polarity of the solvent environment can be manipulated as a design parameter to control or modify the bacterial adhesion process.
Collapse
Affiliation(s)
- Nehal I Abu-Lail
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | |
Collapse
|
56
|
Zeng G, Yang P, Zheng Z, Feng Q, Cai J, Zhang S, Chen ZW. Nanostructures and molecular force bases of a highly sensitive capacitive immunosensor. Proteomics 2006; 5:4347-53. [PMID: 16294312 PMCID: PMC2865227 DOI: 10.1002/pmic.200500017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
While biosensors have been constructed using various strategies, there is no report describing nanostructures of antibody-immobilized electrode interface in an immunosensor. Here, atomic force microscopy (AFM) and electrochemistry analyses were employed to construct and characterize the nanostructures and electrochemistry of biosensing surface that was created by a sequential self-assembling of bioactive aminobenzenthiol oligomer (o-ABT), glutareldehyde and anti-transferrin (anti-Tf) antibody on the electrode gold surface. Under AFM, a complete coverage of bioactive o-ABT interface could be achieved by anti-Tf antibody at an optimal concentration. The anti-Tf antibody immobilized on electrode surface of the immunosensor exhibited globular-shape topography with some degree of aggregation. Extensive force-curve analysis allowed mapping the functional spots of the anti-Tf immunosensor. Surprisingly, although immunosensing surface was fully covered by anti-Tf antibodies at the optimal concentration, only about 52% of coated anti-Tf antibody molecules (spots) on the electrode surface were able to specifically capture or bind Tf antigen under AFM. Despite limited functional spots, however, the anti-Tf immunosensor was highly specific and sensitive for sensitizing Tf antigen in solution. The anti-Tf molecules on the immunosensor exhibited a greater molecular force bound to holo-Tf (iron-containing form of Tf) than that to apo-Tf (iron-absent form of Tf). Consistently, the anti-Tf immunosensor had a greater electrochemical capacity to sensitize apo-Tf than holo-Tf, supporting the molecular force-based finding by AFM. Thus, the present study elucidated the nanostructures and molecular force bases for the immunosensing capacity of a highly sensitive capacitive immunosensor.
Collapse
Affiliation(s)
- Gucheng Zeng
- Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
57
|
Emerson RJ, Camesano TA. On the importance of precise calibration techniques for an atomic force microscope. Ultramicroscopy 2006; 106:413-22. [PMID: 16413970 DOI: 10.1016/j.ultramic.2005.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 11/10/2005] [Accepted: 11/23/2005] [Indexed: 11/24/2022]
Abstract
Proper calibration of any instrument is vital to an investigator's ability to compare laboratory experiments, as well as to draw quantitative relations between experimental results and the real world. For the atomic force microscope, knowledge of quantities such as the probe spring constant, the piezoactuator voltage/height response, and the probe radius of curvature is necessary when transforming raw data into height, separation and force. These parameters are also prerequisites when applying mathematical models to the collected data. In this communication, we adapt existing techniques of quantifying these parameters to our equipment and show differences between the adjusted parameters and those provided by the manufacturer. The total statistical uncertainty attributable to these parameters was calculated as > 1500% using the manufacturers' values. After adjustment, this contribution drops to approximately 20%. The combined effect of quantifying these parameters, which had previously not been explored in concert, demonstrates the necessity of properly understanding one's equipment in order to generate reproducible and credible experimental results.
Collapse
Affiliation(s)
- R J Emerson
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | | |
Collapse
|
58
|
Chen ZY, Guo XP, Huang JY, Hong YL, Zhang Q. AFM study of the effect of metronidazole on surface structures of sulfate-reducing bacteria. Anaerobe 2006; 12:106-9. [PMID: 16701623 DOI: 10.1016/j.anaerobe.2005.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/03/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
The effect of metronidazole (ME) on sulfate-reducing bacteria (SRB) was studied by atomic force microscopy (AFM) in this paper. Topography images of SRB cell show that after exposure to ME individual cell shape is sharply modified. Topography and phase images of SRB cell wall show that after exposure to ME not only the roughness of the cell wall increases but also the physical performance of SRB surface is changed to be uniform. AFM frictional loops show that after exposure to ME, SRB surface friction is increased remarkably.
