51
|
Sicard P, Serra R, Rossello P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999-2012. ENVIRONMENTAL RESEARCH 2016; 149:122-144. [PMID: 27200478 DOI: 10.1016/j.envres.2016.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 05/19/2023]
Abstract
The hourly ozone (O3) data from 332 background monitoring stations, spread in France, were analyzed over the period 1999-2012 and short-term trends were calculated. In the current climate change context, the calculation of human health- and vegetation-relevant metrics, and of associated trends, provides a consistent method to establish proper and effective policies to reduce the adverse O3 effects. The generation of optimal O3 maps, for risk and exposure assessment, is challenging. To overcome this issue, starting from a set of stations, a hybrid regression-interpolation approach was proposed. Annual surface O3 metrics, O3 human health metrics (number of exceedances of daily maximum 8-h values greater than 60 ppb and SOMO35) and O3 vegetation impact metrics (AOT40 for vegetation and forests) were investigated at individual sites. Citizens are more exposed to high O3 levels in rural areas than people living in the cities. The annual mean concentrations decreased by -0.12ppbyear(-1) at rural stations, and the significant reduction at 67% of stations, particularly during the warm season, in the number of episodic high O3 concentrations (e.g. 98th percentile, -0.19ppbyear(-1)) can be associated with the substantial reductions in NOx and VOCs emissions in the EU-28 countries since the early 1990s Inversely, the O3 background level is rising at 76% of urban sites (+0.14ppbyear(-1)), particularly during the cold period. This rise can be attributed to increases in imported O3 by long-range transport and to a low O3 titration by NO due to the reduction in local NOx emissions. The decrease in health-related and vegetation-relevant O3 metrics, at almost all stations, is driven by decreases in regional photochemical O3 formation and in peak O3 concentrations. The short-term trends highlight that the threat to population and vegetation declined between 1999 and 2012 in France, demonstrating the success of European control strategies over the last 20 years. However, for all exposure metrics, the issue of non-attainment of the target value for O3 persists in comparison with the objectives of air quality directives. The region at highest O3 risk is the South-eastern France. This study contains new information on the i) spatial distribution of surface O3 concentration, ii) exceedances and iii) trends to define more suitable standards for human health and environmental protection in France.
Collapse
Affiliation(s)
- Pierre Sicard
- ACRI-HE, 260 Route du Pin Montard, BP 234, 06904 Sophia Antipolis cedex, France.
| | - Romain Serra
- ACRI-HE, 260 Route du Pin Montard, BP 234, 06904 Sophia Antipolis cedex, France
| | | |
Collapse
|
52
|
Sulfate Aerosols from Non-Explosive Volcanoes: Chemical-Radiative Effects in the Troposphere and Lower Stratosphere. ATMOSPHERE 2016. [DOI: 10.3390/atmos7070085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
53
|
Anav A, De Marco A, Proietti C, Alessandri A, Dell'Aquila A, Cionni I, Friedlingstein P, Khvorostyanov D, Menut L, Paoletti E, Sicard P, Sitch S, Vitale M. Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. GLOBAL CHANGE BIOLOGY 2016; 22:1608-1627. [PMID: 26492093 DOI: 10.1111/gcb.13138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
Tropospheric ozone (O3) produces harmful effects to forests and crops, leading to a reduction of land carbon assimilation that, consequently, influences the land sink and the crop yield production. To assess the potential negative O3 impacts to vegetation, the European Union uses the Accumulated Ozone over Threshold of 40 ppb (AOT40). This index has been chosen for its simplicity and flexibility in handling different ecosystems as well as for its linear relationships with yield or biomass loss. However, AOT40 does not give any information on the physiological O3 uptake into the leaves since it does not include any environmental constraints to O3 uptake through stomata. Therefore, an index based on stomatal O3 uptake (i.e. PODY), which describes the amount of O3 entering into the leaves, would be more appropriate. Specifically, the PODY metric considers the effects of multiple climatic factors, vegetation characteristics and local and phenological inputs rather than the only atmospheric O3 concentration. For this reason, the use of PODY in the O3 risk assessment for vegetation is becoming recommended. We compare different potential O3 risk assessments based on two methodologies (i.e. AOT40 and stomatal O3 uptake) using a framework of mesoscale models that produces hourly meteorological and O3 data at high spatial resolution (12 km) over Europe for the time period 2000-2005. Results indicate a remarkable spatial and temporal inconsistency between the two indices, suggesting that a new definition of European legislative standard is needed in the near future. Besides, our risk assessment based on AOT40 shows a good consistency compared to both in-situ data and other model-based datasets. Conversely, risk assessment based on stomatal O3 uptake shows different spatial patterns compared to other model-based datasets. This strong inconsistency can be likely related to a different vegetation cover and its associated parameterizations.
Collapse
Affiliation(s)
- Alessandro Anav
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome, 00123, Italy
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome, 00123, Italy
| | - Chiara Proietti
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Andrea Alessandri
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome, 00123, Italy
| | - Alessandro Dell'Aquila
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome, 00123, Italy
| | - Irene Cionni
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome, 00123, Italy
| | - Pierre Friedlingstein
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK
| | - Dmitry Khvorostyanov
- Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau Cedex, 91128, France
| | - Laurent Menut
- Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau Cedex, 91128, France
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Research Council, Sesto Fiorentino, Via Madonna del Piano 10, 50019, Italy
| | - Pierre Sicard
- ACRI-HE, 260 route du Pin Montard, BP 234, Sophia Antipolis Cedex, 06904, France
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, UK
| | - Marcello Vitale
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| |
Collapse
|
54
|
Stauffer RM, Thompson AM, Young GS. Tropospheric ozonesonde profiles at long-term U.S. monitoring sites: 1. A climatology based on self-organizing maps. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:1320-1339. [PMID: 29619288 PMCID: PMC5880212 DOI: 10.1002/2015jd023641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sonde-based climatologies of tropospheric ozone (O3) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O3 climatologies average measurements by latitude or region, and season. Recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found clusters of O3 mixing ratio profiles are an excellent way to capture O3 variability and link meteorological influences to O3 profiles. Clusters correspond to distinct meteorological conditions, e.g. convection, subsidence, cloud cover, and transported pollution. Here, the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA) with 4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3×3 SOM (nine clusters). At each site, SOM clusters together O3 profiles with similar tropopause height, 500 hPa height/temperature, and amount of tropospheric and total column O3. Cluster means are compared to monthly O3 climatologies. For all four sites, near-tropopause O3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O3 mixing ratio in three clusters that contain 13 - 16% of profiles, mostly in winter and spring. Large mid-tropospheric deviations from monthly means (-6 ppbv, +7 - 10 ppbv O3 at 6 km) are found in two of the most populated clusters (combined 36 - 39% of profiles). These two clusters contain distinctly polluted (summer) and clean O3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O3 averages are often poor representations of U.S. O3 profile statistics.
