51
|
Extracellular HMGB1 prevents necroptosis in acute myeloid leukemia cells. Biomed Pharmacother 2019; 112:108714. [DOI: 10.1016/j.biopha.2019.108714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022] Open
|
52
|
Sharifi M, Hosseinali SH, Saboury AA, Szegezdi E, Falahati M. Involvement of planned cell death of necroptosis in cancer treatment by nanomaterials: Recent advances and future perspectives. J Control Release 2019; 299:121-137. [DOI: 10.1016/j.jconrel.2019.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/31/2022]
|
53
|
Chlorpyrifos Suppresses Neutrophil Extracellular Traps in Carp by Promoting Necroptosis and Inhibiting Respiratory Burst Caused by the PKC/MAPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1763589. [PMID: 30881588 PMCID: PMC6383406 DOI: 10.1155/2019/1763589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are reticular structures formed by myeloperoxidase (MPO), histones, and neutrophil elastase (NE) that are released from neutrophils in response to pathogenic stimuli. Chlorpyrifos (CPF) is wildly used as an organophosphorus pesticide that causes a range of toxicological and environmental problems. Exposure to CPF can increase the production of neutrophils in carps, and this increase can be considered a biomarker of water pollution. To explore a relationship between NETs and CPF and its mechanism of influence, we treated neutrophils from the blood of carp with 1 μg/mL phorbol 12-myristate 13-acetate (PMA), 0.325 mg/L CPF, or 20 μM necrostatin-1 (Nec-1). The production of MPO and NETs was reduced in the CPF+PMA group compared with that in the PMA group. CPF can cause an increase in reactive oxygen species (ROS), while inhibiting respiratory burst caused by PMA stimulation. We found that the expression levels of protein-coupled receptor 84 (gpr84), dystroglycan (DAG), proto-oncogene serine/threonine kinase (RAF), protein kinase C (PKC), and mitogen-activated protein kinase 3 (MAPK3) in the CPF+PMA group were lower than those in the PMA group, indicating that the PKC-MAPK pathway was suppressed. The expression levels of cylindromatosis (CYLD), mixed lineage kinase domain-like pseudokinase (MLKL), receptor-interacting serine-threonine kinase 1 (RIP1), and receptor-interacting serine-threonine kinase 3 (RIP3) were increased, and the expression levels of caspase 8 were reduced by CPF, indicating that CPF may cause necroptosis. The addition of Nec-1 restored the number of NETs in the CPF+PMA group. The results indicate that CPF reduced the production of NETs by inhibiting respiratory burst and increasing necroptosis. The results contribute to the understanding of the immunotoxicological mechanism of CPF and provide a reference for comparative medical studies.
Collapse
|
54
|
Compartment syndrome-induced muscle injury is diminished by the neutralization of pro-inflammatory cytokines. OTA Int 2018; 1:e011. [PMID: 33937648 PMCID: PMC7953480 DOI: 10.1097/oi9.0000000000000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 11/26/2022]
Abstract
Objectives: Compartment syndrome (CS) is one of the most devastating consequences of musculoskeletal trauma. The pathophysiology of CS includes elevation of intracompartmental pressure (ICP), causing damage to the microcirculation, decreased oxygen delivery, tissue anoxia, and cell death. CS is a combined ischemic and inflammatory condition that induces the systemic inflammatory cascade. In complete ischemia, within the first hour of reperfusion, a peak in the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α) has been previously reported. The purpose of this study was to examine the suspected systemic inflammatory cytokine/chemokine release in response to CS, and to evaluate the microvascular dysfunction, tissue injury, and inflammatory response following the neutralization of pro-inflammatory cytokines TNF-α and/or interleukin-1 beta (IL-1β). Methods: Twenty-eight male Wistar rats were randomly assigned into 5 groups: Sham (no CS), CS (with isotype control), CS+TNF-α neutralizing antibody (NA), CS+IL-1β NA, CS+Combo (both TNF-α and IL-1β NA). CS was induced by elevation of ICP above 30 mm Hg through an infusion of isotonic saline into the anterior compartment of the hind limb for 2 hours; NA were administered just prior to fasciotomy. Microvascular perfusion, cellular tissue injury, and inflammatory response within the extensor digitorum longus muscle were assessed using intravital video microscopy for 45 minutes after fasciotomy. Systemic levels of 24 different cytokines/chemokines were also measured, using the xMAP Luminex technology. Results: Of the 24 cytokines/chemokines sampled, 6 were significantly elevated from their baseline levels, and included the pro-inflammatory cytokines TNF-α, IL-1β, growth-related oncogene/keratinocyte chemoattractant (GRO/KC), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1 alpha (MIP-1α), and the anti-inflammatory cytokine IL-10. CS resulted in a significant decrease in microvascular perfusion, from 75 ± 2% continuously perfused capillaries in the sham to 31 ± 4% in CS (P < .001), a significant increase in tissue injury (0.33 ± 0.4 versus 0.04 ± 0.01 in sham) and leukocyte activation (14 ± 2 adherent leukocytes/1000 μm2 versus 2 ± 1 adherent leukocytes/100 μm2 in sham, P < .001). CS-associated tissue injury was significantly decreased with TNF-α neutralization (P < .05), both when administered alone or in combination with IL-1β (P < .05). Additionally, TNF-α neutralization blocked CS-associated leukocyte activation (P < .05); IL-1β neutralization also diminished leukocyte adhesion (P < .05). Perfusion remained virtually unchanged in CS animals treated with NA (36 ± 4%, 32 ± 3% and 30 ± 2% in CS+TNF-α, CS+IL-1β and CS+Combo groups, respectively). Conclusion: The results of this study indicate that CS induces a systemic inflammation, as evidenced by upregulation of inflammatory cytokines/chemokines in circulation. Neutralization of TNF-α led to a significant reduction in tissue injury; however, it had no effect on the CS-induced microvascular dysfunction. This suggests a distinct role of TNF-α in the pathophysiology of muscle injury in CS.
Collapse
|
55
|
Abstract
Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease condition. Acute liver failure is characterized by massive loss of parenchymal cells but is usually followed by restitution ad integrum. By contrast, cell death in chronic liver diseases often occurs at a lesser extent but leads to long-term alterations in organ architecture and function, contributing to chronic hepatocyte turnover, the recruitment of immune cells and activation of hepatic stellate cells. These chronic cell death responses contribute to the development of liver fibrosis, cirrhosis and cancer. It has become evident that, besides apoptosis, necroptosis is a highly relevant form of programmed cell death in the liver. Differential activation of specific forms of programmed cell death might not only affect outcomes in liver diseases but also offer novel opportunities for therapeutic intervention. Here, we summarize the underlying molecular mechanisms and open questions about disease-specific activation and roles of programmed cell death forms, their contribution to response signatures and their detection. We focus on the role of apoptosis and necroptosis in acute liver injury, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and liver cancer, and possible translations into clinical applications.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY, USA.
- Institute of Human Nutrition, Columbia University, New York, NY, USA.
| | - Tom Luedde
- Department of Medicine III, Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
| |
Collapse
|
56
|
Tung B, Ma D, Wang S, Oyinlade O, Laterra J, Ying M, Lv SQ, Wei S, Xia S. Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells. BMC Cancer 2018; 18:1025. [PMID: 30348136 PMCID: PMC6198521 DOI: 10.1186/s12885-018-4874-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022] Open
Abstract
Background The dismal prognosis of patients with glioblastoma (GBM) is attributed to a rare subset of cancer stem cells that display characteristics of tumor initiation, growth, and resistance to aggressive treatment involving chemotherapy and concomitant radiation. Recent research on the substantial role of epigenetic mechanisms in the pathogenesis of cancers has prompted the investigation of the enzymatic modifications of histone proteins for therapeutic drug targeting. In this work, we have examined the function of Krüppel-like factor 9 (KLF9), a transcription factor, in chemotherapy sensitization to histone deacetylase inhibitors (HDAC inhibitors). Methods Since GBM neurosphere cultures from patient-derived gliomas are enriched for GBM stem-like cells (GSCs) and form highly invasive and proliferative xenografts that recapitulate the features demonstrated in human patients diagnosed with GBM, we established inducible KLF9 expression systems in these GBM neurosphere cells and investigated cell death in the presence of epigenetic modulators such as histone deacetylase (HDAC) inhibitors. Results We demonstrated that KLF9 expression combined with HDAC inhibitor panobinostat (LBH589) dramatically induced glioma stem cell death via both apoptosis and necroptosis in a synergistic manner. The combination of KLF9 expression and LBH589 treatment affected cell cycle by substantially decreasing the percentage of cells at S-phase. This phenomenon is further corroborated by the upregulation of cell cycle inhibitors p21 and p27. Further, we determined that KLF9 and LBH589 regulated the expression of pro- and anti- apoptotic proteins, suggesting a mechanism that involves the caspase-dependent apoptotic pathway. In addition, we demonstrated that apoptosis and necrosis inhibitors conferred minimal protective effects against cell death, while inhibitors of the necroptosis pathway significantly blocked cell death. Conclusions Our findings suggest a detailed understanding of how KLF9 expression in cancer cells with epigenetic modulators like HDAC inhibitors may promote synergistic cell death through a mechanism involving both apoptosis and necroptosis that will benefit novel combinatory antitumor strategies to treat malignant brain tumors.
Collapse
Affiliation(s)
- Brian Tung
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA
| | - Ding Ma
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shuyan Wang
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Olutobi Oyinlade
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
57
|
Oliveira SR, Amaral JD, Rodrigues CMP. Mechanism and disease implications of necroptosis and neuronal inflammation. Cell Death Dis 2018; 9:903. [PMID: 30185777 PMCID: PMC6125291 DOI: 10.1038/s41419-018-0872-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Sara R Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal.
| |
Collapse
|
58
|
Dionísio PEA, Oliveira SR, Amaral JSJD, Rodrigues CMP. Loss of Microglial Parkin Inhibits Necroptosis and Contributes to Neuroinflammation. Mol Neurobiol 2018; 56:2990-3004. [DOI: 10.1007/s12035-018-1264-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/18/2018] [Indexed: 02/05/2023]
|
59
|
Phenotypic screening identifies a new oxazolone inhibitor of necroptosis and neuroinflammation. Cell Death Discov 2018; 4:10. [PMID: 30062059 PMCID: PMC6060125 DOI: 10.1038/s41420-018-0067-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Abstract
Necroptosis is a regulated form of necrosis, which may be critical in the pathogenesis of neurodegenerative diseases. Neuroinflammation, characterized by the activation of glial cells such as microglia, is closely linked with neurodegenerative pathways and constitutes a major mechanism of neural damage and disease progression. Importantly, inhibition of necroptosis results in disease improvement, unveiling an alternative approach for therapeutic intervention. In the present study, we screened a small library of new molecules, potentially inhibitors of necroptosis, using two cellular models of necroptosis. A new oxazolone, Oxa12, reduced tumour necrosis factor α (TNF-α)-induced necroptosis in mouse L929 fibrosarcoma cells. Notably, Oxa12 strongly inhibited zVAD-fmk-induced necroptosis in murine BV2 microglial cells. Moreover, Oxa12 blocked phosphorylation of mixed-lineage kinase domain-like protein (MLKL), and interfered with necrosome complex formation, indicating that Oxa12 targets components upstream of MLKL. In fact, in silico molecular docking studies revealed that Oxa12 is occupying a region similar to the 1-aminoisoquinoline type II kinase inhibitor inside the receptor-interacting protein 1 (RIP1) kinase domain. Finally, in microglial cells, Oxa12 attenuated zVAD-fmk- and lipopolysaccharide (LPS)-induced inflammatory processes, as revealed by a marked decrease of TNF-α and/or IL-1β expression. More specifically, Oxa12 negatively targeted c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways, as well as NF-κB activation. Overall, we identified a strong lead inhibitor of necroptosis that is also effective at reducing inflammation-associated events. Oxa12 is a promising candidate molecule for further development to target disease states dependent on RIP kinase activity.
