51
|
Whitlock NC, White ME, Capaldo BJ, Ku AT, Agarwal S, Fang L, Wilkinson S, Trostel SY, Shi ZD, Basuli F, Wong K, Jagoda EM, Kelly K, Choyke PL, Sowalsky AG. Progression of prostate cancer reprograms MYC-mediated lipid metabolism via lysine methyltransferase 2A. Discov Oncol 2022; 13:97. [PMID: 36181613 PMCID: PMC9526773 DOI: 10.1007/s12672-022-00565-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by elevated MYC activity. RESULTS Using ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites suggestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of metastatic castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro. CONCLUSIONS Our study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.
Collapse
Affiliation(s)
- Nichelle C Whitlock
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Margaret E White
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Anson T Ku
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Shana Y Trostel
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Karen Wong
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Elaine M Jagoda
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
52
|
Sun J, Yang M, Zhao W, Wang F, Yang L, Tan C, Hu T, Zhu H, Zhao G. Research progress on the relationship between the TOR signaling pathway regulator, epigenetics, and tumor development. Front Genet 2022; 13:1006936. [PMID: 36212146 PMCID: PMC9539685 DOI: 10.3389/fgene.2022.1006936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Almost all cellular activities depend on protein folding, signaling complex assembly/disassembly, and epigenetic regulation. One of the most important regulatory mechanisms responsible for controlling these cellular processes is dynamic protein phosphorylation/dephosphorylation. Alterations in phosphorylation networks have major consequences in the form of disorders, including cancer. Many signaling cascades, including the target of rapamycin (TOR) signaling, are important participants in the cell cycle, and dysregulation in their phosphorylation/dephosphorylation status has been linked to malignancies. As a TOR signaling regulator, protein phosphatase 2A (PP2A) is responsible for most of the phosphatase activities inside the cells. On the other hand, TOR signaling pathway regulator (TIPRL) is an essential PP2A inhibitory protein. Many other physiological roles have also been suggested for TIPRL, such as modulation of TOR pathways, apoptosis, and cell proliferation. It is also reported that TIPRL was increased in various carcinomas, including non-small-cell lung carcinoma (NSCLC) and hepatocellular carcinomas (HCC). Considering the function of PP2A as a tumor suppressor and also the effect of the TIPRL/PP2A axis on apoptosis and proliferation of cancer cells, this review aims to provide a complete view of the role of TIPRL in cancer development in addition to describing TIPRL/PP2A axis and its epigenetic regulation.
Collapse
Affiliation(s)
- Jiaen Sun
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Minglei Yang
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Weidi Zhao
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Fajiu Wang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Liangwei Yang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chuntao Tan
- Department of Cardiac and Vascular Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Tianjun Hu
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Huangkai Zhu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- *Correspondence: Huangkai Zhu, ; Guofang Zhao,
| | - Guofang Zhao
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- *Correspondence: Huangkai Zhu, ; Guofang Zhao,
| |
Collapse
|
53
|
Marx OM, Mankarious MM, Eshelman MA, Ding W, Koltun WA, Yochum GS. Transcriptome Analyses Identify Deregulated MYC in Early Onset Colorectal Cancer. Biomolecules 2022; 12:1223. [PMID: 36139061 PMCID: PMC9496520 DOI: 10.3390/biom12091223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Despite a global decrease in colorectal cancer (CRC) incidence, the prevalence of early-onset colorectal cancer (EOCRC), or those occurring in individuals before the age of 50, has steadily increased over the past several decades. When compared to later onset colorectal cancer (LOCRC) in individuals over 50, our understanding of the genetic and molecular underpinnings of EOCRCs is limited. Here, we conducted transcriptomic analyses of patient-matched normal colonic segments and tumors to identify gene expression programs involved in carcinogenesis. Amongst differentially expressed genes, we found increased expression of the c-MYC proto-oncogene (MYC) and its downstream targets in tumor samples. We identified tumors with high and low differential MYC expression and found patients with high-MYC tumors were older and overweight or obese. We also detected elevated expression of the PVT1 long-non-coding RNA (lncRNA) in most tumors and found gains in copy number for both MYC and PVT1 gene loci in 35% of tumors evaluated. Our transcriptome analyses indicate that EOCRC can be sub-classified into groups based on differential MYC expression and suggest that deregulated MYC contributes to CRCs that develop in younger patients.
Collapse
Affiliation(s)
- Olivia M. Marx
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Marc M. Mankarious
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Melanie A. Eshelman
- Department of Pediatrics, Division of Hematology & Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter A. Koltun
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory S. Yochum
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
54
|
Peng Y, Liu J, Wang Z, Cui C, Zhang T, Zhang S, Gao P, Hou Z, Liu H, Guo J, Zhang J, Wen Y, Wei W, Zhang L, Liu J, Long J. Prostate-specific oncogene OTUD6A promotes prostatic tumorigenesis via deubiquitinating and stabilizing c-Myc. Cell Death Differ 2022; 29:1730-1743. [PMID: 35217790 PMCID: PMC9433443 DOI: 10.1038/s41418-022-00960-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/29/2023] Open
Abstract
MYC drives the tumorigenesis of human cancers, including prostate cancer (PrCa), thus deubiquitinase (DUB) that maintains high level of c-Myc oncoprotein is a rational therapeutic target. Several ubiquitin-specific protease (USP) family members of DUB have been reported to deubiquitinate c-Myc, but none of them is the physiological DUB for c-Myc in PrCa. By screening all the DUBs, here we reveal that OTUD6A is exclusively amplified and overexpressed in PrCa but not in other cancers, eliciting a prostatic-specific oncogenic role through deubiquitinating and stabilizing c-Myc oncoprotein. Moreover, genetic ablation of OTUD6A efficiently represses prostatic tumorigenesis of both human PrCa cells and the Hi-Myc transgenic PrCa mice, via reversing the metabolic remodeling caused by c-Myc overexpression in PrCa. These results indicate that OTUD6A is a physiological DUB for c-Myc in PrCa setting and specifically promotes prostatic tumorigenesis through stabilizing c-Myc oncoprotein, suggesting that OTUD6A could be a unique therapeutic target for Myc-driven PrCa.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Tiantian Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peipei Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jinfang Zhang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yurong Wen
- Department of Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
55
|
Mou Z, Spencer J, Knight B, John J, McCullagh P, McGrath JS, Harries LW. Gene expression analysis reveals a 5-gene signature for progression-free survival in prostate cancer. Front Oncol 2022; 12:914078. [PMID: 36033512 PMCID: PMC9413154 DOI: 10.3389/fonc.2022.914078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is the second most common male cancer worldwide, but effective biomarkers for the presence or progression risk of disease are currently elusive. In a series of nine matched histologically confirmed PCa and benign samples, we carried out an integrated transcriptome-wide gene expression analysis, including differential gene expression analysis and weighted gene co-expression network analysis (WGCNA), which identified a set of potential gene markers highly associated with tumour status (malignant vs. benign). We then used these genes to establish a minimal progression-free survival (PFS)-associated gene signature (GS) (PCBP1, PABPN1, PTPRF, DANCR, and MYC) using least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox regression analyses from The Cancer Genome Atlas prostate adenocarcinoma (TCGA-PRAD) dataset. Our signature was able to predict PFS over 1, 3, and 5 years in TCGA-PRAD dataset, with area under the curve (AUC) of 0.64–0.78, and our signature remained as a prognostic factor independent of age, Gleason score, and pathological T and N stages. A nomogram combining the signature and Gleason score demonstrated improved predictive capability for PFS (AUC: 0.71–0.85) and was superior to the Cambridge Prognostic Group (CPG) model alone and some conventionally used clinicopathological factors in predicting PFS. In conclusion, we have identified and validated a novel five-gene signature and established a nomogram that effectively predicted PFS in patients with PCa. Findings may improve current prognosis tools for PFS and contribute to clinical decision-making in PCa treatment.
Collapse
Affiliation(s)
- Zhuofan Mou
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
| | - Jack Spencer
- Translational Research Exchange at Exeter, Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Bridget Knight
- National Institute for Health and Care Research (NIHR) Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Joseph John
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - Paul McCullagh
- Department of Pathology, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - John S. McGrath
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - Lorna W. Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- *Correspondence: Lorna W. Harries,
| |
Collapse
|
56
|
Nascente EDP, Amorim RL, Fonseca-Alves CE, de Moura VMBD. Comparative Pathobiology of Canine and Human Prostate Cancer: State of the Art and Future Directions. Cancers (Basel) 2022; 14:2727. [PMID: 35681707 PMCID: PMC9179314 DOI: 10.3390/cancers14112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
First described in 1817, prostate cancer is considered a complex neoplastic entity, and one of the main causes of death in men in the western world. In dogs, prostatic carcinoma (PC) exhibits undifferentiated morphology with different phenotypes, is hormonally independent of aggressive character, and has high rates of metastasis to different organs. Although in humans, the risk factors for tumor development are known, in dogs, this scenario is still unclear, especially regarding castration. Therefore, with the advent of molecular biology, studies were and are carried out with the aim of identifying the main molecular mechanisms and signaling pathways involved in the carcinogenesis and progression of canine PC, aiming to identify potential biomarkers for diagnosis, prognosis, and targeted treatment. However, there are extensive gaps to be filled, especially when considering the dog as experimental model for the study of this neoplasm in humans. Thus, due to the complexity of the subject, the objective of this review is to present the main pathobiological aspects of canine PC from a comparative point of view to the same neoplasm in the human species, addressing the historical context and current understanding in the scientific field.
Collapse
Affiliation(s)
- Eduardo de Paula Nascente
- School of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia 74001-970, Brazil;
| | - Renée Laufer Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | | |
Collapse
|
57
|
Qiu X, Boufaied N, Hallal T, Feit A, de Polo A, Luoma AM, Alahmadi W, Larocque J, Zadra G, Xie Y, Gu S, Tang Q, Zhang Y, Syamala S, Seo JH, Bell C, O'Connor E, Liu Y, Schaeffer EM, Jeffrey Karnes R, Weinmann S, Davicioni E, Morrissey C, Cejas P, Ellis L, Loda M, Wucherpfennig KW, Pomerantz MM, Spratt DE, Corey E, Freedman ML, Shirley Liu X, Brown M, Long HW, Labbé DP. MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets. Nat Commun 2022; 13:2559. [PMID: 35562350 PMCID: PMC9106722 DOI: 10.1038/s41467-022-30257-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
c-MYC (MYC) is a major driver of prostate cancer tumorigenesis and progression. Although MYC is overexpressed in both early and metastatic disease and associated with poor survival, its impact on prostate transcriptional reprogramming remains elusive. We demonstrate that MYC overexpression significantly diminishes the androgen receptor (AR) transcriptional program (the set of genes directly targeted by the AR protein) in luminal prostate cells without altering AR expression. Analyses of clinical specimens reveal that concurrent low AR and high MYC transcriptional programs accelerate prostate cancer progression toward a metastatic, castration-resistant disease. Data integration of single-cell transcriptomics together with ChIP-seq uncover an increase in RNA polymerase II (Pol II) promoter-proximal pausing at AR-dependent genes following MYC overexpression without an accompanying deactivation of AR-bound enhancers. Altogether, our findings suggest that MYC overexpression antagonizes the canonical AR transcriptional program and contributes to prostate tumor initiation and progression by disrupting transcriptional pause release at AR-regulated genes.
