51
|
Patsalo V, Raleigh DP, Green DF. Rational and computational design of stabilized variants of cyanovirin-N that retain affinity and specificity for glycan ligands. Biochemistry 2011; 50:10698-712. [PMID: 22032696 PMCID: PMC3234137 DOI: 10.1021/bi201411c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyanovirin-N (CVN) is an 11 kDa pseudosymmetric cyanobacterial lectin that has been shown to inhibit infection by the human immunodeficiency virus by binding to high-mannose oligosaccharides on the surface of the viral envelope glycoprotein gp120. In this work, we describe rationally designed CVN variants that stabilize the protein fold while maintaining high affinity and selectivity for their glycan targets. Poisson-Boltzmann calculations and protein repacking algorithms were used to select stabilizing mutations in the protein core. By substituting the buried polar side chains of Ser11, Ser20, and Thr61 with aliphatic groups, we stabilized CVN by nearly 12 °C against thermal denaturation, and by 1 M GuaHCl against chemical denaturation, relative to a previously characterized stabilized mutant. Glycan microarray binding experiments confirmed that the specificity profile of carbohydrate binding is unperturbed by the mutations and is identical for all variants. In particular, the variants selectively bound glycans containing the Manα(1→2)Man linkage, which is the known minimal binding unit of CVN. We also report the slow denaturation kinetics of CVN and show that they can complicate thermodynamic analysis; in particular, the unfolding of CVN cannot be described as a fixed two-state transition. Accurate thermodynamic parameters are needed to describe the complicated free energy landscape of CVN, and we provide updated values for CVN unfolding.
Collapse
Affiliation(s)
- Vadim Patsalo
- Department of Applied Mathematics and Statistics Stony Brook University Stony Brook, New York 11794 USA
- Laufer Center for Physical and Quantitative Biology Stony Brook University Stony Brook, New York 11794 USA
| | - Daniel P. Raleigh
- Department of Chemistry Stony Brook University Stony Brook, New York 11794 USA
- Graduate Program in Biochemistry and Structural Biology Stony Brook University Stony Brook, New York 11794 USA
| | - David F. Green
- Department of Applied Mathematics and Statistics Stony Brook University Stony Brook, New York 11794 USA
- Laufer Center for Physical and Quantitative Biology Stony Brook University Stony Brook, New York 11794 USA
- Department of Chemistry Stony Brook University Stony Brook, New York 11794 USA
- Graduate Program in Biochemistry and Structural Biology Stony Brook University Stony Brook, New York 11794 USA
| |
Collapse
|
52
|
Structural basis of the anti-HIV activity of the cyanobacterial Oscillatoria Agardhii agglutinin. Structure 2011; 19:1170-81. [PMID: 21827952 DOI: 10.1016/j.str.2011.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/16/2011] [Accepted: 05/22/2011] [Indexed: 11/22/2022]
Abstract
The cyanobacterial Oscillatory Agardhii agglutinin (OAA) is a recently discovered HIV-inactivating lectin that interacts with high-mannose sugars. Nuclear magnetic resonance (NMR) binding studies between OAA and α3,α6-mannopentaose (Manα(1-3)[Manα(1-3)[Manα(1-6)]Manα(1-6)]Man), the branched core unit of Man-9, revealed two binding sites at opposite ends of the protein, exhibiting essentially identical affinities. Atomic details of the specific protein-sugar contacts in the recognition loops of OAA were delineated in the high-resolution crystal structures of free and glycan-complexed protein. No major changes in the overall protein structure are induced by carbohydrate binding, with essentially identical apo- and sugar-bound conformations in binding site 1. A single peptide bond flip at W77-G78 is seen in binding site 2. Our combined NMR and crystallographic results provide structural insights into the mechanism by which OAA specifically recognizes the branched Man-9 core, distinctly different from the recognition of the D1 and D3 arms at the nonreducing end of high-mannose carbohydrates by other antiviral lectins.
Collapse
|
53
|
Yuwen T, Post CB, Skrynnikov N. Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media? JOURNAL OF BIOMOLECULAR NMR 2011; 51:131-50. [PMID: 21947922 PMCID: PMC4721247 DOI: 10.1007/s10858-011-9548-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/07/2011] [Indexed: 05/13/2023]
Abstract
Many proteins have modular design with multiple globular domains connected via flexible linkers. As a simple model of such system, we study a tandem construct consisting of two identical SH3 domains and a variable-length Gly/Ser linker. When the linker is short, this construct represents a dumbbell-shaped molecule with limited amount of domain-domain mobility. Due to its elongated shape, this molecule efficiently aligns in steric alignment media. As the length of the linker increases, the two domains become effectively uncoupled and begin to behave as independent entities. Consequently, their degree of alignment drops, approaching that found in the (near-spherical) isolated SH3 domains. To model the dependence of alignment parameters on the length of the interdomain linker, we have generated in silico a series of conformational ensembles representing SH3 tandems with different linker length. These ensembles were subsequently used as input for alignment prediction software PALES. The predicted alignment tensors were compared with the results of experimental measurements using a series of tandem-SH3 samples in PEG/hexanol alignment media. This comparison broadly confirmed the expected trends. At the same time, it has been found that the isolated SH3 domain aligns much stronger than expected. This finding can be attributed to complex morphology of the PEG/hexanol media and/or to weak site-specific interactions between the protein and the media. In the latter case, there are strong indications that electrostatic interactions may play a role. The fact that PEG/hexanol does not behave as a simple steric media should serve as a caution for studies that use PALES as a quantitative prediction tool (especially for disordered proteins). Further progress in this area depends on our ability to accurately model the anisotropic media and its site-specific interactions with protein molecules. Once this ability is improved, it should be possible to use the alignment parameters as a measure of domain-domain cooperativity, thus identifying the situations where two domains transiently interact with each other or become coupled through a partially structured linker.
Collapse
Affiliation(s)
- Tairan Yuwen
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907, USA
| | - Nikolai Skrynnikov
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| |
Collapse
|
54
|
Designed oligomers of cyanovirin-N show enhanced HIV neutralization. Proc Natl Acad Sci U S A 2011; 108:14079-84. [PMID: 21799112 DOI: 10.1073/pnas.1108777108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanovirin-N (CV-N) is a small, cyanobacterial lectin that neutralizes many enveloped viruses, including human immunodeficiency virus type I (HIV-1). This antiviral activity is attributed to two homologous carbohydrate binding sites that specifically bind high mannose glycosylation present on envelope glycoproteins such as HIV-1 gp120. We created obligate CV-N oligomers to determine whether increasing the number of binding sites has an effect on viral neutralization. A tandem repeat of two CV-N molecules (CVN(2)) increased HIV-1 neutralization activity by up to 18-fold compared to wild-type CV-N. In addition, the CVN(2) variants showed extensive cross-clade reactivity and were often more potent than broadly neutralizing anti-HIV antibodies. The improvement in activity and broad cross-strain HIV neutralization exhibited by these molecules holds promise for the future therapeutic utility of these and other engineered CV-N variants.
Collapse
|
55
|
Huang X, Jin W, Griffin GE, Shattock RJ, Hu Q. Removal of two high-mannose N-linked glycans on gp120 renders human immunodeficiency virus 1 largely resistant to the carbohydrate-binding agent griffithsin. J Gen Virol 2011; 92:2367-2373. [PMID: 21715597 DOI: 10.1099/vir.0.033092-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
High-mannose N-linked glycans recognized by carbohydrate-binding agents (CBAs) are potential targets for topical microbicides. To better understand the mechanisms by which CBAs inhibit human immunodeficiency virus (HIV)-1 infection at the molecular level, we systematically analysed the contribution of site-specific glycans to the anti-HIV activity of CBAs by site-directed mutagenesis. Our results demonstrate that a single deglycosylation at N295 or N448 in a range of primary and T-cell-line-adapted HIV-1 isolates resulted in marked resistance to griffithsin (GRFT) but maintained the sensitivity to cyanovirin (CV-N), Galanthus nivalis agglutinin (GNA) and a range of neutralizing antibodies. Unlike CV-N and GNA, the interaction between GRFT and gp120 appeared to be dependent on the specific trimeric 'sugar tower' including N295 and N448. This was further strengthened by the results of GRFT-Env binding experiments. Our study identifies GRFT-specific gp120 glycans and may provide information for the design of novel CBA antiviral strategies.