Collapse
|
60
|
McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol 2018; 28:475-493. [PMID: 29551258 DOI: 10.1016/j.tcb.2018.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
The mitochondrial caspase cascade was originally thought to be required for apoptotic death driven by Bak/Bax-mediated intrinsic apoptosis. It has also been ascribed several 'non-apoptotic' functions, including differentiation, proliferation, and cellular reprogramming. Recent work has demonstrated that, during apoptosis, the caspase cascade suppresses damage-associated molecular pattern (DAMP)-initiated production of cytokines such as type I interferon by the dying cell. The caspase cascade is not required for death to occur; instead, it shapes the immunogenic properties of the apoptotic cell. This raises questions about the role of apoptotic caspases in regulating DAMP signaling more generally, puts a new perspective on their non-apoptotic functions, and suggests that pharmacological caspase inhibitors might find new applications as antiviral or anticancer agents.
Collapse
Affiliation(s)
- Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
61
|
Brault M, Olsen TM, Martinez J, Stetson DB, Oberst A. Intracellular Nucleic Acid Sensing Triggers Necroptosis through Synergistic Type I IFN and TNF Signaling. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29540580 DOI: 10.4049/jimmunol.1701492] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The sensing of viral nucleic acids within the cytosol is essential for the induction of innate immune responses following infection. However, this sensing occurs within cells that have already been infected. The death of infected cells can be beneficial to the host by eliminating the virus's replicative niche and facilitating the release of inflammatory mediators. In this study, we show that sensing of intracellular DNA or RNA by cGAS-STING or RIG-I-MAVS, respectively, leads to activation of RIPK3 and necroptosis in bone marrow-derived macrophages. Notably, this requires signaling through both type I IFN and TNF receptors, revealing synergy between these pathways to induce cell death. Furthermore, we show that hyperactivation of STING in mice leads to a shock-like phenotype, the mortality of which requires activation of the necroptotic pathway and IFN and TNF cosignaling, demonstrating that necroptosis is one outcome of STING signaling in vivo.
Collapse
Affiliation(s)
- Michelle Brault
- Department of Immunology, University of Washington, Seattle, WA 98109.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195; and
| | - Tayla M Olsen
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709
| | - Daniel B Stetson
- Department of Immunology, University of Washington, Seattle, WA 98109;
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA 98109;
| |
Collapse
|
62
|
Cui X, Wang R, Wang Z. Cationic peroxidase from proso millet induces human colon cancer cell necroptosis by regulating autocrine TNF-α and RIPK3 demethylation. Food Funct 2018. [PMID: 29528059 DOI: 10.1039/c7fo01040k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cationic peroxidase (POD) was purified from proso millet seeds (PmPOD) using ammonium sulfate fractionation, cation exchange, and size exclusion chromatography. The purified PmPOD showed toxicity to normal cells and tumor cells, but was more sensitive in HT29 cells. Furthermore, the mechanism driving HCT116 and HT29 cell death by PmPOD was the induction of receptor interacting protein kinase 1 (RIPK1)- and RIPK3-dependent necroptosis, independent of apoptosis. More importantly, PmPOD could induce tumor necrosis factor-α (TNF-α) production through transcriptional upregulation. In addition, PmPOD could restore RIPK3 expression in HCT116 cells via the demethylation of the RIPK3 genomic sequence. Taken together, these results suggest that two distinct mechanisms are involved in PmPOD-induced necroptosis: the autocrine production of TNF-α and the restoration of RIPK3 expression.
Collapse
Affiliation(s)
- Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, P.R. China. and Institute of Biotechnology, Shanxi University, Taiyuan 030006, P.R. China
| | - Ru Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, P.R. China. and Institute of Biotechnology, Shanxi University, Taiyuan 030006, P.R. China
| | - Zhuanhua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, P.R. China. and School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, P.R. China
| |
Collapse
|
63
|
Ganoderma microsporum
immunomodulatory protein induces apoptosis and potentiates mitomycin C‐induced apoptosis in urinary bladder urothelial carcinoma cells. J Cell Biochem 2018; 119:4592-4606. [DOI: 10.1002/jcb.26616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
|
64
|
Callow MG, Watanabe C, Wickliffe KE, Bainer R, Kummerfield S, Weng J, Cuellar T, Janakiraman V, Chen H, Chih B, Liang Y, Haley B, Newton K, Costa MR. CRISPR whole-genome screening identifies new necroptosis regulators and RIPK1 alternative splicing. Cell Death Dis 2018; 9:261. [PMID: 29449584 PMCID: PMC5833675 DOI: 10.1038/s41419-018-0301-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 12/04/2022]
Abstract
The necroptotic cell death pathway is a key component of human pathogen defense that can become aberrantly derepressed during tissue homeostasis to contribute to multiple types of tissue damage and disease. While formation of the necrosome kinase signaling complex containing RIPK1, RIPK3, and MLKL has been extensively characterized, additional mechanisms of its regulation and effector functions likely remain to be discovered. We screened 19,883 mouse protein-coding genes by CRISPR/Cas9-mediated gene knockout for resistance to cytokine-induced necroptosis and identified 112 regulators and mediators of necroptosis, including 59 new candidate pathway components with minimal or no effect on cell growth in the absence of necroptosis induction. Among these, we further characterized the function of PTBP1, an RNA binding protein whose activity is required to maintain RIPK1 protein abundance by regulating alternative splice-site selection.
Collapse
Affiliation(s)
- Marinella G Callow
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Colin Watanabe
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Katherine E Wickliffe
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Russell Bainer
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sarah Kummerfield
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Julie Weng
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Trinna Cuellar
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | | | - Honglin Chen
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ben Chih
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuxin Liang
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michael R Costa
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
65
|
Butler RE, Krishnan N, Garcia-Jimenez W, Francis R, Martyn A, Mendum T, Felemban S, Locker N, Salguero FJ, Robertson B, Stewart GR. Susceptibility of Mycobacterium tuberculosis-infected host cells to phospho-MLKL driven necroptosis is dependent on cell type and presence of TNFα. Virulence 2017; 8:1820-1832. [PMID: 28892415 PMCID: PMC5750806 DOI: 10.1080/21505594.2017.1377881] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An important feature of Mycobacterium tuberculosis pathogenesis is the ability to control cell death in infected host cells, including inhibition of apoptosis and stimulation of necrosis. Recently an alternative form of programmed cell death, necroptosis, has been described where necrotic cell death is induced by apoptotic stimuli under conditions where apoptotic execution is inhibited. We show for the first time that M. tuberculosis and TNFα synergise to induce necroptosis in murine fibroblasts via RIPK1-dependent mechanisms and characterized by phosphorylation of Ser345 of the MLKL necroptosis death effector. However, in murine macrophages M. tuberculosis and TNFα induce non-necroptotic cell death that is RIPK1-dependent but independent of MLKL phosphorylation. Instead, M. tuberculosis-infected macrophages undergo RIPK3-dependent cell death which occurs both in the presence and absence of TNFα and involves the production of mitochondrial ROS. Immunocytochemical staining for MLKL phosphorylation further demonstrated the occurrence of necroptosis in vivo in murine M. tuberculosis granulomas. Phosphorylated-MLKL immunoreactivity was observed associated with the cytoplasm and nucleus of fusiform cells in M. tuberculosis lesions but not in proximal macrophages. Thus whereas pMLKL-driven necroptosis does not appear to be a feature of M. tuberculosis-infected macrophage cell death, it may contribute to TNFα-induced cytotoxicity of the lung stroma and therefore contribute to necrotic cavitation and bacterial dissemination.
Collapse
Affiliation(s)
- Rachel E Butler
- a Department of Microbial and Cellular Sciences , Faculty of Health and Medical Sciences, University of Surrey , Guildford , Surrey , UK
| | - Nitya Krishnan
- b MRC Centre for Molecular Bacteriology and Infection , Department of Medicine, Flowers Building, Imperial College London , South Kensington , London , UK
| | - Waldo Garcia-Jimenez
- c Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey , Guildford , Surrey , UK
| | - Robert Francis
- a Department of Microbial and Cellular Sciences , Faculty of Health and Medical Sciences, University of Surrey , Guildford , Surrey , UK
| | - Abbe Martyn
- c Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey , Guildford , Surrey , UK
| | - Tom Mendum
- a Department of Microbial and Cellular Sciences , Faculty of Health and Medical Sciences, University of Surrey , Guildford , Surrey , UK
| | - Shaza Felemban
- a Department of Microbial and Cellular Sciences , Faculty of Health and Medical Sciences, University of Surrey , Guildford , Surrey , UK
| | - Nicolas Locker
- a Department of Microbial and Cellular Sciences , Faculty of Health and Medical Sciences, University of Surrey , Guildford , Surrey , UK
| | - Francisco J Salguero
- c Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey , Guildford , Surrey , UK
| | - Brian Robertson
- b MRC Centre for Molecular Bacteriology and Infection , Department of Medicine, Flowers Building, Imperial College London , South Kensington , London , UK
| | - Graham R Stewart
- a Department of Microbial and Cellular Sciences , Faculty of Health and Medical Sciences, University of Surrey , Guildford , Surrey , UK
| |
Collapse
|
66
|
Liu C, Zhang K, Shen H, Yao X, Sun Q, Chen G. Necroptosis: A novel manner of cell death, associated with stroke (Review). Int J Mol Med 2017; 41:624-630. [PMID: 29207014 DOI: 10.3892/ijmm.2017.3279] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Cell death is indispensable in the physiology, pathology, growth, development, senility and death of an organism. In recent years, the identification of a highly regulated form of necrosis, known as necroptosis, has challenged the traditional concept of necrosis and apoptosis, which are two major modes of cell death. This novel manner of cell death is similar in form to necrosis in terms of morphological features, and it can also be regulated in a caspase‑independent manner. Therefore, necroptosis can be understood initially as a combination of necrosis and apoptosis. The mechanism of its regulation, induction and inhibition is complicated, and involves a range of molecular expression and regulation. According to the recent literature, necroptosis takes place in the physiological regulatory processes of an organism and is involved in the occurrence, development and prognosis of a variety of diseases that have a necrosis phenotype, including neurodegenerative diseases, ischemic disease, hemorrhagic disease, inflammation and viral infectious diseases. In the present review, the features, molecular mechanism and identification of necroptosis under pathological conditions are discussed, with particular emphasis on its association with stroke.