Collapse
Affiliation(s)
- Ryan M Stauffer
- Earth System Science Interdisciplinary Center (ESSIC), University of Maryland - College Park, College Park, Maryland, USA
- Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anne M Thompson
- Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - George S Young
- Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
55
|
|
56
|
Grantz DA, Paudel R, Vu HB, Shrestha A, Grulke N. Diel trends in stomatal response to ozone and water deficit: a unique relationship of midday values to growth and allometry in Pima cotton? PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18 Suppl 1:37-46. [PMID: 26031549 DOI: 10.1111/plb.12355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
Plant responses to ozone (O3 ) and water deficit (WD) are commonly observed, although less is known about their interaction. Stomatal conductance (gs ) is both an impact of these stressors and a protective response to them. Stomatal closure reduces inward flux of O3 and outward flux of water. Stomatal measurements are generally obtained at midday when gas exchange is maximal, but these may not be adequate surrogates for stomatal responses observed at other times of day, nor for non-stomatal responses. Here, we find in Pima cotton that stomatal responses to O3 observed at midday do not reflect responses at other times. Stomata were more responsive to O3 and WD near midday, despite being at quasi-steady state, than during periods of active opening or closing in morning or evening. Stomatal responsivity to O3 was not coincident with maximum gas exchange or with periods of active regulation, but coincident with plant sensitivity to O3 previously determined in this cultivar. Responses of pigmentation and shoot productivity were more closely related to stomatal responses at midday than to responses at other times of day under well-watered (WW) conditions, reflecting higher stomatal responsivity, sensitivity to O3 , and magnitude of midday gs . Under WD conditions, shoot responses were more closely related to early morning gs. Root responses were more closely related to early morning gs under both WW and WD. Responses of stomata to O3 at midday were not good surrogates for stomatal responses early or late in the day, and may not adequately predicting O3 flux under WD or when maximum ambient concentrations do not occur near midday.
Collapse
Affiliation(s)
- D A Grantz
- Department of Botany and Plant Sciences, University of California, Riverside, Parlier, CA, USA
| | - R Paudel
- Department of Plant Sciences, California State University, Fresno, CA, USA
| | - H-B Vu
- Department of Botany and Plant Sciences, University of California, Riverside, Parlier, CA, USA
| | - A Shrestha
- Department of Plant Sciences, California State University, Fresno, CA, USA
| | - N Grulke
- U.S. Department of Agriculture, Forest Service, Prineville, OR, USA
| |
Collapse
|
57
|
Kulkarni PS, Bortoli D, Silva AM, Reeves CE. Enhancements in nocturnal surface ozone at urban sites in the UK. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:20295-20305. [PMID: 26304813 DOI: 10.1007/s11356-015-5259-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/14/2015] [Indexed: 06/04/2023]
Abstract
Analysis of diurnal patterns of surface ozone (O3) at multiple urban sites in the UK shows the occurrence of prominent nocturnal enhancements during the winter months (November-March). Whilst nocturnal surface ozone (NSO) enhancement events have been observed at other locations, this is the first time that such features have been demonstrated to occur in the UK and the second location globally. The observed NSO enhancement events in the UK were found to be so prevalent that they are clearly discernible in monthly diurnal cycles averaged over several years of data. Long-term (2000-2010) analysis of hourly surface ozone data from 18 urban background stations shows a bimodal diurnal variation during the winter months with a secondary nighttime peak around 0300 hours along with the primary daytime peak. For all but one site, the daily maxima NSO concentrations during the winter months exceeded 60 μg/m(3) on >20 % of the nights. The highest NSO value recorded was 118 μg/m(3). During the months of November, December, and January, the monthly averaged O3 concentrations observed at night (0300 h) even exceeded those observed in the daytime (1300 h). The analysis also shows that these NSO enhancements can last for several hours and were regional in scale, extending across several stations simultaneously. Interestingly, the urban sites in the north of the UK exhibited higher NSO than the sites in the south of the UK, despite their daily maxima being similar. In part, this seems to be related to the sites in the north typically having lower concentrations of nitrogen oxides.
Collapse
Affiliation(s)
- Pavan S Kulkarni
- Instituto de Ciências da Terra (ICT), University of Évora, Évora, Portugal.
| | - D Bortoli
- Instituto de Ciências da Terra (ICT), University of Évora, Évora, Portugal
- Institute for Atmospheric Science and Climate (ISAC-CNR), Bologna, Italy
| | - A M Silva
- Instituto de Ciências da Terra (ICT), University of Évora, Évora, Portugal
- Department of Physics, University of Évora, Évora, Portugal
| | - C E Reeves
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
58
|
Rosenkranz M, Pugh TAM, Schnitzler JP, Arneth A. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars. PLANT, CELL & ENVIRONMENT 2015; 38:1896-1912. [PMID: 25255900 DOI: 10.1111/pce.12453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment.
Collapse
Affiliation(s)
- Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Thomas A M Pugh
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Almut Arneth
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
59
|
Fiore AM, Naik V, Leibensperger EM. Air quality and climate connections. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2015; 65:645-85. [PMID: 25976481 DOI: 10.1080/10962247.2015.1040526] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED Multiple linkages connect air quality and climate change. Many air pollutant sources also emit carbon dioxide (CO2), the dominant anthropogenic greenhouse gas (GHG). The two main contributors to non-attainment of U.S. ambient air quality standards, ozone (O3) and particulate matter (PM), interact with radiation, forcing climate change. PM warms by absorbing sunlight (e.g., black carbon) or cools by scattering sunlight (e.g., sulfates) and interacts with clouds; these radiative and microphysical interactions can induce changes in precipitation and regional circulation patterns. Climate change is expected to degrade air quality in many polluted regions by changing air pollution meteorology (ventilation and dilution), precipitation and other removal processes, and by triggering some amplifying responses in atmospheric chemistry and in anthropogenic and natural sources. Together, these processes shape distributions and extreme episodes of O3 and PM. Global modeling indicates that as air pollution programs reduce SO2 to meet health and other air quality goals, near-term warming accelerates due to "unmasking" of warming induced by rising CO2. Air pollutant controls on CH4, a potent GHG and precursor to global O3 levels, and on sources with high black carbon (BC) to organic carbon (OC) ratios could offset near-term warming induced by SO2 emission reductions, while reducing global background O3 and regionally high levels of PM. Lowering peak warming requires decreasing atmospheric CO2, which for some source categories would also reduce co-emitted air pollutants or their precursors. Model projections for alternative climate and air quality scenarios indicate a wide range for U.S. surface O3 and fine PM, although regional projections may be confounded by interannual to decadal natural climate variability. Continued implementation of U.S. NOx emission controls guards against rising pollution levels triggered either by climate change or by global emission growth. Improved accuracy and trends in emission inventories are critical for accountability analyses of historical and projected air pollution and climate mitigation policies. IMPLICATIONS The expansion of U.S. air pollution policy to protect climate provides an opportunity for joint mitigation, with CH4 a prime target. BC reductions in developing nations would lower the global health burden, and for BC-rich sources (e.g., diesel) may lessen warming. Controls on these emissions could offset near-term warming induced by health-motivated reductions of sulfate (cooling). Wildfires, dust, and other natural PM and O3 sources may increase with climate warming, posing challenges to implementing and attaining air quality standards. Accountability analyses for recent and projected air pollution and climate control strategies should underpin estimated benefits and trade-offs of future policies.
