51
|
Safety pharmacology during the COVID pandemic. J Pharmacol Toxicol Methods 2021; 111:107089. [PMID: 34182120 PMCID: PMC8233455 DOI: 10.1016/j.vascn.2021.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022]
Abstract
This editorial summarizes the content of the current themed issue of J Pharmacol Toxicol Methods derived from the 2020 Annual Safety Pharmacology Society (SPS) meeting that was held virtually September 14–17, 2020 due to the ongoing COVID-19 global pandemic. A selection of articles arising from the virtual meeting is summarized. Like previous years they continue to reflect current areas of innovation in SP including new methodologies to predict human safety, best practices for IKr current measurement, and best practice considerations for the conduct of in vivo nonclinical QT studies. The meeting included scientific content from 94 abstracts (reproduced in the current volume of J Pharmacol Toxicol Methods). This continued innovation reflects a rubric in SP that identifies problems, seeks solutions and, importantly, validates the solutions.
Collapse
|
52
|
Ton AT, Nguyen W, Sweat K, Miron Y, Hernandez E, Wong T, Geft V, Macias A, Espinoza A, Truong K, Rasoul L, Stafford A, Cotta T, Mai C, Indersmitten T, Page G, Miller PE, Ghetti A, Abi-Gerges N. Arrhythmogenic and antiarrhythmic actions of late sustained sodium current in the adult human heart. Sci Rep 2021; 11:12014. [PMID: 34103608 PMCID: PMC8187365 DOI: 10.1038/s41598-021-91528-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Late sodium current (late INa) inhibition has been proposed to suppress the incidence of arrhythmias generated by pathological states or induced by drugs. However, the role of late INa in the human heart is still poorly understood. We therefore investigated the role of this conductance in arrhythmias using adult primary cardiomyocytes and tissues from donor hearts. Potentiation of late INa with ATX-II (anemonia sulcata toxin II) and E-4031 (selective blocker of the hERG channel) slowed the kinetics of action potential repolarization, impaired Ca2+ homeostasis, increased contractility, and increased the manifestation of arrhythmia markers. These effects could be reversed by late INa inhibitors, ranolazine and GS-967. We also report that atrial tissues from donor hearts affected by atrial fibrillation exhibit arrhythmia markers in the absence of drug treatment and inhibition of late INa with GS-967 leads to a significant reduction in arrhythmic behaviour. These findings reveal a critical role for the late INa in cardiac arrhythmias and suggest that inhibition of this conductance could provide an effective therapeutic strategy. Finally, this study highlights the utility of human ex-vivo heart models for advancing cardiac translational sciences.
Collapse
Affiliation(s)
- Anh Tuan Ton
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - William Nguyen
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Katrina Sweat
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Yannick Miron
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Eduardo Hernandez
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tiara Wong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Valentyna Geft
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andrew Macias
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ana Espinoza
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ky Truong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Lana Rasoul
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Alexa Stafford
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tamara Cotta
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Christina Mai
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tim Indersmitten
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Guy Page
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Paul E Miller
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andre Ghetti
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA.
| |
Collapse
|
53
|
A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues. Sci Rep 2021; 11:10228. [PMID: 33986332 PMCID: PMC8119415 DOI: 10.1038/s41598-021-89478-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.
Collapse
|
54
|
Kambayashi R, Izumi-Nakaseko H, Goto A, Tsurudome K, Ohshiro H, Izumi T, Hagiwara-Nagasawa M, Chiba K, Nishiyama R, Oyama S, Nunoi Y, Takei Y, Matsumoto A, Sugiyama A. Translational Studies on Anti-Atrial Fibrillatory Action of Oseltamivir by its in vivo and in vitro Electropharmacological Analyses. Front Pharmacol 2021; 12:593021. [PMID: 33995006 PMCID: PMC8118603 DOI: 10.3389/fphar.2021.593021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/04/2021] [Indexed: 02/03/2023] Open
Abstract
Oseltamivir has been shown to prolong the atrial conduction time and effective refractory period, and to suppress the onset of burst pacing-induced atrial fibrillation in vitro. To better predict its potential clinical benefit as an anti-atrial fibrillatory drug, we performed translational studies by assessing in vivo anti-atrial fibrillatory effect along with in vivo and in vitro electropharmacological analyses. Oseltamivir in intravenous doses of 3 (n = 6) and 30 mg/kg (n = 7) was administered in conscious state to the persistent atrial fibrillation model dogs to confirm its anti-atrial fibrillatory action. The model was prepared by tachypacing to the atria of chronic atrioventricular block dogs for > 6 weeks. Next, oseltamivir in doses of 0.3, 3 and 30 mg/kg was intravenously administered to the halothane-anesthetized intact dogs to analyze its in vivo electrophysiological actions (n = 4). Finally, its in vitro effects of 10–1,000 μM on IK,ACh, IKur, IKr, INa and ICaL were analyzed by using cell lines stably expressing Kir3.1/3.4, KV1.5, hERG, NaV1.5 or CaV1.2, respectively (n = 3 for IK,ACh and IKr or n = 6 for IKr, INa and ICaL). Oseltamivir in doses of 3 and 30 mg/kg terminated the atrial fibrillation in 1 out of 6 and in 6 out of 7 atrial fibrillation model dogs, respectively without inducing any lethal ventricular arrhythmia. Its 3 and 30 mg/kg delayed inter-atrial conduction in a frequency-dependent manner, whereas they prolonged atrial effective refractory period in a reverse frequency-dependent manner in the intact dogs. The current assay indicated that IC50 values for IK,ACh and IKr were 160 and 231 μM, respectively, but 1,000 µM inhibited INa, ICaL and IKur by 22, 19 and 13%, respectively. The extent of INa blockade was enhanced at faster beating rate and more depolarized resting membrane potential. Oseltamivir effectively terminated the persistent atrial fibrillation, which may be largely due to the prolongation of the atrial effective refractory period and inter-atrial conduction time induced by IK,ACh and IKr inhibitions along with INa suppression. Thus, oseltamivir can exert a powerful anti-atrial fibrillatory action through its ideal multi-channel blocking property; and oseltamivir would become a promising seed compound for developing efficacious and safe anti-atrial fibrillatory drugs.
Collapse
Affiliation(s)
- Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan
| | | | - Ai Goto
- Department of Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan
| | | | | | | | | | - Koki Chiba
- Department of Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan
| | | | - Satomi Oyama
- Drug Research Department, TOA EIYO LTD., Fukushima, Japan
| | - Yoshio Nunoi
- Department of Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yoshinori Takei
- Department of Translational Research and Cellular Therapeutics, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan.,Department of Translational Research and Cellular Therapeutics, Faculty of Medicine, Toho University, Tokyo, Japan.,Department of Aging Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan.,Yamanashi Research Center of Clinical Pharmacology, Yamanashi, Japan
| |
Collapse
|
55
|
van Weperen VYH, Dunnink A, Bossu A, Beekman JDM, Meijborg VMF, de Bakker JMT, Coronel R, Varkevisser R, van der Heyden MAG, Vos MA. Severe Bradycardia Increases the Incidence and Severity of Torsade de Pointes Arrhythmias by Augmenting Preexistent Spatial Dispersion of Repolarization in the CAVB Dog Model. Front Physiol 2021; 12:642083. [PMID: 33981248 PMCID: PMC8110054 DOI: 10.3389/fphys.2021.642083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Torsade de pointes arrhythmias (TdP) in the chronic atrioventricular block (CAVB) dog model result from proarrhythmic factors, which trigger TdP and/or reinforce the arrhythmic substrate. This study investigated electrophysiological and arrhythmogenic consequences of severe bradycardia for TdP. METHODS Dofetilide (25 μg/kg per 5 min) was administered to eight anesthetized, idioventricular rhythm (IVR) remodeled CAVB dogs in two serial experiments: once under 60 beats per minute (bpm), right ventricular apex paced (RVA60) conditions, once under more bradycardic IVR conditions. Recordings included surface electrocardiogram and short-term variability (STV) of repolarization from endocardial unipolar electrograms. TdP inducibility (three or more episodes within 10 min after start of dofetilide) and arrhythmic activity scores (AS) were established. Mapping experiments in 10 additional dogs determined the effect of lowering rate on STV and spatial dispersion of repolarization (SDR) in baseline. RESULTS IVR-tested animals had longer baseline RR-interval (1,403 ± 271 ms) and repolarization intervals than RVA60 animals. Dofetilide increased STV similarly under both rhythm strategies. Nevertheless, TdP inducibility and AS were higher under IVR conditions (6/8 and 37 ± 27 vs. 1/8 and 8 ± 12 in RVA60, respectively, both p < 0.05). Mapping: Pacing from high (128 ± 10 bpm) to middle (88 ± 10 bpm) to experimental rate (61 ± 3 bpm) increased all electrophysiological parameters, including interventricular dispersion, due to steeper left ventricular restitution curves, and intraventricular SDR: maximal cubic dispersion from 60 ± 14 (high) to 69 ± 17 (middle) to 84 ± 22 ms (p < 0.05 vs. high and middle rate). CONCLUSION In CAVB dogs, severe bradycardia increases the probability and severity of arrhythmic events by heterogeneously causing electrophysiological instability, which is mainly reflected in an increased spatial, and to a lesser extent temporal, dispersion of repolarization.
Collapse
Affiliation(s)
| | - Albert Dunnink
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | - Alexandre Bossu
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | - Jet D. M. Beekman
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | - Veronique M. F. Meijborg
- Department of Clinical and Experimental Cardiology, Amsterdam UMC Locatie AMC, Amsterdam, Netherlands
| | - Jacques M. T. de Bakker
- Department of Clinical and Experimental Cardiology, Amsterdam UMC Locatie AMC, Amsterdam, Netherlands
| | - Ruben Coronel
- Department of Clinical and Experimental Cardiology, Amsterdam UMC Locatie AMC, Amsterdam, Netherlands
| | - Rosanne Varkevisser
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | | | - Marc A. Vos
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| |
Collapse
|
56
|
Nunoi Y, Kambayashi R, Goto A, Hagiwara-Nagasawa M, Chiba K, Izumi-Nakaseko H, Kawai S, Takei Y, Matsumoto A, Watanabe Y, Sugiyama A. In vivo characterization of anti-atrial fibrillatory potential and pharmacological safety profile of I Na,L plus I Kr inhibitor ranolazine using the halothane-anesthetized dogs. Heart Vessels 2021; 36:1088-1097. [PMID: 33763729 DOI: 10.1007/s00380-021-01830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/05/2021] [Indexed: 11/25/2022]
Abstract
To characterize in vivo anti-atrial fibrillatory potential and pharmacological safety profile of ranolazine having INa,L plus IKr inhibitory actions in comparison with those of clinically available anti-atrial fibrillatory drugs; namely, dronedarone, amiodarone, bepridil and dl-sotalol in our previous studies, ranolazine dihydrochloride in sub-therapeutic (0.3 mg/kg) and supra-therapeutic (3 mg/kg) doses was intravenously infused over 10 min to the halothane-anesthetized dogs (n = 5). The low dose increased the heart rate, cardiac output and atrioventricular conduction velocity possibly via vasodilator action-induced, reflex-mediated increase of adrenergic tone. Meanwhile, the high dose decreased the heart rate, ventricular contraction, cardiac output and mean blood pressure, indicating that drug-induced direct actions may exceed the reflex-mediated compensation. In addition, it prolonged the atrial and ventricular effective refractory periods, of which potency and selectivity for the former were less great compared with those of the clinically-available drugs. Moreover, it did not alter the ventricular early repolarization period in vivo, but prolonged the late repolarization with minimal risk for re-entrant arrhythmias. These in vivo findings of ranolazine suggest that INa,L suppression may attenuate IKr inhibition-associated prolongation of early repolarization in the presence of reflex-mediated increase of adrenergic tone. Thus, ranolazine alone may be less promising as an anti-atrial fibrillatory drug, but its potential risk for inducing torsade de pointes will be small. These information can be used as a guide to predict the utility and adverse effects of anti-atrial fibrillatory drugs having multi-channel modulatory action.
Collapse
Affiliation(s)
- Yoshio Nunoi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.,Division of Cardiovascular Surgery, Department of Surgery, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ai Goto
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Mihoko Hagiwara-Nagasawa
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Koki Chiba
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hiroko Izumi-Nakaseko
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Shinichi Kawai
- Department of Inflammation and Pain Control Research, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshinori Takei
- Department of Translational Research and Cellular Therapeutics, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshinori Watanabe
- Division of Cardiovascular Surgery, Department of Surgery, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Inflammation and Pain Control Research, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Translational Research and Cellular Therapeutics, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
57
|
Saponara S, Fusi F, Iovinelli D, Ahmed A, Trezza A, Spiga O, Sgaragli G, Valoti M. Flavonoids and hERG channels: Friends or foes? Eur J Pharmacol 2021; 899:174030. [PMID: 33727059 DOI: 10.1016/j.ejphar.2021.174030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 01/24/2023]
Abstract
The cardiac action potential is regulated by several ion channels. Drugs capable to block these channels, in particular the human ether-à-go-go-related gene (hERG) channel, also known as KV11.1 channel, may lead to a potentially lethal ventricular tachyarrhythmia called "Torsades de Pointes". Thus, evaluation of the hERG channel off-target activity of novel chemical entities is nowadays required to safeguard patients as well as to avoid attrition in drug development. Flavonoids, a large class of natural compounds abundantly present in food, beverages, herbal medicines, and dietary food supplements, generally escape this assessment, though consumed in consistent amounts. Continuously growing evidence indicates that these compounds may interact with the hERG channel and block it. The present review, by examining numerous studies, summarizes the state-of-the-art in this field, describing the most significant examples of direct and indirect inhibition of the hERG channel current operated by flavonoids. A description of the molecular interactions between a few of these natural molecules and the Rattus norvegicus channel protein, achieved by an in silico approach, is also presented.