Collapse
Affiliation(s)
- Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Avery Feit
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Anna de Polo
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Walaa Alahmadi
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Janie Larocque
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Giorgia Zadra
- Departments of Oncologic Pathology and Pathology, Dana-Farber Cancer Institute and Brigham's Women Hospital, Boston, MA, USA
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shengqing Gu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qin Tang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi Zhang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sudeepa Syamala
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Connor Bell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Edward O'Connor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yang Liu
- Decipher Biosciences, San Diego, CA, USA
| | | | | | - Sheila Weinmann
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA
| | | | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Leigh Ellis
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mark M Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Matthew L Freedman
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
58
|
Zhu W, Feng D, Shi X, Wei Q, Yang L. The Potential Role of Mitochondrial Acetaldehyde Dehydrogenase 2 in Urological Cancers From the Perspective of Ferroptosis and Cellular Senescence. Front Cell Dev Biol 2022; 10:850145. [PMID: 35517510 PMCID: PMC9065557 DOI: 10.3389/fcell.2022.850145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) and superlative lipid peroxidation promote tumorigenesis, and mitochondrial aldehyde dehydrogenase 2 (ALDH2) is associated with the detoxification of ROS-mediated lipid peroxidation-generated reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE), malondialdehyde, and acrolein due to tobacco smoking. ALDH2 has been demonstrated to be highly associated with the prognosis and chemoradiotherapy sensitivity of many types of cancer, including leukemia, lung cancer, head and neck cancer, esophageal cancer, hepatocellular cancer, pancreatic cancer, and ovarian cancer. In this study, we explored the possible relationship between ALDH2 and urological cancers from the aspects of ferroptosis, epigenetic alterations, proteostasis, mitochondrial dysfunction, and cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Qiang Wei
- *Correspondence: Qiang Wei, ; Lu Yang,
| | - Lu Yang
- *Correspondence: Qiang Wei, ; Lu Yang,
| |
Collapse
|
59
|
Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat Rev Cardiol 2022; 19:414-425. [PMID: 35440740 PMCID: PMC10112835 DOI: 10.1038/s41569-022-00698-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular and organismal survival. In this Review, we explore the emerging data identifying metabolic dysregulation as an important theme in cardio-oncology. We discuss the growing recognition of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of cardio-oncology through the lens of metabolism.
Collapse
|
60
|
Olechnowicz A, Oleksiewicz U, Machnik M. KRAB-ZFPs and cancer stem cells identity. Genes Dis 2022. [PMID: 37492743 PMCID: PMC10363567 DOI: 10.1016/j.gendis.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.
Collapse
|
61
|
Limberger T, Schlederer M, Trachtová K, Garces de Los Fayos Alonso I, Yang J, Högler S, Sternberg C, Bystry V, Oppelt J, Tichý B, Schmeidl M, Kodajova P, Jäger A, Neubauer HA, Oberhuber M, Schmalzbauer BS, Pospisilova S, Dolznig H, Wadsak W, Culig Z, Turner SD, Egger G, Lagger S, Kenner L. KMT2C methyltransferase domain regulated INK4A expression suppresses prostate cancer metastasis. Mol Cancer 2022; 21:89. [PMID: 35354467 PMCID: PMC8966196 DOI: 10.1186/s12943-022-01542-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Frequent truncation mutations of the histone lysine N-methyltransferase KMT2C have been detected by whole exome sequencing studies in various cancers, including malignancies of the prostate. However, the biological consequences of these alterations in prostate cancer have not yet been elucidated. METHODS To investigate the functional effects of these mutations, we deleted the C-terminal catalytic core motif of Kmt2c specifically in mouse prostate epithelium. We analysed the effect of Kmt2c SET domain deletion in a Pten-deficient PCa mouse model in vivo and of truncation mutations of KMT2C in a large number of prostate cancer patients. RESULTS We show here for the first time that impaired KMT2C methyltransferase activity drives proliferation and PIN formation and, when combined with loss of the tumour suppressor PTEN, triggers loss of senescence, metastatic dissemination and dramatically reduces life expectancy. In Kmt2c-mutated tumours we show enrichment of proliferative MYC gene signatures and loss of expression of the cell cycle repressor p16INK4A. In addition, we observe a striking reduction in disease-free survival of patients with KMT2C-mutated prostate cancer. CONCLUSIONS We identified truncating events of KMT2C as drivers of proliferation and PIN formation. Loss of PTEN and KMT2C in prostate cancer results in loss of senescence, metastatic dissemination and reduced life expectancy. Our data demonstrate the prognostic significance of KMT2C mutation status in prostate cancer patients. Inhibition of the MYC signalling axis may be a viable treatment option for patients with KMT2C truncations and therefore poor prognosis.
Collapse
Affiliation(s)
- Tanja Limberger
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria
| | - Michaela Schlederer
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Karolina Trachtová
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
- Christian Doppler Laboratory for Applied Metabolomics, 1090, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Ines Garces de Los Fayos Alonso
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Jiaye Yang
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Sandra Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Christina Sternberg
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118, Kiel, Germany
| | - Vojtech Bystry
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Boris Tichý
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Margit Schmeidl
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Petra Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Anton Jäger
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Monika Oberhuber
- CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria
| | - Belinda S Schmalzbauer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, 1090, Vienna, Austria
| | - Wolfgang Wadsak
- CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Zoran Culig
- Department of Urology, Innsbruck Medical University, 6020, Innsbruck, Austria
| | - Suzanne D Turner
- Department of Pathology, University Cambridge, Cambridge, UK
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Gerda Egger
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, 1090, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lukas Kenner
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| |
Collapse
|
62
|
Diehl JN, Hibshman PS, Ozkan-Dagliyan I, Goodwin CM, Howard SV, Cox AD, Der CJ. Targeting the ERK mitogen-activated protein kinase cascade for the treatment of KRAS-mutant pancreatic cancer. Adv Cancer Res 2022; 153:101-130. [PMID: 35101228 DOI: 10.1016/bs.acr.2021.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mutational activation of the KRAS oncogene is found in ~95% of pancreatic ductal adenocarcinoma (PDAC), the major form of pancreatic cancer. With substantial experimental evidence that continued aberrant KRAS function is essential for the maintenance of PDAC tumorigenic growth, the National Cancer Institute has identified the development of effective anti-KRAS therapies as one of four major initiatives for pancreatic cancer research. The recent clinical success in the development of an anti-KRAS therapy targeting one specific KRAS mutant (G12C) supports the significant potential impact of anti-KRAS therapies. However, KRASG12C mutations comprise only 2% of KRAS mutations in PDAC. Thus, there remains a dire need for additional therapeutic approaches for targeting the majority of KRAS-mutant PDAC. Among the different directions currently being pursued for anti-KRAS drug development, one of the most promising involves inhibitors of the key KRAS effector pathway, the three-tiered RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade. We address the promises and challenges of targeting ERK MAPK signaling as an anti-KRAS therapy for PDAC. In particular, we also summarize the key role of the MYC transcription factor and oncoprotein in supporting ERK-dependent growth of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Priya S Hibshman
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Irem Ozkan-Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah V Howard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adrienne D Cox
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Channing J Der
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
63
|
Nelson WG, Brawley OW, Isaacs WB, Platz EA, Yegnasubramanian S, Sfanos KS, Lotan TL, De Marzo AM. Health inequity drives disease biology to create disparities in prostate cancer outcomes. J Clin Invest 2022; 132:e155031. [PMID: 35104804 PMCID: PMC8803327 DOI: 10.1172/jci155031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer exerts a greater toll on African American men than on White men of European descent (hereafter referred to as European American men): the disparity in incidence and mortality is greater than that of any other common cancer. The disproportionate impact of prostate cancer on Black men has been attributed to the genetics of African ancestry, to diet and lifestyle risk factors, and to unequal access to quality health care. In this Review, all of these influences are considered in the context of the evolving understanding that chronic or recurrent inflammatory processes drive prostatic carcinogenesis. Studies of inherited susceptibility highlight the contributions of genes involved in prostate cell and tissue repair (BRCA1/2, ATM) and regeneration (HOXB13 and MYC). Social determinants of health appear to accentuate these genetic influences by fueling prostate inflammation and associated cell and genome damage. Molecular characterization of the prostate cancers that arise in Black versus White men further implicates this inflammatory microenvironment in disease behavior. Yet, when Black and White men with similar grade and stage of prostate cancer are treated equally, they exhibit equivalent outcomes. The central role of prostate inflammation in prostate cancer development and progression augments the impact of the social determinants of health on disease pathogenesis. And, when coupled with poorer access to high-quality treatment, these inequities result in a disparate burden of prostate cancer on African American men.
Collapse
|
64
|
Use of RNA-Seq and a Transgenic Mouse Model to Identify Genes Which May Contribute to Mutant p53-Driven Prostate Cancer Initiation. BIOLOGY 2022; 11:biology11020218. [PMID: 35205085 PMCID: PMC8869245 DOI: 10.3390/biology11020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary We use RNA-seq analysis to identify genes that may contribute to mutant p53-mediated prostate cancer initiation in a genetically engineered mouse model (B6.129S4-Trp53tm3.1Tyj/J). A total of 1378 differentially expressed genes, including wildtype p53 target genes (e.g. Cdkn1a, Bax, Bcl2, Kras, Mdm2), p53 gain-of-function-related genes (Mgmt, Id4), and prostate cancer-related genes (Cav-1, Raf1, Kras), were identified. Mice that were homozygous or heterozygous for the Trp53 R270H mutation developed grade one PIN lesions at 3 months and 5 months, respectively, whereas wildtype mice did not develop PIN. Immunohistochemical analysis revealed decreased levels of irradiation-mediated apoptosis in homozygous and heterozygous mice when compared to wildtype counterparts, and this aligned with observed differences in apoptosis-related gene expression. Abstract We previously demonstrated that the Trp53-R270H mutation can drive prostate cancer (CaP) initiation using the FVB.129S4 (Trp53tm3Tyj/wt); FVB.129S (Nkx3-1tm3(cre)Mmswt) genetically engineered mouse model (GEM). We now validate this finding in a different model (B6.129S4-Trp53tm3.1Tyj/J mice) and use RNA-sequencing (RNA-Seq) to identify genes which may contribute to Trp53 R270H-mediated prostate carcinogenesis. Wildtype (Trp53WT/WT), heterozygous (Trp53R270H/WT), and homozygous mice (Trp53R270H/R270H) were exposed to 5 Gy irradiation to activate and stabilize p53, and thereby enhance our ability to identify differences in transcriptional activity between the three groups of mice. Mouse prostates were harvested 6 h post-irradiation and processed for histological/immunohistochemistry (IHC) analysis or were snap-frozen for RNA extraction and transcriptome profiling. IHC analyses determined that presence of the Trp53-R270H mutation impacts apoptosis (lower caspase 3 activity) but not cell proliferation (Ki67). RNA-Seq analysis identified 1378 differentially expressed genes, including wildtype p53 target genes (E.g., Cdkn1a, Bax, Bcl2, Kras, Mdm2), p53 gain-of-function (GOF)-related genes (Mgmt, Id4), and CaP-related genes (Cav-1, Raf1, Kras). Further understanding the mechanisms which contribute to prostate carcinogenesis could allow for the development of improved preventive methods, diagnostics, and treatments for CaP.
Collapse
|
65
|
The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol 2022; 19:23-36. [PMID: 34508258 PMCID: PMC9083341 DOI: 10.1038/s41571-021-00549-2] [Citation(s) in RCA: 494] [Impact Index Per Article: 164.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
The MYC proto-oncogenes encode a family of transcription factors that are among the most commonly activated oncoproteins in human neoplasias. Indeed, MYC aberrations or upregulation of MYC-related pathways by alternate mechanisms occur in the vast majority of cancers. MYC proteins are master regulators of cellular programmes. Thus, cancers with MYC activation elicit many of the hallmarks of cancer required for autonomous neoplastic growth. In preclinical models, MYC inactivation can result in sustained tumour regression, a phenomenon that has been attributed to oncogene addiction. Many therapeutic agents that directly target MYC are under development; however, to date, their clinical efficacy remains to be demonstrated. In the past few years, studies have demonstrated that MYC signalling can enable tumour cells to dysregulate their microenvironment and evade the host immune response. Herein, we discuss how MYC pathways not only dictate cancer cell pathophysiology but also suppress the host immune response against that cancer. We also propose that therapies targeting the MYC pathway will be key to reversing cancerous growth and restoring antitumour immune responses in patients with MYC-driven cancers.