Collapse
Affiliation(s)
- Xin Huang
- Graduate School, Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Wei Jin
- Graduate School, Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - George E Griffin
- Center for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | - Robin J Shattock
- Center for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | - Qinxue Hu
- Center for Infection and Immunity, St George's University of London, London SW17 0RE, UK.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
56
|
Shahzad-ul-Hussan S, Gustchina E, Ghirlando R, Clore GM, Bewley CA. Solution structure of the monovalent lectin microvirin in complex with Man(alpha)(1-2)Man provides a basis for anti-HIV activity with low toxicity. J Biol Chem 2011; 286:20788-96. [PMID: 21471192 PMCID: PMC3121468 DOI: 10.1074/jbc.m111.232678] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/23/2011] [Indexed: 11/06/2022] Open
Abstract
Lectins that bind surface envelope glycoprotein gp120 of HIV with high avidity can potently inhibit viral entry. Yet properties such as multivalency that facilitate strong interactions can also cause nonspecific binding and toxicity. The cyanobacterial lectin microvirin (MVN) is unusual as it potently inhibits HIV-1 with negligible toxicity compared with cyanovirin-N (CVN), its well studied antiviral homolog. To understand the structural and mechanistic basis for these differences, we solved the solution structure of MVN free and in complex with its ligand Manα(1-2)Man, and we compared specificity and time windows of inhibition with CVN and Manα(1-2)Man-specific mAb 2G12. We show by NMR and analytical ultracentrifugation that MVN is monomeric in solution, and we demonstrate by NMR that Manα(1-2)Man-terminating carbohydrates interact with a single carbohydrate-binding site. Synchronized infectivity assays show that 2G12, MVN, and CVN inhibit entry with distinct kinetics. Despite shared specificity for Manα(1-2)Man termini, combinations of the inhibitors are synergistic suggesting they recognize discrete glycans and/or dynamic glycan conformations on gp120. Entry assays employing amphotropic viruses show that MVN is inactive, whereas CVN potently inhibits both. In addition to demonstrating that HIV-1 can be inhibited through monovalent interactions, given the similarity of the carbohydrate-binding site common to MVN and CVN, these data suggest that gp120 behaves as a clustered glycan epitope and that multivalent-protein interactions achievable with CVN but not MVN are required for inhibition of some viruses.
Collapse
Affiliation(s)
| | | | - Rodolfo Ghirlando
- the Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
57
|
Koharudin LM, Viscomi AR, Montanini B, Kershaw MJ, Talbot NJ, Ottonello S, Gronenborn AM. Structure-function analysis of a CVNH-LysM lectin expressed during plant infection by the rice blast fungus Magnaporthe oryzae. Structure 2011; 19:662-74. [PMID: 21565701 PMCID: PMC3094573 DOI: 10.1016/j.str.2011.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 12/23/2022]
Abstract
The rice blast fungus Magnaporthe oryzae's genome encodes a hypothetical protein (MGG_03307) containing a type III CVNH lectin, in which a LysM domain is inserted between individual repeats of a single CVNH domain. At present, no structural or ligand binding data are available for any type III CVNH and functional studies in natural source organisms are scarce. Here, we report NMR solution structure and functional data on MGG_03307. The structure of the CVNH/LysM module revealed that intact and functionally competent CVNH and LysM domains are present. Using NMR titrations, carbohydrate specificities for both domains were determined, and it was found that each domain behaves as an isolated unit without any interdomain communication. Furthermore, live-cell imaging revealed a predominant localization of MGG_03307 within the appressorium, the specialized fungal cell for gaining entry into rice tissue. Our results suggest that MGG_03307 plays a role in the early stages of plant infection.
Collapse
Affiliation(s)
- Leonardus M.I. Koharudin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Arturo R. Viscomi
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | - Barbara Montanini
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | - Michael J. Kershaw
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Simone Ottonello
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
58
|
Roldós V, Cañada FJ, Jiménez-Barbero J. Carbohydrate-Protein Interactions: A 3D View by NMR. Chembiochem 2011; 12:990-1005. [DOI: 10.1002/cbic.201000705] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Indexed: 12/29/2022]
|
59
|
Koharudin LMI, Furey W, Gronenborn AM. Novel fold and carbohydrate specificity of the potent anti-HIV cyanobacterial lectin from Oscillatoria agardhii. J Biol Chem 2011; 286:1588-97. [PMID: 20961847 PMCID: PMC3020767 DOI: 10.1074/jbc.m110.173278] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/23/2010] [Indexed: 11/06/2022] Open
Abstract
Oscillatoria agardhii agglutinin (OAA) is a recently discovered cyanobacterial lectin that exhibits potent anti-HIV activity. Up to now, only its primary structure and carbohydrate binding data have been available. To elucidate the structural basis for the antiviral mechanism of OAA, we determined the structure of this lectin by x-ray crystallography at 1.2 Å resolution and mapped the specific carbohydrate recognition sites of OAA by NMR spectroscopy. The overall architecture of OAA comprises 10 β-strands that fold into a single, compact, β-barrel-like domain, creating a unique topology compared with all known protein structures in the Protein Data Bank. OAA sugar binding was tested against Man-9 and various disaccharide components of Man-9. Two symmetric carbohydrate-binding sites were located on the protein, and a preference for Manα(1-6)Man-linked sugars was found. Altogether, our structural results explain the antiviral activity OAA and add to the growing body of knowledge about antiviral lectins.
Collapse
Affiliation(s)
| | - William Furey
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
- the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| | - Angela M. Gronenborn
- From the Departments of Structural Biology and
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| |
Collapse
|
60
|
Vorontsov II, Miyashita O. Crystal molecular dynamics simulations to speed up MM/PB(GB)SA evaluation of binding free energies of di-mannose deoxy analogs with P51G-m4-Cyanovirin-N. J Comput Chem 2010; 32:1043-53. [DOI: 10.1002/jcc.21683] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/28/2010] [Accepted: 08/22/2010] [Indexed: 12/26/2022]
|
61
|
Chávez MI, Vila-Perelló M, Cañada FJ, Andreu D, Jiménez-Barbero J. Effect of a serine-to-aspartate replacement on the recognition of chitin oligosaccharides by truncated hevein. A 3D view by using NMR. Carbohydr Res 2010; 345:1461-8. [DOI: 10.1016/j.carres.2010.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/11/2010] [Accepted: 02/20/2010] [Indexed: 11/24/2022]
|
62
|
Säwén E, Massad T, Landersjö C, Damberg P, Widmalm G. Population distribution of flexible molecules from maximum entropy analysis using different priors as background information: application to the Φ, Ψ-conformational space of the α-(1-->2)-linked mannose disaccharide present in N- and O-linked glycoproteins. Org Biomol Chem 2010; 8:3684-95. [PMID: 20574564 DOI: 10.1039/c003958f] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational space available to the flexible molecule α-D-Manp-(1-->2)-α-D-Manp-OMe, a model for the α-(1-->2)-linked mannose disaccharide in N- or O-linked glycoproteins, is determined using experimental data and molecular simulation combined with a maximum entropy approach that leads to a converged population distribution utilizing different input information. A database survey of the Protein Data Bank where structures having the constituent disaccharide were retrieved resulted in an ensemble with >200 structures. Subsequent filtering removed erroneous structures and gave the database (DB) ensemble having three classes of mannose-containing compounds, viz., N- and O-linked structures, and ligands to proteins. A molecular dynamics (MD) simulation of the disaccharide revealed a two-state equilibrium with a major and a minor conformational state, i.e., the MD ensemble. These two different conformation ensembles of the disaccharide were compared to measured experimental spectroscopic data for the molecule in water solution. However, neither of the two populations were compatible with experimental data from optical rotation, NMR (1)H,(1)H cross-relaxation rates as well as homo- and heteronuclear (3)J couplings. The conformational distributions were subsequently used as background information to generate priors that were used in a maximum entropy analysis. The resulting posteriors, i.e., the population distributions after the application of the maximum entropy analysis, still showed notable deviations that were not anticipated based on the prior information. Therefore, reparameterization of homo- and heteronuclear Karplus relationships for the glycosidic torsion angles Φ and Ψ were carried out in which the importance of electronegative substituents on the coupling pathway was deemed essential resulting in four derived equations, two (3)J(COCC) and two (3)J(COCH) being different for the Φ and Ψ torsions, respectively. These Karplus relationships are denoted JCX/SU09. Reapplication of the maximum entropy analysis gave excellent agreement between the MD- and DB-posteriors. The information entropies show that the current reparametrization of the Karplus relationships constitutes a significant improvement. The Φ(H) torsion angle of the disaccharide is governed by the exo-anomeric effect and for the dominating conformation Φ(H) = -40 degrees and Ψ(H) = 33 degrees. The minor conformational state has a negative Ψ(H) torsion angle; the relative populations of the major and the minor states are approximately 3 : 1. It is anticipated that application of the methodology will be useful to flexible molecules ranging from small organic molecules to large biomolecules.