Collapse
Affiliation(s)
- Simona Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Fabio Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy.
| | - Daniele Iovinelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Amer Ahmed
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Alfonso Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - Giampietro Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy; Accademia Italiana della Vite e del Vino, via Logge degli Uffizi Corti 1, 50122, Florence, Italy
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| |
Collapse
|
58
|
Alahmadi A, Davies A, Royle J, Goodwin L, Cresswell K, Arain Z, Vigo M, Jay C. An explainable algorithm for detecting drug-induced QT-prolongation at risk of torsades de pointes (TdP) regardless of heart rate and T-wave morphology. Comput Biol Med 2021; 131:104281. [PMID: 33636421 DOI: 10.1016/j.compbiomed.2021.104281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022]
Abstract
Torsade de points (TdP), a life-threatening arrhythmia that can increase the risk of sudden cardiac death, is associated with drug-induced QT-interval prolongation on the electrocardiogram (ECG). While many modern ECG machines provide automated measurements of the QT-interval, these automated QT values are usually correct only for a noise-free normal sinus rhythm, in which the T-wave morphology is well defined. As QT-prolonging drugs often affect the morphology of the T-wave, automated QT measurements taken under these circumstances are easily invalidated. An additional challenge is that the QT-value at risk of TdP varies with heart rate, with the slower the heart rate, the greater the risk of TdP. This paper presents an explainable algorithm that uses an understanding of human visual perception and expert ECG interpretation to automate the detection of QT-prolongation at risk of TdP regardless of heart rate and T-wave morphology. It was tested on a large number of ECGs (n=5050) with variable QT-intervals at varying heart rates, acquired from a clinical trial that assessed the effect of four known QT-prolonging drugs versus placebo on healthy subjects. The algorithm yielded a balanced accuracy of 0.97, sensitivity of 0.94, specificity of 0.99, F1-score of 0.88, ROC (AUC) of 0.98, precision-recall (AUC) of 0.88, and Matthews correlation coefficient (MCC) of 0.88. The results indicate that a prolonged ventricular repolarisation area can be a significant risk predictor of TdP, and detection of this is potentially easier and more reliable to automate than measuring the QT-interval distance directly. The proposed algorithm can be visualised using pseudo-colour on the ECG trace, thus intuitively 'explaining' how its decision was made, which results of a focus group show may help people to self-monitor QT-prolongation, as well as ensuring clinicians can validate its results.
Collapse
Affiliation(s)
- Alaa Alahmadi
- Department of Computer Science, The University of Manchester, Manchester, UK.
| | - Alan Davies
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK.
| | - Jennifer Royle
- Digital Experimental Cancer Medicine Team, CRUK Manchester Institute, And the Christie NHS Foundation, Manchester, UK.
| | - Leanna Goodwin
- Digital Experimental Cancer Medicine Team, CRUK Manchester Institute, And the Christie NHS Foundation, Manchester, UK.
| | - Katharine Cresswell
- Cancer Precision Medicine and Cancer Prevention and Early Detection, NIHR Manchester Biomedical Research Centre (BRC), Manchester University NHS Foundation Trust, Manchester, UK.
| | - Zahra Arain
- Cancer Precision Medicine and Cancer Prevention and Early Detection, NIHR Manchester Biomedical Research Centre (BRC), Manchester University NHS Foundation Trust, Manchester, UK.
| | - Markel Vigo
- Department of Computer Science, The University of Manchester, Manchester, UK.
| | - Caroline Jay
- Department of Computer Science, The University of Manchester, Manchester, UK.
| |
Collapse
|
59
|
Strauss DG, Wu WW, Li Z, Koerner J, Garnett C. Translational Models and Tools to Reduce Clinical Trials and Improve Regulatory Decision Making for QTc and Proarrhythmia Risk (ICH E14/S7B Updates). Clin Pharmacol Ther 2021; 109:319-333. [PMID: 33332579 PMCID: PMC7898549 DOI: 10.1002/cpt.2137] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
After multiple drugs were removed from the market secondary to drug-induced torsade de pointes (TdP) risk, the International Council for Harmonisation (ICH) released guidelines in 2005 that focused on the nonclinical (S7B) and clinical (E14) assessment of surrogate biomarkers for TdP. Recently, Vargas et al. published a pharmaceutical-industry perspective making the case that "double-negative" nonclinical data (negative in vitro hERG and in vivo heart-rate corrected QT (QTc) assays) are associated with such low probability of clinical QTc prolongation and TdP that potentially all double-negative drugs would not need detailed clinical QTc evaluation. Subsequently, the ICH released a new E14/S7B Draft Guideline containing Questions and Answers (Q&As) that defined ways that double-negative nonclinical data could be used to reduce the number of "Thorough QT" (TQT) studies and reach a low-risk determination when a TQT or equivalent could not be performed. We review the Vargas et al. proposal in the context of what was contained in the ICH E14/S7B Draft Guideline and what was proposed by the ICH E14/S7B working group for a "stage 2" of updates (potential expanded roles for nonclinical data and details for assessing TdP risk of QTc-prolonging drugs). Although we do not agree with the exact probability statistics in the Vargas et al. paper because of limitations in the underlying datasets, we show how more modest predictive value of individual assays could still result in low probability for TdP with double-negative findings. Furthermore, we expect that the predictive value of the nonclinical assays will improve with implementation of the new ICH E14/S7B Draft Guideline.
Collapse
Affiliation(s)
- David G. Strauss
- Division of Applied Regulatory ScienceOffice of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Wendy W. Wu
- Division of Applied Regulatory ScienceOffice of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Zhihua Li
- Division of Applied Regulatory ScienceOffice of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - John Koerner
- Division of Pharm/Tox for Cardiology, Hematology, Endocrinology and NephrologyOffice of Cardiology, Hematology, Endocrinology and NephrologyOffice of New DrugsCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Christine Garnett
- Division of Cardiology and NephrologyOffice of Cardiology, Hematology, Endocrinology and NephrologyOffice of New DrugsCenter for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
60
|
Saito H, Kambayashi R, Goto A, Hagiwara-Nagasawa M, Hoshiai K, Nunoi Y, Izumi-Nakaseko H, Akie Y, Takei Y, Matsumoto A, Sugiyama A. In vivo analysis of concentration-dependent effects of halothane or isoflurane inhalation on the electrocardiographic and hemodynamic variables in dogs. J Pharmacol Sci 2021; 145:268-272. [PMID: 33602507 DOI: 10.1016/j.jphs.2020.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
We assessed concentration-dependent effects of halothane or isoflurane inhalation on the electrocardiographic and hemodynamic variables using a cross-over design in intact beagle dogs (n = 4). Elevation of inhaled halothane from 1.0% to 2.0% or isoflurane from 1.5% to 2.5% decreased the mean blood pressure and prolonged the QRS width without significantly altering the heart rate, PR interval or QT interval. However, the observed changes disappeared after regressions of both anesthetic conditions to their initial settings. These results indicate that hypotension-induced, reflex-mediated increase of sympathetic tone may have counterbalanced the direct negative chronotropic, dromotropic and repolarization slowing effects of the anesthetics.
Collapse
Affiliation(s)
- Hiroyuki Saito
- Bioresearch Center, CMIC Pharma Science Co., Ltd 10221, Kobuchisawa, Hokuto, Yamanashi 408-0044, Japan; Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Ai Goto
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Mihoko Hagiwara-Nagasawa
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Kiyotaka Hoshiai
- Bioresearch Center, CMIC Pharma Science Co., Ltd 10221, Kobuchisawa, Hokuto, Yamanashi 408-0044, Japan; Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yoshio Nunoi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Hiroko Izumi-Nakaseko
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yasuki Akie
- Bioresearch Center, CMIC Pharma Science Co., Ltd 10221, Kobuchisawa, Hokuto, Yamanashi 408-0044, Japan; Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yoshinori Takei
- Department of Translational Research & Cellular Therapeutics, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan; Department of Translational Research & Cellular Therapeutics, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan; Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan.
| |
Collapse
|
61
|
Andršová I, Hnatkova K, Šišáková M, Toman O, Smetana P, Huster KM, Barthel P, Novotný T, Schmidt G, Malik M. Heart Rate Dependency and Inter-Lead Variability of the T Peak - T End Intervals. Front Physiol 2021; 11:595815. [PMID: 33384609 PMCID: PMC7769826 DOI: 10.3389/fphys.2020.595815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022] Open
Abstract
The electrocardiographic (ECG) assessment of the T peak–T end (Tpe) intervals has been used in many clinical studies, but several related physiological aspects have not been reported. Specifically, the sources of the Tpe differences between different ECG leads have not been systematically researched, the relationship of Tpe duration to underlying heart rate has not been firmly established, and little is known about the mutual correspondence of Tpe intervals measured in different ECG leads. This study evaluated 796,620 10-s 12-lead ECGs obtained from long-term Holters recorded in 639 healthy subjects (311 female) aged 33.8 ± 9.4 years. For each ECG, transformation to orthogonal XYZ lead was used to measure Tpe in the orthogonal vector magnitude (used as a reference for lead-to-lead comparisons) and to construct a three-dimensional T wave loop. The loop roundness was expressed by a ratio between its circumference and length. These ratios were significantly related to the standard deviation of Tpe durations in different ECG leads. At the underlying heart rate of 60 beats per minute, Tpe intervals were shorter in female than in male individuals (82.5 ± 5.6 vs 90.0 ± 6.5 ms, p < 0.0001). When studying linear slopes between Tpe intervals measured in different leads and the underlying heart rate, we found only minimal heart rate dependency, which was not systematic across the ECG leads and/or across the population. For any ECG lead, positive Tpe/RR slope was found in some subjects (e.g., 79 and 25% of subjects for V2 and V4 measurements, respectively) and a negative Tpe/RR slope in other subjects (e.g., 40 and 65% for V6 and V5, respectively). The steepest positive and negative Tpe/RR slopes were found for measurements in lead V2 and V4, respectively. In all leads, the Tpe/RR slope values were close to zero, indicating, on average, Tpe changes well below 2 ms for RR interval changes of 100 ms. On average, longest Tpe intervals were measured in lead V2, the shortest in lead III. The study concludes that the Tpe intervals measured in different leads cannot be combined. Irrespective of the measured ECG lead, the Tpe interval is not systematically heart rate dependent, and no heart rate correction should be used in clinical Tpe investigations.
Collapse
Affiliation(s)
- Irena Andršová
- Department of Internal Medicine and Cardiology, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Katerina Hnatkova
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Martina Šišáková
- Department of Internal Medicine and Cardiology, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ondřej Toman
- Department of Internal Medicine and Cardiology, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Katharina M Huster
- Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Petra Barthel
- Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Tomáš Novotný
- Department of Internal Medicine and Cardiology, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Georg Schmidt
- Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Marek Malik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
62
|
Liu T, Liu J, Lu HR, Li H, Gallacher DJ, Chaudhary K, Wang Y, Yan GX. Utility of Normalized TdP Score System in Drug Proarrhythmic Potential Assessment: A Blinded in vitro Study of CiPA Drugs. Clin Pharmacol Ther 2020; 109:1606-1617. [PMID: 33283267 DOI: 10.1002/cpt.2133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/24/2020] [Indexed: 01/25/2023]
Abstract
Drugs that prolong QT may cause torsade de pointes (TdP). However, translation of nonclinical assessment of QT prolongation or hERG channel, targeted by QT-prolonging drugs, into clinical TdP risk has been insufficient to date. In this blinded study, we confirmed the utility of a Normalized TdP Score System in predicting drug-induced TdP risks among 34 drugs, including 28 with low, intermediate, and high TdP risks under the Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative plus six compounds with names blinded to the investigators, using the rabbit ventricular wedge assay. Concentration-dependent TdP scores were determined by drug-induced changes in QT, Tp-e , and proarrhythmias. Disclosure of the names and testing concentrations was made after completion of the experiments and report to the sponsors. Drugs' normalized TdP scores were calculated thereafter based on their respective free clinical maximum concentration (Cmax ). Drugs' normalized TdP scores were calculated and ranked for 33 drugs, excluding 1 investigational drug, and the TdP risks of the 28 CiPA drugs were correctly distinguished according to their respective categories of low, intermediate, and high TdP risks under the CiPA initiative. Accordingly, we are able to propose the cutoff values of the normalized TdP scores at 1 × Cmax : ≤ 0, > 0 to < 0.65 and ≥ 0.65, respectively, for low, intermediate, and high risk. This blinded study supports utility of our Normalized TdP Score System in predicting drug-induced TdP risks in 33 drugs, including 28 used for characterization of other assays under the CiPA initiative. However, these results need to be replicated in other laboratories.
Collapse
Affiliation(s)
- Tengxian Liu
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Jiang Liu
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hua Rong Lu
- Janssen Pharmaceutica NV (J&J), Beerse, Belgium
| | - Haiyan Li
- Department of Cardiology and Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | | | | | - Yaning Wang
- Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gan-Xin Yan
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA.,Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
63
|
Geiger RM, Klein MG, Fatima N, Goldstein RE, Krantz MJ, Haigney MC, Flagg TP. Rapid Assessment of Proarrhythmic Potential Using Human iPSC-Derived Cardiomyocytes. JACC Clin Electrophysiol 2020; 6:1860-1862. [PMID: 33357585 PMCID: PMC7758727 DOI: 10.1016/j.jacep.2020.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 10/31/2022]
|
64
|
Hagiwara-Nagasawa M, Kambayashi R, Goto A, Nunoi Y, Izumi-Nakaseko H, Takei Y, Matsumoto A, Sugiyama A. Cardiohemodynamic and Arrhythmogenic Effects of the Anti-Atrial Fibrillatory Compound Vanoxerine in Halothane-Anesthetized Dogs. Cardiovasc Toxicol 2020; 21:206-215. [PMID: 33074476 DOI: 10.1007/s12012-020-09612-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/10/2020] [Indexed: 11/27/2022]
Abstract
While vanoxerine (GBR-12909) is a synaptosomal dopamine uptake inhibitor, it also suppresses IKr, INa and ICa,L in vitro. Based on these profiles on ionic currents, vanoxerine has been developed as a candidate compound for treating atrial fibrillation. To investigate electropharmacological profiles, vanoxerine dihydrochloride was intravenously administered at 0.03 and 0.3 mg/kg to halothane-anesthetized dogs (n = 4), possibly providing subtherapeutic and therapeutic concentrations, respectively. The low dose increased the heart rate and cardiac output, whereas it prolonged the ventricular refractoriness. The high dose decreased the heart rate but increased the total peripheral vascular resistance, whereas it delayed the ventricular repolarization and increased the atrial refractoriness in addition to further enhancing the ventricular refractoriness. The extent of increase in the refractoriness in the atrium was 0.8 times of that in the ventricle. The high dose also prolonged the early and late repolarization periods of the ventricle as well as the terminal repolarization period. Meanwhile, no significant change was detected in the mean blood pressure, ventricular contraction, preload to the left ventricle, or the intra-atrial, intra-ventricular or atrioventricular conductions. The high dose can be considered to inhibit IKr, but it may not suppress INa or ICa in the in situ heart, partly explaining its poor atrial selectivity for increasing refractoriness. The prolongation of early repolarization period may reflect enhancement of net inward current, providing potential risk for intracellular Ca2+ overload. Thus, vanoxerine may provide both trigger and substrate toward torsade de pointes, which would make the drug less promising as an anti-atrial fibrillatory drug.