Collapse
Affiliation(s)
- Z Y Chen
- Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
59
|
Adya AK, Canetta E, Walker GM. Atomic force microscopic study of the influence of physical stresses onSaccharomyces cerevisiaeandSchizosaccharomyces pombe. FEMS Yeast Res 2006; 6:120-8. [PMID: 16423077 DOI: 10.1111/j.1567-1364.2005.00003.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.
Collapse
Affiliation(s)
- Ashok K Adya
- Condensed Matter Group and Bio- and Nano-Technologies for Health Centre, School of Contemporary Sciences, University of Abertay Dundee, Dundee, UK.
| | | | | |
Collapse
|
60
|
Mukherjee PK, Zhou G, Munyon R, Ghannoum MA. Candida biofilm: a well-designed protected environment. Med Mycol 2005; 43:191-208. [PMID: 16010846 DOI: 10.1080/13693780500107554] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Biofilms are colonies of microbial cells encased in a self-produced organic polymeric matrix and represent a common mode of microbial growth. Microbes growing as biofilm are highly resistant to commonly used antimicrobial drugs. Recently, microbial biofilms have gained prominence because of the increase in infections related to indwelling medical devices (IMD). Candida albicans, the pathogenic fungus which is a major cause of morbidity and mortality in blood stream infections, is the most common fungal pathogen isolated from patients with IMD-associated infections. Biofilm formation by Candida species is believed to contribute to invasiveness of these fungal species. We discuss experimental methods used to study fungal biofilms as well as the biology of biofilm formation by clinically relevant Candida species. Recent advances that are discussed in this review include the role of specific, differentially expressed genes and proteins, quorum sensing molecule in C. albicans biofilms, and the correlation between biofilm formation and fungal pathogenesis.
Collapse
Affiliation(s)
- Pranab K Mukherjee
- Center for Medical Mycology, Department of Dermatology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH 44106-5028, USA
| | | | | | | |
Collapse
|
61
|
Ubbink J, Schär-Zammaretti P. Probing bacterial interactions: integrated approaches combining atomic force microscopy, electron microscopy and biophysical techniques. Micron 2005; 36:293-320. [PMID: 15857770 DOI: 10.1016/j.micron.2004.11.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 11/24/2004] [Accepted: 11/25/2004] [Indexed: 11/27/2022]
Abstract
Recent developments in the application of Atomic Force Microscopy (AFM) and other biophysical techniques for the study of bacterial interactions and adhesion are discussed in the light of established biological and microscopic approaches. Whereas molecular-biological techniques combined with electron microscopy allow the identification and localization of surface constituents mediating bacterial interactions, with AFM it has become possible to actually measure the forces involved in bacterial interactions. Combined with the flexibility of AFM in probing various types of physical interactions, such as electrostatic interactions, specific ligand-receptor interactions and the elastic forces of deformation and extension of bacterial surface polymers and cell wall, this provides prospects for the elucidation of the biophysical mechanism of bacterial interaction. However, because of the biochemical and a biophysical complexity of the bacterial cell wall, integrated approaches combining AFM with electron microscopy and biophysical techniques are needed to elucidate the mechanism by which a bacterium interacts with a host or material surface. The literature on electron microscopy of the bacterial cell wall is reviewed, with particular emphasis on the staining of specific classes of cell-wall constituents. The application of AFM in the analysis of bacterial surfaces is discussed, including AFM operating modes, sample preparation methods and results obtained on various strains. For various bacterial strains, the integration of EM and AFM data is discussed. Various biophysical aspects of the analysis of bacterial surface structure and interactions are discussed, including the theory of colloidal interactions and Bell's theory of cell-to-cell adhesion. An overview is given of biophysical techniques used in the analysis of the properties of bacterial surfaces and bacterial surface constituents and their integration with AFM. Finally, we discuss recent progress in the understanding of the role of bacterial interactions in medicine within the framework of the techniques and concepts discussed in the paper.