Collapse
|
66
|
[EEFSEC knockdown inhibits proliferation, migration and invasion of prostate cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1787-1794. [PMID: 35012909 PMCID: PMC8752429 DOI: 10.12122/j.issn.1673-4254.2021.12.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the role of selenocysteine-tRNA specific eukaryotic elongation factor (EEFSEC) in regulating the proliferation, migration, and invasion of human prostate cancer 22Rv1 cells. METHODS We detected EEFSEC mRNA expression levels in human normal prostate cell line RWPE1 and human prostate cancer cell lines 22Rv1, LNCaP, Vcap and PC-3 using qRT-PCR and EEFSEC protein expression in surgical specimens of prostate cancer and adjacent tissues using Western blotting. 22Rv1 cells were infected with a lentiviral vector carrying EEFSEC shRNA or a control lentivirus and the interference efficiency was determined using Western blotting. XTT assay was used to assess the changes in the viability of the infected cells, and Transwell chamber assay was used to examine the changes in cell migration and invasion. The effect of EEFSEC knockdown on cell cycle progression was determined with flow cytometry and by detecting the expressions of cell cycle proteins using qRT-PCR. RESULTS EEFSEC was significantly upregulated in prostate cancer cells (P < 0.05), and a high expression of EEFSEC was associated with a poor prognosis of the patients with prostate cancer. In 22Rv1 cells, EEFSEC knockdown significantly suppressed the proliferation (P < 0.001), migration (P < 0.001) and invasion (P < 0.001) of the cells, resulted in cell cycle arrest in G0/G1 phase, obviously inhibited the expression of C-myc and CCNB1, and significantly increased the expression of p15. CONCLUSION EEFSEC knockdown can inhibit the proliferation, migration, and invasion of prostate cancer cells in vitro possibly by down-regulating the expression of C-myc.
Collapse
|
67
|
Deng T, Xiao Y, Dai Y, Xie L, Li X. Roles of Key Epigenetic Regulators in the Gene Transcription and Progression of Prostate Cancer. Front Mol Biosci 2021; 8:743376. [PMID: 34977151 PMCID: PMC8714908 DOI: 10.3389/fmolb.2021.743376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a top-incidence malignancy, and the second most common cause of death amongst American men and the fifth leading cause of cancer death in men around the world. Androgen receptor (AR), the key transcription factor, is critical for the progression of PCa by regulating a series of target genes by androgen stimulation. A number of co-regulators of AR, including co-activators or co-repressors, have been implicated in AR-mediated gene transcription and PCa progression. Epigenetic regulators, by modifying chromatin integrity and accessibility for transcription regulation without altering DNA sequences, influence the transcriptional activity of AR and further regulate the gene expression of AR target genes in determining cell fate, PCa progression and therapeutic response. In this review, we summarized the structural interaction of AR and epigenetic regulators including histone or DNA methylation, histone acetylation or non-coding RNA, and functional synergy in PCa progression. Importantly, epigenetic regulators have been validated as diagnostic markers and therapeutic targets. A series of epigenetic target drugs have been developed, and have demonstrated the potential to treat PCa alone or in combination with antiandrogens.
Collapse
Affiliation(s)
- Tanggang Deng
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yugang Xiao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Dai
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Xie
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
68
|
Singh KB, Hahm ER, Singh SV. Leelamine suppresses cMyc expression in prostate cancer cells in vitro and inhibits prostate carcinogenesis in vivo. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7. [PMID: 34660908 DOI: 10.20517/2394-4722.2021.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aim Leelamine (LLM) inhibits growth of human prostate cancer cells but the underlying mechanism is not fully understood. The present study was undertaken to determine the effect of LLM on cMyc, which is overexpressed in a subset of human prostate cancers. Methods The effect of LLM on cMyc expression and activity was determined by western blotting/confocal microscopy and luciferase reporter assay, respectively. A transgenic mouse model of prostate cancer (Hi-Myc) was used to determine chemopreventive efficacy of LLM. Results Exposure of androgen sensitive (LNCaP) and castration-resistant (22Rv1) human prostate cancer cells to LLM resulted in downregulation of protein and mRNA levels of cMyc. Overexpression of cMyc partially attenuated LLM-mediated inhibition of colony formation, cell viability, and cell migration in 22Rv1 and/or PC-3 cells. LLM treatment decreased protein levels of cMyc targets (e.g., lactate dehydrogenase), however, overexpression of cMyc did not attenuate these effects. A trend for a decrease in expression level of cMyc protein was discernible in 22Rv1 xenografts from LLM-treated mice compared with control mice. The LLM treatment (10 mg/kg body weight, 5 times/week) was well-tolerated by Hi-Myc transgenic mice. The incidence of high-grade prostatic intraepithelial neoplasia, adenocarcinoma in situ, and microinvasion was lower in LLM-treated Hi-Myc mice but the difference was not statistically significant. Conclusion The present study reveals that LLM inhibits cMyc expression in human prostate cancer cells in vitro but concentrations higher than 10 mg/kg may be required to achieve chemoprevention of prostate cancer.
Collapse
Affiliation(s)
- Krishna B Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
69
|
Li F, Zhao Z, Zhang Z, Zhang Y, Guan W. Tryptophan metabolism induced by TDO2 promotes prostatic cancer chemotherapy resistance in a AhR/c-Myc dependent manner. BMC Cancer 2021; 21:1112. [PMID: 34657603 PMCID: PMC8520630 DOI: 10.1186/s12885-021-08855-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Tumor cells exhibit enhanced metabolism of nutrients to satisfy the demand of sustained proliferation in vivo. Seminal reports have presented evidence that tryptophan (Trp) metabolic reprogramming induced by aberrant indoleamine 2,3-dioxygenases could promote tumor development in several cancer types. However, the underlying mechanism of Trp metabolism associated tumor progression is not fully understood. MATERIALS AND METHODS Prostatic cell lines LNCaP and VCaP were purchased from the Cell Bank of the Chinese Academy of Sciences (China). Human prostatic tumor tissue samples were obtained from the Tongji Hospital. Female NOD-SCID mice (6 ~ 8 weeks) were purchased from Huafukang Co. (China) and raised in SPF room. Commercial kits and instruments were used for cell apoptosis analysis, real-time PCR, western blotting, ELISA analysis and other experiments. RESULT Comparing the tumor tissues from prostatic cancer patients, we found elevated expression of tryptophan 2, 3-dioxygenase 2 (TDO2), and elevated Trp metabolism in chemo-resistant tumor tissues. In vitro, overexpression of TDO2 significantly promoted the Trp metabolism in prostatic cancer cell lines LNCaP and VCap, resulting in the multidrug resistance development. Mechanistically, we demonstrated that Trp metabolite kynurenine (Kyn) promoted the upregulation and nuclear translocation of transcription factor aryl hydrocarbon receptor (AhR). Subsequently, AhR collaborated with NF-κB to facilitate the activation of c-Myc. In turn, c-Myc promoted the up-regulation of ATP-binding cassette (ABC) transporters and Trp transporters, thereby contributing to chemoresistance and strengthened Trp metabolism in prostatic cancer. Interrupt of Trp/TDO2/Kyn/AhR/c-Myc loop with c-Myc inhibitor Mycro-3 efficiently suppressed the chemoresistance and improved the outcome of chemotherapy, which described a new strategy in clinical prostatic cancer treatment. CONCLUSION Our study demonstrates that elevated TOD2 expression promoted Trp metabolism and metabolite Kyn production, thus resulting in the activation of AhR/c-Myc/ABC-SLC transporters signaling pathway. Interrupt of Trp metabolism/c-Myc loop efficiently suppressed the drugs resistance induced by TDO2, which represented potential target to improve the outcome in drug-resistant prostatic cancer treatment.
Collapse
Affiliation(s)
- Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Zhao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
70
|
Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer. Cells 2021; 10:cells10092387. [PMID: 34572036 PMCID: PMC8468328 DOI: 10.3390/cells10092387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is the most common cancer in aging men. Despite recent progress, there are still few effective treatments to cure its aggressive and metastatic stages. A better understanding of the molecular mechanisms driving disease initiation and progression appears essential to support the development of more efficient therapies and improve patient care. To do so, multiple research models, such as cell culture and mouse models, have been developed over the years and have improved our comprehension of the biology of the disease. Recently, a new model has been added with the use of the Drosophila accessory gland. With a high level of conservation of major signaling pathways implicated in human disease, this functional equivalent of the prostate represents a powerful, inexpensive, and rapid in vivo model to study epithelial carcinogenesis. The purpose of this review is to quickly overview the existing prostate cancer models, including their strengths and limitations. In particular, we discuss how the Drosophila accessory gland can be integrated as a convenient complementary model by bringing new understanding in the mechanisms driving prostate epithelial tumorigenesis, from initiation to metastatic formation.
Collapse
|
71
|
Boldrini L, Faviana P, Galli L, Paolieri F, Erba PA, Bardi M. Multi-Dimensional Scaling Analysis of Key Regulatory Genes in Prostate Cancer Using the TCGA Database. Genes (Basel) 2021; 12:1350. [PMID: 34573332 PMCID: PMC8468120 DOI: 10.3390/genes12091350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PC) is a polygenic disease with multiple gene interactions. Therefore, a detailed analysis of its epidemiology and evaluation of risk factors can help to identify more accurate predictors of aggressive disease. We used the transcriptome data from a cohort of 243 patients from the Cancer Genome Atlas (TCGA) database. Key regulatory genes involved in proliferation activity, in the regulation of stress, and in the regulation of inflammation processes of the tumor microenvironment were selected to test a priori multi-dimensional scaling (MDS) models and create a combined score to better predict the patients' survival and disease-free intervals. Survival was positively correlated with cortisol expression and negatively with Mini-Chromosome Maintenance 7 (MCM7) and Breast-Related Cancer Antigen2 (BRCA2) expression. The disease-free interval was negatively related to the expression of enhancer of zeste homolog 2 (EZH2), MCM7, BRCA2, and programmed cell death 1 ligand 1 (PD-L1). MDS suggested two separate pathways of activation in PC. Within these two dimensions three separate clusters emerged: (1) cortisol and brain-derived neurotrophic factor BDNF, (2) PD-L1 and cytotoxic-T-lymphocyte-associated protein 4 (CTL4); (3) and finally EZH2, MCM7, BRCA2, and c-Myc. We entered the three clusters of association shown in the MDS in several Kaplan-Meier analyses. It was found that only Cluster 3 was significantly related to the interval-disease free, indicating that patients with an overall higher activity of regulatory genes of proliferation and DNA repair had a lower probability to have a longer disease-free time. In conclusion, our data study provided initial evidence that selecting patients with a high grade of proliferation and DNA repair activity could lead to an early identification of an aggressive PC with a potentials for metastatic development.