Collapse
Affiliation(s)
- Mihoko Hagiwara-Nagasawa
- Faculty of Medicine, Department of Pharmacology, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ryuichi Kambayashi
- Faculty of Medicine, Department of Pharmacology, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ai Goto
- Faculty of Medicine, Department of Pharmacology, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshio Nunoi
- Faculty of Medicine, Department of Pharmacology, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hiroko Izumi-Nakaseko
- Faculty of Medicine, Department of Pharmacology, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshinori Takei
- Faculty of Medicine, Department of Translational Research & Cellular Therapeutics, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akio Matsumoto
- Faculty of Medicine, Department of Aging Pharmacology, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Atsushi Sugiyama
- Faculty of Medicine, Department of Pharmacology, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
- Faculty of Medicine, Department of Translational Research & Cellular Therapeutics, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
- Faculty of Medicine, Department of Aging Pharmacology, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
65
|
Boulay E, Troncy E, Accardi MV, Pugsley MK, Downey AM, Miraucourt L, Huang H, Menard A, Tan W, Dubuc-Mageau M, Sanfacon A, Guerrier M, Authier S. Confounders and Pharmacological Characterization When Using the QT, JTp, and Tpe Intervals in Beagle Dogs. Int J Toxicol 2020; 39:530-541. [PMID: 33063577 DOI: 10.1177/1091581820954865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Corrected QT (QTc) interval is an essential proarrhythmic risk biomarker, but recent data have identified limitations to its use. The J to T-peak (JTp) interval is an alternative biomarker for evaluating drug-induced proarrhythmic risk. The aim of this study was to evaluate pharmacological effects using spatial magnitude leads and DII electrocardiogram (ECG) leads and common ECG confounders (ie, stress and body temperature changes) on covariate adjusted QT (QTca), covariate adjusted JTp (JTpca), and covariate adjusted T-peak to T-end (Tpeca) intervals. METHODS Beagle dogs were exposed to body hyper- (42 °C) or hypothermic (33 °C) conditions or were administered epinephrine to assess confounding effects on heart rate corrected QTca, JTpca, and Tpeca intervals. Dofetilide (0.1, 0.3, 1.0 mg/kg), ranolazine (100, 140, 200 mg/kg), and verapamil (7, 15, 30, 43, 62.5 mg/kg) were administered to evaluate pharmacological effects. RESULTS Covariate adjusted QT (slope -12.57 ms/°C) and JTpca (-14.79 ms/°C) were negatively correlated with body temperature but Tpeca was minimally affected. Epinephrine was associated with QTca and JTpca shortening, which could be related to undercorrection in the presence of tachycardia, while minimal effects were observed for Tpeca. There were no significant ECG change following ranolazine administration. Verapamil decreased QTca and JTpca intervals and increased Tpeca, whereas dofetilide increased QTca and JTpca intervals but had inconsistent effects on Tpeca. CONCLUSION Results highlight potential confounders on QTc interval, but also on JTpca and Tpeca intervals in nonclinical studies. These potential confounding effects may be relevant to the interpretation of ECG data obtained from nonclinical drug safety studies with Beagle dogs.
Collapse
Affiliation(s)
- Emmanuel Boulay
- Charles River Laboratories, Laval, Quebec, Canada.,70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | - Eric Troncy
- 70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | | | | | | | | | - Hai Huang
- Charles River Laboratories, Laval, Quebec, Canada
| | | | - Wendy Tan
- 70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | | | - Audrey Sanfacon
- 70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | - Mireille Guerrier
- 70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| | - Simon Authier
- Charles River Laboratories, Laval, Quebec, Canada.,70354Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada
| |
Collapse
|
66
|
Analysis of electropharmacological and proarrhythmic effects of donepezil using the halothane-anesthetized intact dogs and the conscious chronic atrioventricular block ones. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:581-589. [DOI: 10.1007/s00210-020-01997-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
|
67
|
Saito H, Kambayashi R, Hagiwara-Nagasawa M, Nunoi Y, Goto A, Izumi-Nakaseko H, Kawai S, Takei Y, Matsumoto A, Hoshiai K, Akie Y, Sugiyama A. In vivo comparison of dl-sotalol-induced electrocardiographic responses among halothane anesthesia, isoflurane anesthesia with nitrous oxide, and conscious state. J Pharmacol Sci 2020; 145:16-22. [PMID: 33357775 DOI: 10.1016/j.jphs.2020.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 12/31/2022] Open
Abstract
We compared dl-sotalol-induced electrocardiographic responses in intact dogs using a repeated-measures design among 1% halothane anesthesia, 1.5% isoflurane anesthesia with nitrous oxide (N2O), and conscious state to clarify influences of the anesthetics (n = 4). Basal PR interval was longer in halothane than either in isoflurane with N2O or in conscious state, reflecting sympathetic nerve suppression for the atrioventricular node by halothane. Both anesthetics exhibited longer basal QRS width than conscious state, suggesting their ventricular INa inhibition. Also, both anesthetics showed longer basal QT interval, QTcF and Tpeak-Tend than conscious state, indicating their ventricular IKr inhibition. Meanwhile, dl-sotalol prolonged PR interval similarly in isoflurane with N2O and in conscious state, which was less great in halothane, suggesting further sympathetic nerve suppression for the atrioventricular node might be limited in halothane. dl-Sotalol prolonged QT interval and QTcF >3 times greater in either of the anesthetics than in conscious state; moreover, dl-sotalol prolonged Tpeak-Tend similarly in both anesthetics, but hardly altered it in conscious state; indicating isoflurane with N2O as well as halothane may have reduced the repolarization reserve to increase the sensitivity of ventricle toward IKr suppression. Thus, isoflurane with nitrous oxide could be useful for in vivo IKr assay like halothane.
Collapse
Affiliation(s)
- Hiroyuki Saito
- Bioresearch Center, CMIC Pharma Science Co., Ltd., 10221, Kobuchisawa, Hokuto, Yamanashi, 408-0044, Japan; Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Mihoko Hagiwara-Nagasawa
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshio Nunoi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ai Goto
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hiroko Izumi-Nakaseko
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Shinichi Kawai
- Department of Inflammation & Pain Control Research, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshinori Takei
- Department of Translational Research & Cellular Therapeutics, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Kiyotaka Hoshiai
- Bioresearch Center, CMIC Pharma Science Co., Ltd., 10221, Kobuchisawa, Hokuto, Yamanashi, 408-0044, Japan; Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yasuki Akie
- Bioresearch Center, CMIC Pharma Science Co., Ltd., 10221, Kobuchisawa, Hokuto, Yamanashi, 408-0044, Japan; Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan; Department of Inflammation & Pain Control Research, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan; Department of Translational Research & Cellular Therapeutics, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan; Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
68
|
Tomaselli Muensterman E, Jaynes HA, Sowinski KM, Overholser BR, Shen C, Kovacs RJ, Tisdale JE. Transdermal Testosterone Attenuates Drug-Induced Lengthening of Both Early and Late Ventricular Repolarization in Older Men. Clin Pharmacol Ther 2020; 109:1499-1504. [PMID: 33020898 PMCID: PMC10150401 DOI: 10.1002/cpt.2072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/27/2020] [Indexed: 01/16/2023]
Abstract
We have previously reported that transdermal testosterone attenuates drug-induced QT interval lengthening in older men. However, it is unknown whether this is due to modulation of early ventricular repolarization, late repolarization, or both. In a secondary analysis of a prospective, randomized, double-blind, placebo-controlled three-way crossover study, we determined if transdermal testosterone and oral progesterone attenuate drug-induced lengthening of early and late ventricular repolarization, represented by the electrocardiographic measurements J-Tpeak c and Tpeak -Tend , respectively, as well as Tpeak -Tend /QT, a measure of transmural dispersion of repolarization. Male volunteers ≥ 65 years of age (n = 14) were randomized to receive transdermal testosterone 100 mg, oral progesterone 400 mg, or matching transdermal/oral placebo daily for 7 days. On the morning following the seventh day, subjects received intravenous ibutilide 0.003 mg/kg, after which electrocardiograms were performed serially. One subject was excluded due to difficulty in T-wave interpretation. Pre-ibutilide J-Tpeak c was lower during the testosterone phase than during progesterone and placebo (216 ± 23 vs. 227 ± 28 vs. 227 ± 21 ms, P = 0.002). Maximum post-ibutilide J-Tpeak c was also lower during the testosterone phase (233 ± 22 vs. 246 ± 29 vs. 248 ± 23 ms, P < 0.0001). Pre-ibutilide Tpeak -Tend was not significantly different during the three phases, but maximum post-ibutilide Tpeak -Tend was lower during the testosterone phase (80 ± 12 vs. 89 ± 18 vs. 86 ± 15 ms, P = 0.002). Maximum Tpeak -Tend /QT was also lower during the testosterone phase (0.199 ± 0.023 vs. 0.216 ± 0.035 vs. 0.209 ± 0.031, P = 0.005). Progesterone exerted minimal effect on drug-induced lengthening of J-Tpeak c, and no effect on Tpeak -Tend or Tpeak -Tend /QT. Transdermal testosterone attenuates drug-induced lengthening of both early and late ventricular repolarization in older men.
Collapse
Affiliation(s)
| | - Heather A Jaynes
- College of Pharmacy, Purdue University, Indianapolis, Indiana, USA
| | - Kevin M Sowinski
- College of Pharmacy, Purdue University, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Brian R Overholser
- College of Pharmacy, Purdue University, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Changyu Shen
- The Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard J Kovacs
- Krannert Institute of Cardiology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - James E Tisdale
- College of Pharmacy, Purdue University, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
69
|
Bystricky W, Maier C, Gintant G, Bergau D, Carter D. Identification of Drug-Induced Multichannel Block and Proarrhythmic Risk in Humans Using Continuous T Vector Velocity Effect Profiles Derived From Surface Electrocardiograms. Front Physiol 2020; 11:567383. [PMID: 33071822 PMCID: PMC7530300 DOI: 10.3389/fphys.2020.567383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
We present continuous T vector velocity (TVV) effect profiles as a new method for identifying drug effects on cardiac ventricular repolarization. TVV measures the temporal change in the myocardial action potential distribution during repolarization. The T vector dynamics were measured as the time required to reach p percent of the total T vector trajectory length, denoted as Tr(p), with p in {1, …, 100%}. The Tr(p) values were individually corrected for heart rate at each trajectory length percentage p. Drug effects were measured by evaluating the placebo corrected changes from baseline of Tr(p)c jointly for all p using functional mixed effects models. The p-dependent model parameters were implemented as cubic splines, providing continuous drug effect profiles along the entire ventricular repolarization process. The effect profile distributions were approximated by bootstrap simulations. We applied this TVV-based analysis approach to ECGs available from three published studies that were conducted in the CiPA context. These studies assessed the effect of 10 drugs and drug combinations with different ion channel blocking properties on myocardial repolarization in a total of 104 healthy volunteers. TVV analysis revealed that blockade of outward potassium currents alone presents an effect profile signature of continuous accumulation of delay throughout the entire repolarization interval. In contrast, block of inward sodium or calcium currents involves acceleration, which accumulates during early repolarization. The balance of blocking inward versus outward currents was reflected in the percentage pzero of the T vector trajectory length where accelerated repolarization transitioned to delayed repolarization. Binary classification using a threshold pzero = 43% separated predominant hERG channel blocking drugs with potentially higher proarrhythmic risk (moxifloxacin, dofetilide, quinidine, chloroquine) from multichannel blocking drugs with low proarrhythmic risk (ranolazine, verapamil, lopinavir/ritonavir) with sensitivity 0.99 and specificity 0.97. The TVV-based effect profile provides a detailed view of drug effects throughout the entire ventricular repolarization interval. It enables the evaluation of drug-induced blocks of multiple cardiac repolarization currents from clinical ECGs. The proposed pzero parameter enhances identification of the proarrhythmic risk of a drug beyond QT prolongation, and therefore constitutes an important tool for cardiac arrhythmia risk assessment.