Collapse
Affiliation(s)
- Elin Säwén
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
63
|
François KO, Balzarini J. Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. Med Res Rev 2010; 32:349-87. [PMID: 20577974 PMCID: PMC7168447 DOI: 10.1002/med.20216] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Twenty‐seven years after the discovery of HIV as the cause of AIDS more than 25 drugs directed against four different viral targets (i.e. reverse transcriptase, protease, integrase, envelope gp41) and one cellular target (i.e. CCR5 co‐receptor) are available for treatment. However, the search for an efficient vaccine is still ongoing. One of the main problems is the presence of a continuously evolving dense carbohydrate shield, consisting of N‐linked glycans that surrounds the virion and protects it against efficient recognition and persistent neutralization by the immune system. However, several lectins from the innate immune system specifically bind to these glycans in an attempt to process the virus antigens to provoke an immune response. Across a wide variety of different species in nature lectins can be found that can interact with the glycosylated envelope of HIV‐1 and can block the infection of susceptible cells by the virus. In this review, we will give an overview of the lectins from non‐mammalian origin that are endowed with antiviral properties and discuss the complex interactions between lectins of the innate immune system and HIV‐1. Also, attention will be given to different carbohydrate‐related modalities that can be exploited for antiviral chemotherapy. © 2010 Wiley Periodicals, Inc. Med Res Rev
Collapse
Affiliation(s)
- K O François
- Rega Institute for Medical Research, K. U. Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
64
|
Actinohivin, a broadly neutralizing prokaryotic lectin, inhibits HIV-1 infection by specifically targeting high-mannose-type glycans on the gp120 envelope. Antimicrob Agents Chemother 2010; 54:3287-301. [PMID: 20498311 DOI: 10.1128/aac.00254-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The lectin actinohivin (AH) is a monomeric carbohydrate-binding agent (CBA) with three carbohydrate-binding sites. AH strongly interacts with gp120 derived from different X4 and R5 human immunodeficiency virus (HIV) strains, simian immunodeficiency virus (SIV) gp130, and HIV type 1 (HIV-1) gp41 with affinity constants (KD) in the lower nM range. The gp120 and gp41 binding of AH is selectively reversed by (alpha1,2-mannose)3 oligosaccharide but not by alpha1,3/alpha1,6-mannose- or GlcNAc-based oligosaccharides. AH binding to gp120 prevents binding of alpha1,2-mannose-specific monoclonal antibody 2G12, and AH covers a broader epitope on gp120 than 2G12. Prolonged exposure of HIV-1-infected CEM T-cell cultures with escalating AH concentrations selects for mutant virus strains containing N-glycosylation site deletions (predominantly affecting high-mannose-type glycans) in gp120. In contrast to 2G12, AH has a high genetic barrier, since several concomitant N-glycosylation site deletions in gp120 are required to afford significant phenotypic drug resistance. AH is endowed with broadly neutralizing activity against laboratory-adapted HIV strains and a variety of X4 and/or R5 HIV-1 clinical clade isolates and blocks viral entry within a narrow concentration window of variation (approximately 5-fold). In contrast, the neutralizing activity of 2G12 varied up to 1,000-fold, depending on the virus strain. Since AH efficiently prevents syncytium formation in cocultures of persistently HIV-1-infected HuT-78 cells and uninfected CD4+ T lymphocytes, inhibits dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-mediated capture of HIV-1 and subsequent virus transmission to CD4+ T lymphocytes, does not upregulate cellular activation markers, lacks mitogenic activity, and does not induce cytokines/chemokines in peripheral blood mononuclear cell cultures, it should be considered a potential candidate drug for microbicidal use.
Collapse
|
65
|
Abstract
Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents. However, this potential is far from being realized. One key issue is the difficulty in the development of "binders" capable of specific recognition of carbohydrates of biological relevance. This review discusses systematically the general approaches that are available in developing carbohydrate sensors and "binders/receptors," and their applications. The focus is on discoveries during the last 5 years.
Collapse
Affiliation(s)
- Shan Jin
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Yunfeng Cheng
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Suazette Reid
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Minyong Li
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Binghe Wang
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| |
Collapse
|
66
|
Vorontsov II, Miyashita O. Solution and crystal molecular dynamics simulation study of m4-cyanovirin-N mutants complexed with di-mannose. Biophys J 2010; 97:2532-40. [PMID: 19883596 DOI: 10.1016/j.bpj.2009.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 11/19/2022] Open
Abstract
Cyanovirin-N (CVN) is a highly potent anti-HIV carbohydrate-binding agent that establishes its microbicide activity through interaction with mannose-rich glycoprotein gp120 on the virion surface. The m4-CVN and P51G-m4-CVN mutants represent simple models for studying the high-affinity binding site, B(M). A recently determined 1.35 A high-resolution structure of P51G-m4-CVN provided details on the di-mannose binding mechanism, and suggested that the Arg-76 and Glu-41 residues are critical components of high mannose specificity and affinity. We performed molecular-dynamics simulations in solution and a crystal environment to study the role of Arg-76. Network analysis and clustering were used to characterize the dynamics of Arg-76. The results of our explicit solvent solution and crystal simulations showed a significant correlation with conformations of Arg-76 proposed from x-ray crystallographic studies. However, the crystal simulation showed that the crystal environment strongly biases conformational sampling of the Arg-76 residue. The solution simulations demonstrated no conformational preferences for Arg-76, which would support its critical role as the residue that locks the ligand in the bound state. Instead, a comparative analysis of trajectories from >50 ns of simulation for two mutants revealed the existence of a very stable eight-hydrogen-bond network between the di-mannose ligand and predominantly main-chain atoms. This network may play a key role in the specific recognition and strong binding of mannose oligomers in CVN and its homologs.
Collapse
Affiliation(s)
- Ivan I Vorontsov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
67
|
Shahzad-ul-Hussan S, Cai M, Bewley CA. Unprecedented glycosidase activity at a lectin carbohydrate-binding site exemplified by the cyanobacterial lectin MVL. J Am Chem Soc 2010; 131:16500-8. [PMID: 19856962 DOI: 10.1021/ja905929c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbohydrate binding proteins, or lectins, are engendered with the ability to bind specific carbohydrate structures, thereby mediating cell-cell and cell-pathogen interactions. Lectins are distinct from carbohydrate modifying enzymes and antibodies, respectively, as they do not carry out glycosidase or glycosyl transferase reactions, and they are of nonimmune origin. Cyanobacterial and algal lectins have become prominent in recent years due to their unique biophysical traits, such as exhibiting novel protein folds and unusually high carbohydrate affinity, and ability to potently inhibit HIV-1 entry through high affinity carbohydrate-mediated interactions with the HIV envelope glycoprotein gp120. The antiviral cyanobacterial lectin Microcystis viridis lectin (MVL), which contains two high affinity oligomannose binding sites, is one such example. Here we used glycan microarray profiling, NMR spectroscopy, and mutagenesis to show that one of the two oligomannose binding sites of MVL can catalyze the cleavage of chitin fragments (such as chitotriose) to GlcNAc, to determine the mode of MVL binding to and cleavage of chitotriose, to identify Asp75 as the primary catalytic residue involved in this cleavage, and to solve the solution structure of an inactive mutant of MVL in complex with this unexpected substrate. These studies represent the first demonstration of dual catalytic activity and carbohydrate recognition for discrete oligosaccharides at the same carbohydrate-binding site in a lectin. Sequence comparisons between the N- and C-domains of MVL, together with the sequences of new MVL homologues identified through bioinformatics, provide insight into the evolving roles of carbohydrate recognition.
Collapse
Affiliation(s)
- Syed Shahzad-ul-Hussan
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
68
|
Cheng Y, Li M, Wang S, Peng H, Reid S, Ni N, Fang H, Xu W, Wang B. Carbohydrate biomarkers for future disease detection and treatment. Sci China Chem 2010; 53:3-20. [PMID: 32214994 PMCID: PMC7089153 DOI: 10.1007/s11426-010-0021-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/09/2009] [Indexed: 12/28/2022]
Abstract
Carbohydrates are considered as one of the most important classes of biomarkers for cell types, disease states, protein functions, and developmental states. Carbohydrate "binders" that can specifically recognize a carbohydrate biomarker can be used for developing novel types of site specific delivery methods and imaging agents. In this review, we present selected examples of important carbohydrate biomarkers and how they can be targeted for the development of therapeutic and diagnostic agents. Examples are arranged based on disease categories including (1) infectious diseases, (2) cancer, (3) inflammation and immune responses, (4) signal transduction, (5) stem cell transformation, (6) embryo development, and (7) cardiovascular diseases, though some issues cross therapeutic boundaries.
Collapse
Affiliation(s)
- YunFeng Cheng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - MinYong Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - ShaoRu Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - HanJing Peng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Suazette Reid
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - NanTing Ni
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Hao Fang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - WenFang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - BingHe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
69
|
Koharudin LM, Furey W, Gronenborn AM. A designed chimeric cyanovirin-N homolog lectin: structure and molecular basis of sucrose binding. Proteins 2009; 77:904-15. [PMID: 19639634 PMCID: PMC2773468 DOI: 10.1002/prot.22514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The NMR and X-ray structures of a designed chimeric cyanovirin-N homolog (CVNH) protein were determined. The individual halves of the structure are similar to their counterparts in the parent proteins, with domains A and B resembling the structures of TbCVNH and NcCVNH, respectively. No significant differences between the solution and crystal conformations were observed, although details in loop conformations and distinct crystal packing-induced features are present. Carbohydrate binding studies by NMR revealed affinity and specificity for Glc alpha(1-2)Frc and Man alpha(1-2)Man, and the parental half that is devoid of any sucrose affinity in NcCVNH was transformed into a genuine sucrose binding site in the context of the chimera. The atomic details of sugar recognition are seen in the crystal structure of the protein with two bound Glc alpha(1-2)Frc molecules. Both sugars exhibit different conformations around the glycosidic bond and engage in unique hydrogen bonding networks in the two sites. Although the protein is able to bind two Man alpha(1-2)Man molecules, a property associated with HIV-inactivation, no anti-HIV activity was observed for the hybrid protein. These results provide the structural basis for sugar recognition in the CVNH family and aid in deciphering the relationship between sugar binding and anti-HIV activity.