Collapse
Affiliation(s)
- Laura Boldrini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Pinuccia Faviana
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Luca Galli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.G.); (F.P.); (P.A.E.)
| | - Federico Paolieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.G.); (F.P.); (P.A.E.)
| | - Paola Anna Erba
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.G.); (F.P.); (P.A.E.)
| | - Massimo Bardi
- Department of Psychology & Behavioral Neuroscience, Randolph-Macon College, Ashland, VA 23005, USA;
| |
Collapse
|
72
|
Varisli L, Javed A, Ozturk BE, Akyuz GK, Takir G, Roumelioti FM, Gagos S, Yorukoglu K, Korkmaz KS. HN1 interacts with γ-tubulin to regulate centrosomes in advanced prostate cancer cells. Cell Cycle 2021; 20:1723-1744. [PMID: 34382911 DOI: 10.1080/15384101.2021.1962624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Prostate cancer is one of the most common cancer for men worldwide with advanced forms showing supernumerary or clustered centrosomes. Hematological and neurological expressed 1 (HN1) also known as Jupiter Microtubule Associated Homolog 1 (JPT1) belongs to a small poorly understood family of genes that are evolutionarily conserved across vertebrate species. The co-expression network of HN1 from the TCGA PRAD dataset indicates the putative role of HN1 in centrosome-related processes in the context of prostate cancer. HN1 expression is low in normal RWPE-1 cells as compared to cancerous androgen-responsive LNCaP and androgen insensitive PC-3 cells. HN1 overexpression resulted in differential response for cell proliferation and cell cycle changes in RWPE-1, LNCaP, and PC-3 cells. Since HN1 overexpression increased the proliferation rate in PC-3 cells, these cells were used for functional characterization of HN1 in advanced prostate carcinogenesis. Furthermore, alterations in HN expression led to an increase in abnormal to normal nuclei ratio and increased chromosomal aberrations in PC-3 cells. We observed the co-localization of HN1 with γ-tubulin foci in prostate cancer cells, further validated by immunoprecipitation. HN1 was observed as physically associated with γ-tubulin and its depletion led to increased γ-tubulin foci and disruption in microtubule spindle assembly. Higher HN1 expression was correlated with prostate cancer as compared to normal tissues. The restoration of HN1 expression after silencing suggested that it has a role in centrosome clustering, implicating a potential role of HN1 in cell division as well as in prostate carcinogenesis warranting further studies.
Collapse
Affiliation(s)
- Lokman Varisli
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| | - Aadil Javed
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| | - Bilge Esin Ozturk
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| | - Gencer Kaan Akyuz
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| | - Gulevin Takir
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| | - Fani-Marlen Roumelioti
- Biomedical Research Foundation of the Academy of Athens, Basic Research II, Laboratory of Genetics, Greece (BRFAA), Izmir, Turkey
| | - Sarantis Gagos
- Biomedical Research Foundation of the Academy of Athens, Basic Research II, Laboratory of Genetics, Greece (BRFAA), Izmir, Turkey
| | - Kutsal Yorukoglu
- Faculty of Medicine, Department of Pathology, Dokuz Eylul University, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| |
Collapse
|
73
|
Evasion of cell death: A contributory factor in prostate cancer development and treatment resistance. Cancer Lett 2021; 520:213-221. [PMID: 34343635 DOI: 10.1016/j.canlet.2021.07.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
Cell death is a natural process in organismal development, homeostasis and response to disease or infection that eliminates unnecessary or potentially dangerous cells and acts as an innate barrier to oncogenesis. Inactivation of cell death is a key step in tumour development and also impedes effective response to cancer therapy. Precise execution of unwanted cells is achieved through regulated cell death processes including the intrinsic apoptotic pathway that is governed by the BCL-2 (B-cell lymphoma 2) protein family. There is compelling evidence that intrinsic apoptosis is defective in prostate cancer, particularly in metastatic and castration resistant advanced disease, currently a lethal diagnosis. New therapeutics have been developed to target pro-survival BCL-2 proteins (including BCL-2, BCL-XL and MCL-1) and show promise in reinstating apoptosis to destroy tumour cells in haematological cancers. Here we discuss perturbation of cell death in prostate cancer and how new therapeutics could improve treatment outcome in prostate cancer.
Collapse
|
74
|
Nascimento-Gonçalves E, Seixas F, Ferreira R, Colaço B, Parada B, Oliveira PA. An overview of the latest in state-of-the-art murine models for prostate cancer. Expert Opin Drug Discov 2021; 16:1349-1364. [PMID: 34224283 DOI: 10.1080/17460441.2021.1943354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is a complex, heterogenous and multifocal disease, which is debilitating for patients and often fatal - due to bone metastasis and castration-resistant cancer. The use of murine models that mimic human disease has been crucial in the development of innovative therapies and for better understanding the mechanisms associated with initiation and progression of PCa. AREAS COVERED This review presents a critical analysis of murine models for the study of PCa, highlighting their strengths, weaknesses and applications. EXPERT OPINION In animal models, disease may not occur exactly as it does in humans, and sometimes the levels of efficacy that certain treatments obtain in animal models cannot be translated into clinical practice. To choose the most appropriate animal model for each research work, it is crucial to understand the anatomical and physiological differences between the mouse and the human prostate, while it is also important to identify biological similarities and differences between murine and human prostate tumors. Although significant progress has already been made, thanks to many years of research and study, the number of new challenges and obstacles to overcome mean there is a long and difficult road still to travel.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Animal and Veterinary Research Centre (CECAV), UTAD, Vila Real, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Belmiro Parada
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal
| |
Collapse
|
75
|
Kukkonen K, Taavitsainen S, Huhtala L, Uusi-Makela J, Granberg KJ, Nykter M, Urbanucci A. Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response. Cancers (Basel) 2021; 13:3325. [PMID: 34283056 PMCID: PMC8268970 DOI: 10.3390/cancers13133325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The dysregulation of chromatin and epigenetics has been defined as the overarching cancer hallmark. By disrupting transcriptional regulation in normal cells and mediating tumor progression by promoting cancer cell plasticity, this process has the ability to mediate all defined hallmarks of cancer. In this review, we collect and assess evidence on the contribution of chromatin and epigenetic dysregulation in prostate cancer. We highlight important mechanisms leading to prostate carcinogenesis, the emergence of castration-resistance upon treatment with androgen deprivation therapy, and resistance to antiandrogens. We examine in particular the contribution of chromatin structure and epigenetics to cell lineage commitment, which is dysregulated during tumorigenesis, and cell plasticity, which is altered during tumor progression.
Collapse
Affiliation(s)
- Konsta Kukkonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Joonas Uusi-Makela
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Kirsi J. Granberg
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
76
|
Jillson LK, Yette GA, Laajala TD, Tilley WD, Costello JC, Cramer SD. Androgen Receptor Signaling in Prostate Cancer Genomic Subtypes. Cancers (Basel) 2021; 13:3272. [PMID: 34208794 PMCID: PMC8269091 DOI: 10.3390/cancers13133272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
While many prostate cancer (PCa) cases remain indolent and treatable, others are aggressive and progress to the metastatic stage where there are limited curative therapies. Androgen receptor (AR) signaling remains an important pathway for proliferative and survival programs in PCa, making disruption of AR signaling a viable therapy option. However, most patients develop resistance to AR-targeted therapies or inherently never respond. The field has turned to PCa genomics to aid in stratifying high risk patients, and to better understand the mechanisms driving aggressive PCa and therapy resistance. While alterations to the AR gene itself occur at later stages, genomic changes at the primary stage can affect the AR axis and impact response to AR-directed therapies. Here, we review common genomic alterations in primary PCa and their influence on AR function and activity. Through a meta-analysis of multiple independent primary PCa databases, we also identified subtypes of significantly co-occurring alterations and examined their combinatorial effects on the AR axis. Further, we discussed the subsequent implications for response to AR-targeted therapies and other treatments. We identified multiple primary PCa genomic subtypes, and given their differing effects on AR activity, patient tumor genetics may be an important stratifying factor for AR therapy resistance.
Collapse
Affiliation(s)
- Lauren K. Jillson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Gabriel A. Yette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
- Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Wayne D. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| |
Collapse
|
77
|
Vidal I, Zheng Q, Hicks JL, Chen J, Platz EA, Trock BJ, Kulac I, Baena-Del Valle JA, Sfanos KS, Ernst S, Jones T, Maynard JP, Glavaris SA, Nelson WG, Yegnasubramanian S, De Marzo AM. GSTP1 positive prostatic adenocarcinomas are more common in Black than White men in the United States. PLoS One 2021; 16:e0241934. [PMID: 34191807 PMCID: PMC8244883 DOI: 10.1371/journal.pone.0241934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
GSTP1 is a member of the Glutathione-S-transferase (GST) family silenced by CpG island DNA hypermethylation in 90-95% of prostate cancers. However, prostate cancers expressing GSTP1 have not been well characterized. We used immunohistochemistry against GSTP1 to examine 1673 primary prostatic adenocarcinomas on tissue microarrays (TMAs) with redundant sampling from the index tumor from prostatectomies. GSTP1 protein was positive in at least one TMA core in 7.7% of cases and in all TMA cores in 4.4% of cases. The percentage of adenocarcinomas from Black patients who had any GSTP1 positive TMA cores was 14.9%, which was 2.5 times higher than the percentage from White patients (5.9%; P < 0.001). Further, the percentages of tumors from Black patients who had all TMA spots positive for GSTP1 (9.5%) was 3-fold higher than the percentage from White patients (3.2%; P<0.001). In terms of association with other molecular alterations, GSTP1 positivity was enriched in ERG positive cancers among Black men. By in situ hybridization, GSTP1 mRNA expression was concordant with protein staining, supporting the lack of silencing of at least some GSTP1 alleles in GSTP1-positive tumor cells. This is the first report revealing that GSTP1-positive prostate cancers are substantially over-represented among prostate cancers from Black compared to White men. This observation should prompt additional studies to determine whether GSTP1 positive cases represent a distinct molecular subtype of prostate cancer and whether GSTP1 expression could provide a biological underpinning for the observed disparate outcomes for Black men.
Collapse
Affiliation(s)
- Igor Vidal
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jessica L. Hicks
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiayu Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth A. Platz
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Bruce J. Trock
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | | | - Karen S. Sfanos
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah Ernst
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tracy Jones
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Janielle P. Maynard
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie A. Glavaris
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William G. Nelson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Srinivasan Yegnasubramanian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Angelo M. De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
78
|
Guo YF, Duan JJ, Wang J, Li L, Wang D, Liu XZ, Yang J, Zhang HR, Lv J, Yang YJ, Yang ZY, Cai J, Liao XM, Tang T, Huang TT, Wu F, Yang XY, Wen Q, Bian XW, Yu SC. Inhibition of the ALDH18A1-MYCN positive feedback loop attenuates MYCN-amplified neuroblastoma growth. Sci Transl Med 2021; 12:12/531/eaax8694. [PMID: 32075946 DOI: 10.1126/scitranslmed.aax8694] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
MYCN-amplified neuroblastoma (NB) is characterized by poor prognosis, and directly targeting MYCN has proven challenging. Here, we showed that aldehyde dehydrogenase family 18 member A1 (ALDH18A1) exerts profound impacts on the proliferation, self-renewal, and tumorigenicity of NB cells and is a potential risk factor in patients with NB, especially those with MYCN amplification. Mechanistic studies revealed that ALDH18A1 could both transcriptionally and posttranscriptionally regulate MYCN expression, with MYCN reciprocally transactivating ALDH18A1 and thus forming a positive feedback loop. Using molecular docking and screening, we identified an ALDH18A1-specific inhibitor, YG1702, and demonstrated that pharmacological inhibition of ALDH18A1 was sufficient to induce a less proliferative phenotype and confer tumor regression and prolonged survival in NB xenograft models, providing therapeutic insights into the disruption of this reciprocal regulatory loop in MYCN-amplified NB.