Collapse
Affiliation(s)
- Werner Bystricky
- Clinical Pharmacology and Pharmacometrics, AbbVie, Inc., North Chicago, IL, United States
| | - Christoph Maier
- Clinical Pharmacology and Pharmacometrics, AbbVie, Inc., North Chicago, IL, United States
- Department of Medical Informatics, Heilbronn University, Heilbronn, Germany
| | - Gary Gintant
- Integrated Sciences and Technology, AbbVie, Inc., North Chicago, IL, United States
| | - Dennis Bergau
- Clinical Pharmacology and Pharmacometrics, AbbVie, Inc., North Chicago, IL, United States
| | - David Carter
- Clinical Pharmacology and Pharmacometrics, AbbVie, Inc., North Chicago, IL, United States
| |
Collapse
|
70
|
Alahmadi A, Davies A, Vigo M, Jay C. Pseudo-colouring an ECG enables lay people to detect QT-interval prolongation regardless of heart rate. PLoS One 2020; 15:e0237854. [PMID: 32853262 PMCID: PMC7451551 DOI: 10.1371/journal.pone.0237854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Drug-induced long QT syndrome (diLQTS), characterized by a prolongation of the QT-interval on the electrocardiogram (ECG), is a serious adverse drug reaction that can cause the life-threatening arrhythmia Torsade de Points (TdP). Self-monitoring for diLQTS could therefore save lives, but detecting it on the ECG is difficult, particularly at high and low heart rates. In this paper, we evaluate whether using a pseudo-colouring visualisation technique and changing the coordinate system (Cartesian vs. Polar) can support lay people in identifying QT-prolongation at varying heart rates. Four visualisation techniques were evaluated using a counterbalanced repeated measures design including Cartesian no-colouring, Cartesian pseudo-colouring, Polar no-colouring and Polar pseudo-colouring. We used a multi-reader, multi-case (MRMC) receiver operating characteristic (ROC) study design within a psychophysical paradigm, along with eye-tracking technology. Forty-three lay participants read forty ECGs (TdP risk n = 20, no risk n = 20), classifying each QT-interval as normal/abnormal, and rating their confidence on a 6-point scale. The results show that introducing pseudo-colouring to the ECG significantly increased accurate detection of QT-interval prolongation regardless of heart rate, T-wave morphology and coordinate system. Pseudo-colour also helped to reduce reaction times and increased satisfaction when reading the ECGs. Eye movement analysis indicated that pseudo-colour helped to focus visual attention on the areas of the ECG crucial to detecting QT-prolongation. The study indicates that pseudo-colouring enables lay people to visually identify drug-induced QT-prolongation regardless of heart rate, with implications for the more rapid identification and management of diLQTS.
Collapse
Affiliation(s)
- Alaa Alahmadi
- Department of Computer Science, The University of Manchester, Manchester, United Kingdom
| | - Alan Davies
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Markel Vigo
- Department of Computer Science, The University of Manchester, Manchester, United Kingdom
| | - Caroline Jay
- Department of Computer Science, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
71
|
Gal P, Klaassen ES, Bergmann KR, Saghari M, Burggraaf J, Kemme MJB, Sylvest C, Sørensen U, Bentzen BH, Grunnet M, Diness JG, Edvardsson N. First Clinical Study with AP30663 - a K Ca 2 Channel Inhibitor in Development for Conversion of Atrial Fibrillation. Clin Transl Sci 2020; 13:1336-1344. [PMID: 32725783 PMCID: PMC7719388 DOI: 10.1111/cts.12835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022] Open
Abstract
Pharmacological cardioversion of atrial fibrillation (AF) is frequently inefficacious. AP30663, a small conductance Ca2+ activated K+ (KCa2) channel blocker, prolonged the atrial effective refractory period in preclinical studies and subsequently converted AF into normal sinus rhythm. This first‐in‐human study evaluated the safety and tolerability, and pharmacokinetic (PK) and pharmacodynamic (PD) effects were explored. Forty‐seven healthy male volunteers (23.7 ± 3.0 years) received AP30663 intravenously in ascending doses. Due to infusion site reactions, changes to the formulation and administration were implemented in the latter 24 volunteers. Extractions from a 24‐hour continuous electrocardiogram were used to evaluate the PD effect of AP30663. Data were analyzed with a repeated measure analysis of covariance, noncompartmental analysis, and concentration‐effect analysis. In total, 33 of 34 adverse events considered related to AP30663 exposure were related to the infusion site, mild in severity, and temporary in nature, although full recovery took up to 110 days. After formulation and administration changes, the local infusion site reaction remained, but the median duration was shorter despite higher dose levels. AP30663 displayed a less than dose proportional increase in peak plasma concentration (Cmax) and a terminal half‐life of around 5 hours. In healthy volunteers, no effect of AP30663 was observed on electrocardiographic parameters, other than a concentration‐dependent effect on the corrected QT Fridericia’s formula interval (+18.8 ± 4.3 ms for the highest dose level compared with time matched placebo). In conclusion, administration of AP30663, a novel KCa2 channel inhibitor, was safe and well‐tolerated systemically in humans, supporting further development in patients with AF undergoing cardioversion.
Collapse
Affiliation(s)
- Pim Gal
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Mahdi Saghari
- Centre for Human Drug Research, Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands.,Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | | | | | | | | | | | | | - Nils Edvardsson
- Acesion Pharma ApS, Copenhagen, Denmark.,Department of Molecular and Clinical Medicine/Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
72
|
Vormfelde SV, Pezous N, Lefèvre G, Kolly C, Neumann U, Jordaan P, Ufer M, Legangneux E. A Pooled Analysis of Three Randomized Phase I/IIa Clinical Trials Confirms Absence of a Clinically Relevant Effect on the QTc Interval by Umibecestat. Clin Transl Sci 2020; 13:1316-1326. [PMID: 32583957 PMCID: PMC7719381 DOI: 10.1111/cts.12832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/01/2020] [Indexed: 01/17/2023] Open
Abstract
Umibecestat, an orally active β‐secretase inhibitor, reduces the production of amyloid beta‐peptide that accumulates in the brain of patients with Alzheimer’s disease. The echocardiogram effects of umibecestat, on QTcF (Fridericia‐corrected QT), on PR and QRS and heart rate (HR), were estimated by concentration‐effect modeling. Three phase I/II studies with durations up to 3 months, with 372 healthy subjects over a wide age range, including both sexes and 2 ethnicities, were pooled, providing a large data set with good statistical power. No clinically relevant effect on QTcF, PR interval, QRS duration, or HR were observed up to supratherapeutic doses. The upper bound of 90% confidence intervals of the ∆QTcF was below the 10 ms threshold of regulatory concern for all concentrations measured. Prespecified sensitivity analysis confirmed the results in both sexes, in those over and below 60 years, and in Japanese subjects. All conclusions were endorsed by the US Food and Drug Administration (FDA).
Collapse
Affiliation(s)
- Stefan Viktor Vormfelde
- Department of Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicole Pezous
- Department of Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gilbert Lefèvre
- Department of Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Carine Kolly
- Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ulf Neumann
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Pierre Jordaan
- Cardiovascular Safety Expert - CMO and Patient Safety - Oncology, Novartis Pharma, Basel, Switzerland
| | - Mike Ufer
- Department of Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Eric Legangneux
- Department of Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
73
|
In-silico human electro-mechanical ventricular modelling and simulation for drug-induced pro-arrhythmia and inotropic risk assessment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:58-74. [PMID: 32710902 PMCID: PMC7848595 DOI: 10.1016/j.pbiomolbio.2020.06.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/08/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022]
Abstract
Human-based computational modelling and simulation are powerful tools to accelerate the mechanistic understanding of cardiac patho-physiology, and to develop and evaluate therapeutic interventions. The aim of this study is to calibrate and evaluate human ventricular electro-mechanical models for investigations on the effect of the electro-mechanical coupling and pharmacological action on human ventricular electrophysiology, calcium dynamics, and active contraction. The most recent models of human ventricular electrophysiology, excitation-contraction coupling, and active contraction were integrated, and the coupled models were calibrated using human experimental data. Simulations were then conducted using the coupled models to quantify the effects of electro-mechanical coupling and drug exposure on electrophysiology and force generation in virtual human ventricular cardiomyocytes and tissue. The resulting calibrated human electro-mechanical models yielded active tension, action potential, and calcium transient metrics that are in agreement with experiments for endocardial, epicardial, and mid-myocardial human samples. Simulation results correctly predicted the inotropic response of different multichannel action reference compounds and demonstrated that the electro-mechanical coupling improves the robustness of repolarisation under drug exposure compared to electrophysiology-only models. They also generated additional evidence to explain the partial mismatch between in-silico and in-vitro experiments on drug-induced electrophysiology changes. The human calibrated and evaluated modelling and simulation framework constructed in this study opens new avenues for future investigations into the complex interplay between the electrical and mechanical cardiac substrates, its modulation by pharmacological action, and its translation to tissue and organ models of cardiac patho-physiology.
Collapse
|
74
|
Corino VDA, Rivolta MW, Mainardi LT, Sassi R. Assessment of spatial heterogeneity of ventricular repolarization after multi-channel blocker drugs in healthy subjects. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 189:105291. [PMID: 31935579 DOI: 10.1016/j.cmpb.2019.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES In contrast to potassium channel blockers, drugs affecting multiple channels seem to reduce torsadogenic risks. However, their effect on spatial heterogeneity of ventricular repolarization (SHVR) is still matter of investigation. Aim of this work is to assess the effect of four drugs blocking the human ether-à-go-go-related gene (hERG) potassium channel, alone or in combination with other ionic channel blocks, on SHVR, as estimated by the V-index on short triplicate 10 s ECG. METHODS The V-index is an estimate of the standard deviation of the repolarization times of the myocytes across the entire myocardium, obtained from multi-lead surface electrocardiograms. Twenty-two healthy subjects received a pure hERG potassium channel blocker (dofetilide) and 3 other drugs with additional varying degrees of sodium and calcium (L-type) channel block (quinidine, ranolazine, and verapamil), as well as placebo. A one-way repeated-measures Friedman test was performed to compare the V-index over time. RESULTS Computer simulations and Bland-Altman analysis supported the reliability of the estimates of V-index on triplicate 10 s ECG. Ranolazine, verapamil and placebo did not affect the V-index. On the contrary, after quinidine and dofetilide administration, an increase of V-index from predose to its peak value was observed (ΔΔV-index values were 19 ms and 27 ms, respectively, p < 0.05). CONCLUSIONS High torsadogenic drugs (dofetilide and quinidine) affected significantly the SHVR, as quantified by the V-index. The metric has therefore a potential in assessing drug arrhythmogenicity.
Collapse
Affiliation(s)
- Valentina D A Corino
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, via Golgi 39, 20133 Milan, Italy.
| | - Massimo W Rivolta
- Dipartimento di Informatica, Università degli Studi di Milano, Via Celoria 18, 20133 Milan, Italy
| | - Luca T Mainardi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, via Golgi 39, 20133 Milan, Italy
| | - Roberto Sassi
- Dipartimento di Informatica, Università degli Studi di Milano, Via Celoria 18, 20133 Milan, Italy
| |
Collapse
|
75
|
Authier S, Abernathy MM, Correll K, Chui RW, Dalton J, Foley CM, Friedrichs GS, Koerner JE, Kallman MJ, Pannirselvam M, Redfern WS, Urmaliya V, Valentin JP, Wisialowski T, Zabka TS, Pugsley MK. An Industry Survey With Focus on Cardiovascular Safety Pharmacology Study Design and Data Interpretation. Int J Toxicol 2020; 39:274-293. [DOI: 10.1177/1091581820921338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: The Safety Pharmacology Society (SPS) conducted a membership survey to examine industry practices related mainly to cardiovascular (CV) safety pharmacology (SP). Methods: Questions addressed nonclinical study design, data analysis methods, drug-induced effects, and conventional and novel CV assays. Results: The most frequent therapeutic area targeted by drugs developed by the companies/institutions that employ survey responders was oncology. The most frequently observed drug-mediated effects included an increased heart rate, increased arterial blood pressure, hERG (IKr) block, decreased arterial blood pressure, decreased heart rate, QTc prolongation, and changes in body temperature. Broadly implemented study practices included Latin square crossover study design with n = 4 for nonrodent CV studies, statistical analysis of data (eg, analysis of variance), use of arrhythmia detection software, and the inclusion of data from all study animals when integrating SP studies into toxicology studies. Most responders frequently used individual animal housing conditions. Responders commonly evaluated drug effects on multiple ion channels, but in silico modeling methods were used much less frequently. Most responders rarely measured the J-Tpeak interval in CV studies. Uncertainties relative to Standard for Exchange of Nonclinical Data applications for data derived from CV SP studies were common. Although available, the use of human induced pluripotent stem cell cardiomyocytes remains rare. The respiratory SP study was rarely involved with identifying drug-induced functional issues. Responders indicated that the study-derived no observed effect level was more frequently determined than the no observed adverse effect level in CV SP studies; however, a large proportion of survey responders used neither.