Collapse
Affiliation(s)
- Leonardus M.I. Koharudin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - William Furey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Biocrystallography Laboratory, PO Box 12055, VA Medical Center, Pittsburgh, PA 15240
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
70
|
Dam TK, Brewer CF. Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology 2009; 20:270-9. [PMID: 19939826 DOI: 10.1093/glycob/cwp186] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The innate immune response of multicellular organisms is initiated by the binding of soluble and membrane-bound host molecules including lectins to the surface of pathogenic organisms. Until recently, it was believed that the epitopes recognized by host molecules were uniquely associated with the pathogenic organisms. Hence, the term pattern recognition receptors (PRRs) was used to describe their binding specificities. However, with an expanding number of lectin classes including C-type lectins, siglecs, and galectins recognized as PRRs, it is apparent that many of the glycan epitopes recognized on foreign pathogens are present in the host and involved in cellular functions. Hence, the molecular basis for pattern recognition by lectins of carbohydrate epitopes on pathogens is in question. A number of studies indicate that the density and number of glycan epitopes in multivalent carbohydrates and glycoprotein receptors determine the affinity of lectins and their effector functions. This paper reviews lectins that are involved in innate immunity, mechanisms of enhanced affinity and cross-linking of lectins with density-dependent glycan epitopes, density-dependent recognition of glycan receptors by lectins in host systems and lectin-glycan interactions in foreign pathogens. Evidence indicates that lectin pattern recognition in innate immunity is part of a general mechanism of density-dependent glycan recognition. This leads to a new definition of lectin receptor in biological systems, which considers the density and number of glycan epitopes on the surface of cells and not just the affinity of single epitopes.
Collapse
Affiliation(s)
- Tarun K Dam
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
71
|
Tanaka H, Chiba H, Inokoshi J, Kuno A, Sugai T, Takahashi A, Ito Y, Tsunoda M, Suzuki K, Takénaka A, Sekiguchi T, Umeyama H, Hirabayashi J, Ōmura S. Mechanism by which the lectin actinohivin blocks HIV infection of target cells. Proc Natl Acad Sci U S A 2009; 106:15633-8. [PMID: 19717426 PMCID: PMC2734881 DOI: 10.1073/pnas.0907572106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Indexed: 11/18/2022] Open
Abstract
Various lectins have attracted attention as potential microbicides to prevent HIV transmission. Their capacity to bind glycoproteins has been suggested as a means to block HIV binding and entry into susceptible cells. The previously undescribed lectin actinohivin (AH), isolated by us from an actinomycete, exhibits potent in vitro anti-HIV activity by binding to high-mannose (Man) type glycans (HMTGs) of gp120, an envelope glycoprotein of HIV. AH contains 114 aa and consists of three segments, all of which need to show high affinity to gp120 for the anti-HIV characteristic. To generate the needed mechanistic understanding of AH binding to HIV in anticipation of seeking approval for human testing as a microbicide, we have used multiple molecular tools to characterize it. AH showed a weak affinity to Man alpha(1-2)Man, Man alpha(1-2)Man alpha(1-2)Man, of HMTG (Man8 or Man9) or RNase B (which has a single HMTG), but exhibited a strong and highly specific affinity (K(d) = 3.4 x 10(-8) M) to gp120 of HIV, which contains multiple Man8 and/or Man9 units. We have compared AH to an alternative lectin, cyanovirin-N, which did not display similar levels of discrimination between high- and low-density HMTGs. X-ray crystal analysis of AH revealed a 3D structure containing three sugar-binding pockets. Thus, the strong specific affinity of AH to gp120 is considered to be due to multivalent interaction of the three sugar-binding pockets with three HMTGs of gp120 via the "cluster effect" of lectin. Thus, AH is a good candidate for investigation as a safe microbicide to help prevent HIV transmission.
Collapse
Affiliation(s)
- Haruo Tanaka
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | | | | | - Atsushi Kuno
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan; and
| | | | - Atsushi Takahashi
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | - Masaru Tsunoda
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | - Kaoru Suzuki
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | - Akio Takénaka
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | - Takeshi Sekiguchi
- Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan
| | | | - Jun Hirabayashi
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan; and
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
72
|
Jiménez-Barbero J, L. Asensio J, Cuevas G, Canales A, Fernández-Alonso MC, Javier Cañada F. Conformational insights on the molecular recognition processes of carbohydrate molecules by proteins and enzymes: A 3D view by using NMR. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600598103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
73
|
Liu Y, Carroll JR, Holt LA, McMahon J, Giomarelli B, Ghirlanda G. Multivalent interactions with gp120 are required for the anti-HIV activity of Cyanovirin. Biopolymers 2009; 92:194-200. [PMID: 19235857 PMCID: PMC6961781 DOI: 10.1002/bip.21173] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyanovirin-N (CV-N) is a cyanobacterial lectin that binds to specific oligomannoses on the surface of gp120, resulting in nanomolar antiviral activity against HIV. In its monomeric form, CV-N contains two functional carbohydrate-binding domains, A and B. When refolded at high concentration, the protein can form a domain-swapped dimer. To clarify the role of multiple-binding sites in CV-N, we previously designed a monomeric mutant, P51G-m4-CVN, in which the binding site on domain A was rendered ineffective by four mutations (m4); in addition, a hinge region mutation (P51G) hinders the formation of a domain swapped dimer. The protein bound gp120 with diminished affinity and was completely inactive against HIV. Here, we present two mutants, DeltaQ50-m4-CVN and S52P-m4-CVN, which fold exclusively as domain-swapped dimers while containing the four mutations that abolish domain A. The dimers contain two intact B domains, thus restoring multivalency. DeltaQ50-m4-CVN and S52P-m4-CVN bind gp120 at low-nanomolar concentrations and recover in part the antiviral activity of wt CV-N. These results indicate that the number of carbohydrate binding domains, rather than their identity, is crucial to CV-N functionality.
Collapse
Affiliation(s)
- Yinan Liu
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604
| | - Jacob R. Carroll
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604
| | - Lindsey A. Holt
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604
| | - James McMahon
- Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, MD 21702-1201
| | - Barbara Giomarelli
- Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, MD 21702-1201
| | - Giovanna Ghirlanda
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604
| |
Collapse
|
74
|
Fujimoto YK, Terbush RN, Patsalo V, Green DF. Computational models explain the oligosaccharide specificity of cyanovirin-N. Protein Sci 2008; 17:2008-14. [PMID: 18809850 PMCID: PMC2578810 DOI: 10.1110/ps.034637.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
The prokaryotic lectin cyanovirin-N (CV-N) is a potent inhibitor of HIV envelope-mediated cell entry, and thus is a leading candidate among a new class of potential anti-HIV microbicides. The activity of CV-N is a result of interactions with the D1 arm of high-mannose oligosaccharides on the viral glycoprotein gp120. Here, we present computationally refined models of CV-N recognition of the di- and trisaccharides that represent the terminal three sugars of the D1 arm by each CV-N binding site. These models complement existing structural data, both from NMR spectroscopy and X-ray crystallography. When used with a molecular dynamics/continuum electrostatic (MD/PBSA) approach to compute binding free energies, these models explain the relative affinity of each site for the two saccharides. This work presents the first validation of the application of continuum electrostatic models to carbohydrate-protein association. Taken as a whole, the results both provide models of CV-N sugar recognition and demonstrate the utility of these computational methods for the study of carbohydrate-binding proteins.
Collapse
Affiliation(s)
- Yukiji K Fujimoto
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | | | | | | |
Collapse
|
75
|
Huskens D, Vermeire K, Vandemeulebroucke E, Balzarini J, Schols D. Safety concerns for the potential use of cyanovirin-N as a microbicidal anti-HIV agent. Int J Biochem Cell Biol 2008; 40:2802-14. [PMID: 18598778 DOI: 10.1016/j.biocel.2008.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/14/2008] [Accepted: 05/29/2008] [Indexed: 11/18/2022]
Abstract
Based on its antiviral activity profile, cyanovirin-N (CV-N) holds great potential for anti-HIV microbicidal application. However, limited data are available on the possible side-effects of this lectin. A detailed investigation was carried out to obtain better insights in the cytotoxic, inflammatory and (anti)-proliferative properties of CV-N in comparison with several other plant-derived lectins. CV-N affected the cell morphology of PBMCs and enhanced the expression of the cellular activation markers CD25, CD69 and HLA-DR. PBMCs activated by CV-N were more susceptible for R5 HIV-1 infection. In addition, CV-N exerted a pronounced mitogenic activity and significantly enhanced in PBMCs the production of a wide variety of cytokines, as determined by the Bio-Plex human cytokine 27-plex array system. In comparison, other lectins obtained from Hippeastrum hybrid, Galanthus nivalis, and Urtica dioica induced markedly less, if any, stimulatory effects. So, the use of CV-N may be accompanied by various stimulatory effects that may compromise its application for microbicidal use.