Collapse
Affiliation(s)
- Chenglin Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Kai Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haitao Shen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiyang Yao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qing Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
67
|
Zhang DL, Sun GX, Tian J, Zhang HX. WITHDRAWN: Up-regulation of RIP3 alleviates cervical cancer progression through inducing necroptosis. Biochem Biophys Res Commun 2017:S0006-291X(17)31994-0. [PMID: 28993192 DOI: 10.1016/j.bbrc.2017.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Dong-Li Zhang
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, 8 North Road, Gulou District, Kaifeng 475000, PR China
| | - Gui-Xia Sun
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, 8 North Road, Gulou District, Kaifeng 475000, PR China
| | - Jun Tian
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, 8 North Road, Gulou District, Kaifeng 475000, PR China
| | - Hong-Xia Zhang
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, 8 North Road, Gulou District, Kaifeng 475000, PR China
| |
Collapse
|
68
|
Asano M, Tanaka S, Sakaguchi M, Matsumura H, Yamaguchi T, Fujita Y, Tabuse K. Normothermic Microwave Irradiation Induces Death of HL-60 Cells through Heat-Independent Apoptosis. Sci Rep 2017; 7:11406. [PMID: 28900243 PMCID: PMC5595850 DOI: 10.1038/s41598-017-11784-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/21/2017] [Indexed: 11/21/2022] Open
Abstract
Microwaves have been used in various cancer therapies to generate heat and increase tumor cell temperature; however, their use is limited by their side-effects in normal cells and the acquisition of heat resistance. We previously developed a microwave irradiation method that kills cultured cancer cells, including a human promyelomonocytic leukemia (HL-60) cell line, by maintaining a cellular temperature of 37 °C during treatment. In the present study, we investigated the mechanisms underlying HL-60 cell death during this treatment. The microwave-irradiated HL-60 cells appear to undergo caspase-independent apoptosis, whereby DNA fragmentation was induced by mitochondrial dysfunction-related expression of apoptosis-inducing factor (AIF). Caspase-dependent apoptosis was also interrupted by the loss of apoptotic protease-activating factor 1 (Apaf-1) and caspase 9. Moreover, these cells did not exhibit a heat-stress response, as shown by the lack of heat shock protein 70 (HSP70) upregulation. Alternatively, in HL-60 cells heated at 42.5 °C, HSP70 expression was upregulated and a pathway resembling death receptor-induced apoptosis was activated while mitochondrial function was maintained. Collectively, these results suggest that the cell death pathway activated by our 37 °C microwave irradiation method differs from that induced during other heating methods and support the use of normothermic microwave irradiation in clinical cancer treatments.
Collapse
Affiliation(s)
- Mamiko Asano
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan. .,Laboratory for Nano-Bio Probes, Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Japan.
| | - Satoshi Tanaka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Minoru Sakaguchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Hitoshi Matsumura
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Takako Yamaguchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Yoshikazu Fujita
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Katsuyoshi Tabuse
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| |
Collapse
|
69
|
Kowalski S, Hać S, Wyrzykowski D, Zauszkiewicz-Pawlak A, Inkielewicz-Stępniak I. Selective cytotoxicity of vanadium complexes on human pancreatic ductal adenocarcinoma cell line by inducing necroptosis, apoptosis and mitotic catastrophe process. Oncotarget 2017; 8:60324-60341. [PMID: 28947974 PMCID: PMC5601142 DOI: 10.18632/oncotarget.19454] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
The pancreatic cancer is the fourth leading cause of cancer-related death and characterized by one of the lowest five-year survival rate. The current therapeutic options are demonstrating minimal effectiveness, therefore studies on new potential anticancer compounds, with non-significant side effects are highly desirable. Recently, it was demonstrated that vanadium compounds, in particular organic derivatives, exhibit anticancer properties against different type of tumor as well as favorable biodistribution from a pancreatic cancer treatment perspective. In this research, we showed selective cytotoxic effect of vanadium complexes, containing phenanthroline and quinoline as an organic ligands, against human pancreatic ductal adenocarcinoma cell line (PANC-1), compared to non-tumor human immortalized pancreas duct epithelial cells (hTERT-HPNE). Results exhibited that vanadium complexes inhibited autophagy process in selective cytotoxic concentration as well as caused the cell cycle arrest in G2/M phase associated with mitotic catastrophe and increased level of reactive oxygen species (ROS). Moreover, in higher concentration, vanadium derivatives induced a mix type of cell death in PANC-1 cells, including apoptotic and necroptotic process. Our investigation emphasizes the anticancer potential of vanadium complexes by indicating their selective cytotoxic activity, through different process posed by alternative type of cell deaths to apoptosis-resistant cancer cells. Further studies supporting the therapeutic potential of vanadium in pancreatic cancer treatment is highly recommended.
Collapse
Affiliation(s)
- Szymon Kowalski
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Stanisław Hać
- Department of General, Endocrine and Transplantation Surgery, Medical University of Gdansk, Gdansk, Poland
| | | | | | | |
Collapse
|
70
|
Bittner S, Knoll G, Ehrenschwender M. Hyperosmotic stress enhances cytotoxicity of SMAC mimetics. Cell Death Dis 2017; 8:e2967. [PMID: 28771230 PMCID: PMC5596546 DOI: 10.1038/cddis.2017.355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 01/10/2023]
Abstract
Inhibitors of apoptosis (IAP) proteins contribute to cell death resistance in malignancies and emerged as promising targets in cancer therapy. Currently, small molecules mimicking the IAP-antagonizing activity of endogenous second mitochondria-derived activator of caspases (SMAC) are evaluated in phase 1/2 clinical trials. In cancer cells, SMAC mimetic (SM)-mediated IAP depletion induces tumor necrosis factor (TNF) secretion and simultaneously sensitizes for TNF-induced cell death. However, tumor cells lacking SM-induced autocrine TNF release survive and thus limit therapeutic efficacy. Here, we show that hyperosmotic stress boosts SM cytotoxicity in human and murine cells through hypertonicity-induced upregulation of TNF with subsequent induction of apoptosis and/or necroptosis. Hypertonicity allowed robust TNF-dependent killing in SM-treated human acute lymphoblastic leukemia cells, which under isotonic conditions resisted SM treatment due to poor SM-induced TNF secretion. Mechanistically, hypertonicity-triggered TNF release bypassed the dependency on SM-induced TNF production to execute SM cytotoxicity, effectively reducing the role of SM to TNF-sensitizing, but not necessarily TNF-inducing agents. Perspectively, these findings could extend the clinical application of SM.
Collapse
Affiliation(s)
- Sebastian Bittner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany
| | - Gertrud Knoll
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany
| |
Collapse
|
71
|
Jordan JJ, Chhim S, Margulies CM, Allocca M, Bronson RT, Klungland A, Samson LD, Fu D. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage. Cell Death Dis 2017; 8:e2947. [PMID: 28726787 PMCID: PMC5550884 DOI: 10.1038/cddis.2017.343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/14/2017] [Indexed: 12/12/2022]
Abstract
Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents.
Collapse
Affiliation(s)
- Jennifer J Jordan
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophea Chhim
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Carrie M Margulies
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mariacarmela Allocca
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Arne Klungland
- Department of Molecular Microbiology A3.3021, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Leona D Samson
- Department of Biological Engineering, Biology, Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dragony Fu
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
72
|
Shah A, Kannambath S, Herbst S, Rogers A, Soresi S, Carby M, Reed A, Mostowy S, Fisher MC, Shaunak S, Armstrong-James DP. Calcineurin Orchestrates Lateral Transfer of Aspergillus fumigatus during Macrophage Cell Death. Am J Respir Crit Care Med 2017; 194:1127-1139. [PMID: 27163634 PMCID: PMC5114448 DOI: 10.1164/rccm.201601-0070oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Pulmonary aspergillosis is a lethal mold infection in the immunocompromised host. Understanding initial control of infection and how this is altered in the immunocompromised host are key goals for comprehension of the pathogenesis of pulmonary aspergillosis. OBJECTIVES To characterize the outcome of human macrophage infection with Aspergillus fumigatus and how this is altered in transplant recipients on calcineurin inhibitor immunosuppressants. METHODS We defined the outcome of human macrophage infection with A. fumigatus, as well as the impact of calcineurin inhibitors, through a combination of single-cell fluorescence imaging, transcriptomics, proteomics, and in vivo studies. MEASUREMENTS AND MAIN RESULTS Macrophage phagocytosis of A. fumigatus enabled control of 90% of fungal germination. However, fungal germination in the late phagosome led to macrophage necrosis. During programmed necroptosis, we observed frequent cell-cell transfer of A. fumigatus between macrophages, which assists subsequent control of germination in recipient macrophages. Lateral transfer occurred through actin-dependent exocytosis of the late endosome in a vasodilator-stimulated phosphoprotein envelope. Its relevance to the control of fungal germination was also shown by direct visualization in our zebrafish aspergillosis model in vivo. The calcineurin inhibitor FK506 (tacrolimus) reduced cell death and lateral transfer in vitro by 50%. This resulted in uncontrolled fungal germination in macrophages and also resulted in hyphal escape. CONCLUSIONS These observations identify programmed, necrosis-dependent lateral transfer of A. fumigatus between macrophages as an important host strategy for controlling fungal germination. This process is critically dependent on calcineurin. Our studies provide fundamental insights into the pathogenesis of pulmonary aspergillosis in the immunocompromised host.