Collapse
Affiliation(s)
| | | | | | - Ray W. Chui
- Amgen Research, Safety Pharmacology & Animal Research Center, Amgen, Inc, Thousand Oaks, CA, USA
| | | | - C. Michael Foley
- Department of Safety Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, USA
| | | | - John E. Koerner
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | | | | | | | - Vijay Urmaliya
- Global Safety Pharmacology, Janssen Research & Development, Beerse, Belgium
| | | | | | - Tanja S. Zabka
- Development Sciences Safety Assessment, Genentech, South San Francisco, CA, USA
| | | |
Collapse
|
76
|
Koshman YE, Wilsey AS, Bird BM, Endemann AL, Sadilek S, Treadway J, Martin RL, Polakowski JS, Gintant GA, Mittelstadt SW. Drug-induced QT prolongation: Concordance of preclinical anesthetized canine model in relation to published clinical observations for ten CiPA drugs. J Pharmacol Toxicol Methods 2020; 103:106871. [PMID: 32360993 DOI: 10.1016/j.vascn.2020.106871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative differentiates torsadogenic risk of 28 drugs affecting ventricular repolarization based on multiple in vitro human derived ionic currents. However, a standardized prospective assessment of the electrophysiologic effects of these drugs in an integrated in vivo preclinical cardiovascular model is lacking. This study questioned whether QTc interval prolongation in a preclinical in vivo model could detect clinically reported QTc prolongation and assign torsadogenic risk for ten CiPA drugs. METHODS An acute intravenous administered ascending dose anesthetized dog cardiovascular model was used to assess QTc prolongation along with other electrocardiographic (PR, QRS intervals) and hemodynamic (heart rate, blood pressures, left ventricular contractility) parameters at plasma concentrations spanning and exceeding clinical exposures. hERG current block potency was characterized using IC50 values from automated patch clamp. RESULTS All eight drugs eliciting clinical QTc prolongation also delayed repolarization in anesthetized dogs at plasma concentrations within four-fold clinical exposures. In vitro QTc safety margins (defined based on clinical Cmax values/plasma concentrations eliciting statistically significant QTc prolongation in dogs) were lower for high vs intermediate torsadogenic risk drugs. In comparison, hERG IC10 values represented as total drug concentrations were better predictors of preclinical QTc prolongation than hERG IC50 values. CONCLUSION There was good concordance for QTc prolongation in the anesthetized dog model and clinical torsadogenic risk assignment. QTc assessment in the anesthetized dog remains a valuable part of a more comprehensive preclinical integrated risk assessment for delayed repolarization and torsadogenic risk as part of a global cardiovascular evaluation.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America.
| | - Amanda S Wilsey
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Brandan M Bird
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Aimee L Endemann
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Sabine Sadilek
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Jessica Treadway
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Ruth L Martin
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - James S Polakowski
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Gary A Gintant
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Scott W Mittelstadt
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| |
Collapse
|
77
|
Nandi M, Aston PJ. Extracting new information from old waveforms: Symmetric projection attractor reconstruction: Where maths meets medicine. Exp Physiol 2020; 105:1444-1451. [PMID: 32347611 DOI: 10.1113/ep087873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/23/2020] [Indexed: 01/05/2023]
Abstract
NEW FINDINGS What is the topic of this review? Symmetric Projection Attractor Reconstruction (SPAR) is a relatively new mathematical method that can extract additional information pertaining to the morphology and variability of physiological waveforms, such as arterial pulse pressure. Herein, we describe the potential utility of the method for more sensitive quantification of cardiovascular changes. What advances does it highlight? We use a simple example of a human tilt table to illustrate these concepts. SPAR can be used on any approximately periodic waveform and may add value to experimental and clinical settings, where such signals are collected routinely. ABSTRACT Periodic physiological waveform data, such as blood pressure, pulse oximetry and ECG, are routinely sampled between 100 and 1000 Hz in preclinical research and in the clinical setting from a wide variety of implantable, bedside and wearable monitoring devices. Despite the underlying numerical waveform data being captured at such high fidelity, conventional analysis tends to reside in reporting only averages of minimum, maximum, amplitude and rate, as single point averages. Although these averages are undoubtedly of value, simplification of the data in this way means that most of the available numerical data are discarded. In turn, this may lead to subtle physiological changes being missed when investigating the cardiovascular system over time. We have developed a mathematical method (symmetric projection attractor reconstruction) that uses all the numerical data, replotting and revisualizing them in a manner that allows unique quantification of multiple changes in waveform morphology and variability. We propose that the additional quantification of these features will allow the complex behaviour of the cardiovascular system to be mapped more sensitively in different physiological and pathophysiological settings.
Collapse
Affiliation(s)
- Manasi Nandi
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Philip J Aston
- Department of Mathematics, University of Surrey, Guildford, UK
| |
Collapse
|
78
|
Electropharmacological Characterization of Aciclovir in the Halothane-Anesthetized Dogs: A Proposal of Evaluation Method for Cardiovascular Safety Pharmacology of Anti-virus Drugs. Cardiovasc Toxicol 2020; 20:419-426. [PMID: 32193875 DOI: 10.1007/s12012-020-09568-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Given limited information regarding the pathophysiology underlying aciclovir-associated, clinically observed cardiovascular adverse events including chest pain, tachycardia, bradycardia, palpitation, arrhythmia, hypertension and hypotension, we investigated its electropharmacological effects using the halothane-anesthetized beagle dogs. Aciclovir in doses of 2 and 20 mg/kg was sequentially infused over 10 min with an interval of 20 min (n = 4), which would achieve sub-therapeutic to supra-therapeutic levels of plasma concentrations. Aciclovir decreased the total peripheral vascular resistance along with the blood pressure in a dose-related manner, which increased the heart rate, ventricular contraction and atrioventricular nodal conduction speed probably via a reflex-mediated increase of sympathetic tone. No significant change was detected in the intra-atrial or intra-ventricular conduction, indicating that aciclovir may not inhibit atrial or ventricular INa. Aciclovir prolonged the repolarization period in a dose-related as well as in a reverse frequency-dependent manners, indicating that aciclovir may inhibit IKr, which was supported by the Tpeak - Tend prolongation. Aciclovir transiently prolonged the J - Tpeakc possibly through a reflex-mediated increase of sympathetic tone, indicating an increase of net inward current in the early repolarization phase. Thus, aciclovir may directly inhibit IKr, and also have the potential to indirectly induce Ca2+ overload leading to early afterdepolarization. These in vivo electropharmacological profile of aciclovir would partly explain the onset mechanism of clinical adverse events.
Collapse
|
79
|
Nunoi Y, Hagiwara-Nagasawa M, Kambayashi R, Goto A, Chiba K, Wada T, Izumi-Nakaseko H, Matsumoto A, Watanabe Y, Sugiyama A. Characterization of microminipig as a laboratory animal for pharmacological study by analyzing bepridil-induced cardiovascular responses. J Pharmacol Sci 2020; 143:56-59. [PMID: 32144028 DOI: 10.1016/j.jphs.2020.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/29/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022] Open
Abstract
Since microminipig is becoming attractive model for various cardiac electropharmacological applications, which may meet consideration of 3Rs. We characterized microminipigs by analyzing how multi-ionic channel inhibitor bepridil may affect their in situ hearts in comparison with dogs. Bepridil in doses of 0.3 and 3.0 mg/kg were intravenously administered over 10 min under halothane anesthesia (n = 4). Microminipigs may be less sensitive for ICaT inhibition of bepridil, whereas they are more responsive to INa, IKr and IKs suppression than dogs. This information would help predict cardiovascular effects of a drug in patients with the remodeled hearts having similar electrophysiological profile to microminipigs.
Collapse
Affiliation(s)
- Yoshio Nunoi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan; Division of Cardiovascular Surgery, Department of Surgery, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan
| | - Mihoko Hagiwara-Nagasawa
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Ai Goto
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Koki Chiba
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Takeshi Wada
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Hiroko Izumi-Nakaseko
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yoshinori Watanabe
- Division of Cardiovascular Surgery, Department of Surgery, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan; Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan.
| |
Collapse
|
80
|
Matta MK, Narayanasamy S, Vicente J, Zusterzeel R, Patel V, Strauss DG. Novel High-Throughput Quantitation of Potent hERG Blocker Dofetilide in Human Plasma by Liquid Chromatography Tandem Mass Spectrometry: Application in a Phase 1 ECG Biomarker Validation Study. J Anal Toxicol 2020; 44:180-187. [PMID: 31355881 DOI: 10.1093/jat/bkz047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/08/2019] [Accepted: 05/27/2019] [Indexed: 01/22/2023] Open
Abstract
The authors developed a novel, sensitive high-throughput ultra-performance liquid chromatography-tandem mass spectrometric method for the determination of dofetilide in human plasma. To compensate for the matrix effect, a deuterated internal standard was used. The method employed a very low sample volume (50 μL) of plasma for sample processing by using simple protein precipitation extraction in a 96-well plate. The extracted samples were chromatographed on an Acquity BEH C18 column (2.1 × 100 mm, 1.7 μm) and eluted in a gradient manner at a flow rate of 0.5 mL/min for 2 min using 5 mM ammonium formate (0.1% formic acid) and methanol. The calibration curve was linear from 25 to 2,500 pg/mL with a correlation coefficient (r2) ≥ 0.99 (0.9969-0.9980; n = 3). The developed method was validated as per the current United States Food and Drug Administration's guidance for industry on 'Bioanalytical Method Validation'. The multiple reaction-monitoring mode was employed for quantitation of dofetilide with m/z 442.2/198.2 and dofetilide d4 with m/z 446.2/198.2. The validated method was used for evaluation of dofetilide concentration in the Comprehensive in vitro Proarrhythmia Assay phase 1 electrocardiogramic biomarker validation study.
Collapse
Affiliation(s)
- Murali K Matta
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, 10903 New Hampshire Ave Silver Spring, Maryland, USA 20993
| | - Suresh Narayanasamy
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, 10903 New Hampshire Ave Silver Spring, Maryland, USA 20993
| | - Jose Vicente
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Division of Cardiovascular and Renal Products, 10903 New Hampshire Ave Silver Spring, Maryland, USA 20993
| | - Robbert Zusterzeel
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, 10903 New Hampshire Ave Silver Spring, Maryland, USA 20993
| | - Vikram Patel
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, 10903 New Hampshire Ave Silver Spring, Maryland, USA 20993
| | - David G Strauss
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, 10903 New Hampshire Ave Silver Spring, Maryland, USA 20993
| |
Collapse
|
81
|
Marcantoni I, Laratta R, Mascia G, Ricciardi L, Sbrollini A, Nasim A, Morettini M, Burattini L. Dofetilide-Induced Microvolt T-Wave Alternans. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:95-98. [PMID: 31945853 DOI: 10.1109/embc.2019.8857486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dofetilide is an antiarrhythmic drug that selectively inhibits the rapid component of the delayed rectifier potassium current. The administration of dofetilide may cause ventricular arrhythmias and torsade de pointes. Electrocardiographic (ECG) microvolt T-wave alternans (TWA), an electrophysiologic phenomenon consisting in the beat-to-beat alternation of the T-wave amplitude requiring computerized algorithms to be detected, has also been associated to malignant ventricular arrhythmias. Aim of the present study was to evaluate if dofetilide induces TWA during the 24 hours following administration. The study population consisted of 22 healthy subjects ("ECG Effects of Ranolazine, Dofetilide, Verapamil, and Quinidine in Healthy Subjects" database by Physionet) to whom a 500 μg-dose of dofetilide was administered. For each subject, 10 s ECG were acquired at baseline (0.5 hour before dofetilide administration) and at 15 time points during the 24 hours following the drug administration. ECG were then processed for automatic TWA detection by correlation method. In 21 subjects out of 22, after dofetilide administration, TWA significantly increased to a peak value (median TWA values went from 6 μV at baseline to a max 32 μV; p<; 0.05), on average after 5 hours, to then come back to values closer to baseline. Thus, in healthy subjects, dofetilide increases occurrence and levels (6 times baseline value on average) of TWA in the hours following its administration.
Collapse
|
82
|
How the Deuteration of Dronedarone Can Modify Its Cardiovascular Profile: In Vivo Characterization of Electropharmacological Effects of Poyendarone, a Deuterated Analogue of Dronedarone. Cardiovasc Toxicol 2020; 20:339-350. [PMID: 31898152 DOI: 10.1007/s12012-019-09559-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Since deuterium replacement has a potential to modulate pharmacodynamics, pharmacokinetics and toxicity, we developed deuterated dronedarone; poyendarone, and assessed its cardiovascular effects. Poyendarone hydrochloride in doses of 0.3 and 3 mg/kg over 30 s was intravenously administered to the halothane-anesthetized dogs (n = 4), which provided peak plasma concentrations of 108 ± 10 and 1120 ± 285 ng/mL, respectively. The 0.3 mg/kg shortened the ventricular repolarization period. The 3 mg/kg transiently increased the heart rate at 5 min but decreased at 45 min, and elevated the total peripheral vascular resistance and left ventricular preload, whereas it reduced the mean blood pressure at 5 min, left ventricular contractility and cardiac output. The transient tachycardic action is considered to be induced by the hypotension-induced, reflex-mediated increase of sympathetic tone. The 3 mg/kg delayed both intra-atrial and intra-ventricular conductions, indicating Na+ channel inhibitory action. Moreover, the 3 mg/kg transiently shortened the ventricular repolarization period at 5 min. No significant change was detected in the late repolarization by poyendarone, indicating it might not hardly significantly alter rapidly activating delayed-rectifier K+ current (IKr). Poyendarone prolonged the atrial effective refractory period greater than the ventricular parameter. When compared with dronedarone, poyendarone showed similar pharmacokinetics of dronedarone, but reduced β-adrenoceptor blocking activity as well as the cardio-suppressive effect. Poyendarone failed to inhibit IKr and showed higher atrial selectivity in prolonging the effective refractory period of atrium versus ventricle. Thus, the deuteration may be an effective way to improve the cardiovascular profile of dronedarone. Poyendarone is a promising anti-atrial fibrillatory drug candidate.
Collapse
|
83
|
Barnes TR, Drake R, Paton C, Cooper SJ, Deakin B, Ferrier IN, Gregory CJ, Haddad PM, Howes OD, Jones I, Joyce EM, Lewis S, Lingford-Hughes A, MacCabe JH, Owens DC, Patel MX, Sinclair JM, Stone JM, Talbot PS, Upthegrove R, Wieck A, Yung AR. Evidence-based guidelines for the pharmacological treatment of schizophrenia: Updated recommendations from the British Association for Psychopharmacology. J Psychopharmacol 2020; 34:3-78. [PMID: 31829775 DOI: 10.1177/0269881119889296] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
These updated guidelines from the British Association for Psychopharmacology replace the original version published in 2011. They address the scope and targets of pharmacological treatment for schizophrenia. A consensus meeting was held in 2017, involving experts in schizophrenia and its treatment. They were asked to review key areas and consider the strength of the evidence on the risk-benefit balance of pharmacological interventions and the clinical implications, with an emphasis on meta-analyses, systematic reviews and randomised controlled trials where available, plus updates on current clinical practice. The guidelines cover the pharmacological management and treatment of schizophrenia across the various stages of the illness, including first-episode, relapse prevention, and illness that has proved refractory to standard treatment. It is hoped that the practice recommendations presented will support clinical decision making for practitioners, serve as a source of information for patients and carers, and inform quality improvement.