Collapse
Affiliation(s)
- Dana Huskens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
76
|
Fromme R, Katiliene Z, Fromme P, Ghirlanda G. Conformational gating of dimannose binding to the antiviral protein cyanovirin revealed from the crystal structure at 1.35 A resolution. Protein Sci 2008; 17:939-44. [PMID: 18436959 PMCID: PMC2327273 DOI: 10.1110/ps.083472808] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyanovirin (CV-N) is a small lectin with potent HIV neutralization activity, which could be exploited for a mucosal defense against HIV infection. The wild-type (wt) protein binds with high affinity to mannose-rich oligosaccharides on the surface of gp120 through two quasi-symmetric sites, located in domains A and B. We recently reported on a mutant of CV-N that contained a single functional mannose-binding site, domain B, showing that multivalent binding to oligomannosides is necessary for antiviral activity. The structure of the complex with dimannose determined at 1.8 A resolution revealed a different conformation of the binding site than previously observed in the NMR structure of wt CV-N. Here, we present the 1.35 A resolution structure of the complex, which traps three different binding conformations of the site and provides experimental support for a locking and gating mechanism in the nanoscale time regime observed by molecular dynamics simulations.
Collapse
Affiliation(s)
- Raimund Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Zivile Katiliene
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Petra Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Giovanna Ghirlanda
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
77
|
Sandström C, Hakkarainen B, Matei E, Glinchert A, Lahmann M, Oscarson S, Kenne L, Gronenborn AM. Atomic Mapping of the Sugar Interactions in One-Site and Two-Site Mutants of Cyanovirin-N by NMR Spectroscopy. Biochemistry 2008; 47:3625-35. [DOI: 10.1021/bi702200m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Corine Sandström
- Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden, Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and The School of Chemistry, University of Bangor, Alun Roberts Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, U.K
| | - Birgit Hakkarainen
- Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden, Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and The School of Chemistry, University of Bangor, Alun Roberts Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, U.K
| | - Elena Matei
- Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden, Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and The School of Chemistry, University of Bangor, Alun Roberts Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, U.K
| | - Anja Glinchert
- Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden, Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and The School of Chemistry, University of Bangor, Alun Roberts Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, U.K
| | - Martina Lahmann
- Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden, Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and The School of Chemistry, University of Bangor, Alun Roberts Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, U.K
| | - Stefan Oscarson
- Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden, Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and The School of Chemistry, University of Bangor, Alun Roberts Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, U.K
| | - Lennart Kenne
- Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden, Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and The School of Chemistry, University of Bangor, Alun Roberts Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, U.K
| | - Angela M. Gronenborn
- Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden, Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, and The School of Chemistry, University of Bangor, Alun Roberts Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, U.K
| |
Collapse
|
78
|
Hakkarainen B, Kenne L, Lahmann M, Oscarson S, Sandström C. NMR study of hydroxy protons of di- and trimannosides, substructures of Man-9. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2007; 45:1076-1080. [PMID: 18044811 DOI: 10.1002/mrc.2080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The chemical shifts, temperature coefficients and inter-residual rotating-frame Overhauser effect (ROE)s for the hydroxy protons of some alpha-(1,2)-, alpha-(1,3)- and alpha-(1,6)-linked di- and trimannosides have been measured for samples in 85% H2O/15% acetone-d6 solution. These mannosides, Manalpha(1-->2)ManalphaOMe (1) Manalpha(1-->3)ManalphaOMe (2), Manalpha(1-->6)ManalphaOMe (3), Manalpha(1-->2)Manalpha(1-->2)ManalphaOMe (4), Manalpha(1-->2)Manalpha(1-->3)ManalphaOMe (5), Manalpha(1-->2)Manalpha(1-->6)ManalphaOMe (6) and Manalpha(1-->3)[Manalpha1-->6]ManalphaOMe (7), are substructures of the N-glycan Man-9. The NMR data show that the hydration of each individual hydroxyl group in the di- and trisaccharides is very similar to the hydration of the corresponding hydroxyl in the monomeric methyl alpha-D-mannoside. No hydrogen-bond interactions were found to stabilize the conformations of the alpha-(1,2)- and alpha-(1,6)-linkages and the chemical shifts for the hydroxy proton resonances of the alpha-(1,6)-linkage indicated high-conformational flexibility. For the alpha-(1,3)-linkage, however, the downfield shift for the signal of O(2)H of the 3-substituted residue together with the ROE between this proton and H5' on the next residue suggest some weak inter-residue interactions.
Collapse
Affiliation(s)
- Birgit Hakkarainen
- Department of Chemistry, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
79
|
Hu Q, Mahmood N, Shattock RJ. High-mannose-specific deglycosylation of HIV-1 gp120 induced by resistance to cyanovirin-N and the impact on antibody neutralization. Virology 2007; 368:145-54. [PMID: 17658575 PMCID: PMC2121147 DOI: 10.1016/j.virol.2007.06.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/11/2007] [Accepted: 06/28/2007] [Indexed: 11/28/2022]
Abstract
HIV-1 uses glycans on gp120 to occlude its highly immunogenic epitopes. To better elucidate escape mechanisms of HIV-1 from carbohydrate-binding agents (CBA) and to understand the impact of CBA-escape on viral immune evasion, we generated and examined the biological properties of HIV-1 resistant to cyanovirin-N (CV-N) or cross-resistant to additional CBAs. Genotypic and phenotypic characterization of resistant env clones indicated that 3-5 high-mannose residues from 289 to 448 in the C2-C4 region of gp120 were mutated and correlated with the resistance levels. The specificity and minimal requirements of deglycosylation for CV-N resistance were further assessed by mutagenesis study. The sensitivity of resistant variants to a range of CBAs, immunoglobulins, sera and monoclonal antibodies (MAb) were investigated. For the first time, our data have collectively defined the high-mannose residues on gp120 affecting CV-N activity, and demonstrated that CBA-escape HIV-1 has increased sensitivity to immunoglobulins and sera from HIV patients, and particularly to V3 loop-directed MAbs. Our study provides a proof-of-concept that targeting HIV-1 glycan shields may represent a novel antiviral strategy.
Collapse
Affiliation(s)
- Qinxue Hu
- Center for Infection, Department of Cellular and Molecular Medicine, St George’s University of London, London SW17 0RE, United Kingdom
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan 430071, China
| | - Naheed Mahmood
- Center for Infection, Department of Cellular and Molecular Medicine, St George’s University of London, London SW17 0RE, United Kingdom
| | - Robin J. Shattock
- Center for Infection, Department of Cellular and Molecular Medicine, St George’s University of London, London SW17 0RE, United Kingdom
| |
Collapse
|
80
|
Abstract
Several chronic viral infections (such as HIV and hepatitis C virus) are highly prevalent and are a serious health risk. The adaptation of animal viruses to the human host, as recently exemplified by influenza viruses and the severe acute respiratory syndrome coronavirus, is also a continuous threat. There is a high demand, therefore, for new antiviral lead compounds and novel therapeutic concepts. In this Review, an original therapeutic concept for suppressing enveloped viruses is presented that is based on a specific interaction of carbohydrate-binding agents (CBAs) with the glycans present on viral-envelope glycoproteins. This approach may also be extended to other pathogens, including parasites, bacteria and fungi.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
81
|
Margulis CJ. Computational study of the dynamics of mannose disaccharides free in solution and bound to the potent anti-HIV virucidal protein cyanovirin. J Phys Chem B 2007; 109:3639-47. [PMID: 16851402 DOI: 10.1021/jp0406971] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we present a computational study of the dynamics of the potent anti-HIV virucidal protein cyanovirin in complex with mannose disaccharides. Recently, it has been experimentally demonstrated that cyanovirin binds mannose oligomers on the surface of glycoprotein gp120. gp120, a protein on the surface of the HIV virus, is key in the process of viral docking and transfer of genetic material into human cells. Cyanovirin prevents the transfer of viral RNA into human cells. In this study, we found that, among all residues that show nuclear Overhauser effects in the solution NMR experiments, residues Glu41 and Arg76 appear to interact with the sugar at the high-affinity binding site through stronger Coulombic interactions. In particular, Arg76 participates in a dynamical mechanism that caps and locks the sugar once it is bound to the protein. We also studied the distribution of glycosidic torsional angles of mannose disaccharides in solution and compared it with those when bound at the high- and low-affinity sites of the protein. Throughout our 20 ns simulations, we find that the sugar bound to the high-affinity site preserves the most favorable conformation in solution while the sugar bound at the low-affinity site does not. The sugar at the low-affinity site can adopt both conformations, but we find it most predominantly on the one that is least probable for the free sugar in solution. We also carried out a detailed study of the interactions between the disaccharides and different amino acids as well as between the disaccharide and the solvent at both binding locations.