Collapse
Affiliation(s)
| | | | | | | | - Simona Soresi
- 3 Lung Transplant Unit, Royal Brompton and Harefield Hospitals, Harefield, United Kingdom
| | - Martin Carby
- 3 Lung Transplant Unit, Royal Brompton and Harefield Hospitals, Harefield, United Kingdom
| | - Anna Reed
- 3 Lung Transplant Unit, Royal Brompton and Harefield Hospitals, Harefield, United Kingdom
| | - Serge Mostowy
- 4 Medical Research Council Centre for Molecular Bacteriology and Infection
| | | | - Sunil Shaunak
- 6 Department of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom; and
| | | |
Collapse
|
73
|
Tran AHV, Han SH, Kim J, Grasso F, Kim IS, Han YS. MutY DNA Glycosylase Protects Cells From Tumor Necrosis Factor Alpha-Induced Necroptosis. J Cell Biochem 2017; 118:1827-1838. [PMID: 28059467 DOI: 10.1002/jcb.25866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022]
Abstract
Numerous studies have implied that mutY DNA glycosylase (MYH) is involved in the repair of post-replicative mispairs and plays a critical role in the base excision repair pathway. Recent in vitro studies have shown that MYH interacts with tumor necrosis factor receptor type 1-associated death domain (TRADD), a key effector protein of tumor necrosis factor receptor-1 (TNFR1) signaling. The association between MYH and TRADD is reversed during tumor necrosis factor alpha (TNF-α)- and camptothecin (CPT)-induced apoptosis, and enhanced during TNF-α-induced survival. After investigating the role of MYH interacts with various proteins following TNF-α stimulation, here, we focus on MYH and TRADD interaction functions in necroptosis and its effects to related proteins. We report that the level of the MYH and TRADD complex was also reduced during necroptosis induced by TNF-α and zVAD-fmk. In particular, we also found that MYH is a biologically important necrosis suppressor. Under combined TNF-α and zVAD-fmk treatment, MYH-deficient cells were induced to enter the necroptosis pathway but primary mouse embryonic fibroblasts (MEFs) were not. Necroptosis in the absence of MYH proceeds via the inactivation of caspase-8, followed by an increase in the formation of the kinase receptor- interacting protein 1 (RIP1)-RIP3 complex. Our results suggested that MYH, which interacts with TRADD, inhibits TNF-α necroptotic signaling. Therefore, MYH inactivation is essential for necroptosis via the downregulation of caspase-8. J. Cell. Biochem. 118: 1827-1838, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- An Hue Vy Tran
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Korea
| | - Se Hee Han
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology and BioInstitute, Korea University, Seoul, Korea
| | - Francesca Grasso
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Lazio, Italy
| | - In San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
74
|
Arora D, Sharma PK, Siddiqui MH, Shukla Y. Necroptosis: Modules and molecular switches with therapeutic implications. Biochimie 2017; 137:35-45. [PMID: 28263777 DOI: 10.1016/j.biochi.2017.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/07/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Among the various programmed cell death (PCD) pathways, "Necroptosis" has gained much importance as a novel paradigm of cell death. This pathway has emerged as a backup mechanism when physiologically conserved PCD (apoptosis) is non-functional either genetically or pathogenically. The expanding spectrum of necroptosis from physiological development to diverse patho-physiological disorders, including xenobiotics-mediated toxicity has now grabbed the attention worldwide. The efficient role of necroptosis regulators in disease development and management are under constant examination. In fact, few regulators (e.g. MLKL) have already paved their way towards clinical trials and others are in queue. In this review, emphasis has been paid to the various contributing factors and molecular switches that can regulate necroptosis. Here we linked the overview of current knowledge of this enigmatic signaling with magnitude of therapeutics that may underpin the opportunities for novel therapeutic approaches to suppress the pathogenesis of necroptosis-driven disorders.
Collapse
Affiliation(s)
- Deepika Arora
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Yogeshwer Shukla
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
75
|
Viral RNA at Two Stages of Reovirus Infection Is Required for the Induction of Necroptosis. J Virol 2017; 91:JVI.02404-16. [PMID: 28077640 DOI: 10.1128/jvi.02404-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 12/24/2022] Open
Abstract
Necroptosis, a regulated form of necrotic cell death, requires the activation of the RIP3 kinase. Here, we identify that infection of host cells with reovirus can result in necroptosis. We find that necroptosis requires sensing of the genomic RNA within incoming virus particles via cytoplasmic RNA sensors to produce type I interferon (IFN). While these events that occur prior to the de novo synthesis of viral RNA are required for the induction of necroptosis, they are not sufficient. The induction of necroptosis also requires late stages of reovirus infection. Specifically, efficient synthesis of double-stranded RNA (dsRNA) within infected cells is required for necroptosis. These data indicate that viral RNA interfaces with host components at two different stages of infection to induce necroptosis. This work provides new molecular details about events in the viral replication cycle that contribute to the induction of necroptosis following infection with an RNA virus.IMPORTANCE An appreciation of how cell death pathways are regulated following viral infection may reveal strategies to limit tissue destruction and prevent the onset of disease. Cell death following virus infection can occur by apoptosis or a regulated form of necrosis known as necroptosis. Apoptotic cells are typically disposed of without activating the immune system. In contrast, necroptotic cells alert the immune system, resulting in inflammation and tissue damage. While apoptosis following virus infection has been extensively investigated, how necroptosis is unleashed following virus infection is understood for only a small group of viruses. Here, using mammalian reovirus, we highlight the molecular mechanism by which infection with a dsRNA virus results in necroptosis.
Collapse
|
76
|
Schock SN, Chandra NV, Sun Y, Irie T, Kitagawa Y, Gotoh B, Coscoy L, Winoto A. Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway. Cell Death Differ 2017; 24:615-625. [PMID: 28060376 DOI: 10.1038/cdd.2016.153] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/26/2016] [Accepted: 12/07/2016] [Indexed: 01/02/2023] Open
Abstract
Necroptosis is a form of necrotic cell death that requires the activity of the death domain-containing kinase RIP1 and its family member RIP3. Necroptosis occurs when RIP1 is deubiquitinated to form a complex with RIP3 in cells deficient in the death receptor adapter molecule FADD or caspase-8. Necroptosis may play a role in host defense during viral infection as viruses like vaccinia can induce necroptosis while murine cytomegalovirus encodes a viral inhibitor of necroptosis. To see how general the interplay between viruses and necroptosis is, we surveyed seven different viruses. We found that two of the viruses tested, Sendai virus (SeV) and murine gammaherpesvirus-68 (MHV68), are capable of inducing dramatic necroptosis in the fibrosarcoma L929 cell line. We show that MHV68-induced cell death occurs through the cytosolic STING sensor pathway in a TNF-dependent manner. In contrast, SeV-induced death is mostly independent of TNF. Knockdown of the RNA sensing molecule RIG-I or the RIP1 deubiquitin protein, CYLD, but not STING, rescued cells from SeV-induced necroptosis. Accompanying necroptosis, we also find that wild type but not mutant SeV lacking the viral proteins Y1 and Y2 result in the non-ubiquitinated form of RIP1. Expression of Y1 or Y2 alone can suppress RIP1 ubiquitination but CYLD is dispensable for this process. Instead, we found that Y1 and Y2 can inhibit cIAP1-mediated RIP1 ubiquitination. Interestingly, we also found that SeV infection of B6 RIP3-/- mice results in increased inflammation in the lung and elevated SeV-specific T cells. Collectively, these data identify viruses and pathways that can trigger necroptosis and highlight the dynamic interplay between pathogen-recognition receptors and cell death induction.
Collapse
Affiliation(s)
- Suruchi N Schock
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Neha V Chandra
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Yuefang Sun
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Takashi Irie
- Department of Virology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192, Japan
| | - Laurent Coscoy
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Astar Winoto
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| |
Collapse
|
77
|
Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, Nishihara H, Yamaguchi H, Hashimoto A, Nishida M, Nagasaka A, Horii Y, Ono H, Iribe G, Inoue R, Tsuda M, Inoue K, Tanaka A, Kuroda M, Nagata S, Kurose H. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest 2016; 127:383-401. [PMID: 27918308 DOI: 10.1172/jci83822] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/20/2016] [Indexed: 12/29/2022] Open
Abstract
Myocardial infarction (MI) results in the generation of dead cells in the infarcted area. These cells are swiftly removed by phagocytes to minimize inflammation and limit expansion of the damaged area. However, the types of cells and molecules responsible for the engulfment of dead cells in the infarcted area remain largely unknown. In this study, we demonstrated that cardiac myofibroblasts, which execute tissue fibrosis by producing extracellular matrix proteins, efficiently engulf dead cells. Furthermore, we identified a population of cardiac myofibroblasts that appears in the heart after MI in humans and mice. We found that these cardiac myofibroblasts secrete milk fat globule-epidermal growth factor 8 (MFG-E8), which promotes apoptotic engulfment, and determined that serum response factor is important for MFG-E8 production in myofibroblasts. Following MFG-E8-mediated engulfment of apoptotic cells, myofibroblasts acquired antiinflammatory properties. MFG-E8 deficiency in mice led to the accumulation of unengulfed dead cells after MI, resulting in exacerbated inflammatory responses and a substantial decrease in survival. Moreover, MFG-E8 administration into infarcted hearts restored cardiac function and morphology. MFG-E8-producing myofibroblasts mainly originated from resident cardiac fibroblasts and cells that underwent endothelial-mesenchymal transition in the heart. Together, our results reveal previously unrecognized roles of myofibroblasts in regulating apoptotic engulfment and a fundamental importance of these cells in recovery from MI.
Collapse
|
78
|
Autophagy and the invisible line between life and death. Eur J Cell Biol 2016; 95:598-610. [PMID: 28340912 DOI: 10.1016/j.ejcb.2016.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
For a considerable time cell death has been considered to represent mutually exclusive states with cell death modalities that are governed by their inherent and unique mode of action involving specific molecular entities and have therefore been studied primarily in isolation. It is now, however, becoming increasingly clear that these modalities are regulated by similar pathways and share a number of initiator and effector molecules that control both cell death as well as cell survival mechanisms, demanding a newly aligned and integrative approach of cell death assessment. Frequently cell death is triggered through a dual action that incorporates signaling events associated with more than one death modality. Apoptosis and necrosis regularly co-operate in a tightly balanced interplay that involves autophagy to serve context dependently either as a pro-survival or a pro-death mechanism. In this review we will assess current cell death modalities and their molecular overlap with the goal of clarifying the controversial role of autophagy in the cell death response. By dissecting the key molecular pathways and their positioning within a network of regulatory signalling hubs and checkpoints we discuss a distinct approach that integrates autophagy with a resultant cell death manifestation. In doing so, former classifications of cell death modalities fade and reveal the intricate molecular proportions and complexities of the cell death response that may contribute towards an enhanced means of cell death control.
Collapse
|
79
|
Xiao Q, Li X, Sun D, Yi H, Lu X, Nian H. TLR7 Engagement on Dendritic Cells Enhances Autoreactive Th17 Responses via Activation of ERK. THE JOURNAL OF IMMUNOLOGY 2016; 197:3820-3830. [DOI: 10.4049/jimmunol.1600333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
|
80
|
Philip NH, DeLaney A, Peterson LW, Santos-Marrero M, Grier JT, Sun Y, Wynosky-Dolfi MA, Zwack EE, Hu B, Olsen TM, Rongvaux A, Pope SD, López CB, Oberst A, Beiting DP, Henao-Mejia J, Brodsky IE. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death. PLoS Pathog 2016; 12:e1005910. [PMID: 27737018 PMCID: PMC5063320 DOI: 10.1371/journal.ppat.1005910] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022] Open
Abstract
Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense. TLR signaling induces expression of key inflammatory cytokines and pro-survival factors that facilitate control of microbial infection. TLR signaling can also engage cell death pathways through activation of enzymes known as caspases. Caspase-8 activates apoptosis in response to infection by pathogens that interfere with NF-κB signaling, including Yersinia, but has also recently been linked to control of inflammatory gene expression. Pathogenic Yersinia can cause severe disease ranging from gastroenteritis to plague. While caspase-8 mediates cell death in response to Yersinia infection as well as other signals, its precise role in gene expression and host defense during in vivo infection is unknown. Here, we show that caspase-8 activity promotes cell-intrinsic cytokine expression, independent of its role in cell death in response to Yersinia infection. Our studies further demonstrate that caspase-8 enzymatic activity plays a previously undescribed role in ensuring optimal TLR-induced gene expression by innate cells during bacterial infection. This work sheds new light on mechanisms that regulate essential innate anti-bacterial immune defense.