Collapse
Affiliation(s)
- Thomas Re Barnes
- Emeritus Professor of Clinical Psychiatry, Division of Psychiatry, Imperial College London, and Joint-head of the Prescribing Observatory for Mental Health, Centre for Quality Improvement, Royal College of Psychiatrists, London, UK
| | - Richard Drake
- Clinical Lead for Mental Health in Working Age Adults, Health Innovation Manchester, University of Manchester and Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Carol Paton
- Joint-head of the Prescribing Observatory for Mental Health, Centre for Quality Improvement, Royal College of Psychiatrists, London, UK
| | - Stephen J Cooper
- Emeritus Professor of Psychiatry, School of Medicine, Queen's University Belfast, Belfast, UK
| | - Bill Deakin
- Professor of Psychiatry, Neuroscience & Psychiatry Unit, University of Manchester and Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - I Nicol Ferrier
- Emeritus Professor of Psychiatry, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine J Gregory
- Honorary Clinical Research Fellow, University of Manchester and Higher Trainee in Child and Adolescent Psychiatry, Manchester University NHS Foundation Trust, Manchester, UK
| | - Peter M Haddad
- Honorary Professor of Psychiatry, Division of Psychology and Mental Health, University of Manchester, UK and Senior Consultant Psychiatrist, Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | - Oliver D Howes
- Professor of Molecular Psychiatry, Imperial College London and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ian Jones
- Professor of Psychiatry and Director, National Centre of Mental Health, Cardiff University, Cardiff, UK
| | - Eileen M Joyce
- Professor of Neuropsychiatry, UCL Queen Square Institute of Neurology, London, UK
| | - Shôn Lewis
- Professor of Adult Psychiatry, Faculty of Biology, Medicine and Health, The University of Manchester, UK, and Mental Health Academic Lead, Health Innovation Manchester, Manchester, UK
| | - Anne Lingford-Hughes
- Professor of Addiction Biology and Honorary Consultant Psychiatrist, Imperial College London and Central North West London NHS Foundation Trust, London, UK
| | - James H MacCabe
- Professor of Epidemiology and Therapeutics, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, and Honorary Consultant Psychiatrist, National Psychosis Service, South London and Maudsley NHS Foundation Trust, Beckenham, UK
| | - David Cunningham Owens
- Professor of Clinical Psychiatry, University of Edinburgh. Honorary Consultant Psychiatrist, Royal Edinburgh Hospital, Edinburgh, UK
| | - Maxine X Patel
- Honorary Clinical Senior Lecturer, King's College London, Institute of Psychiatry, Psychology and Neuroscience and Consultant Psychiatrist, Oxleas NHS Foundation Trust, London, UK
| | - Julia Ma Sinclair
- Professor of Addiction Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James M Stone
- Clinical Senior Lecturer and Honorary Consultant Psychiatrist, King's College London, Institute of Psychiatry, Psychology and Neuroscience and South London and Maudsley NHS Trust, London, UK
| | - Peter S Talbot
- Senior Lecturer and Honorary Consultant Psychiatrist, University of Manchester and Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Rachel Upthegrove
- Professor of Psychiatry and Youth Mental Health, University of Birmingham and Consultant Psychiatrist, Birmingham Early Intervention Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Angelika Wieck
- Honorary Consultant in Perinatal Psychiatry, Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Alison R Yung
- Professor of Psychiatry, University of Manchester, School of Health Sciences, Manchester, UK and Centre for Youth Mental Health, University of Melbourne, Australia, and Honorary Consultant Psychiatrist, Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| |
Collapse
|
84
|
Hnatkova K, Toman O, Šišáková M, Smetana P, Huster KM, Barthel P, Novotný T, Schmidt G, Malik M. Sex and race differences in J-Tend, J-Tpeak, and Tpeak-Tend intervals. Sci Rep 2019; 9:19880. [PMID: 31882660 PMCID: PMC6934529 DOI: 10.1038/s41598-019-56328-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/10/2019] [Indexed: 11/19/2022] Open
Abstract
To facilitate the precision of clinical electrocardiographic studies of J-to-Tpeak (JTp) and Tpeak-to-Tend (Tpe) intervals, the study investigated their differences between healthy females and males, and between subjects of African and Caucasian origin. In 523 healthy subjects (254 females; 236 subjects of African origin), repeated Holter recordings were used to measure QT, JT, JTp, and Tpe intervals preceded by both stable and variable heart rates. Subject-specific curvilinear regression models were used to obtain individual QTc, JTc, JTpc and Tpec intervals. Rate hysteresis, i.e., the speed with which the intervals adapted after heart rate changes, was also investigated. In all sex-race groups, Tpe intervals were not systematically heart rate dependent. Similar to QTc intervals, women had JTc, and JTpc intervals longer than males (difference 20–30 ms, p < 0.001). However, women had Tpec intervals (and rate uncorrected Tpe intervals) shorter by approximately 10 ms compared to males (p < 0.001). Subjects of African origin had significantly shorter QTc intervals than Caucasians (p < 0.001). Gradually diminishing race-difference was found for JTc, JTpc and Tpec intervals. JTc and JTpc were moderately increasing with age but Tpe/Tpec were not. Rate hysteresis of JTp was approximately 10% longer compared to that of JT (p < 0.001). In future clinical studies, Tpe interval should not be systematically corrected for heart rate and similar to the QT interval, the differences in JT, JTp and Tpe intervals should be corrected for sex. The differences in QT and JT, and JTp intervals should also be corrected for race.
Collapse
Affiliation(s)
- Katerina Hnatkova
- National Heart and Lung Institute, Imperial College, 72 Du Cane Road, Shepherd's Bush, London, W12 0NN, England
| | - Ondřej Toman
- Department of Internal Medicine and Cardiology, University Hospital Brno, Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Martina Šišáková
- Department of Internal Medicine and Cardiology, University Hospital Brno, Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Peter Smetana
- Wilhelminenspital der Stadt Wien, Montleartstraße 37, 1160, Vienna, Austria
| | - Katharina M Huster
- Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, D-81675, Munich, Germany
| | - Petra Barthel
- Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, D-81675, Munich, Germany
| | - Tomáš Novotný
- Department of Internal Medicine and Cardiology, University Hospital Brno, Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Georg Schmidt
- Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, D-81675, Munich, Germany
| | - Marek Malik
- National Heart and Lung Institute, Imperial College, 72 Du Cane Road, Shepherd's Bush, London, W12 0NN, England.
| |
Collapse
|
85
|
Tay YL, Amanah A, Adenan MI, Wahab HA, Tan ML. Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells. Sci Rep 2019; 9:19757. [PMID: 31874991 PMCID: PMC6930223 DOI: 10.1038/s41598-019-56106-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/06/2019] [Indexed: 11/24/2022] Open
Abstract
Mitragyna speciosa Korth (M. speciosa) has been widely used as a recreational product, however, there are growing concerns on the abuse potentials and toxicity of the plant. Several poisoning and fatal cases involving kratom and mitragynine have been reported but the underlying causes remain unclear. The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit underlying cardiac rapidly delayed rectifier potassium current (IKr). Pharmacological blockade of the IKr can cause acquired long QT syndrome, leading to lethal cardiac arrhythmias. This study aims to elucidate the mechanisms of mitragynine-induced inhibition on hERG1a/1b current. Electrophysiology experiments were carried out using Port-a-Patch system. Quantitative RT-PCR, Western blot analysis, immunofluorescence and co-immunoprecipitation methods were used to determine the effects of mitragynine on hERG1a/1b expression and hERG1-cytosolic chaperones interaction. Mitragynine was found to inhibit the IKr current with an IC50 value of 332.70 nM. It causes a significant reduction of the fully-glycosylated (fg) hERG1a protein expression but upregulates both core-glycosylated (cg) expression and hERG1a-Hsp90 complexes, suggesting possible impaired hERG1a trafficking. In conclusion, mitragynine inhibits hERG1a/1b current through direct channel blockade at lower concentration, but at higher concentration, it upregulates the complexation of hERG1a-Hsp90 which may be inhibitory towards channel trafficking.
Collapse
Affiliation(s)
- Yea Lu Tay
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Pulau Pinang, 11700, Malaysia
| | - Azimah Amanah
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Pulau Pinang, 11700, Malaysia
| | - Mohd Ilham Adenan
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan, 42300, Malaysia
| | - Habibah Abdul Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11700, Malaysia
| | - Mei Lan Tan
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Pulau Pinang, 11700, Malaysia. .,School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11700, Malaysia. .,Advanced Medical and Dental Institute, Universiti Sains Malaysia, SAINS@BERTAM, Kepala Batas, Pulau Pinang, 13200, Malaysia.
| |
Collapse
|
86
|
Comprehensive In Vitro Proarrhythmia Assay (CiPA) Update from a Cardiac Safety Research Consortium / Health and Environmental Sciences Institute / FDA Meeting. Ther Innov Regul Sci 2019; 53:519-525. [DOI: 10.1177/2168479018795117] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
87
|
Cao X, Nagasawa Y, Zhang C, Zhang H, Aimoto M, Takahara A. Electropharmacological profile of an atrial-selective sodium channel blocker acehytisine assessed in the isoflurane-anesthetized guinea-pig model. J Pharmacol Sci 2019; 141:153-159. [PMID: 31757741 DOI: 10.1016/j.jphs.2019.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022] Open
Abstract
Experimental evidence regarding the risk of proarrhythmic potential of acehytisine is limited. We assessed its electropharmacological effect together with proarrhythmic potential at intravenous doses of 4 and 10 mg/kg (n = 6) using isoflurane-anesthetized guinea pigs in comparison with that of bepridil at 1 and 3 mg/kg, intravenously (n = 6). Acehytisine at therapeutic dose (4 mg/kg) decreased the heart rate, prolonged P wave duration, QRS width, QT interval, QTc, MAP90(sinus), MAP90(CL300) and MAP90(CL250). At supratherapeutic dose (10 mg/kg), it prolonged the PR interval besides enhancing the changes induced by the therapeutic dose. Quantitative assessment showed that peak changes in P wave duration by acehytisine at 10 mg/kg were 1.7 times longer than bepridil, and in MAP90(sinus), MAP90(CL300) and MAP90(CL250) by acehytisine were 1.9, 1.5 and 1.5 times shorter than bepridil, respectively. Importantly, qualitative assessment indicated that bepridil increased beat-to-beat variability and J-Tpeakc in a dose-related manner, confirming a higher proarrhythmic risk, whereas such dose-related responses were not observed in acehytisine, suggesting a lower proarrhythmic risk. These results suggest that acehytisine exhibits favorable pharmacological characters, i.e. potent atrial inhibition and lower proarrhythmic toxicity compared with bepridil, being a promising candidate for the treatment of paroxysmal supraventricular tachycardia.
Collapse
Affiliation(s)
- Xin Cao
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu District, Chengdu, 610075, Sichuan Province, China; Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| | - Yoshinobu Nagasawa
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Chengshun Zhang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu District, Chengdu, 610075, Sichuan Province, China
| | - Hanxiao Zhang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu District, Chengdu, 610075, Sichuan Province, China
| | - Megumi Aimoto
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Akira Takahara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
88
|
Takasuna K, Kazusa K, Hayakawa T. Comprehensive Cardiac Safety Assessment using hiPS-cardiomyocytes (Consortium for Safety Assessment using Human iPS Cells: CSAHi). Curr Pharm Biotechnol 2019; 21:829-841. [PMID: 31749424 DOI: 10.2174/1389201020666191024172425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 11/22/2022]
Abstract
Current cardiac safety assessment platforms (in vitro hERG-centric, APD, and/or in vivo animal QT assays) are not fully predictive of drug-induced Torsades de Pointes (TdP) and do not address other mechanism-based arrhythmia, including ventricular tachycardia or ventricular fibrillation, or cardiac safety liabilities such as contractile and structural cardiotoxicity which are another growing safety concerns. We organized the Consortium for Safety Assessment using Human iPS cells (CSAHi; http://csahi.org/en/) in 2013, based on the Japan Pharmaceutical Manufacturers Association (JPMA), to verify the application of human iPS/ES cell-derived cardiomyocytes for drug safety evaluation. The CSAHi HEART team focused on comprehensive screening strategies to predict a diverse range of cardiotoxicities using recently introduced platforms such as the Multi-Electrode Array (MEA), cellular impedance, Motion Field Imaging (MFI), and optical imaging of Ca transient to identify strengths and weaknesses of each platform. Our study showed that hiPS-CMs used in these platforms could detect pharmacological responses that were more relevant to humans compared to existing hERG, APD, or Langendorff (MAPD/contraction) assays. Further, MEA and other methods such as impedance, MFI, and Ca transient assays provided paradigm changes of platforms for predicting drug-induced QT risk and/or arrhythmia or contractile dysfunctions. In contrast, since discordances such as overestimation (false positive) of arrhythmogenicity, oversight, or opposite conclusions in positive inotropic and negative chronotropic activities to some compounds were also confirmed, possibly due to their functional immaturity of hiPS-CMs, hiPS-CMs should be used in these platforms for cardiac safety assessment based upon their advantages and disadvantages.