Collapse
Affiliation(s)
- Yu-Feng Guo
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiang-Jie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lin Li
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Di Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xun-Zhou Liu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jing Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua-Rong Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jing Lv
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yong-Jun Yang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ze-Yu Yang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiao Cai
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xue-Mei Liao
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tao Tang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ting-Ting Huang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Feng Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xian-Yan Yang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qian Wen
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China. .,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China. .,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
79
|
Eerola SK, Kohvakka A, Tammela TLJ, Koskinen PJ, Latonen L, Visakorpi T. Expression and ERG regulation of PIM kinases in prostate cancer. Cancer Med 2021; 10:3427-3436. [PMID: 33932111 PMCID: PMC8124112 DOI: 10.1002/cam4.3893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022] Open
Abstract
The three oncogenic PIM family kinases have been implicated in the development of prostate cancer (PCa). The aim of this study was to examine the mRNA and protein expression levels of PIM1, PIM2, and PIM3 in PCa and their associations with the MYC and ERG oncogenes. We utilized prostate tissue specimens of normal, benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN), untreated PCa, and castration‐resistant prostate cancer (CRPC) for immunohistochemical (IHC) analysis. In addition, we analyzed data from publicly available mRNA expression and chromatin immunoprecipitation sequencing (ChIP‐Seq) datasets. Our data demonstrated that PIM expression levels are significantly elevated in PCa compared to benign samples. Strikingly, the expression of both PIM1 and PIM2 was further increased in CRPC compared to PCa. We also demonstrated a significant association between upregulated PIM family members and both the ERG and MYC oncoproteins. Interestingly, ERG directly binds to the regulatory regions of all PIM genes and upregulates their expression. Furthermore, ERG suppression with siRNA reduced the expression of PIM in PCa cells. These results provide evidence for cooperation of PIM and the MYC and ERG oncoproteins in PCa development and progression and may help to stratify suitable patients for PIM‐targeted therapies.
Collapse
Affiliation(s)
- Sini K Eerola
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Annika Kohvakka
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Teuvo L J Tammela
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Department of Urology, Tampere University Hospital, Tampere, Finland
| | | | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
80
|
Pan Q, Qin F, Yuan H, He B, Yang N, Zhang Y, Ren H, Zeng Y. Normal tissue adjacent to tumor expression profile analysis developed and validated a prognostic model based on Hippo-related genes in hepatocellular carcinoma. Cancer Med 2021; 10:3139-3152. [PMID: 33818013 PMCID: PMC8085948 DOI: 10.1002/cam4.3890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common malignant disease worldwide. Although the diagnosis and treatment of HCC have greatly improved in the recent years, there is still a lack of accurate methods to predict the prognosis of patients. Evidence has shown that Hippo signaling in tissues adjacent to HCC plays a significant role in HCC development. In the present study, we aimed to construct a model based on the expression of Hippo‐related genes (HRGs) in tissues adjacent to HCC to predict the prognosis of HCC patients. Methods Gene expression data of paired normal tissues adjacent to HCC (PNTAH) and clinical information were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The HRG signature was constructed using four canonical Hippo‐related pathways. Univariate Cox regression analysis was used to screen survival‐related HRGs. LASSO and multivariate Cox regression analyses were used to construct the prognostic model. The true and false positive rates of the model were confirmed using receiver operating characteristic (ROC) analysis. Results The prognostic model was constructed based on the expression levels of five HRGs (NF2, MYC, BIRC3, CSNK1E, and MINK1) in PNTAH. The mortality rate of HCC patients increased as the risk score determined by the model increased. Furthermore, the risk score was found to be an independent risk factor for the survival of patients. ROC analysis showed that the prognostic model had a better predictive value than the other conventional clinical parameters. Moreover, the reliability of the prognostic model was confirmed in TCGA‐LIHC cohort. A nomogram was generated to predict patient survival. An exploration of the predictive value of the model in HCC tissues indicated that the model is PNTAH‐specific. Conclusions We developed and validated a prognostic model based on the expression levels of five HRGs in PNTAH, and this model should be helpful in predicting the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Qingbo Pan
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanbo Qin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanyu Yuan
- Caojie Community Medical Service Centre Hechuan, Chongqing, China
| | - Baoning He
- Chongqing YuCai Secondary School, Chongqing, China
| | - Ni Yang
- Chongqing YuCai Secondary School, Chongqing, China
| | - Yitong Zhang
- Chongqing YuCai Secondary School, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zeng
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
81
|
Markert L, Holdmann J, Klinger C, Kaufmann M, Schork K, Turewicz M, Eisenacher M, Savelsbergh A. Small RNAs as biomarkers to differentiate benign and malign prostate diseases: An alternative for transrectal punch biopsy of the prostate? PLoS One 2021; 16:e0247930. [PMID: 33760831 PMCID: PMC7990312 DOI: 10.1371/journal.pone.0247930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer and the third most frequent cause of male cancer death in Germany. MicroRNAs (miRNA) appear to be involved in the development and progression of PCa. A diagnostic differentiation from benign prostate hyperplasia (BPH) is often only possible through transrectal punch biopsy. This procedure is described as painful and carries risks. It was investigated whether urinary miRNAs can be used as biomarkers to differentiate the prostate diseases above. Therefore urine samples from urological patients with BPH (25) or PCa (28) were analysed using Next-Generation Sequencing to detect the expression profile of total and exosomal miRNA/piRNA. 79 miRNAs and 5 piwi-interacting RNAs (piRNAs) were significantly differentially expressed (adjusted p-value < 0.05 and log2-Fc > 1 or < -1). Of these, 6 miRNAs and 2 piRNAs could be statistically validated (AUC on test cohort > = 0.7). In addition, machine-learning algorithms were used to identify a panel of 22 additional miRNAs, whose interaction makes it possible to differentiate the groups as well. There are promising individual candidates for potential use as biomarkers in prostate cancer. The innovative approach of applying machine learning methods to this kind of data could lead to further small RNAs coming into scientific focus, which have so far been neglected.
Collapse
Affiliation(s)
- Lukas Markert
- Division of Functional Genomics, Chair for Biochemistry and Molecular Medicine, Witten/Herdecke University, Witten, Germany
- * E-mail:
| | - Jonas Holdmann
- Division of Functional Genomics, Chair for Biochemistry and Molecular Medicine, Witten/Herdecke University, Witten, Germany
| | - Claudia Klinger
- Division of Functional Genomics, Chair for Biochemistry and Molecular Medicine, Witten/Herdecke University, Witten, Germany
- Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Michael Kaufmann
- Division of Functional Genomics, Chair for Biochemistry and Molecular Medicine, Witten/Herdecke University, Witten, Germany
- Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Karin Schork
- Medizinisches Proteom-Centre, Ruhr-University Bochum, Bochum, Germany
- Centre for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr-University, Bochum, Germany
| | - Michael Turewicz
- Medizinisches Proteom-Centre, Ruhr-University Bochum, Bochum, Germany
- Centre for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr-University, Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Centre, Ruhr-University Bochum, Bochum, Germany
- Centre for Protein Diagnostics (ProDi), Medical Proteome Analysis, Ruhr-University, Bochum, Germany
| | - Andreas Savelsbergh
- Division of Functional Genomics, Chair for Biochemistry and Molecular Medicine, Witten/Herdecke University, Witten, Germany
- Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| |
Collapse
|
82
|
Ahmed M, Soares F, Xia JH, Yang Y, Li J, Guo H, Su P, Tian Y, Lee HJ, Wang M, Akhtar N, Houlahan KE, Bosch A, Zhou S, Mazrooei P, Hua JT, Chen S, Petricca J, Zeng Y, Davies A, Fraser M, Quigley DA, Feng FY, Boutros PC, Lupien M, Zoubeidi A, Wang L, Walsh MJ, Wang T, Ren S, Wei GH, He HH. CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nat Commun 2021; 12:1781. [PMID: 33741908 PMCID: PMC7979745 DOI: 10.1038/s41467-021-21867-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) risk-associated SNPs are enriched in noncoding cis-regulatory elements (rCREs), yet their modi operandi and clinical impact remain elusive. Here, we perform CRISPRi screens of 260 rCREs in PCa cell lines. We find that rCREs harboring high risk SNPs are more essential for cell proliferation and H3K27ac occupancy is a strong indicator of essentiality. We also show that cell-line-specific essential rCREs are enriched in the 8q24.21 region, with the rs11986220-containing rCRE regulating MYC and PVT1 expression, cell proliferation and tumorigenesis in a cell-line-specific manner, depending on DNA methylation-orchestrated occupancy of a CTCF binding site in between this rCRE and the MYC promoter. We demonstrate that CTCF deposition at this site as measured by DNA methylation level is highly variable in prostate specimens, and observe the MYC eQTL in the 8q24.21 locus in individuals with low CTCF binding. Together our findings highlight a causal mechanism synergistically driven by a risk SNP and DNA methylation-mediated 3D genome architecture, advocating for the integration of genetics and epigenetics in assessing risks conferred by genetic predispositions.
Collapse
Affiliation(s)
- Musaddeque Ahmed
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Ji-Han Xia
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Yue Yang
- Changhai Hospital, Shanghai, China
| | - Jing Li
- Changhai Hospital, Shanghai, China
| | - Haiyang Guo
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Peiran Su
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hyung Joo Lee
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Miranda Wang
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Nayeema Akhtar
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Kathleen E Houlahan
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Almudena Bosch
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stanley Zhou
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Parisa Mazrooei
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Junjie T Hua
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sujun Chen
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jessica Petricca
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yong Zeng
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Alastair Davies
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Michael Fraser
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
| | - Paul C Boutros
- Vector Institute, Toronto, ON, Canada
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mathieu Lupien
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ting Wang
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
- Fudan University Shanghai Cancer Center, School of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Housheng Hansen He
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
83
|
Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, Gillessen S, Van der Kwast T, Bristow RG. Prostate cancer. Nat Rev Dis Primers 2021. [PMID: 33542230 DOI: 10.1038/s41572-020-0024.3-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Prostate cancer is a complex disease that affects millions of men globally, predominantly in high human development index regions. Patients with localized disease at a low to intermediate risk of recurrence generally have a favourable outcome of 99% overall survival for 10 years if the disease is detected and treated at an early stage. Key genetic alterations include fusions of TMPRSS2 with ETS family genes, amplification of the MYC oncogene, deletion and/or mutation of PTEN and TP53 and, in advanced disease, amplification and/or mutation of the androgen receptor (AR). Prostate cancer is usually diagnosed by prostate biopsy prompted by a blood test to measure prostate-specific antigen levels and/or digital rectal examination. Treatment for localized disease includes active surveillance, radical prostatectomy or ablative radiotherapy as curative approaches. Men whose disease relapses after prostatectomy are treated with salvage radiotherapy and/or androgen deprivation therapy (ADT) for local relapse, or with ADT combined with chemotherapy or novel androgen signalling-targeted agents for systemic relapse. Advanced prostate cancer often progresses despite androgen ablation and is then considered castration-resistant and incurable. Current treatment options include AR-targeted agents, chemotherapy, radionuclides and the poly(ADP-ribose) inhibitor olaparib. Current research aims to improve prostate cancer detection, management and outcomes, including understanding the fundamental biology at all stages of the disease.
Collapse
Affiliation(s)
- Richard J Rebello
- Cancer Research UK Manchester Institute, University of Manchester, Manchester Cancer Research Centre, Manchester, UK
| | - Christoph Oing
- Cancer Research UK Manchester Institute, University of Manchester, Manchester Cancer Research Centre, Manchester, UK
- Department of Oncology, Haematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Centre Eppendorf, Hamburg, Germany
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center at Jefferson Health and Thomas Jefferson University, Philadelphia, PA, USA
| | - Stacy Loeb
- Department of Urology and Population Health, New York University and Manhattan Veterans Affairs, Manhattan, NY, USA
| | - David C Johnson
- Department of Urology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert E Reiter
- Department of Urology, Jonssen Comprehensive Cancer Center UCLA, Los Angeles, CA, USA
| | | | - Theodorus Van der Kwast
- Laboratory Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Robert G Bristow
- Cancer Research UK Manchester Institute, University of Manchester, Manchester Cancer Research Centre, Manchester, UK.
| |
Collapse
|
84
|
Abstract
Prostate cancer is a complex disease that affects millions of men globally, predominantly in high human development index regions. Patients with localized disease at a low to intermediate risk of recurrence generally have a favourable outcome of 99% overall survival for 10 years if the disease is detected and treated at an early stage. Key genetic alterations include fusions of TMPRSS2 with ETS family genes, amplification of the MYC oncogene, deletion and/or mutation of PTEN and TP53 and, in advanced disease, amplification and/or mutation of the androgen receptor (AR). Prostate cancer is usually diagnosed by prostate biopsy prompted by a blood test to measure prostate-specific antigen levels and/or digital rectal examination. Treatment for localized disease includes active surveillance, radical prostatectomy or ablative radiotherapy as curative approaches. Men whose disease relapses after prostatectomy are treated with salvage radiotherapy and/or androgen deprivation therapy (ADT) for local relapse, or with ADT combined with chemotherapy or novel androgen signalling-targeted agents for systemic relapse. Advanced prostate cancer often progresses despite androgen ablation and is then considered castration-resistant and incurable. Current treatment options include AR-targeted agents, chemotherapy, radionuclides and the poly(ADP-ribose) inhibitor olaparib. Current research aims to improve prostate cancer detection, management and outcomes, including understanding the fundamental biology at all stages of the disease.