Collapse
Affiliation(s)
- Naomi H. Philip
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Alexandra DeLaney
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Lance W. Peterson
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Melanie Santos-Marrero
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Jennifer T. Grier
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Yan Sun
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Meghan A. Wynosky-Dolfi
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Erin E. Zwack
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Baofeng Hu
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Tayla M. Olsen
- University of Washington, Department of Immunology, Seattle, Washington, United States of America
| | - Anthony Rongvaux
- Fred Hutchinson Cancer Research Center, Clinical Research Division and Program in Immunology, Seattle, Washington, United States of America
| | - Scott D. Pope
- Yale University School of Medicine, Department of Immunobiology, New Haven, Connecticut, United States of America
| | - Carolina B. López
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Andrew Oberst
- University of Washington, Department of Immunology, Seattle, Washington, United States of America
| | - Daniel P. Beiting
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
| | - Jorge Henao-Mejia
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Igor E. Brodsky
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Institute for Immunology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
81
|
Lin CY, Chang TW, Hsieh WH, Hung MC, Lin IH, Lai SC, Tzeng YJ. Simultaneous induction of apoptosis and necroptosis by Tanshinone IIA in human hepatocellular carcinoma HepG2 cells. Cell Death Discov 2016; 2:16065. [PMID: 27752362 PMCID: PMC5045965 DOI: 10.1038/cddiscovery.2016.65] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/29/2016] [Accepted: 07/14/2016] [Indexed: 01/13/2023] Open
Abstract
Tanshinone IIA (Tan IIA), a constituent of the traditional medicinal plant Salvia miltiorrhiza BUNGE, has been reported to possess anticancer activity through induction of apoptosis in many cancer cells. Surprisingly, the present study finds that Tan IIA simultaneously causes apoptosis and necroptosis in human hepatocellular carcinoma HepG2 cells. We further find that apoptosis can be converted to necroptosis by pan-caspase inhibitor Z-VAD-fmk, and the two death modes can be blocked by necroptotic inhibitor necrostatin-1. The underlying mechanisms are revealed by analysis of the signaling molecules using western blotting. In control cells, FLICE inhibitory protein in short form (FLIPS) is expressed in relatively high levels and binds to caspase 8 in ripoptosome, which supposedly sustains cell survival. However, in Tan IIA-treated cells, FLIPS is down-regulated and may thus cause homodimer formation of cleaved caspase 8, cleavage of receptor-interacting serine/threonine-protein kinases 1, 3 (RIP1, RIP3), and mixed-lineage kinase domain-like (MLKL), in turn leads to cell apoptosis. In parallel, Tan IIA causes necroptosis by forming a suggested necrosomal complex composed of RIP1/RIP3. Regarding the inhibitors, z-VAD-fmk diminishes the cleaved caspase 8, RIP1, RIP3, and MLKL induced by Tan IIA, and reconstructs the ripoptosome complex, which marks cells moving from apoptosis to necroptosis. Nec-1 recovers the Tan IIA down-regulated FLIPS, consequently causes FLIPS to form heterodimer with caspase 8 and thus block apoptosis. Meanwhile, cleaved forms of RIP1 and RIP3 were observed preventing necroptosis. Intriguingly, the cytotoxicity of tumor necrosis factor-related apoptosis-inducing ligand to HepG2 cells is enhanced by Tan IIA in a pilot study, which may be attributed to low FLIPS levels induced by Tan IIA. In short, Tan IIA simultaneously induces both Nec-1 inhibition and FLIPS regulation-mediated apoptosis/necroptosis, which has not been previously documented. Moreover, the involvement of the cleavage type of MLKL in executing necroptosis warrants further investigation.
Collapse
Affiliation(s)
- C-Y Lin
- Institute of Medical Sciences, Tzu Chi University , Hualien, Taiwan
| | - T-W Chang
- Division of Crop Improvement, Hualien District Agricultural Research and Extension Station, Council of Agriculture , Hualien, Taiwan
| | - W-H Hsieh
- Department of Public Health, Tzu Chi University , Hualien, Taiwan
| | - M-C Hung
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology , Hualien, Taiwan
| | - I-H Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan; Department of Chinese Medicine, Buddhist Hualien Tzu Chi General Hospital, Hualien, Taiwan
| | - S-C Lai
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan; Department of Pharmacy, Buddhist Hualien Tzu Chi General Hospital, Hualien, Taiwan
| | - Y-J Tzeng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan; Department of Life Science, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
82
|
Budluang P, Pitchakarn P, Ting P, Temviriyanukul P, Wongnoppawich A, Imsumran A. Anti-inflammatory and anti-insulin resistance activities of aqueous extract from Anoectochilus burmannicus. Food Sci Nutr 2016; 5:486-496. [PMID: 28572933 PMCID: PMC5449198 DOI: 10.1002/fsn3.416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/18/2016] [Accepted: 07/31/2016] [Indexed: 12/29/2022] Open
Abstract
This study investigated biological activities including antioxidative stress, anti‐inflammation, and anti‐insulin resistance of Anoectochilus burmannicus aqueous extract (ABE). The results showed abilities of ABE to scavenging DPPH and ABTS free radicals in a dose‐dependent manner. Besides, ABE significantly reduced nitric oxide (NO) production in the lipopolysaccharide (LPS)‐treated RAW 264.7 via inhibition of mRNA and protein expressions of nitric oxide synthase (iNOS). The LPS‐induced mRNA expressions of cyclooxygenase‐2 (COX‐2) and interleukin 1β (IL‐1β) were suppressed by ABE. Moreover, ABE exerted anti‐insulin resistance activity as it significantly improved the glucose uptake in tumor necrosis factor (TNF)‐α treated 3T3‐L1 adipocytes. In addition, ABE at the concentration of up to 200 μg/mL was not toxic to human peripheral blood mononuclear cells (PBMCs) and did not induce mutations. Finally, the results of our study suggest the potential use of A. burmannicus as anti‐inflammatory, anti‐insulin resistance agents, or food supplement for prevention of chronic diseases.
Collapse
Affiliation(s)
- Phatcharaporn Budluang
- Department of Biochemistry Faculty of Medicine Chiang Mai University Meung Chiang Mai Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry Faculty of Medicine Chiang Mai University Meung Chiang Mai Thailand
| | - Pisamai Ting
- Food and Nutritional Toxicology Unit Institute of Nutrition Mahidol University Salaya Nakhon Pathom Thailand
| | - Piya Temviriyanukul
- Food and Nutritional Toxicology Unit Institute of Nutrition Mahidol University Salaya Nakhon Pathom Thailand
| | | | - Arisa Imsumran
- Department of Biochemistry Faculty of Medicine Chiang Mai University Meung Chiang Mai Thailand
| |
Collapse
|
83
|
Zhang Y, Cheng J, Zhang J, Wu X, Chen F, Ren X, Wang Y, Li Q, Li Y. Proteasome inhibitor PS-341 limits macrophage necroptosis by promoting cIAPs-mediated inhibition of RIP1 and RIP3 activation. Biochem Biophys Res Commun 2016; 477:761-767. [PMID: 27363341 DOI: 10.1016/j.bbrc.2016.06.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
Abstract
Apoptotic and necrotic macrophages have long been known for their existence in atherosclerotic lesions. However, the mechanisms underlying the choice of their death pattern have not been fully elucidated. Here, we report the effects of PS-341, a potent and specific proteasome inhibitor, on the cell death of primary bone marrow-derived macrophages (BMDMs) in vitro. The results showed that PS-341 could not induce macrophage apoptosis or promote TNF-induced macrophage apoptosis, on the other hand, PS-341 could significantly inhibit macrophage necroptosis induced by TNF and pan-caspase inhibitor z-VAD treatment. Remarkably, high-dose of PS-341 showed similar inhibitory effects on macrophage necroptosis comparable to that of kinase inhibition of RIP1 through specific inhibitor Nec-1 or inhibition of RIP3 via specific genetical ablation. Furthermore, the degradation of cellular inhibitor of apoptosis proteins (cIAPs) was suppressed by PS-341, which could antagonize the activation of RIP1 kinase via post-translational mechanism. Further evidences demonstrated reduced levels of both RIP1 and RIP 3 upon PS-341 treatment, concomitantly, a more strong association of RIP1 with cIAPs and less with RIP3 was found following PS-341 treatment, these findings suggested that PS-341 may disrupt the formation of RIP1-RIP3 complex (necrosome) through stabilizing cIAPs. Collectively, our results indicated that the proteasome-mediated degradation of cIAPs could be inhibited by PS-341 and followed by limited RIP1 and RIP3 kinase activities, which were indispensable for necroptosis, thus eliciting a significant necroptosis rescue in BMDMs in vitro. Overall, our study has identified a new role of PS-341 in the cell death of BMDMs and provided a novel insight into the atherosclerotic inflammation caused by proteasome-mediated macrophage necroptosis.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, 100029, China
| | - Junjun Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Junmeng Zhang
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, 100029, China
| | - Xiaofan Wu
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, 100029, China
| | - Fang Chen
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, 100029, China
| | - Xuejun Ren
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, 100029, China
| | - Yunlong Wang
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, 100029, China
| | - Quan Li
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, 100029, China
| | - Yu Li
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, 100029, China.
| |
Collapse
|
84
|
Yalon M, Tuval-Kochen L, Castel D, Moshe I, Mazal I, Cohen O, Avivi C, Rosenblatt K, Aviel-Ronen S, Schiby G, Yahalom J, Amariglio N, Pfeffer R, Lawrence Y, Toren A, Rechavi G, Paglin S. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations. PLoS One 2016; 11:e0155711. [PMID: 27196668 PMCID: PMC4873128 DOI: 10.1371/journal.pone.0155711] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 05/03/2016] [Indexed: 01/08/2023] Open
Abstract
Inhibitors of poly[ADP-ribose] polymerase 1 (PARPis) show promise for treatment of cancers which lack capacity for homologous recombination repair (HRR). However, new therapeutic strategies are required in order to overcome innate and acquired resistance to these drugs and thus expand the array of cancers that could benefit from them. We show that human cancer cell lines which respond poorly to ABT-888 (a PARPi), become sensitive to it when co-treated with vorinostat (a histone deacetylase inhibitor (HDACi)). Vorinostat also sensitized PARPis insensitive cancer cell lines to 6-thioguanine (6-TG)–a drug that targets PARPis sensitive cells. The sensitizing effect of vorinostat was associated with increased phosphorylation of eukaryotic initiation factor (eIF) 2α which in and of itself increases the sensitivity of cancer cells to ABT-888. Importantly, these drug combinations did not affect survival of normal fibroblasts and breast cells, and significantly increased the inhibition of xenograft tumor growth relative to each drug alone, without affecting the mice weight or their liver and kidney function. Our results show that combination of vorinostat and ABT-888 could potentially prove useful for treatment of cancer with innate resistance to PARPis due to active HRR machinery, while the combination of vorinostat and 6-TG could potentially overcome innate or acquired resistance to PARPis due to secondary or reversal BRCA mutations, to decreased PARP-1 level or to increased expression of multiple drug resistant proteins. Importantly, drugs which increase phosphorylation of eIF2α may mimic the sensitizing effect of vorinostat on cellular response to PARPis or to 6-TG, without activating all of its downstream effectors.