Collapse
Affiliation(s)
- Arlene M Fiore
- a Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University , Palisades , NY , USA
| | | | | |
Collapse
|
60
|
Ariya PA, Amyot M, Dastoor A, Deeds D, Feinberg A, Kos G, Poulain A, Ryjkov A, Semeniuk K, Subir M, Toyota K. Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions. Chem Rev 2015; 115:3760-802. [DOI: 10.1021/cr500667e] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Marc Amyot
- Department
of Biological Sciences, Université de Montréal, 90
avenue Vincent-d’Indy, Montreal, Quebec, Canada, H3C 3J7
| | - Ashu Dastoor
- Air
Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, Quebec, Canada, H9P 1J3
| | | | | | | | - Alexandre Poulain
- Department
of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada, K1N 6N5
| | - Andrei Ryjkov
- Air
Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, Quebec, Canada, H9P 1J3
| | - Kirill Semeniuk
- Air
Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, Quebec, Canada, H9P 1J3
| | - M. Subir
- Department
of Chemistry, Ball State University, 2000 West University Avenue, Muncie, Indiana 47306, United States
| | - Kenjiro Toyota
- Air
Quality Research Division, Environment Canada, 4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4
| |
Collapse
|
61
|
Joint Application of Concentration and δ18O to Investigate the Global Atmospheric CO Budget. ATMOSPHERE 2015. [DOI: 10.3390/atmos6050547] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
62
|
Rudokas J, Miller PJ, Trail MA, Russell AG. Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5170-5177. [PMID: 25803240 DOI: 10.1021/es505159z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.
Collapse
Affiliation(s)
- Jason Rudokas
- †Northeast States for Coordinated Air Use Management, Boston, Massachusetts 02111, United States
| | - Paul J Miller
- †Northeast States for Coordinated Air Use Management, Boston, Massachusetts 02111, United States
| | | | | |
Collapse
|
63
|
Turner MD, Henze DK, Hakami A, Zhao S, Resler J, Carmichael GR, Stanier CO, Baek J, Sandu A, Russell AG, Nenes A, Jeong GR, Capps SL, Percell PB, Pinder RW, Napelenok SL, Bash JO, Chai T. Differences between magnitudes and health impacts of BC emissions across the United States using 12 km scale seasonal source apportionment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4362-4371. [PMID: 25729920 DOI: 10.1021/es505968b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent assessments have analyzed the health impacts of PM2.5 from emissions from different locations and sectors using simplified or reduced-form air quality models. Here we present an alternative approach using the adjoint of the Community Multiscale Air Quality (CMAQ) model, which provides source-receptor relationships at highly resolved sectoral, spatial, and temporal scales. While damage resulting from anthropogenic emissions of BC is strongly correlated with population and premature death, we found little correlation between damage and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damage resulting from anthropogenic BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. Overall, these results show the value of the high-resolution source attribution for determining the locations, seasons, and sectors for which BC emission controls have the most effective health benefits.
Collapse
Affiliation(s)
- Matthew D Turner
- †Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309, United States
| | - Daven K Henze
- †Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309, United States
| | - Amir Hakami
- ‡Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Shunliu Zhao
- ‡Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jaroslav Resler
- §Nonlinear Modeling, Institute of Computer Science, Prague 182 07, Czech Republic
| | - Gregory R Carmichael
- ∥Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Charles O Stanier
- ∥Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jaemeen Baek
- ∥Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Adrian Sandu
- ⊥Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Athanasios Nenes
- ▲School of Chemical and Biomolecular Engineering, Georgia Tech, Atlanta, Georgia 30332, United States
| | - Gill-Ran Jeong
- ◇Korea Institute of Atmospheric Prediction Systems, Seoul 156-849, Republic of Korea
| | - Shannon L Capps
- □Atmospheric Modeling and Analysis Division, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Peter B Percell
- ◆Department of Geosciences, University of Houston, Houston, Texas 77004, United States
| | - Rob W Pinder
- □Atmospheric Modeling and Analysis Division, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Sergey L Napelenok
- □Atmospheric Modeling and Analysis Division, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Jesse O Bash
- □Atmospheric Modeling and Analysis Division, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Tianfeng Chai
- ■College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland 20742, United States
- △Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, Maryland 20740, United States
| |
Collapse
|
64
|
Affiliation(s)
- Colette L Heald
- †Departments of Civil and Environmental Engineering and Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dominick V Spracklen
- ‡School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
65
|
Hou X, Zhu B, Fei D, Wang D. The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:641-649. [PMID: 25305325 DOI: 10.1016/j.scitotenv.2014.09.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
The seasonal and inter-annual variations of ozone (O3) in the atmospheric boundary layer of the Asia-Pacific Ocean were investigated using model simulations (2001-2007) from the Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The simulated O3 and diagnostic precipitation are in good agreement with the observations. Model results suggest that the Asia-Pacific monsoon significantly influences the seasonal and inter-annual variations of ozone. The differences of anthropogenic emissions and zonal winds in meridional directions cause a pollutants' transition zone at approximately 20°-30°N. The onset of summer monsoons with a northward migration of the rain belt leads the transition zone to drift north, eventually causing a summer minimum of ozone to the north of 30°N. In years with an early onset of summer monsoons, strong inflows of clean oceanic air lead to low ozone at polluted oceanic sites near the continent, while strong outflows from the continent exist, resulting in high levels of O3 over remote portions of the Asia-Pacific Ocean. The reverse is true in years when the summer monsoon onset is late.
Collapse
Affiliation(s)
- Xuewei Hou
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bin Zhu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Dongdong Fei
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Dongdong Wang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
66
|
Fontes T, Silva LM, Silva MP, Barros N, Carvalho AC. Can artificial neural networks be used to predict the origin of ozone episodes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 488-489:197-207. [PMID: 24830932 DOI: 10.1016/j.scitotenv.2014.04.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/07/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
Tropospheric ozone is a secondary pollutant having a negative impact on health and environment. To control and minimize such impact the European Community established regulations to promote a clean air all over Europe. However, when an episode is related with natural mechanisms as Stratosphere-Troposphere Exchanges (STE), the benefits of an action plan to minimize precursor emissions are inefficient. Therefore, this work aims to develop a tool to identify the sources of ozone episodes in order to minimize misclassification and thus avoid the implementation of inappropriate air quality plans. For this purpose, an artificial neural network model - the Multilayer Perceptron - is used as a binary classifier of the source of an ozone episode. Long data series, between 2001 and 2010, considering the ozone precursors, (7)Be activity and meteorological conditions were used. With this model, 2-7% of a mean error was achieved, which is considered as a good generalization. Accuracy measures for imbalanced data are also discussed. The MCC values show a good performance of the model (0.65-0.92). Precision and F1-measure indicate that the model specifies a little better the rare class. Thus, the results demonstrate that such a tool can be used to help authorities in the management of ozone, namely when its thresholds are exceeded due natural causes, as the above mentioned STE. Therefore, the resources used to implement an action plan to minimize ozone precursors could be better managed avoiding the implementation of inappropriate measures.