Collapse
|
85
|
Morschhauser F, Feugier P, Flinn IW, Gasiorowski R, Greil R, Illés Á, Johnson NA, Larouche JF, Lugtenburg PJ, Patti C, Salles GA, Trněný M, de Vos S, Mir F, Samineni D, Kim SY, Jiang Y, Punnoose E, Sinha A, Clark E, Spielewoy N, Humphrey K, Bazeos A, Zelenetz AD. A phase 2 study of venetoclax plus R-CHOP as first-line treatment for patients with diffuse large B-cell lymphoma. Blood 2021; 137:600-609. [PMID: 33538797 PMCID: PMC7869186 DOI: 10.1182/blood.2020006578] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022] Open
Abstract
The phase 2 CAVALLI (NCT02055820) study assessed efficacy and safety of venetoclax, a selective B-cell lymphoma-2 (Bcl-2) inhibitor, with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in first-line (1L) diffuse large B-cell lymphoma (DLBCL), including patients demonstrating Bcl-2 protein overexpression by immunohistochemistry (Bcl-2 IHC+). Eligible patients were ≥18 years of age and had previously untreated DLBCL, Eastern Cooperative Oncology Group performance status ≤2, and International Prognostic Index 2 to 5. Venetoclax 800 mg (days 4-10, cycle 1; days 1-10, cycles 2-8) was administered with rituximab (8 cycles) and cyclophosphamide, doxorubicin, vincristine, and prednisone (6-8 cycles) in 21-day cycles. Primary end points were safety, tolerability, and research_plete response (CR) at end of treatment (EOT). Secondary end points were progression-free survival (PFS) and overall survival. Comparative analyses used covariate-adjusted R-CHOP controls from the GOYA/BO21005 study, an appropriate contemporary benchmark for safety and efficacy. Safety and efficacy analyses included 206 patients. CR rate at EOT was 69% in the overall population and was maintained across Bcl-2 IHC+ subgroups. With a median follow-up of 32.2 months, trends were observed for improved investigator-assessed PFS for venetoclax plus R-CHOP in the overall population (hazard ratio [HR], 0.61; 95% confidence interval [CI], 0.43-0.87) and Bcl-2 IHC+ subgroups (HR, 0.55; 95% CI, 0.34-0.89) vs R-CHOP. Despite a higher incidence of grade 3/4 hematologic adverse events (86%), related mortality was not increased (2%). Chemotherapy dose intensity was similar in CAVALLI vs GOYA. The addition of venetoclax to R-CHOP in 1L DLBCL demonstrates increased, but manageable, myelosuppression and the potential of improved efficacy, particularly in high-risk Bcl-2 IHC+ patient subgroups.
Collapse
Affiliation(s)
- Franck Morschhauser
- Université de Lille, Centre Hospitalier Universitaire (CHU) Lille, Groupe de Recherche sur les Formes Injectables et les Technologies Associées (ULR 7365-GRITA), Lille, France
| | - Pierre Feugier
- CHU de Nancy, Université de Lorraine, Vandoeuvre lès Nancy, France
| | - Ian W Flinn
- Sarah Cannon Research Institute-Tennessee Oncology, Nashville, TN
| | | | - Richard Greil
- Paracelcus Medical University Salzburg, Salzburg Cancer Research Institute-Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
| | - Árpád Illés
- Department of Hematology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | - Pieternella J Lugtenburg
- HOVON Lunenburg Lymphoma Phase I-II Consortium, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Caterina Patti
- Azienda Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Gilles A Salles
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, University of Lyon, Pierre-Bénite, France
| | - Marek Trněný
- First Department of Medicine, Charles University General Hospital, Prague, Czech Republic
| | - Sven de Vos
- David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA
| | - Farheen Mir
- Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | | | | | | | | | - Arijit Sinha
- Roche Products Limited, Welwyn Garden City, United Kingdom
| | - Emma Clark
- Roche Products Limited, Welwyn Garden City, United Kingdom
| | | | | | | | | |
Collapse
|
86
|
Alali Z, Graham A, Swan K, Flyckt R, Falcone T, Cui W, Yang X, Christianson J, Nothnick WB. 60S acidic ribosomal protein P1 (RPLP1) is elevated in human endometriotic tissue and in a murine model of endometriosis and is essential for endometriotic epithelial cell survival in vitro. Mol Hum Reprod 2021; 26:53-64. [PMID: 31899515 DOI: 10.1093/molehr/gaz065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/31/2019] [Indexed: 11/12/2022] Open
Abstract
Endometriosis is a female disease which is defined as the presence of ectopic endometrial tissue and is dependent on estrogen for its survival in these ectopic locations. Expression of the ribosomal protein large P1 (RPLP1) is associated with cell proliferation and invasion in several pathologies, but a role in the pathophysiology of endometriosis has not been explored. In this study, we aimed to evaluate the expression and function of RPLP1 with respect to endometriosis pathophysiology. RPLP1 protein was localised by immunohistochemistry (IHC) in eutopic and ectopic tissue from 28 subjects with confirmed endometriosis and from 20 women without signs or symptoms of the disease, while transcript levels were evaluated by qRT-PCR in 77 endometriotic lesions and 55 matched eutopic endometrial biopsies, and protein expression was evaluated using western blotting in 20 of these matched samples. To evaluate the mechanism for enhanced lesion expression of RPLP1, an experimental murine model of endometriosis was used and RPLP1 expression was localized using IHC. In vitro studies using an endometriosis cell line coupled with shRNA knockdown was used to demonstrate its role in cell survival. Expression of RPLP1 mRNA and protein were significantly higher in ectopic lesion tissue compared to paired eutopic endometrium and immunohistochemical localisation revealed predominant localisation to epithelial cells. This pattern of lesion RPLP1 was recapitulated in mice with experimentally induced endometriosis. Stable knockdown of RPLP1 protein resulted in a significant decrease in cell survival in vitro. These studies reveal that RPLP1 is associated with cell proliferation and/or survival and may play a role in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Zahraa Alali
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amanda Graham
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kimberly Swan
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Center for Reproductive Sciences and Institute for Reproductive and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rebecca Flyckt
- Department of Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tommaso Falcone
- Department of Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Cleveland Clinic London, SW1E 6QT, UK
| | - Wei Cui
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaofang Yang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Julie Christianson
- Center for Reproductive Sciences and Institute for Reproductive and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Warren B Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Center for Reproductive Sciences and Institute for Reproductive and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
87
|
Moser B, Hochreiter B, Basílio J, Gleitsmann V, Panhuber A, Pardo-Garcia A, Hoesel B, Salzmann M, Resch U, Noreen M, Schmid JA. The inflammatory kinase IKKα phosphorylates and stabilizes c-Myc and enhances its activity. Mol Cancer 2021; 20:16. [PMID: 33461590 PMCID: PMC7812655 DOI: 10.1186/s12943-021-01308-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The IκB kinase (IKK) complex, comprising the two enzymes IKKα and IKKβ, is the main activator of the inflammatory transcription factor NF-κB, which is constitutively active in many cancers. While several connections between NF-κB signaling and the oncogene c-Myc have been shown, functional links between the signaling molecules are still poorly studied. METHODS Molecular interactions were shown by co-immunoprecipitation and FRET microscopy. Phosphorylation of c-Myc was shown by kinases assays and its activity by improved reporter gene systems. CRISPR/Cas9-mediated gene knockout and chemical inhibition were used to block IKK activity. The turnover of c-Myc variants was determined by degradation in presence of cycloheximide and by optical pulse-chase experiments.. Immunofluorescence of mouse prostate tissue and bioinformatics of human datasets were applied to correlate IKKα- and c-Myc levels. Cell proliferation was assessed by EdU incorporation and apoptosis by flow cytometry. RESULTS We show that IKKα and IKKβ bind to c-Myc and phosphorylate it at serines 67/71 within a sequence that is highly conserved. Knockout of IKKα decreased c-Myc-activity and increased its T58-phosphorylation, the target site for GSK3β, triggering polyubiquitination and degradation. c-Myc-mutants mimicking IKK-mediated S67/S71-phosphorylation exhibited slower turnover, higher cell proliferation and lower apoptosis, while the opposite was observed for non-phosphorylatable A67/A71-mutants. A significant positive correlation of c-Myc and IKKα levels was noticed in the prostate epithelium of mice and in a variety of human cancers. CONCLUSIONS Our data imply that IKKα phosphorylates c-Myc on serines-67/71, thereby stabilizing it, leading to increased transcriptional activity, higher proliferation and decreased apoptosis.
Collapse
Affiliation(s)
- Bernhard Moser
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Viola Gleitsmann
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Anja Panhuber
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Alan Pardo-Garcia
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Ulrike Resch
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Mamoona Noreen
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| |
Collapse
|
88
|
Li H, Chaitankar V, Zhu J, Chin K, Liu W, Pirooznia M, Rodgers GP. Olfactomedin 4 mediation of prostate stem/progenitor-like cell proliferation and differentiation via MYC. Sci Rep 2020; 10:21924. [PMID: 33318499 PMCID: PMC7736579 DOI: 10.1038/s41598-020-78774-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
Olfactomedin 4 (OLFM4) is expressed in normal prostate epithelial cells and immortalized normal human prostate epithelial cells (RWPE1), but the identity of OLFM4-expressing cells within these populations and OLFM4's physiological functions in these cells have not been elucidated. Using single-cell RNA sequencing analysis, we found here that OLFM4 was expressed in multiple stem/progenitor-like cell populations in both the normal prostate epithelium and RWPE1 cells and was frequently co-expressed with KRT13 and LY6D in RWPE1 cells. Functionally, OLFM4-knockout RWPE1 cells exhibited enhanced proliferation of the stem/progenitor-like cell population, shifts stem/progenitor-like cell division to favor symmetric division and differentiated into higher levels PSA expression cells in organoid assays compared with OLFM4-wild RWPE1 cells. Bulk-cell RNA sequencing analysis pinpointed that cMYC expression were enhanced in the OLFM4-knockout RWPE1 cells compared with OLFM4-wild cells. Molecular and signaling pathway studies revealed an increase in the WNT/APC/MYC signaling pathway gene signature, as well as that of MYC target genes that regulate multiple biological processes, in OLFM4-knockout RWPE1 cells. These findings indicated that OLFM4 is co-expressed with multiple stem/progenitor cell marker genes in prostate epithelial cells and acts as a novel mediator in prostate stem/progenitor cell proliferation and differentiation.