Collapse
Affiliation(s)
- Job Ubbink
- Nestlé Research Center, Vers-chez-les-Blanc, P.O. Box 44, CH-1000 Lausanne 26, Switzerland.
| | | |
Collapse
|
62
|
Micic M, Hu D, Suh YD, Newton G, Romine M, Lu HP. Correlated atomic force microscopy and fluorescence lifetime imaging of live bacterial cells. Colloids Surf B Biointerfaces 2004; 34:205-12. [PMID: 15261059 DOI: 10.1016/j.colsurfb.2003.10.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2003] [Indexed: 01/01/2023]
Abstract
We report on imaging living bacterial cells by using a correlated tapping-mode atomic force microscopy (AFM) and confocal fluorescence lifetime imaging microscopy (FLIM). For optimal imaging of Gram-negative Shewanella oneidensis MR-1 cells, we explored different methods of bacterial sample preparation, such as spreading the cells on poly-L-lysine coated surfaces or agarose gel coated surfaces. We have found that the agarose gel containing 99% ammonium acetate buffer can provide sufficient local aqueous environment for single bacterial cells. Furthermore, the cell surface topography can be characterized by tapping-mode in-air AFM imaging for the single bacterial cells that are partially embedded. Using in-air rather than under-water AFM imaging of the living cells significantly enhanced the contrast and signal-to-noise ratio of the AFM images. Near-field AFM-tip-enhanced fluorescence lifetime imaging (AFM-FLIM) holds high promise on obtaining fluorescence images beyond optical diffraction limited spatial resolution. We have previously demonstrated near-field AFM-FLIM imaging of polymer beads beyond diffraction limited spatial resolution. Here, as the first step of applying AFM-FLIM on imaging bacterial living cells, we demonstrated a correlated and consecutive AFM topographic imaging, fluorescence intensity imaging, and FLIM imaging of living bacterial cells to characterize cell polarity.
Collapse
Affiliation(s)
- Miodrag Micic
- Fundamental Science Division, Pacific Northwest National Laboratory, MSIN K8-88, P.O. Box 999, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|
63
|
Arce FT, Avci R, Beech IB, Cooksey KE, Wigglesworth-Cooksey B. A live bioprobe for studying diatom-surface interactions. Biophys J 2004; 87:4284-97. [PMID: 15377513 PMCID: PMC1304936 DOI: 10.1529/biophysj.104.043307] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atomic force microscopy has been employed to compare the adhesion of Navicula species I diatoms to surfaces of a hydrophobic elastomer, Intersleek, and a hydrophilic mineral, mica. This was accomplished using tipless atomic force microscopy cantilevers functionalized with live diatom cells. Both surfaces were tested with the same diatom bioprobe. Force versus distance curves generated during these experiments revealed comparable cell adhesion strengths on Intersleek and mica, indicating that Navicula diatoms secrete extracellular polymeric substances with hydrophobic and hydrophilic properties. A statistical analysis of force curves was carried out and the average values of works of detachment of a diatom from Intersleek and mica surfaces were determined.
Collapse
Affiliation(s)
- Fernando Terán Arce
- Department of Physics, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
64
|
Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 2004; 68:538-59, table of contents. [PMID: 15353569 PMCID: PMC515252 DOI: 10.1128/mmbr.68.3.538-559.2004] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of microbiology has traditionally been concerned with and focused on studies at the population level. Information on how cells respond to their environment, interact with each other, or undergo complex processes such as cellular differentiation or gene expression has been obtained mostly by inference from population-level data. Individual microorganisms, even those in supposedly "clonal" populations, may differ widely from each other in terms of their genetic composition, physiology, biochemistry, or behavior. This genetic and phenotypic heterogeneity has important practical consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. New appreciation of the importance of cellular heterogeneity, coupled with recent advances in technology, has driven the development of new tools and techniques for the study of individual microbial cells. Because observations made at the single-cell level are not subject to the "averaging" effects characteristic of bulk-phase, population-level methods, they offer the unique capacity to observe discrete microbiological phenomena unavailable using traditional approaches. As a result, scientists have been able to characterize microorganisms, their activities, and their interactions at unprecedented levels of detail.
Collapse
Affiliation(s)
- Byron F Brehm-Stecher
- Department of Food Microbiology and Toxicology, University of Wisconsin-Madison Food Research Institute, 1925 Willow Drive, Madison, WI 53706, USA
| | | |
Collapse
|
65
|
Yingge Z, Xia J, Lan S. The relations between neurite development and the subcellular structures of hippocampal neuron somata. J Struct Biol 2004; 144:327-36. [PMID: 14643201 DOI: 10.1016/j.jsb.2003.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The relations between neurite development and the subcellular structures of the hippocampal neuron somata have been studied with atomic force microscopy (AFM). The conformation of the neuron was achieved by the synapse-like structures found by AFM scanning along a neurite of the cell. Hippocampal neuron somata were divided into two or three subcellular parts by one or two horizontal grooves. The upper parts increased while the middle and the lower parts decreased with the number and the length of the neurites and the formation of the neurosynapse-like structures. When neurites sufficiently developed, the middle parts were lost and the lower parts became very small. Mitosis inhibitors could prevent the formation of such subcellular structures of hippocampal neuron somata, which was accompanied by the loss of ability to form synapse-like structures. These results suggest that the upper parts are responsible for neuritogenesis while the middle and the lower parts only have indirect effect on it.