Collapse
Affiliation(s)
- T Fontes
- University Fernando Pessoa, Global Change, Energy, Environment and Bioengineering Center (CIAGEB), Praça 9 de Abril, 349, 4249-004 Porto, Portugal; University of Aveiro, Department of Mechanical Engineering/Centre for Mechanical Technology and Automation, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - L M Silva
- University of Aveiro, Department of Mathematics, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; INEB - Instituto de Engenharia Biomédica, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - M P Silva
- University Fernando Pessoa, Global Change, Energy, Environment and Bioengineering Center (CIAGEB), Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - N Barros
- University Fernando Pessoa, Global Change, Energy, Environment and Bioengineering Center (CIAGEB), Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - A C Carvalho
- New University of Lisbon, Faculty of Sciences and Technology/Center for Environmental and Sustainability Research (CENSE), Quinta da Torre, 2829-516 Caparica, Portugal
| |
Collapse
|
67
|
Grantz DA, Jackson A, Vu HB, Burkey KO, McGrath MT, Harvey G. High ozone increases soil perchlorate but does not affect foliar perchlorate content. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:1460-1466. [PMID: 25603093 DOI: 10.2134/jeq2013.11.0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ozone (O) is implicated in the natural source inventory of ClO, a hydrophilic salt that migrates to groundwater and interferes with the uptake of iodide in mammals, including humans. Tropospheric O is elevated in many urban and some rural areas in the United States and globally. We previously showed that controlled O exposure at near-ambient concentrations (up to 114 nL L, 12-h mean) did not increase foliar ClO. Under laboratory conditions, O has been shown to oxidize Cl to ClO. Plant tissues contain Cl and exhibit responses to O invoking redox reactions. As higher levels of O are associated with stratospheric incursion and with developing megacities, we have hypothesized that exposure of vegetation to such elevated O may increase foliar ClO. This would contribute to ClO in environments without obvious point sources. At these high O concentrations (up to 204 nL L, 12-h mean; 320 nL L maximum), we demonstrated an increase in the ClO concentration in surface soil that was linearly related to the O concentration. There was no relationship of foliar ClO with O exposure or dose (stomatal uptake). Accumulation of ClO varied among species at low O, but this was not related to soil surface ClO or to foliar ClO concentrations following exposure to O. These data extend our previous conclusions to the highest levels of plausible O exposure, that tropospheric O contributes to environmental ClO through interaction with the soil but not through increased foliar ClO.
Collapse
|
68
|
Watanabe M, Hoshika Y, Inada N, Koike T. Canopy carbon budget of Siebold's beech (Fagus crenata) sapling under free air ozone exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:682-9. [PMID: 23664480 DOI: 10.1016/j.envpol.2013.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 05/27/2023]
Abstract
To determine the effects of ozone (O3) on the canopy carbon budget, we investigated photosynthesis and respiration of leaves of Siebold's beech saplings under free air O3 exposure (60 nmol mol(-1), during daytime) in relation to the within-canopy light gradient; we then calculated the canopy-level photosynthetic carbon gain (PCG) and respiratory carbon loss (RCL) using a canopy photosynthesis model. Susceptibilities of photosynthesis and respiration to O3 were greater in leaves of upper canopy than in the lower canopy. The canopy net carbon gain (NCG) was reduced by O3 by 12.4% during one growing season. The increased RCL was the main factor for the O3-induced reduction in NCG in late summer, while contributions of the reduced PCG and the increased RCL to the NCG were almost the same in autumn. These results indicate contributions of changes in PCG and RCL under O3 to NCG were different between seasons.
Collapse
Affiliation(s)
- Makoto Watanabe
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | | | | | | |
Collapse
|
69
|
Grantz DA, Burkey KO, Jackson WA, Vu HB, McGrath MT, Harvey G. Perchlorate content of plant foliage reflects a wide range of species-dependent accumulation but not ozone-induced biosynthesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:690-696. [PMID: 23642565 DOI: 10.1016/j.envpol.2013.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 06/02/2023]
Abstract
Perchlorate (ClO4(-)) interferes with uptake of iodide in humans. Emission inventories do not explain observed distributions. Ozone (O3) is implicated in the natural origin of ClO4(-), and has increased since pre-industrial times. O3 produces ClO4(-)in vitro from Cl(-), and plant tissues contain Cl(-) and redox reactions. We hypothesize that O3 exposure may induce plant synthesis of ClO4(-). We exposed contrasting crop species to environmentally relevant O3 concentrations. In the absence of O3 exposure, species exhibited a large range of ClO4(-) accumulation but there was no relationship between leaf ClO4(-) and O3, whether expressed as exposure or cumulative flux (dose). Older, senescing leaves accumulated more ClO4(-) than younger leaves. O3 exposed vegetation is not a source of environmental ClO4(-). There was evidence of enhanced ClO4(-) content in the soil surface at the highest O3 exposure, which could be a significant contributor to environmental ClO4(-).
Collapse
Affiliation(s)
- D A Grantz
- Department of Botany and Plant Sciences, University of California at Riverside, Kearney Agricultural Center, 9240 South Riverbend Avenue, Parlier, CA 93648, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Kim KH, Kabir E, Ara Jahan S. A review of the consequences of global climate change on human health. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:299-318. [PMID: 25226222 DOI: 10.1080/10590501.2014.941279] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The impact of climate change has been significant enough to endanger human health both directly and indirectly via heat stress, degraded air quality, rising sea levels, food and water security, extreme weather events (e.g., floods, droughts, earthquakes, volcano eruptions, tsunamis, hurricanes, etc.), vulnerable shelter, and population migration. The deterioration of environmental conditions may facilitate the transmission of diarrhea, vector-borne and infectious diseases, cardiovascular and respiratory illnesses, malnutrition, etc. Indirect effects of climate change such as mental health problems due to stress, loss of homes, economic instability, and forced migration are also unignorably important. Children, the elderly, and communities living in poverty are among the most vulnerable of the harmful effects due to climate change. In this article, we have reviewed the scientific evidence for the human health impact of climate change and analyzed the various diseases in association with changes in the atmospheric environment and climate conditions.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- a Department of Civil and Environmental Engineering, Hanyang University , Seoul , Korea
| | | | | |
Collapse
|
71
|
Heal MR, Heaviside C, Doherty RM, Vieno M, Stevenson DS, Vardoulakis S. Health burdens of surface ozone in the UK for a range of future scenarios. ENVIRONMENT INTERNATIONAL 2013; 61:36-44. [PMID: 24096040 DOI: 10.1016/j.envint.2013.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
Exposure to surface ozone (O3), which is influenced by emissions of precursor chemical species, meteorology and population distribution, is associated with excess mortality and respiratory morbidity. In this study, the EMEP-WRF atmospheric chemistry transport model was used to simulate surface O3 concentrations at 5km horizontal resolution over the British Isles for a baseline year of 2003, for three anthropogenic emissions scenarios for 2030, and for a +5°C increase in air temperature on the 2003 baseline. Deaths brought forward and hospitalisation burdens for 12 UK regions were calculated from population-weighted daily maximum 8-hour O3. The magnitude of changes in annual mean surface O3 over the UK for +5°C temperature (+1.0 to +1.5ppbv, depending on region) was comparable to those due to inter-annual meteorological variability (-1.5 to +1.5ppbv) but considerably less than changes due to precursor emissions changes by 2030 (-3.0 to +3.5ppbv, depending on scenario and region). Including population changes in 2030, both the 'current legislation' and 'maximum feasible reduction' scenarios yield greater O3-attributable health burdens than the 'high' emission scenario: +28%, +22%, and +16%, respectively, above 2003 baseline deaths brought forward (11,500) and respiratory hospital admissions (30,700), using O3 exposure over the full year and no threshold for health effects. The health burdens are greatest under the 'current legislation' scenario because O3 concentrations increase as a result of both increases in background O3 concentration and decreases in UK NOx emissions. For the +5°C scenario, and no threshold (and not including population increases), total UK health burden increases by 500 premature deaths (4%) relative to the 2003 baseline. If a 35ppbv threshold for O3 effects is assumed, health burdens are more sensitive to the current legislation and +5°C scenarios, although total health burdens are roughly an order of magnitude lower. In all scenarios, the assumption of a threshold increases the proportion of health burden in the south and east of the UK compared with the no threshold assumption. The study highlights that the total, and geographically-apportioned, O3-attributable health burdens in the UK are highly sensitive to the future trends of hemispheric, regional and local emissions of O3 precursors, and to the assumption of a threshold for O3 effect.