Collapse
Affiliation(s)
- Michal Yalon
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Liron Tuval-Kochen
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Castel
- Neufeld Cardiac Research Institute, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Itai Moshe
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Inbal Mazal
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Osher Cohen
- Department of Surgery, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | | | - Sarit Aviel-Ronen
- Department of Pathology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Ginette Schiby
- Department of Pathology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Joachim Yahalom
- Department of Radiation Oncology, Memorial Sloan Kettering, New York 10021, United States of America
| | - Ninette Amariglio
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Raphael Pfeffer
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Yaacov Lawrence
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Amos Toren
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Gideon Rechavi
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Shoshana Paglin
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- * E-mail:
| |
Collapse
|
85
|
Lu W, Chen Q, Ying S, Xia X, Yu Z, Lui Y, Tranter G, Jin B, Song C, Seymour LW, Jiang S. Evolutionarily conserved primary TNF sequences relate to its primitive functions in cell death induction. J Cell Sci 2016; 129:108-20. [PMID: 26729029 DOI: 10.1242/jcs.175463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
TNF is a primitive protein that has emerged from more than 550 million years of evolution. Our bioinformatics study of TNF from nine different taxa in vertebrates revealed several conserved regions in the TNF sequence. By screening overlapping peptides derived from human TNF to determine their role in three different TNF-induced processes--apoptosis, necrosis and NF-κB stimulation--we found that TNF conserved regions are mostly related to cell death rather than NF-κB stimulation. Among the most conserved regions, peptides (P)12, P13 and P1213 (comprising P12 and P13) induced apoptosis, whereas P14, P15, P16 and P1516 (comprising P15 and P16) induced necrosis. Cell death induced by these peptides was not through binding to the TNF receptor. P16-induced necrosis was mainly through disruption of the cell membrane, whereas P1213-induced apoptosis involved activation of TRADD followed by formation of complex II. Finally, using a monoclonal antibody and a mutant TNF protein, we show that TNF-induced apoptosis is determined by a conserved linear sequence that corresponds to that within P1213. Our results reveal the determinant sequence that is key to the TNF primitive function of inducing apoptosis.
Collapse
Affiliation(s)
- Wenshu Lu
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Qiongyu Chen
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Songmin Ying
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Xiaobing Xia
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Zhanru Yu
- MRC Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington OX3 9DS, UK
| | - Yuan Lui
- MRC Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington OX3 9DS, UK
| | - George Tranter
- Chiralabs Limited, Begbroke Science Park, Woodstock Road, Begbroke, Oxfordshire OX5 1PF, UK
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an City 710032, Shaanxi Province, China
| | - Chaojun Song
- Department of Immunology, Fourth Military Medical University, Xi'an City 710032, Shaanxi Province, China
| | - Leonard W Seymour
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Shisong Jiang
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
86
|
Yu X, Deng Q, Li W, Xiao L, Luo X, Liu X, Yang L, Peng S, Ding Z, Feng T, Zhou J, Fan J, Bode AM, Dong Z, Liu J, Cao Y. Neoalbaconol induces cell death through necroptosis by regulating RIPK-dependent autocrine TNFα and ROS production. Oncotarget 2015; 6:1995-2008. [PMID: 25575821 PMCID: PMC4385831 DOI: 10.18632/oncotarget.3038] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/02/2015] [Indexed: 02/04/2023] Open
Abstract
Necroptosis/regulated necrosis is a caspase-independent, but receptor interacting protein kinase (RIPK)-dependent form of cell death. In previous studies, neoalbaconol (NA), a constituent extracted from Albatrellus confluens, was demonstrated to induce necroptosis in some cancer cell lines. The molecular mechanism of NA-induced necroptosis is described in this research study. We determined that NA-induced cell death is partly dependent on tumor necrosis factor α (TNFα) feed-forward signaling. More importantly, NA abolished the ubiquitination of RIPK1 by down-regulating E3 ubiquitin ligases, cellular inhibitors of apoptosis protein 1/2 (cIAP1/2) and TNFα receptor-associated factors (TRAFs). The suppression of RIPK1 ubiquitination induced the activation of the non-canonical nuclear factor-κB (NF-κB) pathway and stimulated the transcription of TNFα. Moreover, we also found that NA caused RIPK3-mediated reactive oxygen species (ROS) production and contribution to cell death. Taken together, these results suggested that two distinct mechanisms are involved in NA-induced necroptosis and include RIPK1/NF-κB-dependent expression of TNFα and RIPK3-dependent generation of ROS.
Collapse
Affiliation(s)
- Xinfang Yu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Qipan Deng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Wei Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Lanbo Xiao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Xiangjian Luo
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Xiaolan Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Lifang Yang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Songling Peng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Zhihui Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Tao Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Jian Zhou
- Liver Cancer Institute, Liver Surgery Department, Zhongshan Hospital
| | - Jia Fan
- Liver Cancer Institute, Liver Surgery Department, Zhongshan Hospital
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Jikai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| |
Collapse
|
87
|
Wang YZ, Wang JJ, Huang Y, Liu F, Zeng WZ, Li Y, Xiong ZG, Zhu MX, Xu TL. Tissue acidosis induces neuronal necroptosis via ASIC1a channel independent of its ionic conduction. eLife 2015; 4. [PMID: 26523449 PMCID: PMC4629285 DOI: 10.7554/elife.05682] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 09/23/2015] [Indexed: 12/15/2022] Open
Abstract
Acidotoxicity is common among neurological disorders, such as ischemic stroke. Traditionally, Ca2+ influx via homomeric acid-sensing ion channel 1a (ASIC1a) was considered to be the leading cause of ischemic acidotoxicity. Here we show that extracellular protons trigger a novel form of neuronal necroptosis via ASIC1a, but independent of its ion-conducting function. We identified serine/threonine kinase receptor interaction protein 1 (RIP1) as a critical component of this form of neuronal necroptosis. Acid stimulation recruits RIP1 to the ASIC1a C-terminus, causing RIP1 phosphorylation and subsequent neuronal death. In a mouse model of focal ischemia, middle cerebral artery occlusion causes ASIC1a-RIP1 association and RIP1 phosphorylation in affected brain areas. Deletion of the Asic1a gene significantly prevents RIP1 phosphorylation and brain damage, suggesting ASIC1a-mediated RIP1 activation has an important role in ischemic neuronal injury. Our findings indicate that extracellular protons function as a novel endogenous ligand that triggers neuronal necroptosis during ischemia via ASIC1a independent of its channel function. DOI:http://dx.doi.org/10.7554/eLife.05682.001 What happens in the minutes and hours after a stroke can determine how much brain damage occurs. In some types of stroke, a blood clot cuts off the blood supply to part of the brain, depriving the brain cells of oxygen and other nutrients, including glucose. One of the consequences is that the blood-starved brain becomes more acidic, which triggers cell death. Protecting brain cells from acidity-induced death could therefore reduce the damage caused by a stroke, and may also be an effective treatment for other brain disorders that involve increased brain acidity, like multiple sclerosis and Huntington's disease. To create such treatments, researchers must first understand how increased acidity in the brain triggers cell death. A protein called the acid-sensing ion channel 1a (ASIC1a) is thought to contribute to acid-induced cell death by allowing calcium to flow into cells. However, this increased flow of calcium occurs only briefly (for seconds) in response to increased acidity, which cannot explain why the severity of cell death strongly depends on the length of increased brain acidity that lasts for hours during stroke. Wang, Wang et al. now show that while ASIC1a is essential for acid-induced brain cell death, this is not because it allows calcium to enter cells. Instead, when acid levels increase, a protein called RIP1 comes to bind to one end of the ASIC1a protein. This causes the addition of a phosphate tag to RIP1, an important cellular process well known to cause the cell to die. Wang, Wang et al. found that in mice genetically engineered to lack ASIC1a, the phosphate tag is not added to RIP1, and the brain cells survive the increased acidity caused by stroke. This suggests that preventing ASIC1a and RIP1 from interacting could be a new way to protect brain cells from the increased acidity caused by brain diseases. DOI:http://dx.doi.org/10.7554/eLife.05682.002
Collapse
Affiliation(s)
- Yi-Zhi Wang
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Jing Wang
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Huang
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Liu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Zheng Zeng
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, United States
| | - Tian-Le Xu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
88
|
The NAE inhibitor pevonedistat (MLN4924) synergizes with TNF-α to activate apoptosis. Cell Death Discov 2015; 1:15034. [PMID: 27551465 PMCID: PMC4979425 DOI: 10.1038/cddiscovery.2015.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
Predicting and understanding the mechanism of drug-induced toxicity is one of the primary goals of drug development. It has been hypothesized that inflammation may have a synergistic role in this process. Cell-based models provide an easily manipulated system to investigate this type of drug toxicity. Several groups have attempted to reproduce in vivo toxicity with combination treatment of pharmacological agents and inflammatory cytokines. Through this approach, synergistic cytotoxicity between the investigational agent pevonedistat (MLN4924) and TNF-α was identified. Pevonedistat is an inhibitor of the NEDD8-activating enzyme (NAE). Inhibition of NAE prevents activation of cullin-RING ligases, which are critical for proteasome-mediated protein degradation. TNF-α is a cytokine that is involved in inflammatory responses and cell death, among other biological functions. Treatment of cultured cells with the combination of pevonedistat and TNF-α, but not as single agents, resulted in rapid cell death. This cell death was determined to be mediated by caspase-8. Interestingly, the combination treatment of pevonedistat and TNF-α also caused an accumulation of the p10 protease subunit of caspase-8 that was not observed with cytotoxic doses of TNF-α. Under conditions where apoptosis was blocked, the mechanism of death switched to necroptosis. Trimerized MLKL was verified as a biomarker of necroptotic cell death. The synergistic toxicity of pevonedistat and elevated TNF-α was also demonstrated by in vivo rat studies. Only the combination treatment resulted in elevated serum markers of liver damage and single-cell hepatocyte necrosis. Taken together, the results of this work have characterized a novel synergistic toxicity driven by pevonedistat and TNF-α.