Collapse
Affiliation(s)
- Zhang Yingge
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | | | | |
Collapse
|
66
|
Chen B, Wang Q, Han L. Using the atomic force microscope to observe and study the ultrastructure of the living BIU-87 cells of the human bladder cancer. SCANNING 2004; 26:162-166. [PMID: 15473267 DOI: 10.1002/sca.4950260403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, the ultrastructure of living BIU-87 cells of human bladder cancer was mapped using atomic force microscopy to reveal the dynamic change of single cancerous cell division. Simultaneously, the feasibility and functional reliability of the atomic force microscope (AFM) were established and a laboratory model using AFM to study living cancerous cells was created. In this experiment, BIU-87 cells of human bladder cancer were cultured by conventional methods and grown in gelatin-treated dishes. A thermostat was used for preserving the cell's living temperature. Scanning of these cells using AFM was carried out in physiologic condition. The AFM images of the ultrastructure of living BIU-87 cells as well as those of the cell's membrane and cytoskeleton were very clear. The dynamic phenomenon of single cell division was observed. It was concluded that the AFM was able to observe and depict the ultrastructure of living cells of human bladder cancer directly and in real time. This experimental model is expected to play an important role in elucidating the cancerous mechanism of bladder normal cells at the atomic or nanometer level.
Collapse
Affiliation(s)
- Bin Chen
- The Study Center of Reproduction, Beijing University of Chinese Medicine, Beijing, P.R. of China.
| | | | | |
Collapse
|
67
|
Santos NC, Castanho MARB. An overview of the biophysical applications of atomic force microscopy. Biophys Chem 2004; 107:133-49. [PMID: 14962595 DOI: 10.1016/j.bpc.2003.09.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2002] [Revised: 07/30/2003] [Accepted: 09/04/2003] [Indexed: 11/27/2022]
Abstract
The potentialities of the atomic force microscopy (AFM) make it a tool of undeniable value for the study of biologically relevant samples. AFM is progressively becoming a usual benchtop technique. In average, more than one paper is published every day on AFM biological applications. This figure overcomes materials science applications, showing that 17 years after its invention, AFM has completely crossed the limits of its traditional areas of application. Its potential to image the structure of biomolecules or bio-surfaces with molecular or even sub-molecular resolution, study samples under physiological conditions (which allows to follow in situ the real time dynamics of some biological events), measure local chemical, physical and mechanical properties of a sample and manipulate single molecules should be emphasized.
Collapse
Affiliation(s)
- Nuno C Santos
- Instituto de Bioquímica/Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
68
|
|
69
|
Kamruzzahan ASM, Kienberger F, Stroh CM, Berg J, Huss R, Ebner A, Zhu R, Rankl C, Gruber HJ, Hinterdorfer P. Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM. Biol Chem 2004; 385:955-60. [PMID: 15551870 DOI: 10.1515/bc.2004.124] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The surface topography of red blood cells (RBCs) was investigated under near-physiological conditions using atomic force microscopy (AFM). An immobilization protocol was established where RBCs are coupled via molecular bonds of the membrane glycoproteins to wheat germ agglutinin (WGA), which is covalently and flexibly tethered to the support. This results in a tight but non-invasive attachment of the cells. Using tapping-mode AFM, which is known as gentle imaging mode and therefore most appropriate for soft biological samples like erythrocytes, it was possible to resolve membrane skeleton structures without major distortions or deformations of the cell surface. Significant differences in the morphology of RBCs from healthy humans and patients with systemic lupus erythematosus (SLE) were observed on topographical images. The surface of RBCs from SLE patients showed characteristic circular-shaped holes with approx. 200 nm in diameter under physiological conditions, a possible morphological correlate to previously published changes in the SLE erythrocyte membrane.