Collapse
Affiliation(s)
- Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Kyung Chin
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
89
|
Burkhart DL, Morel KL, Wadosky KM, Labbé DP, Galbo PM, Dalimov Z, Xu B, Loda M, Ellis L. Evidence that EZH2 Deregulation is an Actionable Therapeutic Target for Prevention of Prostate Cancer. Cancer Prev Res (Phila) 2020; 13:979-988. [PMID: 32917647 PMCID: PMC7718322 DOI: 10.1158/1940-6207.capr-20-0186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/10/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Chemoprevention trials for prostate cancer by androgen receptor or androgen synthesis inhibition have proven ineffective. Recently, it has been demonstrated that the histone methlytransferase, EZH2 is deregulated in mouse and human high-grade prostatic intraepithelial neoplasia (HG-PIN). Using preclinical mouse and human models of prostate cancer, we demonstrate that genetic and chemical disruption of EZH2 expression and catalytic activity reversed the HG-PIN phenotype. Furthermore, inhibition of EZH2 function was associated with loss of cellular proliferation and induction of Tp53-dependent senescence. Together, these data provide provocative evidence for EZH2 as an actionable therapeutic target toward prevention of prostate cancer.
Collapse
Affiliation(s)
- Deborah L Burkhart
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Katherine L Morel
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristine M Wadosky
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | - David P Labbé
- Division of Urology, Department of Surgery, McGill University and Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Phillip M Galbo
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York
| | | | - Bo Xu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
90
|
Pisano C, Tucci M, Di Stefano RF, Turco F, Scagliotti GV, Di Maio M, Buttigliero C. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: Current and future clinical implications. Crit Rev Oncol Hematol 2020; 157:103185. [PMID: 33341506 DOI: 10.1016/j.critrevonc.2020.103185] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/09/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
In last years several improvements have been made in the management of prostate cancer (PCa). Androgen receptor (AR) is considered the main driver in PCa growth and progression and most drugs are directed against AR pathway. Once PCa spreads outside the prostate, androgen deprivation therapy (ADT) represents the cornerstone of treatment in hormone-sensitive prostate cancer (HSPC). Unfortunately, the response is only transient and most patients eventually develop castration-resistant prostate cancer (CRPC). Most resistance mechanisms depend on maintenance of AR signalling in castration environment. Recent discoveries of multiple growth-promoting and survival pathways in PCa suggest the importance of alternative mechanisms involved in disease progression, such as DNA damage response pathway, PTEN/PI3K/AKT/mTOR pathway, cell cycle pathway, WNT pathway, TMPRSS2/ETS fusion, neuroendocrine pattern and immune system response. In this review, we discuss the interplay between AR signaling and other molecular pathways involved in PCa pathogenesis and their therapeutic implication in advanced disease.
Collapse
Affiliation(s)
- Chiara Pisano
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Marcello Tucci
- Medical Oncology, Cardinal Massaia Hospital, Corso Dante Alighieri 202, 14100, Asti, Italy.
| | - Rosario Francesco Di Stefano
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Fabio Turco
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Giorgio Vittorio Scagliotti
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, at Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10028, Turin, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| |
Collapse
|
91
|
A novel metabolic function of Myc in regulation of fatty acid synthesis in prostate cancer. Oncogene 2020; 40:592-602. [PMID: 33199826 DOI: 10.1038/s41388-020-01553-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
A subset of human prostate cancer exhibits increased de novo synthesis of fatty acids, but the molecular driver(s) of this metabolic abnormality remains obscure. This study demonstrates a novel metabolic function of c-Myc (Myc) in regulation of fatty acid synthesis. The role of Myc in regulation of fatty acid synthesis was investigated by: (a) interrogation of the prostate cancer The Cancer Genome Atlas (TCGA) dataset, (b) chromatin immunoprecipitation, and (c) determination of the expression of fatty acid synthesis enzymes and targeted metabolomics using a mouse model and human specimens. The expression of MYC was positively associated with that of key fatty acid synthesis genes including ACLY, ACC1, and FASN in prostate cancer TCGA dataset. Chromatin immunoprecipitation revealed Myc occupancy at the promoters of ACLY, ACC1, and FASN. Prostate-specific overexpression of Myc in Hi-Myc transgenic mice resulted in overexpression of ACLY, ACC1, and FASN proteins in neoplastic lesions and increased circulating levels of total free fatty acids. Targeted metabolomics confirmed increased circulating levels of individual fatty acids in the plasma of Hi-Myc mice and human subjects when compared to corresponding controls. Immunohistochemistry also revealed a positive and statistically significant association in expression of Myc with that of ACC1 in human prostate adenocarcinoma specimens. We propose that Myc-regulated fatty acid synthesis is a valid target for therapy and/or prevention of prostate cancer.
Collapse
|
92
|
Punnoose E, Peale FV, Szafer-Glusman E, Lei G, Bourgon R, Do AD, Kim E, Zhang L, Farinha P, Gascoyne RD, Munoz FJ, Martelli M, Mottok A, Salles GA, Sehn LH, Seymour JF, Trnĕný M, Oestergaard MZ, Mundt KE, Vitolo U. BCL2 Expression in First-Line Diffuse Large B-Cell Lymphoma Identifies a Patient Population With Poor Prognosis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 21:267-278.e10. [PMID: 33303421 DOI: 10.1016/j.clml.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The prognostic value of B-cell lymphoma 2 (BCL2) expression in de novo diffuse large B-cell lymphoma (DLBCL) treated with immunochemotherapy is of interest to define a target patient population for clinical development of BCL2 inhibitors. We aimed to develop a reproducible immunohistochemistry algorithm and assay to determine BCL2 protein expression and assess the prognostic value of BCL2 in newly diagnosed DLBCL cohorts. PATIENTS AND METHODS The prospectively defined algorithm incorporated BCL2 staining intensity and percentage of BCL2-positive cells. Functionally relevant cutoffs were based on the sensitivity of lymphoma cell lines to venetoclax. This assay was highly reproducible across laboratories. The prognostic impact of BCL2 expression was assessed in DLBCL patients from the phase 3 MAIN (n = 230) and GOYA (n = 366) trials, and a population-based registry (n = 310). RESULTS Approximately 50% of tumors were BCL2 positive, with a higher frequency in high International Prognostic Index (IPI) and activated B-cell-like DLBCL subgroups. BCL2 expression was associated with poorer progression-free survival in the MAIN study (hazard ratio [HR], 1.66; 95% confidence interval [CI], 0.81-3.40; multivariate Cox regression adjusted for IPI and cell of origin). This trend was confirmed in the GOYA and registry cohorts in adjusted multivariate analyses (GOYA: HR, 1.72; 95% CI, 1.05-2.82; registry: HR, 1.89; 95% CI, 1.29-2.78). Patients with BCL2 immunohistochemistry-positive and IPI-high disease had the poorest prognosis: 3-year progression-free survival rates were 51% (GOYA) and 37% (registry). CONCLUSION Findings support use of our BCL2 immunohistochemistry scoring system and assay to select patients with BCL2-positive tumors for future studies.
Collapse
Affiliation(s)
| | | | | | - Guiyuan Lei
- Roche Products Limited, Welwyn Garden City, England, United Kingdom
| | | | - An D Do
- Genentech Inc, South San Francisco, CA
| | | | | | - Pedro Farinha
- Center for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Randy D Gascoyne
- Center for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Maurizio Martelli
- Department of Translational and Precision Medicine, Hematology Section, Sapienza University, Rome, Italy
| | - Anja Mottok
- Center for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Gilles A Salles
- Department of Hematology, Hospices Civils de Lyon-Université de Lyon, Pierre-Bénite, France
| | - Laurie H Sehn
- Center for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - John F Seymour
- Department of Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Victoria, Australia; University of Melbourne, Parkville, Victoria, Australia
| | - Marek Trnĕný
- Department of Hematology, General Hospital, Charles University, Prague, Czech Republic
| | | | | | - Umberto Vitolo
- Multidisciplinary Oncology Outpatient Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| |
Collapse
|
93
|
Arriaga JM, Panja S, Alshalalfa M, Zhao J, Zou M, Giacobbe A, Madubata CJ, Kim JY, Rodriguez A, Coleman I, Virk RK, Hibshoosh H, Ertunc O, Ozbek B, Fountain J, Jeffrey Karnes R, Luo J, Antonarakis ES, Nelson PS, Feng FY, Rubin MA, De Marzo AM, Rabadan R, Sims PA, Mitrofanova A, Abate-Shen C. A MYC and RAS co-activation signature in localized prostate cancer drives bone metastasis and castration resistance. NATURE CANCER 2020; 1:1082-1096. [PMID: 34085047 PMCID: PMC8171279 DOI: 10.1038/s43018-020-00125-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Understanding the intricacies of lethal prostate cancer poses specific challenges due to difficulties in accurate modeling of metastasis in vivo. Here we show that NPK EYFP mice (for Nkx3.1 CreERT2/+ ; Pten flox/flox ; Kras LSL-G12D/+ ; R26R-CAG-LSL-EYFP/+) develop prostate cancer with a high penetrance of metastasis to bone, thereby enabling detection and tracking of bone metastasis in vivo and ex vivo. Transcriptomic and whole-exome analyses of bone metastasis from these mice revealed distinct molecular profiles conserved between human and mouse and specific patterns of subclonal branching from the primary tumor. Integrating bulk and single-cell transcriptomic data from mouse and human datasets with functional studies in vivo unravels a unique MYC/RAS co-activation signature associated with prostate cancer metastasis. Finally, we identify a gene signature with prognostic value for time to metastasis and predictive of treatment response in human patients undergoing androgen receptor therapy across clinical cohorts, thus uncovering conserved mechanisms of metastasis with potential translational significance.
Collapse
Affiliation(s)
- Juan M Arriaga
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Min Zou
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
- Arvinas, New Haven, CT, USA
| | - Arianna Giacobbe
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Chioma J Madubata
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Jaime Yeji Kim
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Antonio Rodriguez
- Department for BioMedical Research, University of Bern and Inselspital, Bern, Switzerland
- Institute of Pathology, University of Bern and Inselspital, Bern, Switzerland
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Renu K Virk
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanina Hibshoosh
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Onur Ertunc
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Suleyman Demirel University, Training and Research Hospital, Isparta, Turkey
| | - Büşra Ozbek
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia Fountain
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern and Inselspital, Bern, Switzerland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
94
|
Cellular and Molecular Progression of Prostate Cancer: Models for Basic and Preclinical Research. Cancers (Basel) 2020; 12:cancers12092651. [PMID: 32957478 PMCID: PMC7563251 DOI: 10.3390/cancers12092651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The molecular progression of prostate cancer is complex and elusive. Biological research relies heavily on in vitro and in vivo models that can be used to examine gene functions and responses to the external agents in laboratory and preclinical settings. Over the years, several models have been developed and found to be very helpful in understanding the biology of prostate cancer. Here we describe these models in the context of available information on the cellular and molecular progression of prostate cancer to suggest their potential utility in basic and preclinical prostate cancer research. The information discussed herein should serve as a hands-on resource for scholars engaged in prostate cancer research or to those who are making a transition to explore the complex biology of prostate cancer. Abstract We have witnessed noteworthy progress in our understanding of prostate cancer over the past decades. This basic knowledge has been translated into efficient diagnostic and treatment approaches leading to the improvement in patient survival. However, the molecular pathogenesis of prostate cancer appears to be complex, and histological findings often do not provide an accurate assessment of disease aggressiveness and future course. Moreover, we also witness tremendous racial disparity in prostate cancer incidence and clinical outcomes necessitating a deeper understanding of molecular and mechanistic bases of prostate cancer. Biological research heavily relies on model systems that can be easily manipulated and tested under a controlled experimental environment. Over the years, several cancer cell lines have been developed representing diverse molecular subtypes of prostate cancer. In addition, several animal models have been developed to demonstrate the etiological molecular basis of the prostate cancer. In recent years, patient-derived xenograft and 3-D culture models have also been created and utilized in preclinical research. This review is an attempt to succinctly discuss existing information on the cellular and molecular progression of prostate cancer. We also discuss available model systems and their tested and potential utility in basic and preclinical prostate cancer research.