Collapse
|
89
|
The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis 2015; 6:e1887. [PMID: 26379192 PMCID: PMC4650442 DOI: 10.1038/cddis.2015.246] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/29/2015] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by extensive synovitis resulting in erosions of articular cartilage and marginal bone that lead to joint destruction. The autoimmune process in RA depends on the activation of immune cells, which use intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. An intricate cytokine network participates in inflammation and in perpetuation of disease by positive feedback loops promoting systemic disorder. The widespread systemic effects mediated by pro-inflammatory cytokines in RA impact on metabolism and in particular in lymphocyte metabolism. Moreover, RA pathobiology seems to share some common pathways with atherosclerosis, including endothelial dysfunction that is related to underlying chronic inflammation. The extent of the metabolic changes and the types of metabolites seen may be good markers of cytokine-mediated inflammatory processes in RA. Altered metabolic fingerprints may be useful in predicting the development of RA in patients with early arthritis as well as in the evaluation of the treatment response. Evidence supports the role of metabolomic analysis as a novel and nontargeted approach for identifying potential biomarkers and for improving the clinical and therapeutical management of patients with chronic inflammatory diseases. Here, we review the metabolic changes occurring in the pathogenesis of RA as well as the implication of the metabolic features in the treatment response.
Collapse
|
90
|
Takemura R, Takaki H, Okada S, Shime H, Akazawa T, Oshiumi H, Matsumoto M, Teshima T, Seya T. PolyI:C-Induced, TLR3/RIP3-Dependent Necroptosis Backs Up Immune Effector-Mediated Tumor Elimination In Vivo. Cancer Immunol Res 2015; 3:902-914. [PMID: 25898986 DOI: 10.1158/2326-6066.cir-14-0219] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/07/2015] [Indexed: 01/17/2023]
Abstract
Double-stranded RNA directly acts on fibroblast and myeloid lineages to induce necroptosis as in TNFα. Here, we investigated whether this type of cell death occurred in cancer cells in response to polyinosinic-polycytidylic acid (polyI:C) and the pan-caspase inhibitor z-Val-Ala-Asp fluromethyl ketone (zVAD). We found that the colon cancer cell line CT26 is highly susceptible to necroptosis, as revealed by staining with annexin V/propidium iodide. CT26 cells possess RNA sensors, TLR3 and MDA5, which are upregulated by interferon (IFN)-inducing pathways and linked to receptor-interacting protein kinase (RIP) 1/3 activation via TICAM-1 or MAVS adaptor, respectively. Although exogenously added polyI:C alone marginally induced necroptosis in CT26 cells, a combined regimen of polyI:C and zVAD induced approximately 50% CT26 necroptosis in vitro without secondary effects of TNFα or type I IFNs. CT26 necroptosis depended on the TLR3-TICAM-1-RIP3 axis in the tumor cells to produce reactive oxygen species, but not on MDA5, MAVS, or the caspases/inflammasome activation. However, the RNA-derived necroptosis was barely reproduced in vivo in a CT26 tumor-implanted Balb/c mouse model with administration of polyI:C + zVAD. Significant shrinkage of CT26 tumors was revealed only when polyI:C (100 μg) was injected intraperitoneally and zVAD (1 mg) subcutaneously into tumor-bearing mice that were depleted of cytotoxic T lymphocytes and natural killer cells. The results were confirmed with immune-compromised mice with no lymphocytes. Although necroptosis-induced tumor growth retardation appears mechanistically complicated and dependent on the injection routes of polyI:C and zVAD, anti-caspase reagent directed to tumor cells will make RNA adjuvant immunotherapy more effective by modulating the formation of the tumoricidal microenvironment and dendritic cell-inducing antitumor immune system.
Collapse
Affiliation(s)
- Ryo Takemura
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan. Department of Hematology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Takaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Shime
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Akazawa
- Department of Tumor Immunology, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
91
|
Konstantakou EG, Voutsinas GE, Velentzas AD, Basogianni AS, Paronis E, Balafas E, Kostomitsopoulos N, Syrigos KN, Anastasiadou E, Stravopodis DJ. 3-BrPA eliminates human bladder cancer cells with highly oncogenic signatures via engagement of specific death programs and perturbation of multiple signaling and metabolic determinants. Mol Cancer 2015. [PMID: 26198749 PMCID: PMC4511243 DOI: 10.1186/s12943-015-0399-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Urinary bladder cancer is one of the most fatal and expensive diseases of industrialized world. Despite the strenuous efforts, no seminal advances have been achieved for its clinical management. Given the importance of metabolic reprogramming in cancer cell survival and growth, we have herein employed 3-BrPA, a halogenated derivative of pyruvate and historically considered inhibitor of glycolysis, to eliminate bladder cancer cells with highly oncogenic molecular signatures. METHODS Bladder cancer cells were exposed to 3-BrPA in the absence or presence of several specific inhibitors. Cell viability was determined by MTT and flow-cytometry assays; cell death, signaling activity and metabolic integrity by Western blotting and immunofluorescence; mutant-gene profiling by DNA sequencing; and gene expression by RT-sqPCR. RESULTS 3-BrPA could activate dose-dependent apoptosis (type 1 PCD) and regulated necrosis (type 3 PCD) of T24 (grade III; H-Ras(G12V); p53(ΔY126)), but not RT4 (grade I), cells, with PARP, MLKL, Drp1 and Nec-7-targeted components critically orchestrating necrotic death. However, similarly to RIPK1 and CypD, p53 presented with non-essential contribution to 3-BrPA-induced cellular collapse, while reactivation of mutant p53 with PRIMA-1 resulted in strong synergism of the two agents. Given the reduced expression of MPC components (likely imposing mitochondrial dysfunction) in T24 cells, the suppression of constitutive autophagy (required by cells carrying oncogenic Ras; also, type 2 PCD) and derangement of glucose-homeostasis determinants by 3-BrPA critically contribute to drug-directed depletion of ATP cellular stores. This bioenergetic crisis is translated to severe dysregulation of Akt/FoxO/GSK-3, mTOR/S6, AMPK and MAPK (p44/42, p38 and SAPK/JNK) signaling pathways in 3-BrPA-treated T24 cells. Sensitivity to 3-BrPA (and tolerance to glucose deprivation) does not rely on B-Raf(V600E) or K-Ras(G13D) mutant oncogenic proteins, but partly depends on aberrant signaling activities of Akt, MAPK and AMPK kinases. Interestingly, MCT1- and macropinocytosis-mediated influx of 3-BrPA in T24 represents the principal mechanism that regulates cellular responsiveness to the drug. Besides its capacity to affect transcription in gene-dependent manner, 3-BrPA can also induce GLUT4-specific splicing silencing in both sensitive and resistant cells, thus dictating alternative routes of drug trafficking. CONCLUSIONS Altogether, it seems that 3-BrPA represents a promising agent for bladder cancer targeted therapy.
Collapse
Affiliation(s)
- Eumorphia G Konstantakou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou 15784, Athens, Greece.
| | - Gerassimos E Voutsinas
- Laboratory of Environmental Mutagenesis and Carcinogenesis, Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece.
| | - Athanassios D Velentzas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou 15784, Athens, Greece.
| | - Aggeliki-Stefania Basogianni
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou 15784, Athens, Greece.
| | - Efthimios Paronis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Evangelos Balafas
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Nikolaos Kostomitsopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Konstantinos N Syrigos
- Oncology Unit GPP, Sotiria General Hospital, Athens School of Medicine, Athens, Greece. .,Yale School of Medicine, New Haven, Connecticut, USA.
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Dimitrios J Stravopodis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou 15784, Athens, Greece.
| |
Collapse
|
92
|
Intracellular nicotinamide adenine dinucleotide promotes TNF-induced necroptosis in a sirtuin-dependent manner. Cell Death Differ 2015; 23:29-40. [PMID: 26001219 DOI: 10.1038/cdd.2015.60] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/17/2022] Open
Abstract
Cellular necrosis has long been regarded as an incidental and uncontrolled form of cell death. However, a regulated form of cell death termed necroptosis has been identified recently. Necroptosis can be induced by extracellular cytokines, pathogens and several pharmacological compounds, which share the property of triggering the formation of a RIPK3-containing molecular complex supporting cell death. Of interest, most ligands known to induce necroptosis (including notably TNF and FASL) can also promote apoptosis, and the mechanisms regulating the decision of cells to commit to one form of cell death or the other are still poorly defined. We demonstrate herein that intracellular nicotinamide adenine dinucleotide (NAD(+)) has an important role in supporting cell progression to necroptosis. Using a panel of pharmacological and genetic approaches, we show that intracellular NAD(+) promotes necroptosis of the L929 cell line in response to TNF. Use of a pan-sirtuin inhibitor and shRNA-mediated protein knockdown led us to uncover a role for the NAD(+)-dependent family of sirtuins, and in particular for SIRT2 and SIRT5, in the regulation of the necroptotic cell death program. Thus, and in contrast to a generally held view, intracellular NAD(+) does not represent a universal pro-survival factor, but rather acts as a key metabolite regulating the choice of cell demise in response to both intrinsic and extrinsic factors.
Collapse
|
93
|
Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis 2015; 6:e1761. [PMID: 25973681 PMCID: PMC4669707 DOI: 10.1038/cddis.2015.129] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/17/2015] [Accepted: 04/06/2015] [Indexed: 12/31/2022]
Abstract
One prerequisite that radiotherapy (RT) and chemotherapy (CT) result in anti-tumor immune responses is triggering of immunogenic cell death forms such as necroptosis. The latter is inducible by inhibition of apoptosis with the pan-caspase inhibitor zVAD-fmk. The design of multimodal therapies that overcome melanoma's resistance to apoptosis is a big challenge of oncoimmunology. As hints exist that immune stimulation by hyperthermia (HT) augments the efficacy of melanoma therapies and that tumors can be sensitized for RT with zVAD-fmk, we asked whether combinations of RT with dacarbazine (DTIC) and/or HT induce immunogenic melanoma cell death and how this is especially influenced by zVAD-fmk. Necroptosis was inducible in poorly immunogenic B16-F10 melanoma cells and zVAD-fmk generally increased melanoma cell necrosis concomitantly with the release of HMGB1. Supernatants (SNs) of melanoma cells whose cell death was modulated with zVAD-fmk induced an upregulation of the activation markers CD86 and MHCII on macrophages. The same was seen on dendritic cells (DCs), but only when zVAD-fmk was added to multimodal tumor treatments including DTIC. DCs of MyD88 KO mice and DCs incubated with SNs containing apyrase did not increase the expression of these activation markers on their surface. The in vivo experiments revealed that zVAD-fmk decreases the tumor growth significantly and results in a significantly reduced tumor infiltration of Tregs when added to multimodal treatment of the tumor with RT, DTIC and HT. Further, a significantly increased DC and CD8+ T-cell infiltration into the tumor and in the draining lymph nodes was induced, as well as an increased expression of IFNγ by CD8+ T cells. However, zVAD-fmk did not further reduce tumor growth in MyD88 KO mice, mice treated with apyrase or RAG KO mice. We conclude that HMGB1, nucleotides and CD8+ T cells mediate zVAD-fmk induced anti-melanoma immune reactions in multimodal therapy settings.