Collapse
Affiliation(s)
- C J Margulis
- Department of Chemistry, University of Iowa, 319 Chemistry Building, Iowa City, Iowa 52242, USA
| |
Collapse
|
82
|
Huskens D, Van Laethem K, Vermeire K, Balzarini J, Schols D. Resistance of HIV-1 to the broadly HIV-1-neutralizing, anti-carbohydrate antibody 2G12. Virology 2007; 360:294-304. [PMID: 17123566 DOI: 10.1016/j.virol.2006.10.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/10/2006] [Accepted: 10/10/2006] [Indexed: 11/17/2022]
Abstract
The 2G12 mAb inhibits the infection of HIV-1 laboratory-adapted viruses at 50% inhibitory concentrations (IC(50)) ranging from 0.02 to 0.2 microg/ml when evaluated in different cell-types. However, isolates from various HIV-1 subtypes (such as clade C, D, A/E, F and group O) were not inhibited by 2G12 mAb (IC(50) >20 microg/ml). 2G12 mAb pressure in HIV-1 IIIB- and NL4.3-infected T cell cultures selected for resistant viruses containing only few (1 to 3 N-glycosylation) deletions in gp120. The 2G12-resistant viruses keep their full sensitivity to various mannose-specific lectins and other known HIV entry inhibitors. Moreover, we observed that the NL4.3-2G12-resistant virus, with the N295K mutation in gp120, became significantly more sensitive to several mannose-specific lectins. This is, to our knowledge, the first report showing that a resistant virus generated in vitro against a neutralizing mAb and containing a mutation in gp120, has increased sensitivity to another class of HIV entry inhibitors.
Collapse
Affiliation(s)
- Dana Huskens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
83
|
McFadden K, Cocklin S, Gopi H, Baxter S, Ajith S, Mahmood N, Shattock R, Chaiken I. A recombinant allosteric lectin antagonist of HIV-1 envelope gp120 interactions. Proteins 2007; 67:617-29. [PMID: 17348010 DOI: 10.1002/prot.21295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The first, critical stage of HIV-1 infection is fusion of viral and host cellular membranes initiated by a viral envelope glycoprotein gp120. We evaluated the potential to form a chimeric protein entry inhibitor that combines the action of two gp120-targeting molecules, an allosteric peptide inhibitor 12p1 and a higher affinity carbohydrate-binding protein cyanovirin (CVN). In initial mixing experiments, we demonstrated that the inhibitors do not interfere with each other and instead show functional synergy in inhibiting viral cell infection. Based on this, we created a chimera, termed L5, with 12p1 fused to the C-terminal domain of CVN through a linker of five penta-peptide repeats. L5 revealed the same broad specificity as CVN for gp120 from a variety of clades and tropisms. By comparison to CVN, the L5 chimera exhibited substantially increased inhibition of gp120 binding to receptor CD4, coreceptor surrogate mAb 17b and gp120 antibody F105. These binding inhibition effects by the chimera reflected both the high affinity of the CVN domain and the allosteric action of the 12p1 domain. The results open up the possibility to form high potency chimeras, as well as noncovalent mixtures, as leads for HIV-1 envelope antagonism that can overcome potency limits and potential virus mutational resistance for either 12p1 or CVN alone.
Collapse
Affiliation(s)
- Karyn McFadden
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
|
85
|
Barrientos LG, Matei E, Lasala F, Delgado R, Gronenborn AM. Dissecting carbohydrate-Cyanovirin-N binding by structure-guided mutagenesis: functional implications for viral entry inhibition. Protein Eng Des Sel 2006; 19:525-35. [PMID: 17012344 DOI: 10.1093/protein/gzl040] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The HIV-inactivating protein Cyanovirin-N (CV-N) is a cyanobacterial lectin that exhibits potent antiviral activity at nanomolar concentrations by interacting with high-mannose carbohydrates on viral glycoproteins. To date there is no molecular explanation for this potent virucidal activity, given the experimentally measured micromolar affinities for small sugars and the problems encountered with aggregation and precipitation of high-mannose/CV-N complexes. Here, we present results for two CV-N variants, CV-N(mutDA) and CV-N(mutDB), compare their binding properties with monomeric [P51G]CV-N (a stabilized version of wtCV-N) and test their in vitro activities. The mutations in CV-N(mutDA) and CV-N(mutDB) comprise changes in amino acids that alter the trimannose specificity of domain A(M) and abolish the sugar binding site on domain B(M), respectively. We demonstrate that carbohydrate binding via domain B(M) is essential for antiviral activity, whereas alterations in sugar binding specificity on domain A(M) have little effect on envelope glycoprotein recognition and antiviral activity. Changes in A(M), however, affect the cross-linking activity of CV-N. Our findings augment and clarify the existing models of CV-N binding to N-linked glycans on viral glycoproteins, and demonstrate that the nanomolar antiviral potency of CV-N is related to the constricted and spatially crowded arrangement of the mannoses in the glycan clusters on viral glycoproteins and not due to CV-N induced virus particle agglutination, making CV-N a true viral entry inhibitor.
Collapse
Affiliation(s)
- Laura G Barrientos
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
86
|
Balzarini J, Van Laethem K, Peumans WJ, Van Damme EJM, Bolmstedt A, Gago F, Schols D. Mutational pathways, resistance profile, and side effects of cyanovirin relative to human immunodeficiency virus type 1 strains with N-glycan deletions in their gp120 envelopes. J Virol 2006; 80:8411-21. [PMID: 16912292 PMCID: PMC1563877 DOI: 10.1128/jvi.00369-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Limited data are available on the genotypic and phenotypic resistance profile of the alpha-(1-2)mannose oligomer-specific prokaryotic lectin cyanovirin (CV-N). Therefore, a more systematic investigation was carried out to obtain a better view of the interaction between CV-N and human immunodeficiency virus type 1 (HIV-1) gp120. When HIV-1-infected CEM cell cultures were exposed to CV-N in a dose-escalating manner, a total of eight different amino acid mutations exclusively located at N-glycosylation sites in the envelope surface gp120 were observed. Six of the eight mutations resulted in the deletion of high-mannose type N-glycans (i.e., at amino acid positions 230, 332, 339, 386, 392, and 448). Two mutations (i.e., at position 136 and 160) deleted a complex type N-glycan in the variable V1/V2 domain of gp120. The level of phenotypic resistance of the mutated virus strains against CV-N generally correlated with the number of glycan deletions in gp120, although deletion of the glycans at N-230, N-392, and N-448 generally afforded a more pronounced CV-N resistance than other N-glycan deletions. However, the extent of the decrease of antiviral activity of CV-N against the mutated virus strains was markedly less pronounced than observed for alpha(1-3)- and alpha(1-6)-mannose-specific plant lectins Hippeastrum hybrid agglutinin (HHA) and Galanthus nivalis agglutinin (GNA), which points to the existence of a higher genetic barrier for CV-N. This is in agreement with a more consistent suppression of a wider variety of HIV-1 clades by CV-N than by HHA and GNA. Whereas the antiviral and in vitro antiproliferative activity of CV-N can be efficiently reversed by mannan, the pronounced mitogenic activity of CV-N on peripheral blood mononuclear cells was unaffected by mannan, indicating that some of the observed side effects of CV-N are unrelated to its carbohydrate specificity/activity.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
87
|
Mares J, Müller JU, Skirgailiene A, Neumoin A, Bewley CA, Schmidt RR, Zerbe O. A Model for Cell-Surface-Exposed Carbohydrate Moieties Suitable for Structural Studies by NMR Spectroscopy. Chembiochem 2006; 7:1764-73. [PMID: 16952190 DOI: 10.1002/cbic.200600219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study a synthetic glycolipid system is presented that can be readily incorporated into phospholipid micelles and that allows the study of cell-surface-exposed carbohydrate units by high-resolution NMR techniques. Here, we present an efficient route for the synthesis of glycolipid compounds that contain mannose, mannobiose, or mannotriose coupled either directly to an alkyl chain or through a poly(ethylene glycol) linker. Furthermore, we have validated our model system by measuring the binding of cyanovirin N (CV-N), a cyanobacterial protein that binds with nanomolar affinity to the terminal arms of high-mannose structures of the HIV surface-envelope glycoprotein gp120, to glycolipids the carbohydrate portions of which comprise the corresponding high-mannose moieties. From the results of chemical-shift mapping with uniformly (15)N-labelled CV-N, we conclude that binding to the protein occurs at sites similar to those involved in binding the nonconjugated carbohydrates. We characterized the insertion of the glycolipids into dodecylphosphocholine (DPC) micelles by measuring translational diffusion, and we observed that the diffusion constants of the glycolipids were very similar to those of the DPC micelles themselves, but significantly deviated from those of the free glycolipids. We also present experimental proof that the glycolipids remain inserted in the micelles while binding to CV-N. Finally, by addition of a ligand that had a higher affinity to CV-N but which was not attached did not couple to a lipid anchor, CV-N could be released from the glycolipid and, hence, from the micelle-associated state.