Collapse
Affiliation(s)
- Kiyoshi Takasuna
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Heart Team, Japan
| | - Katsuyuki Kazusa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| | - Tomohiro Hayakawa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| |
Collapse
|
89
|
Morettini M, Peroni C, Sbrollini A, Marcantoni I, Burattini L. Classification of drug-induced hERG potassium-channel block from electrocardiographic T-wave features using artificial neural networks. Ann Noninvasive Electrocardiol 2019; 24:e12679. [PMID: 31347753 DOI: 10.1111/anec.12679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Human ether-à-go-go-related gene (hERG) potassium-channel block represents a harmful side effect of drug therapy that may cause torsade de pointes (TdP). Analysis of ventricular repolarization through electrocardiographic T-wave features represents a noninvasive way to accurately evaluate the TdP risk in drug-safety studies. This study proposes an artificial neural network (ANN) for noninvasive electrocardiography-based classification of the hERG potassium-channel block. METHODS The data were taken from the "ECG Effects of Ranolazine, Dofetilide, Verapamil, and Quinidine in Healthy Subjects" Physionet database; they consisted of median vector magnitude (VM) beats of 22 healthy subjects receiving a single 500 μg dose of dofetilide. Fourteen VM beats were considered for each subject, relative to time-points ranging from 0.5 hr before to 14.0 hr after dofetilide administration. For each VM, changes in two indexes accounting for the early and the late phases of repolarization, ΔERD30% and ΔTS /A , respectively, were computed as difference between values at each postdose time-point and the predose time-point. Thus, the dataset contained 286 ΔERD30% -ΔTS /A pairs, partitioned into training, validation, and test sets (114, 29, and 143 pairs, respectively) and used as inputs of a two-layer feedforward ANN with two target classes: high block (HB) and low block (LB). Optimal ANN (OANN) was identified using the training and validation sets and tested on the test set. RESULTS Test set area under the receiver operating characteristic was 0.91; sensitivity, specificity, accuracy, and precision were 0.93, 0.83, 0.92, and 0.96, respectively. CONCLUSION OANN represents a reliable tool for noninvasive assessment of the hERG potassium-channel block.
Collapse
Affiliation(s)
- Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Chiara Peroni
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Agnese Sbrollini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Ilaria Marcantoni
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Burattini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
90
|
Täubel J, Prasad K, Rosano G, Ferber G, Wibberley H, Cole ST, Van Langenhoven L, Fernandes S, Djumanov D, Sugiyama A. Effects of the Fluoroquinolones Moxifloxacin and Levofloxacin on the QT Subintervals: Sex Differences in Ventricular Repolarization. J Clin Pharmacol 2019; 60:400-408. [PMID: 31637733 PMCID: PMC7027842 DOI: 10.1002/jcph.1534] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/26/2019] [Indexed: 11/11/2022]
Abstract
Women are associated with longer electrocardiographic QT intervals and increased proarrhythmic risks of QT‐prolonging drugs. The purpose of this study was to characterize the differences in cardiac electrophysiology between moxifloxacin and levofloxacin in men and women and to assess the balance of inward and outward currents through the analysis of QT subintervals. Data from 2 TQT studies were used to investigate the impact of moxifloxacin (400 mg) and levofloxacin (1000 and 1500 mg) on QT subintervals using algorithms for measurement of J‐Tpeak and Tpeak‐Tend intervals. Concentration‐effect analyses were performed to establish potential relationships between the ECG effects and the concentrations of the 2 fluoroquinolones. Moxifloxacin was shown to be a more potent prolonger of QT interval corrected by Fredericia (QTcF) and had a pronounced effect on J‐Tpeakc. Levofloxacin had little effect on J‐Tpeakc. For moxifloxacin, the concentration‐effect modeling showed a greater effect for women on QTcF and J‐Tpeakc, whereas for levofloxacin the inverse was true: women had smaller QTcF and J‐Tpeakc effects. The different patterns in repolarization after administration of both drugs suggested a sex difference, which may be related to the combined IKs and IKr inhibitory properties of moxifloxacin versus IKr suppression only of levofloxacin. The equipotent inhibition of IKs and IKr appears to affect women more than men. Sex hormones are known to influence cardiac ion channel expression and differences in QT duration. Differences in IKr and IKs balances, influenced by sex hormones, may explain the results. These results support the impact of sex differences on the cardiac safety assessment of drugs.
Collapse
Affiliation(s)
- Jӧrg Täubel
- Richmond Pharmacology Ltd, St George's, University of London, Cranmer Terrace, London, UK.,Cardiovascular and Cell Sciences Research Institute, St George's, University of London, London, UK
| | - Krishna Prasad
- Medicines and Healthcare Products Regulatory Agency, Department of Health and Social Care, London, UK
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St George's, University of London, London, UK.,Centre of Clinical and Experimental Medicine, IRCCS San Raffaele, Rome, Italy
| | - Georg Ferber
- Statistik Georg Ferber GmbH, Cagliostrostrasse, Riehen, Switzerland
| | - Helen Wibberley
- Richmond Pharmacology Ltd, St George's, University of London, Cranmer Terrace, London, UK
| | - Samuel Thomas Cole
- Richmond Pharmacology Ltd, St George's, University of London, Cranmer Terrace, London, UK
| | - Leen Van Langenhoven
- Richmond Pharmacology Ltd, St George's, University of London, Cranmer Terrace, London, UK
| | - Sara Fernandes
- Richmond Pharmacology Ltd, St George's, University of London, Cranmer Terrace, London, UK
| | - Dilshat Djumanov
- Richmond Pharmacology Ltd, St George's, University of London, Cranmer Terrace, London, UK
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| |
Collapse
|
91
|
Abstract
Drug-induced changes of the J to T peak (JTp) and J to the median of area under the T wave (JT50) were reported to differentiate QT prolonging drugs that are predominant blockers of the delayed potassium rectifier current from those with multiple ion channel effects. Studies of drug-induced JTp/JT50 interval changes might therefore facilitate cardiac safety evaluation of new pharmaceuticals. It is not known whether formulas for QT heart rate correction are applicable to JTp and JT50 intervals. QT/RR, JTp/RR, and JT50/RR profiles were studied in 523 healthy subjects aged 33.5 ± 8.4 years (254 females). In individual subjects, 1,256 ± 220 electrocardiographic measurements of QT, JTp, and JT50 intervals were available including a 5-minute history of RR intervals preceding each measurement. Curvilinear, linear and log-linear regression models were used to characterize individual QT/RR, JTp/RR, and JT50/RR profiles both without and with correction for heart rate hysteresis. JTp/RR and JT50/RR hysteresis correction needs to be included but the generic universal correction for QT/RR hysteresis is also applicable to JTp/RR and JT50/RR profiles. Once this is incorporated, median regression coefficients of the investigated population suggest linear correction formulas JTpc = JTp + 0.150(1-RR) and JT50c = JT50 + 0.117(1-RR) where RR intervals of the underlying heart rate are hysteresis-corrected, and all measurements expressed in seconds. The established correction formulas can be proposed for future clinical pharmacology studies that show drug-induced heart rate changes of up to approximately 10 beats per minute.
Collapse
|
92
|
Kambayashi R, Hagiwara-Nagasawa M, Goto A, Chiba K, Izumi-Nakaseko H, Naito AT, Matsumoto A, Sugiyama A. Experimental analysis of the onset mechanism of TdP reported in an LQT3 patient during pharmacological treatment with serotonin-dopamine antagonists against insomnia and nocturnal delirium. Heart Vessels 2019; 35:593-602. [PMID: 31628538 DOI: 10.1007/s00380-019-01521-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
Torsade de pointes (TdP) occurred in a long QT syndrome type 3 (LQT3) patient after switching perospirone to blonanserin. We studied how their electropharmacological effects had induced TdP in the LQT3 patient. Perospirone hydrochloride (n = 4) or blonanserin (n = 4) of 0.01, 0.1, and 1 mg/kg, i.v. was cumulatively administered to the halothane-anesthetized dogs over 10 min. The low dose of perospirone decreased total peripheral vascular resistance, but increased heart rate and cardiac output, facilitated atrioventricular conduction, and prolonged J-Tpeakc. The middle dose decreased mean blood pressure and prolonged repolarization period, in addition to those observed after the low dose. The high dose further decreased mean blood pressure with the reduction of total peripheral vascular resistance; however, it did not increase heart rate or cardiac output. It tended to delay atrioventricular conduction and further delayed repolarization with the prolongation of Tpeak-Tend, whereas J-Tpeakc returned to its baseline level. Meanwhile, each dose of blonanserin decreased total peripheral vascular resistance, but increased heart rate, cardiac output and cardiac contractility in a dose-related manner. J-Tpeakc was prolonged by each dose, but Tpeak-Tend was shortened by the middle and high doses. These results indicate that perospirone and blonanserin may cause the hypotension-induced, reflex-mediated increase of sympathetic tone, leading to the increase of inward Ca2+ current in the heart except that the high dose of perospirone reversed them. Thus, blonanserin may have more potential to produce intracellular Ca2+ overload triggering early afterdepolarization than perospirone, which might explain the onset of TdP in the LQT3 patient.
Collapse
Affiliation(s)
- Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Mihoko Hagiwara-Nagasawa
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ai Goto
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Koki Chiba
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hiroko Izumi-Nakaseko
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Atsuhiko T Naito
- Division of Cellular Physiology, Department of Physiology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
93
|
Stabenau HF, Shen C, Tereshchenko LG, Waks JW. Changes in global electrical heterogeneity associated with dofetilide, quinidine, ranolazine, and verapamil. Heart Rhythm 2019; 17:460-467. [PMID: 31539628 DOI: 10.1016/j.hrthm.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Electrocardiographic (ECG) markers of antiarrhythmic drug (AAD) activity could be used to optimize efficacy and minimize toxicity. Vectorcardiographic global electrical heterogeneity (GEH) is associated with ventricular arrhythmias and sudden death, but it is unclear how GEH measurements change in response to AADs. OBJECTIVE The purpose of this study was to characterize acute effects of AADs on GEH measurements. METHODS We analyzed double-blind placebo-controlled trial data from healthy volunteers given 1 dose of placebo, dofetilide, quinidine, ranolazine, or verapamil on subsequent visits. Serial ECGs and plasma drug concentrations were collected. Vectorcardiographic GEH parameters (spatial ventricular gradient [SVG], spatial QRST angle, sum absolute QRST integral, and SVG-QRS peak angle) were measured. Placebo-corrected change from baseline was regressed on drug concentration stratified by sex using linear mixed effects models. RESULTS Among 22 persons (11 (50%) male median age 27 ± 5 years), 5232 ECGs were analyzed. Dofetilide and quinidine were associated with significant changes in more GEH parameters (5) compared with verapamil (2) and ranolazine (1). The most notable change occurred in SVG azimuth, with largest changes (degrees per unit normalized drug concentration) in dofetilide (6.1; 95% confidence interval [CI] 4.2-8.0) and quinidine (9.4; 95% CI 6.7-12.0), and smaller effects in verapamil (4.4; 95% CI 2.9-5.9) and ranolazine (5.4; 95% CI 3.5-7.3). AAD-induced GEH changes significantly differed in men and women. CONCLUSION AADs change GEH measurements. These changes, which differ by sex, are likely driven by alterations in ion channel function and dispersion of depolarization or repolarization. GEH measurement may allow early assessment of favorable or adverse AAD effects.
Collapse
Affiliation(s)
- Hans Friedrich Stabenau
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Changyu Shen
- Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School, Boston, Massachusetts
| | - Larisa G Tereshchenko
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Jonathan W Waks
- Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
94
|
Blinova K, Schocken D, Patel D, Daluwatte C, Vicente J, Wu JC, Strauss DG. Clinical Trial in a Dish: Personalized Stem Cell-Derived Cardiomyocyte Assay Compared With Clinical Trial Results for Two QT-Prolonging Drugs. Clin Transl Sci 2019; 12:687-697. [PMID: 31328865 PMCID: PMC6853144 DOI: 10.1111/cts.12674] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have shown promise in investigating donor-specific phenotypes and pathologies. The iPSC-derived cardiomyocytes (iPSC-CMs) could potentially be utilized in personalized cardiotoxicity studies, assessing individual proarrhythmic risk. However, it is unclear how closely iPSC-CMs derived from healthy subjects can recapitulate a range of responses to drugs. It is well known that QT-prolonging drugs induce subject-specific clinical response and that all healthy subjects do not necessarily develop arrhythmias or exhibit similar amounts of QT prolongation. We previously reported this variability in a study of four human ether-a-go-go-related gene (hERG) potassium channel-blocking drugs in which each subject underwent intensive pharmacokinetic and pharmacodynamic sampling such that subjects had 15 time-matched plasma drug concentration and electrocardiogram measurements throughout 24 hours after dosing in a phase I clinical research unit. In this study, iPSC-CMs were generated from those subjects. Their drug-concentration-dependent QT prolongation response from the clinic was compared with in vitro drug-concentration-dependent action potential duration (APD) prolongation response to the same two hERG-blocking drugs, dofetilide and moxifloxacin. Comparative results showed no significant correlation between the subject-specific APD response slopes and clinical QT response slopes to either moxifloxacin (P = 0.75) or dofetilide (P = 0.69). Similarly, no significant correlation was found between baseline QT and baseline APD measurements (P = 0.93). This result advances our current understanding of subject-specific iPSC-CMs and facilitates discussion into factors obscuring correlation and considerations for future studies of subject-specific phenotypes in iPSC-CMs.
Collapse
Affiliation(s)
- Ksenia Blinova
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Derek Schocken
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Dakshesh Patel
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chathuri Daluwatte
- Center for Drug Evaluation and Research, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jose Vicente
- Center for Drug Evaluation and Research, Office of New Drugs, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - David G Strauss
- Center for Drug Evaluation and Research, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
95
|
Novel method for action potential measurements from intact cardiac monolayers with multiwell microelectrode array technology. Sci Rep 2019; 9:11893. [PMID: 31417144 PMCID: PMC6695445 DOI: 10.1038/s41598-019-48174-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/26/2019] [Indexed: 01/09/2023] Open
Abstract
The cardiac action potential (AP) is vital for understanding healthy and diseased cardiac biology and drug safety testing. However, techniques for high throughput cardiac AP measurements have been limited. Here, we introduce a novel technique for reliably increasing the coupling of cardiomyocyte syncytium to planar multiwell microelectrode arrays, resulting in a stable, label-free local extracellular action potential (LEAP). We characterized the reliability and stability of LEAP, its relationship to the field potential, and its efficacy for quantifying AP morphology of human induced pluripotent stem cell derived and primary rodent cardiomyocytes. Rise time, action potential duration, beat period, and triangulation were used to quantify compound responses and AP morphology changes induced by genetic modification. LEAP is the first high throughput, non-invasive, label-free, stable method to capture AP morphology from an intact cardiomyocyte syncytium. LEAP can accelerate our understanding of stem cell models, while improving the automation and accuracy of drug testing.