Collapse
Affiliation(s)
- A S M Kamruzzahan
- Institute of Biophysics, University of Linz, Altenbergerstr. 69, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Zieziulewicz TJ, Unfricht DW, Hadjout N, Lynes MA, Lawrence DA. Shrinking the biologic world--nanobiotechnologies for toxicology. Toxicol Sci 2003; 74:235-44. [PMID: 12832654 DOI: 10.1093/toxsci/kfg108] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although toxicologic effects need to be considered at the organismal level, the adverse events originate from interactions and alterations at the molecular level. Cellular structures and functions can be disrupted by modifications of the nanometer structure of critical molecules; therefore, devices used to assess biologic and toxicologic processes at the nanoscale will allow important new research pursuits. In order to properly assess alterations at these dimensions, nanofabricated tools are needed to detect, separate, analyze, and manipulate cells or biologic molecules of interest. The emergence of laser tweezers, surface plasmon resonance (SPR), laser capture microdissection (LCM), atomic force microscopy (AFM), and multi-photon microscopes have allowed for these assessments. Micro- and nanobiotechnologies will further advance biologic, clinical, and toxicologic endeavors with the aid of miniaturized, more sensitive devices. Miniaturized table-top laboratory equipment incorporating additional innovative technologies can lead to new advances, including micro total analysis systems (microTAS) or "lab-on-a-chip" and "sentinel sensor" devices. This review will highlight several devices, which have been made possible by techniques originating in the microelectronics industry. These devices can be used for toxicologic assessment of cellular structures and functions, such as cellular adhesion, signal transduction, motility, deformability, metabolism, and secretion.
Collapse
Affiliation(s)
- Thomas J Zieziulewicz
- Laboratory of Clinical and Experimental Endocrinology and Immunology, Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
71
|
Dufrêne YF. Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr Opin Microbiol 2003; 6:317-23. [PMID: 12831910 DOI: 10.1016/s1369-5274(03)00058-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Atomic force microscopy imaging and force spectroscopy have recently opened a range of novel applications in microbiology. During the past two years, rapid advances have been made using atomic force microscopy to visualize the surface structure of two-dimensional bacterial protein crystals, biofilms and individual cells in physiological conditions. There has also been remarkable progress in using force spectroscopy to measure biomolecular interactions and physical properties of microbial surfaces. Specific highlights include the imaging and manipulation of membrane proteins at the subnanometer level, the observation of the surface of living cells at high resolution, the mapping of local properties such as surface charges, the measurement of elastic properties of cell-surface constituents and the probing of cellular interactions using functionalized probes.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Unité de chimie des interfaces, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
72
|
Abu-Lail NI, Camesano TA. Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003; 37:2173-2183. [PMID: 12785523 DOI: 10.1021/es026159o] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The role of lipopolysaccharides (LPS) in bacterial adhesion was investigated via atomic force microscopy (AFM). Adhesion between a silicon nitride tip and Escherichia coli JM109 was measured in water and 0.01 M phosphate-buffered saline (PBS) on untreated cells and on a sample of E. coli treated with 100 mM ethylenediaminetetraacetic acid (EDTA), which removes approximately 80% of the LPS molecules. LPS removal decreased the adhesion affinity between the bacterial cells and the AFM tip from -2.1 +/- 1.8 to -0.40 +/- 0.36 nN in water and from -0.74 +/- 0.44 to -0.46 +/- 0.23 nN in 0.01 M PBS (statistically different, Mann-Whitney rank sum test, P < 0.01). The distributions of adhesion affinities between E. coli LPS macromolecules and the AFM tip could be described by gamma distribution functions. Direct measurements of the adhesive force between E. coil and a surface were compared with adhesion in batch and column experiments, and agreement was observed between the influences of LPS on adhesion in each system. Bacterial batch retention to glass or in packed beds to quartz sand decreased after LPS removal. When interaction forces were measured during the approach of the AFM tip to a bacterium, steric repulsive forces were seen for both treated and untreated cells, but the repulsion was greater when the LPS was intact A model for steric repulsion predicted a reduction of the equilibrium length of the surface polymers from 242 to 64 nm in water and from 175 to 81 nm in buffer, after removal of a portion of the LPS. DLVO calculations based on conventional and soft-particle DLVO theories predicted higher energy barriers to adhesion for all surfaces after LPS removal, consistent with experimental findings. Adhesion forces between the AFM tip and bacterial polymers were correlated with bacterial attachment and retention, while measurements of interaction forces during the approach of the AFM tip to the bacterium did not correlate with subsequent adhesion behavior to glass or quartz sand.