Collapse
Affiliation(s)
- Mathew R Heal
- School of Chemistry, The University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, UK.
| | | | | | | | | | | |
Collapse
|
72
|
Assessing the Sensitivity of the OMI-NO2 Product to Emission Changes across Europe. REMOTE SENSING 2013. [DOI: 10.3390/rs5094187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
73
|
Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M. The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130164. [PMID: 23713126 DOI: 10.1098/rstb.2013.0164] [Citation(s) in RCA: 541] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Global nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic Nr are on land (240 Tg N yr(-1)) within soils and vegetation where reduced Nr contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer Nr contribute to nitrate (NO3(-)) in drainage waters from agricultural land and emissions of trace Nr compounds to the atmosphere. Emissions, mainly of ammonia (NH3) from land together with combustion related emissions of nitrogen oxides (NOx), contribute 100 Tg N yr(-1) to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH4NO3) and ammonium sulfate (NH4)2SO4. Leaching and riverine transport of NO3 contribute 40-70 Tg N yr(-1) to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr(-1)) to double the ocean processing of Nr. Some of the marine Nr is buried in sediments, the remainder being denitrified back to the atmosphere as N2 or N2O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of Nr in the atmosphere, with the exception of N2O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 10(2)-10(3) years), the lifetime is a few decades. In the ocean, the lifetime of Nr is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N2O that will respond very slowly to control measures on the sources of Nr from which it is produced.
Collapse
Affiliation(s)
- David Fowler
- NERC Centre for Ecology and Hydrology, Penicuik, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Perring AE, Pusede SE, Cohen RC. An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol. Chem Rev 2013; 113:5848-70. [DOI: 10.1021/cr300520x] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. E. Perring
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| | - S. E. Pusede
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| | - R. C. Cohen
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| |
Collapse
|
75
|
Grantz DA, Vu HB, Heath RL, Burkey KO. Demonstration of a diel trend in sensitivity of Gossypium to ozone: a step toward relating O₃ injury to exposure or flux. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1703-13. [PMID: 23404900 PMCID: PMC3617835 DOI: 10.1093/jxb/ert032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plant injury by ozone (O3) occurs in three stages, O3 entrance through stomata, overcoming defences, and attack on bioreceptors. Concentration, deposition, and uptake of O3 are accessible by observation and modelling, while injury can be assessed visually or through remote sensing. However, the relationship between O3 metrics and injury is confounded by variation in sensitivity to O3. Sensitivity weighting parameters have previously been assigned to different plant functional types and growth stages, or by differentially weighting O3 concentrations, but diel and seasonal variability have not been addressed. Here a plant sensitivity parameter (S) is introduced, relating injury to O3 dose (uptake) using three independent injury endpoints in the crop species, Pima cotton (Gossypium barbadense). The diel variability of S was determined by assessment at 2h intervals. Pulses of O3 (15 min) were used to assess passive (constitutive) defence mechanisms and dose was used rather than concentration to avoid genetic or environmental effects on stomatal regulation. A clear diel trend in S was apparent, with maximal sensitivity in mid-afternoon, not closely related to gas exchange, whole leaf ascorbate, or total antioxidant capacity. This physiologically based sensitivity parameter provides a novel weighting factor to improve modelled relationships between either flux or exposure to O3, and O3 impacts. This represents a substantial improvement over concentration- or phenology-based weighting factors currently in use. Future research will be required to characterize the variability and metabolic drivers of diel changes in S, and the performance of this parameter in prediction of O3 injury.
Collapse
Affiliation(s)
- D A Grantz
- Department of Botany and Plant Sciences, University of California at Riverside, 9240 South Riverbend Ave., Parlier, CA 93648, USA.
| | | | | | | |
Collapse
|
76
|
Watanabe M, Hoshika Y, Inada N, Wang X, Mao Q, Koike T. Photosynthetic traits of Siebold's beech and oak saplings grown under free air ozone exposure in northern Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 174:50-56. [PMID: 23246746 DOI: 10.1016/j.envpol.2012.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 11/05/2012] [Accepted: 11/10/2012] [Indexed: 05/28/2023]
Abstract
We set up a free-air ozone (O(3)) exposure system for determining the photosynthetic responses of Siebold's beech (Fagus crenata) and oak (Quercus mongolica var. crispula) to O(3) under field conditions. Ten-year-old saplings of beech and oak were exposed to an elevated O(3) concentration (60 nmol mol(-1)) during daytime from 6 August to 11 November 2011. Ozone significantly reduced the net photosynthetic rate in leaves of both species in October, by 46% for beech and 15% for oak. In beech there were significant decreases in maximum rate of carboxylation, maximum rate of electron transport in photosynthesis, nitrogen content and photosynthetic nitrogen use efficiency, but not in oak. Stomatal limitation of photosynthesis was unaffected by O(3). We therefore concluded photosynthesis in beech is more sensitive to O(3) than that in oak, and the O(3)-induced reduction of photosynthetic activity in beech was due not to stomatal closure, but to biochemical limitation.