Collapse
|
96
|
Hnatkova K, Vicente J, Johannesen L, Garnett C, Strauss DG, Stockbridge N, Malik M. Detection of T Wave Peak for Serial Comparisons of JTp Interval. Front Physiol 2019; 10:934. [PMID: 31402872 PMCID: PMC6670189 DOI: 10.3389/fphys.2019.00934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022] Open
Abstract
Electrocardiogram (ECG) studies of drug-induced prolongation of the interval between the J point and the peak of the T wave (JTp interval) distinguished QT prolonging drugs that predominantly block the delayed potassium rectifier current from those affecting multiple cardiac repolarisation ion channel currents. Since the peak of the T wave depends on ECG lead, a “global” T peak requires to combine ECG leads into one-dimensional signal in which the T wave peak can be measured. This study aimed at finding the optimum one-dimensional representation of 12-lead ECGs for the most stable JTp measurements. Seven different one-dimensional representations were investigated including the vector magnitude of the orthogonal XYZ transformation, root mean square of all 12 ECG leads, and the vector magnitude of the 3 dominant orthogonal leads derived by singular value decomposition. All representations were applied to the median waveforms of 660,657 separate 10-s 12-lead ECGs taken from repeated day-time Holter recordings in 523 healthy subjects aged 33.5 ± 8.4 years (254 women). The JTp measurements were compared with the QT intervals and with the intervals between the J point and the median point of the area under the T wave one-dimensional representation (JT50 intervals) by means of calculating the residuals of the subject-specific curvilinear regression models relating the measured interval to the hysteresis-corrected RR interval of the underlying heart rate. The residuals of the regression models (equal to the intra-subject standard deviations of individually heart rate corrected intervals) expressed intra-subject stability of interval measurements. For both the JTp intervals and the JT50 intervals, the curvilinear regression residuals of measurements derived from the orthogonal XYZ representation were marginally but statistically significantly lower compared to the other representations. Using the XYZ representation, the residuals of the QT/RR, JTp/RR and JT50/RR regressions were 5.6 ± 1.1 ms, 7.2 ± 2.2 ms, and 4.9 ± 1.2 ms, respectively (all statistically significantly different; p < 0.0001). The study concludes that the orthogonal XYZ ECG representation might be proposed for future investigations of JTp and JT50 intervals. If the ability of classifying QT prolonging drugs is further confirmed for the JT50 interval, it might be appropriate to replace the JTp interval since with JT50 it appears more stable.
Collapse
Affiliation(s)
- Katerina Hnatkova
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jose Vicente
- Division of Cardiovascular and Renal Products, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food & Drug Administration, Silver Spring, MD, United States
| | - Lars Johannesen
- Division of Cardiovascular and Renal Products, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food & Drug Administration, Silver Spring, MD, United States
| | - Christine Garnett
- Division of Cardiovascular and Renal Products, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food & Drug Administration, Silver Spring, MD, United States
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Norman Stockbridge
- Division of Cardiovascular and Renal Products, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food & Drug Administration, Silver Spring, MD, United States
| | - Marek Malik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
97
|
Darpo B, Benson C, Brown R, Dota C, Ferber G, Ferry J, Jarugula V, Keirns J, Ortemann‐Renon C, Pham T, Riley S, Sarapa N, Ticktin M, Zareba W, Couderc J. Evaluation of the Effect of 5 QT‐Positive Drugs on the JTpeak Interval — An Analysis of ECGs From the IQ‐CSRC Study. J Clin Pharmacol 2019; 60:125-139. [DOI: 10.1002/jcph.1502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | | | | | | | | | - Jim Ferry
- Clinical PharmacologyEisai Woodcliff Lake New Jersey USA
| | | | - James Keirns
- Retired; at the time of the IQ‐CSRC study at Astellas Northbrook Illinois USA
| | | | | | | | - Nenad Sarapa
- Sarah Cannon Research Institute Nashville Tennessee USA
| | | | - Wojciech Zareba
- Cardiovascular Clinical Research CenterUniversity of Rochester New York USA
| | - Jean‐Philippe Couderc
- ERT Rochester New York USA
- Cardiovascular Clinical Research CenterUniversity of Rochester New York USA
| |
Collapse
|
98
|
Millard D, Dang Q, Shi H, Zhang X, Strock C, Kraushaar U, Zeng H, Levesque P, Lu HR, Guillon JM, Wu JC, Li Y, Luerman G, Anson B, Guo L, Clements M, Abassi YA, Ross J, Pierson J, Gintant G. Cross-Site Reliability of Human Induced Pluripotent stem cell-derived Cardiomyocyte Based Safety Assays Using Microelectrode Arrays: Results from a Blinded CiPA Pilot Study. Toxicol Sci 2019; 164:550-562. [PMID: 29718449 PMCID: PMC6061700 DOI: 10.1093/toxsci/kfy110] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro cardiac safety studies demonstrate the ability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to detect electrophysiologic effects of drugs. However, variability contributed by unique approaches, procedures, cell lines, and reagents across laboratories makes comparisons of results difficult, leading to uncertainty about the role of hiPSC-CMs in defining proarrhythmic risk in drug discovery and regulatory submissions. A blinded pilot study was conducted to evaluate the electrophysiologic effects of 8 well-characterized drugs on 4 cardiomyocyte lines using a standardized protocol across 3 microelectrode array platforms (18 individual studies). Drugs were selected to define assay sensitivity of prominent repolarizing currents (E-4031 for IKr, JNJ303 for IKs) and depolarizing currents (nifedipine for ICaL, mexiletine for INa) as well as drugs affecting multichannel block (flecainide, moxifloxacin, quinidine, and ranolazine). Inclusion criteria for final analysis was based on demonstrated sensitivity to IKr block (20% prolongation with E-4031) and L-type calcium current block (20% shortening with nifedipine). Despite differences in baseline characteristics across cardiomyocyte lines, multiple sites, and instrument platforms, 10 of 18 studies demonstrated adequate sensitivity to IKr block with E-4031 and ICaL block with nifedipine for inclusion in the final analysis. Concentration-dependent effects on repolarization were observed with this qualified data set consistent with known ionic mechanisms of single and multichannel blocking drugs. hiPSC-CMs can detect repolarization effects elicited by single and multichannel blocking drugs after defining pharmacologic sensitivity to IKr and ICaL block, supporting further validation efforts using hiPSC-CMs for cardiac safety studies.
Collapse
Affiliation(s)
| | - Qianyu Dang
- US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland 20993
| | - Hong Shi
- Bristol-Myers Squibb Company, Princeton, New Jersey 08543
| | - Xiaou Zhang
- Acea Biosciences, San Diego, California 92121
| | | | - Udo Kraushaar
- Naturwissenschaftliches und Medizinisches Institut, Reutlingen, Germany
| | - Haoyu Zeng
- Merck & Co., Inc., Safety & Exploratory Pharmacology Department, West Point, Pennsylvania
| | - Paul Levesque
- Bristol-Myers Squibb Company, Princeton, New Jersey 08543
| | | | | | - Joseph C Wu
- Stanford University School of Medicine, Stanford Cardiovascular Institute, Stanford, California
| | - Yingxin Li
- Stanford University School of Medicine, Stanford Cardiovascular Institute, Stanford, California
| | | | - Blake Anson
- Cellular Dynamics International a FujiFilm, Company, Madison, Wisconsin 53508
| | - Liang Guo
- Cellular Dynamics International a FujiFilm, Company, Madison, Wisconsin 53508.,Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland 21702
| | | | | | - James Ross
- Axion Biosystems Inc, Atlanta, Georgia 30309
| | - Jennifer Pierson
- ILSI-Health and Environmental Sciences Institute, Washington, District of Columbia 20009
| | - Gary Gintant
- Integrative Pharmacology (Dept ZR13), Integrated Science and Technology. AbbVie, North Chicago, Illinois 60064
| |
Collapse
|
99
|
Pfeiffer-Kaushik ER, Smith GL, Cai B, Dempsey GT, Hortigon-Vinagre MP, Zamora V, Feng S, Ingermanson R, Zhu R, Hariharan V, Nguyen C, Pierson J, Gintant GA, Tung L. Electrophysiological characterization of drug response in hSC-derived cardiomyocytes using voltage-sensitive optical platforms. J Pharmacol Toxicol Methods 2019; 99:106612. [PMID: 31319140 DOI: 10.1016/j.vascn.2019.106612] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Voltage-sensitive optical (VSO) sensors offer a minimally invasive method to study the time course of repolarization of the cardiac action potential (AP). This Comprehensive in vitro Proarrhythmia Assay (CiPA) cross-platform study investigates protocol design and measurement variability of VSO sensors for preclinical cardiac electrophysiology assays. METHODS Three commercial and one academic laboratory completed a limited study of the effects of 8 blinded compounds on the electrophysiology of 2 commercial lines of human induced pluripotent stem-cell derived cardiomyocytes (hSC-CMs). Acquisition technologies included CMOS camera and photometry; fluorescent voltage sensors included di-4-ANEPPS, FluoVolt and genetically encoded QuasAr2. The experimental protocol was standardized with respect to cell lines, plating and maintenance media, blinded compounds, and action potential parameters measured. Serum-free media was used to study the action of drugs, but the exact composition and the protocols for cell preparation and drug additions varied among sites. RESULTS Baseline AP waveforms differed across platforms and between cell types. Despite these differences, the relative responses to four selective ion channel blockers (E-4031, nifedipine, mexiletine, and JNJ 303 blocking IKr, ICaL, INa, and IKs, respectively) were similar across all platforms and cell lines although the absolute changes differed. Similarly, four mixed ion channel blockers (flecainide, moxifloxacin, quinidine, and ranolazine) had comparable effects in all platforms. Differences in repolarisation time course and response to drugs could be attributed to cell type and experimental method differences such as composition of the assay media, stimulated versus spontaneous activity, and single versus cumulative compound addition. DISCUSSION In conclusion, VSOs represent a powerful and appropriate method to assess the electrophysiological effects of drugs on iPSC-CMs for the evaluation of proarrhythmic risk. Protocol considerations and recommendations are provided toward standardizing conditions to reduce variability of baseline AP waveform characteristics and drug responses.
Collapse
Affiliation(s)
| | - Godfrey L Smith
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Beibei Cai
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Graham T Dempsey
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Maria P Hortigon-Vinagre
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Victor Zamora
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Shuyun Feng
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Randall Ingermanson
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Venkatesh Hariharan
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Cuong Nguyen
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Jennifer Pierson
- Health and Environmental Sciences Institute, Washington, D.C. 20009, USA.
| | - Gary A Gintant
- AbbVie, 1 North Waukegan Road, Department ZR-13, Building AP-9A, North Chicago, IL 60064-6119, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| |
Collapse
|
100
|
Bystricky W, Maier C, Gintant G, Bergau D, Kamradt K, Welsh P, Carter D. T vector velocity: A new ECG biomarker for identifying drug effects on cardiac ventricular repolarization. PLoS One 2019; 14:e0204712. [PMID: 31283756 PMCID: PMC6613676 DOI: 10.1371/journal.pone.0204712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 06/04/2019] [Indexed: 11/23/2022] Open
Abstract
Background We present a new family of ECG biomarkers for assessing drug effects on ventricular repolarization. We show that drugs blocking inward (depolarizing) ion currents cause a relative increase of the T vector velocity (TVV) and accelerate repolarization, while drugs blocking outward ion currents cause a relative decrease of the TVV and delay repolarization. The results suggest a link between the TVV and the instantaneous change of the cellular action potentials that may contribute to bridge the gap between the surface ECG and myocardial cellular processes. Methods We measure TVV as the time required to reach X% of the total Trajectory length of the T vector loop, denoted as TrX. Applied to data from two FDA funded studies (22+22 subjects, 5232+4208 ECGs) which target ECG effects of various ion-channel blocking drugs, the TrX effect profiles indicate increasingly delayed electrical activity over the entire repolarization process for drugs solely reducing outward potassium current (dofetilide, moxifloxacin). For drugs eliciting block of the inward sodium or calcium currents (mexiletine, lidocaine), the TrX effect profiles were consistent with accelerated electrical activity in the initial repolarization phase. For multichannel blocking drugs (ranolazine) or drug combinations blocking multiple ion currents (dofetilide + mexiletine, dofetilide + lidocaine), the overall TrX effect profiles indicate a superposition of the individual TrX effect profiles. Results The parameter Tr40c differentiates pure potassium channel blocking drugs from multichannel blocking drugs with an area under the ROC curve (AUC) of 0.90, CI = [0.88 to 0.92]. This is significantly better than the performance of J-Tpeakc (0.81, CI = [0.78 to 0.84]) identified as the best parameter in the second FDA study. Combining the ten parameters Tr10c to Tr100c in a logistic regression model further improved the AUC to 0.94, CI = [0.92 to 0.96]. Conclusions TVV analysis substantially improves assessment of drug effects on cardiac repolarization, providing a plausible and improved mechanistic link between drug effects on ionic currents and overall ventricular repolarization reflected in the body surface ECG. TVV contributes to an enhanced appraisal of the proarrhythmic risk of drugs beyond QTc prolongation and J-Tpeakc.
Collapse
Affiliation(s)
- Werner Bystricky
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, United States of America
| | - Christoph Maier
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, United States of America.,Department of Medical Informatics, Heilbronn University, Heilbronn, Germany
| | - Gary Gintant
- Integrated Sciences and Technology, AbbVie Inc., North Chicago, Illinois, United States of America
| | - Dennis Bergau
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, United States of America
| | - Kent Kamradt
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, United States of America
| | - Patrick Welsh
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, United States of America
| | - David Carter
- Clinical Pharmacology, AbbVie Inc., North Chicago, Illinois, United States of America
| |
Collapse
|