Collapse
Affiliation(s)
- Nehal I Abu-Lail
- Department of Chemical Engineering Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, USA
| | | |
Collapse
|
73
|
Núñez ME, Martin MO, Duong LK, Ly E, Spain EM. Investigations into the life cycle of the bacterial predator Bdellovibrio bacteriovorus 109J at an interface by atomic force microscopy. Biophys J 2003; 84:3379-88. [PMID: 12719266 PMCID: PMC1302897 DOI: 10.1016/s0006-3495(03)70061-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Atomic force microscopy was used to image Bdellovibrio bacteriovorus 109J, a gram-negative bacterial predator that consumes a variety of other gram-negative bacteria. In predator-prey communities grown on filters at hydrated air-solid interfaces, repeated cycles of hunting, invasion, growth, and lysis occurred readily even though the cells were limited to near two-dimensional movement. This system allowed us to image the bacteria directly without extensive preparation or modification, and many of the cells remained alive during imaging. Presented are images of the life cycle in two species of prey organisms, both Escherichia coli (a small prey bacterium that grows two-dimensionally on a surface) and Aquaspirillum serpens (a large prey bacterium that grows three-dimensionally on a surface), including high-resolution images of invaded prey cells called bdelloplasts. We obtained evidence for multiple invasions per prey cell, as well as significant heterogeneity in morphology of bdellovibrios. Mutant host-independent bdellovibrios were observed to have flagella and to excrete a coating that causes the predators to clump together on a surface. Most interestingly, changes in the texture of the cell surface membranes were measured during the course of the invasion cycle. Thus, coupled with our preparation method, atomic force microscopy allowed new observations to be made about Bdellovibrio at an interface. These studies raise important questions about the ways in which bacterial predation at interfaces (air-solid or liquid-solid) may be similar to or different from predation in solution.
Collapse
Affiliation(s)
- Megan E Núñez
- Departments of Chemistry and Biology, Occidental College, 16090 Campus Road, Los Angeles, CA 90041, USA
| | | | | | | | | |
Collapse
|
74
|
Ivanova EP, Pham DK, Wright JP, Nicolau DV. Detection of coccoid forms of Sulfitobacter mediterraneus using atomic force microscopy. FEMS Microbiol Lett 2002; 214:177-81. [PMID: 12351227 DOI: 10.1111/j.1574-6968.2002.tb11343.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The adhesion of the marine alpha-Proteobacteria Sulfitobacter pontiacus, Sulfitobacter mediterraneus, Sulfitobacter brevis, and Staleya guttiformis to a poly(tert-butyl methacrylate) (PtBMA) polymeric surface generates unusual cell morphological peculiarities following attachment. While the type strains S. pontiacus and S. brevis failed to attach to PtBMA, the vegetative cells of type strain S. mediterraneus underwent morphological conversion into coccoid forms during the attachment over an incubation period of 24-72 h. Type strain St. guttiformis cells formed a multilayered biofilm on the PtBMA surface, presumably facilitated by bacterial production of extracellular polysaccharides. The attachment behavior and fine structure of these coccoid forms have been described using atomic force microscopy. The impact of polymeric surfaces of defined hydrophobicity on the formation of coccoid bodies is discussed.
Collapse
Affiliation(s)
- Elena P Ivanova
- Industrial Research Institute Swinburne, Swinburne University of Technology, P.O. Box 218, Hawthorn, Vic. 3122, Australia.