Collapse
Affiliation(s)
- Makoto Watanabe
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
77
|
Cieslik S, Tuovinen JP, Baumgarten M, Matyssek R, Brito P, Wieser G. Gaseous Exchange Between Forests and the Atmosphere. DEVELOPMENTS IN ENVIRONMENTAL SCIENCE 2013. [DOI: 10.1016/b978-0-08-098349-3.00002-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
78
|
Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng ATA, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FGR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang YH, Khatibzadeh S, Khoo JP, Kok C, Laden F, et alLim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng ATA, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FGR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang YH, Khatibzadeh S, Khoo JP, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Mohd Hanafiah K, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CDH, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJC, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJL, Ezzati M, AlMazroa MA, Memish ZA. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380:2224-60. [PMID: 23245609 PMCID: PMC4156511 DOI: 10.1016/s0140-6736(12)61766-8] [Show More Authors] [Citation(s) in RCA: 7389] [Impact Index Per Article: 568.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Quantification of the disease burden caused by different risks informs prevention by providing an account of health loss different to that provided by a disease-by-disease analysis. No complete revision of global disease burden caused by risk factors has been done since a comparative risk assessment in 2000, and no previous analysis has assessed changes in burden attributable to risk factors over time. METHODS We estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010. We estimated exposure distributions for each year, region, sex, and age group, and relative risks per unit of exposure by systematically reviewing and synthesising published and unpublished data. We used these estimates, together with estimates of cause-specific deaths and DALYs from the Global Burden of Disease Study 2010, to calculate the burden attributable to each risk factor exposure compared with the theoretical-minimum-risk exposure. We incorporated uncertainty in disease burden, relative risks, and exposures into our estimates of attributable burden. FINDINGS In 2010, the three leading risk factors for global disease burden were high blood pressure (7·0% [95% uncertainty interval 6·2-7·7] of global DALYs), tobacco smoking including second-hand smoke (6·3% [5·5-7·0]), and alcohol use (5·5% [5·0-5·9]). In 1990, the leading risks were childhood underweight (7·9% [6·8-9·4]), household air pollution from solid fuels (HAP; 7·0% [5·6-8·3]), and tobacco smoking including second-hand smoke (6·1% [5·4-6·8]). Dietary risk factors and physical inactivity collectively accounted for 10·0% (95% UI 9·2-10·8) of global DALYs in 2010, with the most prominent dietary risks being diets low in fruits and those high in sodium. Several risks that primarily affect childhood communicable diseases, including unimproved water and sanitation and childhood micronutrient deficiencies, fell in rank between 1990 and 2010, with unimproved water and sanitation accounting for 0·9% (0·4-1·6) of global DALYs in 2010. However, in most of sub-Saharan Africa childhood underweight, HAP, and non-exclusive and discontinued breastfeeding were the leading risks in 2010, while HAP was the leading risk in south Asia. The leading risk factor in Eastern Europe, most of Latin America, and southern sub-Saharan Africa in 2010 was alcohol use; in most of Asia, North Africa and Middle East, and central Europe it was high blood pressure. Despite declines, tobacco smoking including second-hand smoke remained the leading risk in high-income north America and western Europe. High body-mass index has increased globally and it is the leading risk in Australasia and southern Latin America, and also ranks high in other high-income regions, North Africa and Middle East, and Oceania. INTERPRETATION Worldwide, the contribution of different risk factors to disease burden has changed substantially, with a shift away from risks for communicable diseases in children towards those for non-communicable diseases in adults. These changes are related to the ageing population, decreased mortality among children younger than 5 years, changes in cause-of-death composition, and changes in risk factor exposures. New evidence has led to changes in the magnitude of key risks including unimproved water and sanitation, vitamin A and zinc deficiencies, and ambient particulate matter pollution. The extent to which the epidemiological shift has occurred and what the leading risks currently are varies greatly across regions. In much of sub-Saharan Africa, the leading risks are still those associated with poverty and those that affect children. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Stephen S Lim
- Institute for Health Metrics and Evaluation, Seattle, WA 98121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Lang C, Waugh DW, Olsen MA, Douglass AR, Liang Q, Nielsen JE, Oman LD, Pawson S, Stolarski RS. The impact of greenhouse gases on past changes in tropospheric ozone. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
80
|
Betzelberger AM, Yendrek CR, Sun J, Leisner CP, Nelson RL, Ort DR, Ainsworth EA. Ozone exposure response for U.S. soybean cultivars: linear reductions in photosynthetic potential, biomass, and yield. PLANT PHYSIOLOGY 2012; 160:1827-39. [PMID: 23037504 PMCID: PMC3510113 DOI: 10.1104/pp.112.205591] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/03/2012] [Indexed: 05/20/2023]
Abstract
Current background ozone (O(3)) concentrations over the northern hemisphere's midlatitudes are high enough to damage crops and are projected to increase. Soybean (Glycine max) is particularly sensitive to O(3); therefore, establishing an O(3) exposure threshold for damage is critical to understanding the current and future impact of this pollutant. This study aims to determine the exposure response of soybean to elevated tropospheric O(3) by measuring the agronomic, biochemical, and physiological responses of seven soybean genotypes to nine O(3) concentrations (38-120 nL L(-1)) within a fully open-air agricultural field location across 2 years. All genotypes responded similarly, with season-long exposure to O(3) causing a linear increase in antioxidant capacity while reducing leaf area, light absorption, specific leaf mass, primary metabolites, seed yield, and harvest index. Across two seasons with different temperature and rainfall patterns, there was a robust linear yield decrease of 37 to 39 kg ha(-1) per nL L(-1) cumulative O(3) exposure over 40 nL L(-1). The existence of immediate effects of O(3) on photosynthesis, stomatal conductance, and photosynthetic transcript abundance before and after the initiation and termination of O(3) fumigation were concurrently assessed, and there was no evidence to support an instantaneous photosynthetic response. The ability of the soybean canopy to intercept radiation, the efficiency of photosynthesis, and the harvest index were all negatively impacted by O(3), suggesting that there are multiple targets for improving soybean responses to this damaging air pollutant.