Collapse
Affiliation(s)
- Jiri Mares
- Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
88
|
Large-molecular-weight carbohydrate-binding agents as HIV entry inhibitors targeting glycoprotein gp120. Curr Opin HIV AIDS 2006; 1:355-60. [DOI: 10.1097/01.coh.0000239846.36076.2c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
89
|
Percudani R, Montanini B, Ottonello S. The anti-HIV cyanovirin-N domain is evolutionarily conserved and occurs as a protein module in eukaryotes. Proteins 2006; 60:670-8. [PMID: 16003744 DOI: 10.1002/prot.20543] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel protein family homologous to the sugar-binding antiviral protein cyanovirin-N (CVN) is described. CVN, an 11-kDa protein that, by binding to the high-mannose moiety of certain viral surface glycoproteins, blocks virus entry into target cells, has thus far been identified only in the cyanobacterium Nostoc ellipsosporum. Here we show that CVN belongs to a protein family identified by analysis of transcript sequences deriving from a gene expression profiling study conducted in the truffle Tuber borchii. Members of this family (named CyanoVirin-N Homology) are found in filamentous ascomycetes and in the fern Ceratopteris richardii. As revealed by 3D structure-based searches, all CVNH proteins have a predicted fold that matches the so far unique fold of the cyanobacterial polypeptide. The CVNH domain is a versatile protein module. In ferns and cyanobacteria it is found in secretory proteins. In filamentous ascomycetes it is found in nonsecretory monodomain proteins as well as part of multidomain proteins bearing functionally related modules such as the peptidoglycan and chitin-binding domain LysM. Transcript abundance data further indicate that the expression of different CVNH forms is modulated in response to nutrient availability. These findings have implications for the understanding of protein-oligosaccharide interaction in fungi and plants, and provide candidate polypeptides to be tested and exploited as antiviral agents.
Collapse
Affiliation(s)
- Riccardo Percudani
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Italy.
| | | | | |
Collapse
|
90
|
Balzarini J. Inhibition of HIV entry by carbohydrate-binding proteins. Antiviral Res 2006; 71:237-47. [PMID: 16569440 DOI: 10.1016/j.antiviral.2006.02.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 01/31/2006] [Accepted: 02/01/2006] [Indexed: 11/18/2022]
Abstract
Carbohydrate-binding proteins (CBP) can be isolated from a variety of species, including procaryotes (i.e. cyanobacteria), sea corals, algae, plants, invertebrates and vertebrates. A number of them, in particular those CBP that show specific recognition for mannose (Man) and N-acetylglucosamine (GlcNAc) are endowed with a remarkable anti-HIV activity in cell culture. The smallest CBP occur as monomeric peptides with a molecular weight of approximately 8.5 kDa. Many others are functionally dimers, trimers or tetramers, and their molecular weight can sometimes largely exceed 50 kDa. CBP can contain 2 to up to 12 carbohydrate-binding sites per single molecule, depending on the nature of the lectin and its oligomerization state. CBP qualify as potential anti-HIV microbicide drugs because they not only inhibit infection of cells by cell-free virus (in some cases in the lower nano- or even subnanomolar range) but they can also efficiently prevent virus transmission from virus-infected cells to uninfected T-lymphocytes. Their most likely mechanism of antiviral action is the interruption of virus entry (i.e. fusion) into its target cell. CBP presumably act by direct binding to the glycans that are abundantly present on the HIV-1 gp120 envelope. They may cross-link several glycans during virus/cell interaction and/or freeze the conformation of gp120 consequently preventing further interaction with the coreceptor. Several CBP were shown to have a high genetic barrier since multiple (>or=5) glycan deletions in the HIV envelope are necessary to provoke a moderate level of drug resistance. CBP are the prototypes of conceptionally novel chemotherapeutics with a unique mechanism of antiviral action, drug resistance profile and an intrinsic capacity to trigger a specific immune response against HIV strains after glycan deletions on their envelope occur in an attempt to escape CBP drug pressure.
Collapse
Affiliation(s)
- J Balzarini
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
91
|
Asres K, Seyoum A, Veeresham C, Bucar F, Gibbons S. Naturally derived anti-HIV agents. Phytother Res 2005; 19:557-81. [PMID: 16161055 DOI: 10.1002/ptr.1629] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The urgent need for new anti-HIV/AIDS drugs is a global concern. In addition to obvious economical and commercial hurdles, HIV/AIDS patients are faced with multifarious difficulties associated with the currently approved anti-HIV drugs. Adverse effects, the emergence of drug resistance and the narrow spectrum of activity have limited the therapeutic usefulness of the various reverse transcriptase and protease inhibitors that are currently available on the market. This has driven many scientists to look for new anti-retrovirals with better efficacy, safety and affordability. As has always been the case in the search for cures, natural sources offer great promise. Several natural products, mostly of plant origin have been shown to possess promising activities that could assist in the prevention and/or amelioration of the disease. Many of these anti-HIV agents have other medicinal values as well, which afford them further prospective as novel leads for the development of new drugs that can deal with both the virus and the various disorders that characterize HIV/AIDS. The aim of this review is to report new discoveries and updates pertaining to anti-HIV natural products. In the review anti-HIV agents have been classified according to their chemical classes rather than their target in the HIV replicative cycle, which is the most frequently encountered approach. Perusal of the literature revealed that most of these promising naturally derived anti-HIV compounds are flavonoids, coumarins, terpenoids, alkaloids, polyphenols, polysaccharides or proteins. It is our strong conviction that the results and experiences with many of the anti-HIV natural products will inspire and motivate even more researchers to look for new leads from plants and other natural sources.
Collapse
Affiliation(s)
- Kaleab Asres
- Department of Pharmacognosy, School of Pharmacy, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | | | | | | | | |
Collapse
|
92
|
Witvrouw M, Fikkert V, Hantson A, Pannecouque C, O'keefe BR, McMahon J, Stamatatos L, de Clercq E, Bolmstedt A. Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A. J Virol 2005; 79:7777-84. [PMID: 15919930 PMCID: PMC1143621 DOI: 10.1128/jvi.79.12.7777-7784.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Due to the biological significance of the carbohydrate component of the human immunodeficiency virus type 1 (HIV-1) glycoproteins in viral pathogenesis, the glycosylation step constitutes an attractive target for anti-HIV therapy. Cyanovirin N (CV-N), which specifically targets the high-mannose (HM) glycans on gp120, has been identified as a potent HIV-1 entry inhibitor. Concanavalin A (ConA) represents another mannose-binding lectin, although it has a lower specificity for HM glycans than that of CV-N. For the present study, we selected CV-N- and ConA-resistant HIV-1 strains in the presence of CV-N and ConA, respectively. Both resistant strains exhibited a variety of mutations eliminating N-linked glycans within gp120. Strains resistant to CV-N or ConA displayed high levels of cross-resistance towards one another. The N-glycan at position 302 was eliminated in both of the lectin-resistant strains. However, the elimination of this glycan alone by site-directed mutagenesis was not sufficient to render HIV-1 resistant to CV-N or ConA, suggesting that HIV-1 needs to mutate several N-glycans to become resistant to these lectins. Both strains also demonstrated clear cross-resistance towards the carbohydrate-dependent monoclonal antibody 2G12. In contrast, the selected strains did not show a reduced susceptibility towards the nonlectin entry inhibitors AMD3100 and enfuvirtide or towards reverse transcriptase or protease inhibitors. Recombination of the mutated gp160 genes of the strains resistant to CV-N or ConA into a wild-type background fully reproduced the (cross-)resistance profiles of the originally selected strains, pointing to the impact of the N-glycan mutations on the phenotypic resistance profiles of both selected strains.
Collapse
Affiliation(s)
- Myriam Witvrouw
- Department of Clinical Virology, University of Göteborg, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Lorin C, Saidi H, Belaid A, Zairi A, Baleux F, Hocini H, Bélec L, Hani K, Tangy F. The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 2005; 334:264-75. [PMID: 15780876 DOI: 10.1016/j.virol.2005.02.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 12/31/2004] [Accepted: 02/02/2005] [Indexed: 11/25/2022]
Abstract
Most of HIV-1 infections are acquired through sexual contact. In the absence of a preventive vaccine, the development of topical microbicides that can block infection at the mucosal tissues is needed. Dermaseptin S4 (DS4) is an antimicrobial peptide derived from amphibian skin, which displays a broad spectrum of activity against bacteria, yeast, filamentous fungi, and herpes simplex virus type 1. We show here that DS4 inhibits cell-free and cell-associated HIV-1 infection of P4-CCR5 indicator cells and human primary T lymphocytes. The peptide is effective against R5 and X4 primary isolates and laboratory-adapted strains of HIV-1. Its activity is directed against HIV-1 particles by disrupting the virion integrity. Increasing the number of DS4-positive charges reduced cytotoxicity without affecting the antiviral activity. The modified DS4 inhibited HIV-1 capture by dendritic cells and subsequent transmission to CD4(+) T cells, as well as HIV-1 binding on HEC-1 endometrial cells and transcytosis through a tight epithelial monolayer.