| | | | | | | |
Collapse
|
75
|
Kolari M, Schmidt U, Kuismanen E, Salkinoja-Salonen MS. Firm but slippery attachment of Deinococcus geothermalis. J Bacteriol 2002; 184:2473-80. [PMID: 11948162 PMCID: PMC135001 DOI: 10.1128/jb.184.9.2473-2480.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms impair the operation of many industrial processes. Deinococcus geothermalis is efficient primary biofilm former in paper machine water, functioning as an adhesion platform for secondary biofilm bacteria. It produces thick biofilms on various abiotic surfaces, but the mechanism of attachment is not known. High-resolution field-emission scanning electron microscopy and atomic force microscopy (AFM) showed peritrichous adhesion threads mediating the attachment of D. geothermalis E50051 to stainless steel and glass surfaces and cell-to-cell attachment, irrespective of the growth medium. Extensive slime matrix was absent from the D. geothermalis E50051 biofilms. AFM of the attached cells revealed regions on the cell surface with different topography, viscoelasticity, and adhesiveness, possibly representing different surface layers that were patchily exposed. We used oscillating probe techniques to keep the tip-biofilm interactions as small as possible. In spite of this, AFM imaging of living D. geothermalis E50051 biofilms in water resulted in repositioning but not in detachment of the surface-attached cells. The irreversibly attached cells did not detach when pushed with a glass capillary but escaped the mechanical force by sliding along the surface. Air drying eliminated the flexibility of attachment, but it resumed after reimmersion in water. Biofilms were evaluated for their strength of attachment. D. geothermalis E50051 persisted 1 h of washing with 0.2% NaOH or 0.5% sodium dodecyl sulfate, in contrast to biofilms of Burkholderia cepacia F28L1 or the well-characterized biofilm former Staphylococcus epidermidis O-47. Deinococcus radiodurans strain DSM 20539(T) also formed tenacious biofilms. This paper shows that D. geothermalis has firm but laterally slippery attachment not reported before for a nonmotile species.
Collapse
Affiliation(s)
- M Kolari
- Division of Microbiology, Department of Applied Chemistry and Microbiology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
76
|
Abstract
Bacterial biofilms impair the operation of many industrial processes. Deinococcus geothermalis is efficient primary biofilm former in paper machine water, functioning as an adhesion platform for secondary biofilm bacteria. It produces thick biofilms on various abiotic surfaces, but the mechanism of attachment is not known. High-resolution field-emission scanning electron microscopy and atomic force microscopy (AFM) showed peritrichous adhesion threads mediating the attachment of D. geothermalis E50051 to stainless steel and glass surfaces and cell-to-cell attachment, irrespective of the growth medium. Extensive slime matrix was absent from the D. geothermalis E50051 biofilms. AFM of the attached cells revealed regions on the cell surface with different topography, viscoelasticity, and adhesiveness, possibly representing different surface layers that were patchily exposed. We used oscillating probe techniques to keep the tip-biofilm interactions as small as possible. In spite of this, AFM imaging of living D. geothermalis E50051 biofilms in water resulted in repositioning but not in detachment of the surface-attached cells. The irreversibly attached cells did not detach when pushed with a glass capillary but escaped the mechanical force by sliding along the surface. Air drying eliminated the flexibility of attachment, but it resumed after reimmersion in water. Biofilms were evaluated for their strength of attachment. D. geothermalis E50051 persisted 1 h of washing with 0.2% NaOH or 0.5% sodium dodecyl sulfate, in contrast to biofilms of Burkholderia cepacia F28L1 or the well-characterized biofilm former Staphylococcus epidermidis O-47. Deinococcus radiodurans strain DSM 20539(T) also formed tenacious biofilms. This paper shows that D. geothermalis has firm but laterally slippery attachment not reported before for a nonmotile species.
Collapse
|
77
|
van der Aa BC, Asther M, Dufrêne YF. Surface properties of Aspergillus oryzae spores investigated by atomic force microscopy. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00277-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
78
|
Dickert FL, Hayden G. Bioimprinting of polymers and sol-gel phases. Selective detection of yeasts with imprinted polymers. Anal Chem 2002; 74:1302-6. [PMID: 11922297 DOI: 10.1021/ac010642k] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coated quartz crystal microbalances were modified with a surface-imprinting process using whole yeast cells. These molded polymer and sol-gel surfaces show honeycomb-like structures as shown by atomic force microscopy. Reinclusion of cells allows a selective on-line monitoring of these microorganism concentrations in water over 5 orders of magnitude. The sensitivity to cells holds up in growth media up to 21 g/L. Even cell fragments can be detected in flowing conditions. The highly robust polymers on the sensor devices are suitable for biotechnological applications.