Collapse
Affiliation(s)
- Amy M. Betzelberger
- Department of Plant Biology (A.M.B., C.P.L., D.R.O., E.A.A.), Institute for Genomic Biology (C.R.Y., J.S., D.R.O., E.A.A.), and Department of Crop Sciences (R.L.N.), University of Illinois, Urbana-Champaign, Illinois 61801; and Soybean/Maize Germplasm, Pathology, and Genetics Research Unit (R.L.N., E.A.A.) and Global Change and Photosynthesis Research Unit (C.R.Y., D.R.O., E.A.A.), United States Department of Agriculture Agricultural Research Service, Urbana, Illinois 61801
| | - Craig R. Yendrek
- Department of Plant Biology (A.M.B., C.P.L., D.R.O., E.A.A.), Institute for Genomic Biology (C.R.Y., J.S., D.R.O., E.A.A.), and Department of Crop Sciences (R.L.N.), University of Illinois, Urbana-Champaign, Illinois 61801; and Soybean/Maize Germplasm, Pathology, and Genetics Research Unit (R.L.N., E.A.A.) and Global Change and Photosynthesis Research Unit (C.R.Y., D.R.O., E.A.A.), United States Department of Agriculture Agricultural Research Service, Urbana, Illinois 61801
| | | | - Courtney P. Leisner
- Department of Plant Biology (A.M.B., C.P.L., D.R.O., E.A.A.), Institute for Genomic Biology (C.R.Y., J.S., D.R.O., E.A.A.), and Department of Crop Sciences (R.L.N.), University of Illinois, Urbana-Champaign, Illinois 61801; and Soybean/Maize Germplasm, Pathology, and Genetics Research Unit (R.L.N., E.A.A.) and Global Change and Photosynthesis Research Unit (C.R.Y., D.R.O., E.A.A.), United States Department of Agriculture Agricultural Research Service, Urbana, Illinois 61801
| | - Randall L. Nelson
- Department of Plant Biology (A.M.B., C.P.L., D.R.O., E.A.A.), Institute for Genomic Biology (C.R.Y., J.S., D.R.O., E.A.A.), and Department of Crop Sciences (R.L.N.), University of Illinois, Urbana-Champaign, Illinois 61801; and Soybean/Maize Germplasm, Pathology, and Genetics Research Unit (R.L.N., E.A.A.) and Global Change and Photosynthesis Research Unit (C.R.Y., D.R.O., E.A.A.), United States Department of Agriculture Agricultural Research Service, Urbana, Illinois 61801
| | - Donald R. Ort
- Department of Plant Biology (A.M.B., C.P.L., D.R.O., E.A.A.), Institute for Genomic Biology (C.R.Y., J.S., D.R.O., E.A.A.), and Department of Crop Sciences (R.L.N.), University of Illinois, Urbana-Champaign, Illinois 61801; and Soybean/Maize Germplasm, Pathology, and Genetics Research Unit (R.L.N., E.A.A.) and Global Change and Photosynthesis Research Unit (C.R.Y., D.R.O., E.A.A.), United States Department of Agriculture Agricultural Research Service, Urbana, Illinois 61801
| | - Elizabeth A. Ainsworth
- Department of Plant Biology (A.M.B., C.P.L., D.R.O., E.A.A.), Institute for Genomic Biology (C.R.Y., J.S., D.R.O., E.A.A.), and Department of Crop Sciences (R.L.N.), University of Illinois, Urbana-Champaign, Illinois 61801; and Soybean/Maize Germplasm, Pathology, and Genetics Research Unit (R.L.N., E.A.A.) and Global Change and Photosynthesis Research Unit (C.R.Y., D.R.O., E.A.A.), United States Department of Agriculture Agricultural Research Service, Urbana, Illinois 61801
| |
Collapse
|
81
|
Thompson AM, Miller SK, Tilmes S, Kollonige DW, Witte JC, Oltmans SJ, Johnson BJ, Fujiwara M, Schmidlin FJ, Coetzee GJR, Komala N, Maata M, bt Mohamad M, Nguyo J, Mutai C, Ogino SY, Da Silva FR, Leme NMP, Posny F, Scheele R, Selkirk HB, Shiotani M, Stübi R, Levrat G, Calpini B, Thouret V, Tsuruta H, Canossa JV, Vömel H, Yonemura S, Diaz JA, Tan Thanh NT, Thuy Ha HT. Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005-2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMI-based ozone products. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016911] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
82
|
Lin M, Fiore AM, Cooper OR, Horowitz LW, Langford AO, Levy H, Johnson BJ, Naik V, Oltmans SJ, Senff CJ. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018151] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
83
|
Yuan T, Remer LA, Bian H, Ziemke JR, Albrecht R, Pickering KE, Oreopoulos L, Goodman SJ, Yu H, Allen DJ. Aerosol indirect effect on tropospheric ozone via lightning. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
84
|
Riese M, Ploeger F, Rap A, Vogel B, Konopka P, Dameris M, Forster P. Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017751] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
85
|
Fiore AM, Naik V, Spracklen DV, Steiner A, Unger N, Prather M, Bergmann D, Cameron-Smith PJ, Cionni I, Collins WJ, Dalsøren S, Eyring V, Folberth GA, Ginoux P, Horowitz LW, Josse B, Lamarque JF, MacKenzie IA, Nagashima T, O'Connor FM, Righi M, Rumbold ST, Shindell DT, Skeie RB, Sudo K, Szopa S, Takemura T, Zeng G. Global air quality and climate. Chem Soc Rev 2012; 41:6663-83. [PMID: 22868337 DOI: 10.1039/c2cs35095e] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.
Collapse
Affiliation(s)
- Arlene M Fiore
- Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Borbon A, Ruiz M, Bechara J, Aumont B, Chong M, Huntrieser H, Mari C, Reeves CE, Scialom G, Hamburger T, Stark H, Afif C, Jambert C, Mills G, Schlager H, Perros PE. Transport and chemistry of formaldehyde by mesoscale convective systems in West Africa during AMMA 2006. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
87
|
Young PJ, Emmons LK, Roberts JM, Lamarque JF, Wiedinmyer C, Veres P, VandenBoer TC. Isocyanic acid in a global chemistry transport model: Tropospheric distribution, budget, and identification of regions with potential health impacts. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017393] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
88
|
Pinder RW, Davidson EA, Goodale CL, Greaver TL, Herrick JD, Liu L. Climate change impacts of US reactive nitrogen. Proc Natl Acad Sci U S A 2012; 109:7671-5. [PMID: 22547815 PMCID: PMC3356669 DOI: 10.1073/pnas.1114243109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fossil fuel combustion and fertilizer application in the United States have substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions, including oxides of nitrogen, ammonia, and nitrous oxide (N(2)O). We use the global temperature potential (GTP), calculated at 20 and 100 y, in units of CO(2) equivalents (CO(2)e), as a common metric. The largest cooling effects are due to combustion sources of oxides of nitrogen altering tropospheric ozone and methane concentrations and enhancing carbon sequestration in forests. The combined cooling effects are estimated at -290 to -510 Tg CO(2)e on a GTP(20) basis. However, these effects are largely short-lived. On a GTP(100) basis, combustion contributes just -16 to -95 Tg CO(2)e. Agriculture contributes to warming on both the 20-y and 100-y timescales, primarily through N(2)O emissions from soils. Under current conditions, these warming and cooling effects partially offset each other. However, recent trends show decreasing emissions from combustion sources. To prevent warming from US reactive nitrogen, reductions in agricultural N(2)O emissions are needed. Substantial progress toward this goal is possible using current technology. Without such actions, even greater CO(2) emission reductions will be required to avoid dangerous climate change.
Collapse
Affiliation(s)
- Robert W Pinder
- Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Baray JL, Duflot V, Posny F, Cammas JP, Thompson AM, Gabarrot F, Bonne JL, Zeng G. One year ozonesonde measurements at Kerguelen Island (49.2°S, 70.1°E): Influence of stratosphere-to-troposphere exchange and long-range transport of biomass burning plumes. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
90
|
Pyle JA, Warwick NJ, Harris NRP, Abas MR, Archibald AT, Ashfold MJ, Ashworth K, Barkley MP, Carver GD, Chance K, Dorsey JR, Fowler D, Gonzi S, Gostlow B, Hewitt CN, Kurosu TP, Lee JD, Langford SB, Mills G, Moller S, MacKenzie AR, Manning AJ, Misztal P, Nadzir MSM, Nemitz E, Newton HM, O'Brien LM, Ong S, Oram D, Palmer PI, Peng LK, Phang SM, Pike R, Pugh TAM, Rahman NA, Robinson AD, Sentian J, Samah AA, Skiba U, Ung HE, Yong SE, Young PJ. The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality. Philos Trans R Soc Lond B Biol Sci 2012; 366:3210-24. [PMID: 22006963 DOI: 10.1098/rstb.2011.0060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.