Collapse
Affiliation(s)
- Clarisse Lorin
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Williams DC, Lee JY, Cai M, Bewley CA, Clore GM. Crystal structures of the HIV-1 inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2: structural basis for specificity and high-affinity binding to the core pentasaccharide from n-linked oligomannoside. J Biol Chem 2005; 280:29269-76. [PMID: 15937331 DOI: 10.1074/jbc.m504642200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyanobacterial protein MVL inhibits HIV-1 envelope-mediated cell fusion at nanomolar concentrations by binding to high mannose N-linked carbohydrate on the surface of the envelope glycoprotein gp120. Although a number of other carbohydrate-binding proteins have been shown to inhibit HIV-1 envelope-mediated cell fusion, the specificity of MVL is unique in that its minimal target comprises the Man(alpha)(1-->6)Man(beta)(1-->4)GlcNAc(beta)(1-->4)GlcNAc tetrasaccharide core of oligomannosides. We have solved the crystal structures of MVL free and bound to the pentasaccharide Man3GlcNAc2 at 1.9- and 1.8-A resolution, respectively. MVL is a homodimer stabilized by an extensive intermolecular interface between monomers. Each monomer contains two structurally homologous domains with high sequence similarity connected by a short five-amino acid residue linker. Intriguingly, a water-filled channel is observed between the two monomers. Residual dipolar coupling measurements indicate that the structure of the MVL dimer in solution is identical to that in the crystal. Man3GlcNAc2 binds to a preformed cleft at the distal end of each domain such that a total of four independent carbohydrate molecules associate with each homodimer. The binding cleft provides shape complementarity, including the presence of a deep hydrophobic hole that accommodates the N-acetyl methyl at the reducing end of the carbohydrate, and specificity arises from 7-8 intermolecular hydrogen bonds. The structures of MVL and the MVL-Man3GlcNAc2 complex further our understanding of the molecular basis of high affinity and specificity in protein-carbohydrate recognition.
Collapse
Affiliation(s)
- David C Williams
- Laboratory of Chemical Physics, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
95
|
Botos I, Wlodawer A. Proteins that bind high-mannose sugars of the HIV envelope. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:233-82. [PMID: 15572157 DOI: 10.1016/j.pbiomolbio.2004.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A broad range of proteins bind high-mannose carbohydrates found on the surface of the envelope protein gp120 of the human immunodeficiency virus and thus interfere with the viral life cycle, providing a potential new way of controlling HIV infection. These proteins interact with the carbohydrate moieties in different ways. A group of them interacts as typical C-type lectins via a Ca2+ ion. Another group interacts with specific single, terminal sugars, without the help of a metal cation. A third group is involved in more intimate interactions, with multiple carbohydrate rings and no metal ion. Finally, there is a group of lectins for which the interaction mode has not yet been elucidated. This review summarizes, principally from a structural point of view, the current state of knowledge about these high-mannose binding proteins and their mode of sugar binding.
Collapse
Affiliation(s)
- Istvan Botos
- Macromolecular Crystallography Laboratory, National Cancer Institute, NCI-Frederick, Building 536, Room 5, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
96
|
Aboitiz N, Vila-Perelló M, Groves P, Asensio JL, Andreu D, Cañada FJ, Jiménez-Barbero J. NMR and modeling studies of protein-carbohydrate interactions: synthesis, three-dimensional structure, and recognition properties of a minimum hevein domain with binding affinity for chitooligosaccharides. Chembiochem 2005; 5:1245-55. [PMID: 15368576 DOI: 10.1002/cbic.200400025] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
HEV32, a 32-residue, truncated hevein lacking eleven C-terminal amino acids, was synthesized by solid-phase methodology and correctly folded with three cysteine bridge pairs. The affinities of HEV32 for small chitin fragments--in the forms of N,N',N"-triacetylchitotriose ((GlcNAc)3) (millimolar) and N,N',N",N"',N"",N""'-hexaacetylchitohexaose ((GlcNAc)6) (micromolar)--as measured by NMR and fluorescence methods, are comparable with those of native hevein. The HEV32 ligand-binding process is enthalpy driven, while entropy opposes binding. The NMR structure of ligand-bound HEV32 in aqueous solution was determined to be highly similar to the NMR structure of ligand-bound hevein. Solvated molecular-dynamics simulations were performed in order to monitor the changes in side-chain conformation of the binding site of HEV32 and hevein upon interaction with ligands. The calculations suggest that the Trp21 side-chain orientation of HEV32 in the free form differs from that in the bound state; this agrees with fluorescence and thermodynamic data. HEV32 provides a simple molecular model for studying protein-carbohydrate interactions and for understanding the physiological relevance of small native hevein domains lacking C-terminal residues.
Collapse
Affiliation(s)
- Nuria Aboitiz
- Department of Protein Structure and Function, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
A high-density coding system is essential to allow cells to communicate efficiently and swiftly through complex surface interactions. All the structural requirements for forming a wide array of signals with a system of minimal size are met by oligomers of carbohydrates. These molecules surpass amino acids and nucleotides by far in information-storing capacity and serve as ligands in biorecognition processes for the transfer of information. The results of work aiming to reveal the intricate ways in which oligosaccharide determinants of cellular glycoconjugates interact with tissue lectins and thereby trigger multifarious cellular responses (e.g. in adhesion or growth regulation) are teaching amazing lessons about the range of finely tuned activities involved. The ability of enzymes to generate an enormous diversity of biochemical signals is matched by receptor proteins (lectins), which are equally elaborate. The multiformity of lectins ensures accurate signal decoding and transmission. The exquisite refinement of both sides of the protein-carbohydrate recognition system turns the structural complexity of glycans--a demanding but essentially mastered problem for analytical chemistry--into a biochemical virtue. The emerging medical importance of protein-carbohydrate recognition, for example in combating infection and the spread of tumors or in targeting drugs, also explains why this interaction system is no longer below industrial radarscopes. Our review sketches the concept of the sugar code, with a solid description of the historical background. We also place emphasis on a distinctive feature of the code, that is, the potential of a carbohydrate ligand to adopt various defined shapes, each with its own particular ligand properties (differential conformer selection). Proper consideration of the structure and shape of the ligand enables us to envision the chemical design of potent binding partners for a target (in lectin-mediated drug delivery) or ways to block lectins of medical importance (in infection, tumor spread, or inflammation).
Collapse
Affiliation(s)
- Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 Munich, Germany.
| | | | | | | | | |
Collapse
|
98
|
Mari S, Posteri H, Marcou G, Potenza D, Micheli F, Cañada F, Jimenez-Barbero J, Bernardi A. Synthesis, Conformational Studies and Mannosidase Stability of a Mimic of 1,2-Mannobioside. European J Org Chem 2004. [DOI: 10.1002/ejoc.200400520] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
99
|
Bewley CA, Cai M, Ray S, Ghirlando R, Yamaguchi M, Muramoto K. New carbohydrate specificity and HIV-1 fusion blocking activity of the cyanobacterial protein MVL: NMR, ITC and sedimentation equilibrium studies. J Mol Biol 2004; 339:901-14. [PMID: 15165858 PMCID: PMC2650105 DOI: 10.1016/j.jmb.2004.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 04/02/2004] [Accepted: 04/02/2004] [Indexed: 11/24/2022]
Abstract
Carbohydrate-binding proteins that bind their carbohydrate ligands with high affinity are rare and therefore of interest because they expand our understanding of carbohydrate specificity and the structural requirements that lead to high-affinity interactions. Here, we use NMR and isothermal titration calorimetry techniques to determine carbohydrate specificity and affinities for a novel cyanobacterial protein, MVL, and show that MVL binds oligomannosides such as Man(6)GlcNAc(2) with sub-micromolar affinities. The amino acid sequence of MVL contains two homologous repeats, each comprising 54 amino acid residues. Using multi-dimensional NMR techniques, we show that MVL contains two novel carbohydrate recognition domains composed of four non-contiguous regions comprising approximately 15 amino acid residues each, and that these residues make numerous intermolecular contacts with their carbohydrate ligands. NMR screening of a comprehensive panel of di-, tri-, and high-mannose oligosaccharides establish that high-affinity binding requires at least the presence of a discrete conformation presented by Manbeta(1-->4)GlcNAc in the context of larger oligomannosides. As shown by sedimentation equilibrium and gel-filtration experiments, MVL is a monodisperse dimer in solution, and NMR data establish that the three-dimensional structure must be symmetric. MVL inhibits HIV-1 Envelope-mediated cell fusion with an IC(50) value of approximately 30 nM.
Collapse
Affiliation(s)
- Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
100
|
Abstract
The worldwide infection rate for HIV-1 is estimated to be 14,000 per day, but only now, more than 20 years into the epidemic, are the immediate events between exposure to infectious virus and the establishment of infection becoming clear. Defining the mechanisms of HIV-1 transmission, the target cells involved and how the virus attaches to and fuses with these cells, could reveal ways to block the sexual spread of the virus. In this review, we will discuss how our increasing knowledge of the ways in which HIV-1 is transmitted is shaping the development of new, more sophisticated intervention strategies based on the application of vaginal or rectal microbicides.
Collapse
Affiliation(s)
- Robin J Shattock
- Department of Cellular and Molecular Medicine, Infectious Diseases, St. George's Hospital Medical School, London, UK.
| | | |
Collapse
|