Collapse
Affiliation(s)
- F L Dickert
- Institute of Analytical Chemistry, University of Vienna, Austria.
| | | |
Collapse
|
79
|
Higgins MJ, Crawford SA, Mulvaney P, Wetherbee R. Characterization of the adhesive mucilages secreted by live diatom cells using atomic force microscopy. Protist 2002; 153:25-38. [PMID: 12022272 DOI: 10.1078/1434-4610-00080] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atomic Force Microscopy (AFM) resolved the topography and mechanical properties of two distinct adhesive mucilages secreted by the marine, fouling diatom Craspedostauros australis. Tapping mode images of live cells revealed a soft and cohesive outer mucilage layer that encased most of the diatom's siliceous wall, and force curves revealed an adhesive force of 3.58 nN. High loading force, contact mode imaging resulted in cantilever 'cleaned' cell walls, which enabled the first direct observation of the active secretion of soft mucilage via pore openings. A second adhesive mucilage consisted of strands secreted at the raphe, a distinct slit in the silica wall involved in cell-substratum attachment and motility. Force measurements revealed a raphe adhesive strand(s) resistant to breaking forces up to 60 nN, and these strands could only be detached from the AFM cantilever probe using the manual stepper motor.
Collapse
Affiliation(s)
- Michael J Higgins
- School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
80
|
Boonaert CJ, Toniazzo V, Mustin C, Dufrêne YF, Rouxhet PG. Deformation of Lactococcus lactis surface in atomic force microscopy study. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00250-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
81
|
The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00233-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
82
|
Pavey KD, Barnes LM, Hanlon GW, Olliff CJ, Ali Z, Paul F. A rapid, non-destructive method for the determination of Staphylococcus epidermidis adhesion to surfaces using quartz crystal resonant sensor technology. Lett Appl Microbiol 2001; 33:344-8. [PMID: 11696093 DOI: 10.1046/j.1472-765x.2001.01009.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the use of quartz crystal resonant sensor (QCRS) technology to determine the adhesion of Staphylococcus epidermidis to fibronectin-coated surfaces. METHODS AND RESULTS QCRS sensors (14 MHz) with 4 mm gold electrodes were coated with fibronectin and exposed for 15 min to suspensions of Staph. epidermidis ranging in concentration from 1 x 10(2) to 1 x 10(6) cfu ml(-1). Changes in resonant frequency were recorded and showed a linear relationship with the logarithm of cell concentration over the range tested. CONCLUSIONS QCRS technology was shown to be a rapid, sensitive and non-destructive method for measuring the adhesion of bacteria to surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY This report demonstrates that QCRS technology has the potential to be used for a range of applications requiring measurement of bacteria on surfaces. In particular, it may be used for the real-time monitoring of bacterial biofilm formation.
Collapse
Affiliation(s)
- K D Pavey
- School of Pharmacy and Biomolecular Sciences, Cockcroft Building, University of Brighton, Lewes Road, Brighton, BN2 4GJ, UK.
| | | | | | | | | | | |
Collapse
|
83
|
Dufrêne YF, Lee GU. Advances in the characterization of supported lipid films with the atomic force microscope. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:14-41. [PMID: 11118515 DOI: 10.1016/s0005-2736(00)00346-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During the past decade, the atomic force microscope (AFM) has become a key technique in biochemistry and biophysics to characterize supported lipid films, as testified by the continuous growth in the number of papers published in the field. The unique capabilities of AFM are: (i) capacity to probe, in real time and in aqueous environment, the surface structure of lipid films; (ii) ability to directly measure physical properties at high spatial resolution; (iii) possibility to modify the film structure and biophysical processes in a controlled way. Such experiments, published up to June 2000, are the focus of the present review. First, we provide a general introduction on the preparation and characterization of supported lipid films as well as on the principles of AFM. The section 'Structural properties' focuses on the various applications of AFM for characterizing the structure of supported lipid films: visualization of molecular structure, formation of structural defects, effect of external agents, formation of supported films, organization of phase-separated films (coexistence region, mixed films) and, finally, the use of supported lipid bilayers for anchoring biomolecules such as DNA, enzymes and crystalline protein arrays. The section 'Physical properties' introduces the principles of force measurements by AFM, interpretation of these measurements and their recent application to supported lipid films and related structures. Finally, we highlight the major achievements brought by the technique and some of the current limitations.
Collapse
Affiliation(s)
- Y F Dufrêne
- Unité de chimie des interfaces, Université catholique de Louvain, Belgium.
| | | |
Collapse
|