Collapse
Affiliation(s)
- J A Pyle
- National Centre for Atmospheric Science, NCAS, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
The Impact of Uncertainties in African Biomass Burning Emission Estimates on Modeling Global Air Quality, Long Range Transport and Tropospheric Chemical Lifetimes. ATMOSPHERE 2012. [DOI: 10.3390/atmos3010132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
92
|
Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M, Henderson SB, Krzyzanowski M, Martin RV, Van Dingenen R, van Donkelaar A, Thurston GD. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:652-60. [PMID: 22148428 PMCID: PMC4043337 DOI: 10.1021/es2025752] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ambient air pollution is associated with numerous adverse health impacts. Previous assessments of global attributable disease burden have been limited to urban areas or by coarse spatial resolution of concentration estimates. Recent developments in remote sensing, global chemical-transport models, and improvements in coverage of surface measurements facilitate virtually complete spatially resolved global air pollutant concentration estimates. We combined these data to generate global estimates of long-term average ambient concentrations of fine particles (PM(2.5)) and ozone at 0.1° × 0.1° spatial resolution for 1990 and 2005. In 2005, 89% of the world's population lived in areas where the World Health Organization Air Quality Guideline of 10 μg/m(3) PM(2.5) (annual average) was exceeded. Globally, 32% of the population lived in areas exceeding the WHO Level 1 Interim Target of 35 μg/m(3), driven by high proportions in East (76%) and South (26%) Asia. The highest seasonal ozone levels were found in North and Latin America, Europe, South and East Asia, and parts of Africa. Between 1990 and 2005 a 6% increase in global population-weighted PM(2.5) and a 1% decrease in global population-weighted ozone concentrations was apparent, highlighted by increased concentrations in East, South, and Southeast Asia and decreases in North America and Europe. Combined with spatially resolved population distributions, these estimates expand the evaluation of the global health burden associated with outdoor air pollution.
Collapse
Affiliation(s)
- Michael Brauer
- School of Population and Public Health, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia V6T1Z3, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD. The effects of tropospheric ozone on net primary productivity and implications for climate change. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:637-61. [PMID: 22404461 DOI: 10.1146/annurev-arplant-042110-103829] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tropospheric ozone (O(3)) is a global air pollutant that causes billions of dollars in lost plant productivity annually. It is an important anthropogenic greenhouse gas, and as a secondary air pollutant, it is present at high concentrations in rural areas far from industrial sources. It also reduces plant productivity by entering leaves through the stomata, generating other reactive oxygen species and causing oxidative stress, which in turn decreases photosynthesis, plant growth, and biomass accumulation. The deposition of O(3) into vegetation through stomata is an important sink for tropospheric O(3), but this sink is modified by other aspects of environmental change, including rising atmospheric carbon dioxide concentrations, rising temperature, altered precipitation, and nitrogen availability. We review the atmospheric chemistry governing tropospheric O(3) mass balance, the effects of O(3) on stomatal conductance and net primary productivity, and implications for agriculture, carbon sequestration, and climate change.
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
94
|
McDonald-Buller EC, Allen DT, Brown N, Jacob DJ, Jaffe D, Kolb CE, Lefohn AS, Oltmans S, Parrish DD, Yarwood G, Zhang L. Establishing policy relevant background (PRB) ozone concentrations in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9484-9497. [PMID: 21985705 DOI: 10.1021/es2022818] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Policy Relevant Background (PRB) ozone concentrations are defined by the United States (U.S.) Environmental Protection Agency (EPA) as those concentrations that would occur in the U.S. in the absence of anthropogenic emissions in continental North America (i.e., the U.S, Canada, and Mexico). Estimates of PRB ozone have had an important role historically in the EPA's human health and welfare risk analyses used in establishing National Ambient Air Quality Standards (NAAQS). The margin of safety for the protection of public health in the ozone rulemaking process has been established from human health risks calculated based on PRB ozone estimates. Sensitivity analyses conducted by the EPA have illustrated that changing estimates of PRB ozone concentrations have a progressively greater impact on estimates of mortality risk as more stringent standards are considered. As defined by the EPA, PRB ozone is a model construct, but it is informed by measurements at relatively remote monitoring sites (RRMS). This review examines the current understanding of PRB ozone, based on both model predictions and measurements at RRMS, and provides recommendations for improving the definition and determination of PRB ozone.
Collapse
|
95
|
Liu JJ, Jones DBA, Zhang S, Kar J. Influence of interannual variations in transport on summertime abundances of ozone over the Middle East. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016188] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
96
|
Bellouin N, Rae J, Jones A, Johnson C, Haywood J, Boucher O. Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016074] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
97
|
Worden HM, Bowman KW, Kulawik SS, Aghedo AM. Sensitivity of outgoing longwave radiative flux to the global vertical distribution of ozone characterized by instantaneous radiative kernels from Aura-TES. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
98
|
Whitt DB, Jacobson MZ, Wilkerson JT, Naiman AD, Lele SK. Vertical mixing of commercial aviation emissions from cruise altitude to the surface. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015532] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
99
|
Abstract
Trace greenhouse gases are a fundamentally important component of Earth's global climate system sensitive to global change. However, their concentration in the pre-Pleistocene atmosphere during past warm greenhouse climates is highly uncertain because we lack suitable geochemical or biological proxies. This long-standing issue hinders assessment of their contribution to past global warmth and the equilibrium climate sensitivity of the Earth system (E(ss)) to CO(2). Here we report results from a series of three-dimensional Earth system modeling simulations indicating that the greenhouse worlds of the early Eocene (55 Ma) and late Cretaceous (90 Ma) maintained high concentrations of methane, tropospheric ozone, and nitrous oxide. Modeled methane concentrations were four- to fivefold higher than the preindustrial value typically adopted in modeling investigations of these intervals, even after accounting for the possible high CO(2)-suppression of biogenic isoprene emissions on hydroxyl radical abundance. Higher concentrations of trace greenhouse gases exerted marked planetary heating (> 2 K), amplified in the high latitudes (> 6 K) by lower surface albedo feedbacks, and increased E(ss) in the Eocene by 1 K. Our analyses indicate the requirement for including non-CO(2) greenhouse gases in model-based E(ss) estimates for comparison with empirical paleoclimate assessments, and point to chemistry-climate feedbacks as possible amplifiers of climate sensitivity in the Anthropocene.
Collapse
|
100
|
Spickett JT, Brown HL, Rumchev K. Climate change and air quality: the potential impact on health. Asia Pac J Public Health 2011; 23:37S-45. [PMID: 21447543 DOI: 10.1177/1010539511398114] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objectives of the study were to: consider the potential health impacts in Australia and the region arising from changes in air quality occurring as a result of climate change, identify vulnerable groups and potential adaptation measures and discuss the implications for policy. The authors provide an overview of international and national information on the potential health impacts of air pollutants that would most likely be affected by climate change and a discussion of the policy implications. Climate change is likely to have an impact on levels of ozone and possibly particulates, both of which are associated with increased mortality and a range of respiratory and cardiovascular health effects. One of the implications is therefore a possible increase in adverse health effects due to air pollutants. Regional health impact assessments of climate change should address the issue of air quality, consider current coping capacity, and determine the need for adaptation, particularly for vulnerable groups. Implications for policy include the need for improved modeling and forecasting of air pollutant levels, increased efforts to reduce emissions of air pollutants, continued monitoring of air pollutant levels, and monitoring of the incidence of health effects associated with air pollutants in all countries in the region.
Collapse
|