Collapse
|
94
|
Chen W, Wu J, Li L, Zhang Z, Ren J, Liang Y, Chen F, Yang C, Zhou Z, Su SS, Zheng X, Zhang Z, Zhong CQ, Wan H, Xiao M, Lin X, Feng XH, Han J. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat Cell Biol 2015; 17:434-44. [PMID: 25751141 PMCID: PMC4523090 DOI: 10.1038/ncb3120] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
The auto-phosphorylation of murine receptor-interacting protein 3 (Rip3) on Thr 231 and Ser 232 in the necrosome is required to trigger necroptosis. However, how Rip3 phosphorylation is regulated is still largely unknown. Here we identified protein phosphatase 1B (Ppm1b) as a Rip3 phosphatase and found that Ppm1b restricts necroptosis in two settings: spontaneous necroptosis caused by Rip3 auto-phosphorylation in resting cells, and tumour necrosis factor-α (TNF)-induced necroptosis in cultured cells. We revealed that Ppm1b selectively suppresses necroptosis through the dephosphorylation of Rip3, which then prevents the recruitment of mixed lineage kinase domain-like protein (Mlkl) to the necrosome. We further showed that Ppm1b deficiency (Ppm1b(d/d)) in mice enhanced TNF-induced death in a Rip3-dependent manner, and the role of Ppm1b in inhibiting necroptosis was evidenced by elevated Rip3 phosphorylation and tissue damage in the caecum of TNF-treated Ppm1b(d/d) mice. These data indicate that Ppm1b negatively regulates necroptosis through dephosphorylating Rip3 in vitro and in vivo.
Collapse
Affiliation(s)
- Wanze Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Lisheng Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhengmao Zhang
- Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Junming Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yaoji Liang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Fenfang Chen
- Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chao Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenru Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng Sean Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xinru Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhirong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Haoqiang Wan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Mu Xiao
- Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xin-Hua Feng
- Life Sciences Institute, and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
- Correspondence should be addressed to J.H. ()
| |
Collapse
|
95
|
Dose-dependent dual role of PIT-1 (POU1F1) in somatolactotroph cell proliferation and apoptosis. PLoS One 2015; 10:e0120010. [PMID: 25822178 PMCID: PMC4379079 DOI: 10.1371/journal.pone.0120010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/02/2015] [Indexed: 12/11/2022] Open
Abstract
To test the role of wtPIT-1 (PITWT) or PIT-1 (R271W) (PIT271) in somatolactotroph cells, we established, using inducible lentiviral vectors, sublines of GH4C1 somatotroph cells that allow the blockade of the expression of endogenous PIT-1 and/or the expression of PITWT or PIT271, a dominant negative mutant of PIT-1 responsible for Combined Pituitary Hormone Deficiency in patients. Blocking expression of endogenous PIT-1 induced a marked decrease of cell proliferation. Overexpressing PITWT twofold led also to a dose-dependent decrease of cell proliferation that was accompanied by cell death. Expression of PIT271 induced a strong dose-dependent decrease of cell proliferation accompanied by a very pronounced cell death. These actions of PIT271 are independent of its interaction/competition with endogenous PIT-1, as they were unchanged when expression of endogenous PIT-1 was blocked. All these actions are specific for somatolactotroph cells, and could not be observed in heterologous cells. Cell death induced by PITWT or by PIT271 was accompanied by DNA fragmentation, but was not inhibited by inhibitors of caspases, autophagy or necrosis, suggesting that this cell death is a caspase-independent apoptosis. Altogether, our results indicate that under normal conditions PIT-1 is important for the maintenance of cell proliferation, while when expressed at supra-normal levels it induces cell death. Through this dual action, PIT-1 may play a role in the expansion/regression cycles of pituitary lactotroph population during and after lactation. Our results also demonstrate that the so-called “dominant-negative” action of PIT271 is independent of its competition with PIT-1 or a blockade of the actions of the latter, and are actions specific to this mutant variant of PIT-1.
Collapse
|
96
|
Upregulated RIP3 Expression Potentiates MLKL Phosphorylation-Mediated Programmed Necrosis in Toxic Epidermal Necrolysis. J Invest Dermatol 2015; 135:2021-2030. [PMID: 25748555 DOI: 10.1038/jid.2015.90] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 01/07/2023]
Abstract
Toxic epidermal necrolysis (TEN) is a severe adverse drug reaction involving extensive keratinocyte death in the epidermis. Histologically, the skin from TEN patients exhibits separation at the dermo-epidermal junction and accompanying necrosis of epidermal keratinocytes. Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is an essential part of the cellular machinery that executes "programmed", or "regulated", necrosis and has a key role in spontaneous cell death and inflammation in keratinocytes under certain conditions. Here we show that RIP3 expression is highly upregulated in skin sections from TEN patients and may therefore contribute to the pathological damage in TEN through activation of programmed necrotic cell death. The expression level of mixed lineage kinase domain-like protein (MLKL), a key downstream component of RIP3, was not significantly different in skin lesions of TEN. However, elevated MLKL phosphorylation was observed in the skin from TEN patients, indicating the presence of RIP3-dependent programmed necrosis. Importantly, in an in vitro model of TEN, dabrafenib, an inhibitor of RIP3, prevented RIP3-mediated MLKL phosphorylation and decreased cell death. Results from this study suggest that the high expression of RIP3 in keratinocytes from TEN patients potentiates MLKL phosphorylation/activation and necrotic cell death. Thus, RIP3 represents a potential target for treatment of TEN.
Collapse
|
97
|
Qing DY, Conegliano D, Shashaty MGS, Seo J, Reilly JP, Worthen GS, Huh D, Meyer NJ, Mangalmurti NS. Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation. Am J Respir Crit Care Med 2015; 190:1243-54. [PMID: 25329368 DOI: 10.1164/rccm.201406-1095oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RATIONALE Red blood cell (RBC) transfusions are associated with increased risk of acute respiratory distress syndrome (ARDS) in the critically ill, yet the mechanisms for enhanced susceptibility to ARDS conferred by RBC transfusions remain unknown. OBJECTIVES To determine the mechanisms of lung endothelial cell (EC) High Mobility Group Box 1 (HMGB1) release following exposure to RBCs and to determine whether RBC transfusion increases susceptibility to lung inflammation in vivo through release of the danger signal HMGB1. METHODS In vitro studies examining human lung EC viability and HMGB1 release following exposure to allogenic RBCs were conducted under static conditions and using a microengineered model of RBC perfusion. The plasma from transfused and nontransfused patients with severe sepsis was examined for markers of cellular injury. A murine model of RBC transfusion followed by LPS administration was used to determine the effects of RBC transfusion and HMGB1 release on LPS-induced lung inflammation. MEASUREMENTS AND MAIN RESULTS After incubation with RBCs, lung ECs underwent regulated necrotic cell death (necroptosis) and released the essential mediator of necroptosis, receptor-interacting serine/threonine-protein kinase 3 (RIP3), and HMGB1. RIP3 was detectable in the plasma of patients with severe sepsis, and was increased with blood transfusion and among nonsurvivors of sepsis. RBC transfusion sensitized mice to LPS-induced lung inflammation through release of the danger signal HMGB1. CONCLUSIONS RBC transfusion enhances susceptibility to lung inflammation through release of HMGB1 and induces necroptosis of lung EC. Necroptosis and subsequent danger signal release is a novel mechanism of injury following transfusion that may account for the increased risk of ARDS in critically ill transfused patients.
Collapse
Affiliation(s)
- Danielle Y Qing
- 1 Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, and
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Wang Q, Liu Z, Ren J, Morgan S, Assa C, Liu B. Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Circ Res 2015; 116:600-11. [PMID: 25563840 DOI: 10.1161/circresaha.116.304899] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Depletion of medial smooth muscle cell (SMC) is a major pathological characteristic of abdominal aortic aneurysm (AAA), although the mechanism by which these cells are eliminated remains incompletely understood. We reasoned that necroptosis, a recently described form of necrosis mediated by receptor-interacting protein kinase 3 (RIP3), may contribute to AAA pathology through the induction of SMC death and the significant production of inflammatory cytokines. OBJECTIVE To test the hypothesis that RIP3-mediated necroptosis is actively involved in aneurysm pathogenesis. METHODS AND RESULTS RIP3 and RIP1 levels were found to be elevated in human AAAs, most noticeably in SMCs. Elevations of RIP3 and SMC necrosis were also observed in the elastase-induced mouse model of AAAs. Deletion of one or both copies of Rip3 prevented AAA formation. By transplanting Rip3(+/-) aortae to Rip3(+/+) mice, we demonstrated that reduced Rip3 expression in arterial wall was the primary cause of aneurysm resistance. In vitro, adenoviral overexpression of RIP3 was sufficient to trigger SMC necroptosis. Protein kinase C-delta contributed to tumor necrosis factor-α-induced SMC necroptosis by regulating Rip3 expression. Furthermore, Rip3 deficiency impaired tumor necrosis factor-α-induced inflammatory gene expression in aortic SMCs, which was at least in part because of attenuation of p65 Ser536 phosphorylation. In vivo, the lack of RIP3 diminished activation of p65 in SMCs, implicating a necrosis independent function of RIP3 in aneurysms. CONCLUSIONS Enhanced RIP3 signaling in aneurysmal tissues contributes to AAA progression by causing SMC necroptosis, as well as stimulating vascular inflammation, and therefore may serve as a novel therapeutic target for AAA treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.)
| | - Zhenjie Liu
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.)
| | - Jun Ren
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.)
| | - Stephanie Morgan
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.)
| | - Carmel Assa
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.)
| | - Bo Liu
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.).
| |
Collapse
|
99
|
Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol 2015; 94:1-11. [PMID: 25562745 DOI: 10.1016/j.bcp.2014.12.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022]
Abstract
Cell death plays an essential role in the development of organs, homeostasis, and cancer. Apoptosis and programmed necrosis are two major types of cell death, characterized by different cell morphology and pathways. Accumulating evidence shows autophagy as a new alternative target to treat tumor resistance. Besides its well-known pro-survival role, autophagy can be a physiological cell death process linking apoptosis and programmed necrosis cell death pathways, by various molecular mediators. Here, we summarize the effects of pharmacologically active compounds as modulators of different types of cancer cell death depending on the cellular context. Indeed, current findings show that both natural and synthetic compounds regulate the interplay between apoptosis, autophagy and necroptosis stimulating common molecular mediators and sharing common organelles. In response to specific stimuli, the same death signal can cause cells to switch from one cell death modality to another depending on the cellular setting. The discovery of important interconnections between the different cell death mediators and signaling pathways, regulated by pharmacologically active compounds, presents novel opportunities for the targeted treatment of cancer. The aim of this review is to highlight the potential role of these compounds for context-specific anticancer therapy.
Collapse
Affiliation(s)
- Flavia Radogna
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
100
|
Yang Y, Jiang G, Zhang P, Fan J. Programmed cell death and its role in inflammation. Mil Med Res 2015; 2:12. [PMID: 26045969 PMCID: PMC4455968 DOI: 10.1186/s40779-015-0039-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Yong Yang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240 USA
| |
Collapse
|