Collapse
|
95
|
Condappa A, McGrowder D, Aiken W, McLaughlin W, Gossell-Williams M. Evaluation of Plasma Circulating Cell Free DNA Concentration and Integrity in Patients with Prostate Cancer in Jamaica: A Preliminary Study. Diseases 2020; 8:diseases8030034. [PMID: 32906694 PMCID: PMC7564624 DOI: 10.3390/diseases8030034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Cell free circulating DNA (cfcDNA) is a promising diagnostic tool for prostate cancer (PCa). This study aimed to measure the cfcDNA concentration and integrity in PCa patients using quantitative polymerase chain reaction (qPCR) analysis. This study also assessed the correlation between these molecular biomarkers with total prostate-specific antigen (PSA), Gleason score, prostate volume, and age. Methods: Eleven PCa patients and 9 persons with benign prostatic hyperplasia (BPH) were recruited. Blood samples were collected before prostate biopsy and plasma quantified by qPCR amplification of the ALU 115 DNA sequence, with the ratio of ALU 247 to ALU 115 reflecting cfcDNA integrity. Results: There were no significant differences in median, interquartile range (IQR) cfcDNA concentration or cfcDNA integrity between the patients with PCa (47.9 (214.93) ng/mL; 0.61 (0.49)) and persons with BPH (41.5 (55.13) ng/mL, p = 0.382; 0.67 (0.45), p = 0.342). A weakly positive correlation exists between cfcDNA concentration and total PSA (r = 0.200, p = 0.555) but not with age or Gleason score in PCa patients. Conclusion: cfcDNA concentration was relatively nonsignificantly higher in PCa patients in comparison to persons with BPH, whereas cfcDNA integrity was similar in both groups. Though limited in sample size, this study shows that cfcDNA concentration may be a potentially valuable noninvasive biomarker for the diagnosis of PCa.
Collapse
Affiliation(s)
- Andrew Condappa
- Department of Basic Medical Sciences (Pharmacology Section), Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (A.C.); (M.G.-W.)
| | - Donovan McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica
- Correspondence:
| | - William Aiken
- Department of Surgery, Radiology, Anaesthesia and Intensive Care, Section of Surgery, Urology Division, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica;
| | - Wayne McLaughlin
- Department of Basic Medical Sciences (Molecular Biology Section), Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica;
| | - Maxine Gossell-Williams
- Department of Basic Medical Sciences (Pharmacology Section), Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (A.C.); (M.G.-W.)
| |
Collapse
|
96
|
Tang DE, Dai Y, He JX, Lin LW, Leng QX, Geng XY, Fu DX, Jiang HW, Xu SH. Targeting the KDM4B-AR-c-Myc axis promotes sensitivity to androgen receptor-targeted therapy in advanced prostate cancer. J Pathol 2020; 252:101-113. [PMID: 32617978 DOI: 10.1002/path.5495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
The histone demethylase KDM4B functions as a key co-activator for the androgen receptor (AR) and plays a vital in multiple cancers through controlling gene expression by epigenetic regulation of H3K9 methylation marks. Constitutively active androgen receptor confers anti-androgen resistance in advanced prostate cancer. However, the role of KDM4B in resistance to next-generation anti-androgens and the mechanisms of KDM4B regulation are poorly defined. Here we found that KDM4B is overexpressed in enzalutamide-resistant prostate cancer cells. Overexpression of KDM4B promoted recruitment of AR to the c-Myc (MYC) gene enhancer and induced H3K9 demethylation, increasing AR-dependent transcription of c-Myc mRNA, which regulates the sensitivity to next-generation AR-targeted therapy. Inhibition of KDM4B significantly inhibited prostate tumor cell growth in xenografts, and improved enzalutamide treatments through suppression of c-Myc. Clinically, KDM4B expression was found upregulated and to correlate with prostate cancer progression and poor prognosis. Our results revealed a novel mechanism of anti-androgen resistance via histone demethylase alteration which could be targeted through inhibition of KDM4B to reduce AR-dependent c-Myc expression and overcome resistance to AR-targeted therapies. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dong-E Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, PR China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, PR China
| | - Jia-Xi He
- Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lie-Wen Lin
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, PR China
| | - Qi-Xin Leng
- Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xin-Yan Geng
- Department of Biochemistry, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - De-Xue Fu
- Department of Surgery, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hao-Wu Jiang
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| | - Song-Hui Xu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, PR China.,Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
97
|
de Bono JS, Guo C, Gurel B, De Marzo AM, Sfanos KS, Mani RS, Gil J, Drake CG, Alimonti A. Prostate carcinogenesis: inflammatory storms. Nat Rev Cancer 2020; 20:455-469. [PMID: 32546840 DOI: 10.1038/s41568-020-0267-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer is a major cause of cancer morbidity and mortality. Intra-prostatic inflammation is a risk factor for prostate carcinogenesis, with diet, chemical injury and an altered microbiome being causally implicated. Intra-prostatic inflammatory cell recruitment and expansion can ultimately promote DNA double-strand breaks and androgen receptor activation in prostate epithelial cells. The activation of the senescence-associated secretory phenotype fuels further 'inflammatory storms', with free radicals leading to further DNA damage. This drives the overexpression of DNA repair and tumour suppressor genes, rendering these genes susceptible to mutagenic insults, with carcinogenesis accelerated by germline DNA repair gene defects. We provide updates on recent advances in elucidating prostate carcinogenesis and explore novel therapeutic and prevention strategies harnessing these discoveries.
Collapse
Affiliation(s)
- Johann S de Bono
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, Sutton, UK.
| | - Christina Guo
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | | | - Karen S Sfanos
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ram S Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | | | - Andrea Alimonti
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
98
|
Whitlock NC, Trostel SY, Wilkinson S, Terrigino NT, Hennigan ST, Lake R, Carrabba NV, Atway R, Walton ED, Gryder BE, Capaldo BJ, Ye H, Sowalsky AG. MEIS1 down-regulation by MYC mediates prostate cancer development through elevated HOXB13 expression and AR activity. Oncogene 2020; 39:5663-5674. [PMID: 32681068 PMCID: PMC7441006 DOI: 10.1038/s41388-020-01389-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Localized prostate cancer develops very slowly in most men, with the androgen receptor (AR) and MYC transcription factors amongst the most well-characterized drivers of prostate tumorigenesis. Canonically, MYC up-regulation in luminal prostate cancer cells functions to oppose the terminally differentiating effects of AR. However, the effects of MYC up-regulation are pleiotropic and inconsistent with a poorly proliferative phenotype. Here we show that increased MYC expression and activity are associated with the down-regulation of MEIS1, a HOX-family transcription factor. Using RNA-seq to profile a series of human prostate cancer specimens laser capture microdissected on the basis of MYC immunohistochemistry, MYC activity, and MEIS1 expression were inversely correlated. Knockdown of MYC expression in prostate cancer cells increased the expression of MEIS1 and increased the occupancy of MYC at the MEIS1 locus. Finally, we show in laser capture microdissected human prostate cancer samples and the prostate TCGA cohort that MEIS1 expression is inversely proportional to AR activity as well as HOXB13, a known interacting protein of both AR and MEIS1. Collectively, our data demonstrate that elevated MYC in a subset of primary prostate cancers functions in a negative role in regulating MEIS1 expression, and that this down-regulation may contribute to MYC-driven development and progression.
Collapse
Affiliation(s)
- Nichelle C Whitlock
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shana Y Trostel
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nicholas T Terrigino
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - S Thomas Hennigan
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nicole V Carrabba
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Rayann Atway
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth D Walton
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Berkley E Gryder
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.,Department of Pathology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
99
|
Leibold J, Ruscetti M, Cao Z, Ho YJ, Baslan T, Zou M, Abida W, Feucht J, Han T, Barriga FM, Tsanov KM, Zamechek L, Kulick A, Amor C, Tian S, Rybczyk K, Salgado NR, Sánchez-Rivera FJ, Watson PA, de Stanchina E, Wilkinson JE, Dow LE, Abate-Shen C, Sawyers CL, Lowe SW. Somatic Tissue Engineering in Mouse Models Reveals an Actionable Role for WNT Pathway Alterations in Prostate Cancer Metastasis. Cancer Discov 2020; 10:1038-1057. [PMID: 32376773 PMCID: PMC7334089 DOI: 10.1158/2159-8290.cd-19-1242] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/26/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022]
Abstract
To study genetic factors influencing the progression and therapeutic responses of advanced prostate cancer, we developed a fast and flexible system that introduces genetic alterations relevant to human disease directly into the prostate glands of mice using tissue electroporation. These electroporation-based genetically engineered mouse models (EPO-GEMM) recapitulate features of traditional germline models and, by modeling genetic factors linked to late-stage human disease, can produce tumors that are metastatic and castration-resistant. A subset of tumors with Trp53 alterations acquired spontaneous WNT pathway alterations, which are also associated with metastatic prostate cancer in humans. Using the EPO-GEMM approach and an orthogonal organoid-based model, we show that WNT pathway activation drives metastatic disease that is sensitive to pharmacologic WNT pathway inhibition. Thus, by leveraging EPO-GEMMs, we reveal a functional role for WNT signaling in driving prostate cancer metastasis and validate the WNT pathway as therapeutic target in metastatic prostate cancer. SIGNIFICANCE: Our understanding of the factors driving metastatic prostate cancer is limited by the paucity of models of late-stage disease. Here, we develop EPO-GEMMs of prostate cancer and use them to identify and validate the WNT pathway as an actionable driver of aggressive metastatic disease.This article is highlighted in the In This Issue feature, p. 890.
Collapse
Affiliation(s)
- Josef Leibold
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marcus Ruscetti
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhen Cao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timour Baslan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Min Zou
- Departments of Pharmacology, Urology, Medicine, Pathology and Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Judith Feucht
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Teng Han
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Francisco M Barriga
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kaloyan M Tsanov
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leah Zamechek
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amanda Kulick
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Corina Amor
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sha Tian
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katarzyna Rybczyk
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson R Salgado
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Philip A Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Cory Abate-Shen
- Departments of Pharmacology, Urology, Medicine, Pathology and Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York.
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
100
|
Feng W, Dean DC, Hornicek FJ, Spentzos D, Hoffman RM, Shi H, Duan Z. Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma. Ther Adv Med Oncol 2020; 12:1758835920922055. [PMID: 32426053 PMCID: PMC7222246 DOI: 10.1177/1758835920922055] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Over the past four decades, outcomes for osteosarcoma patients have plateaued as there have been few emerging therapies showing clinical results. Thus, the identification of novel biomarkers and therapeutic strategies are urgently needed to address these primary obstacles in patient care. Although the Myc-oncogene has known roles in oncogenesis and cancer cell growth, its expression and function in osteosarcoma are largely unknown. Methods Expression of Myc was determined by Western blotting of osteosarcoma cell lines and patient tissues, and by immunohistochemistry of a unique osteosarcoma tissue microarray (TMA) constructed from 70 patient samples with extensive follow-up data. Myc specific siRNA and inhibitor 10058-F4 were applied to examine the effect of Myc inhibition on osteosarcoma cell proliferation. The clonogenicity and migration activity was determined by clonogenic and wound-healing assays. A mimic in vivo assay, three-dimensional (3D) cell culture model, was performed to further validate the effect of Myc inhibition on osteosarcoma cell tumorigenic markers. Results Myc was significantly overexpressed in human osteosarcoma cell lines compared with normal human osteoblasts, and also highly expressed in fresh osteosarcoma tissues. Higher Myc expression correlated significantly with metastasis and poor prognosis. Through the addition of Myc specific siRNA and inhibitor, we significantly reduced Myc protein expression, resulting in decreased osteosarcoma cell proliferation. Inhibition of Myc also suppressed the migration, clonogenicity, and spheroid growth of osteosarcoma cells. Conclusion Our results support Myc as an emerging prognostic biomarker and therapeutic target in osteosarcoma therapy.
Collapse
Affiliation(s)
- Wenlong Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dylan C Dean
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dimitrios Spentzos
- Department of Orthopaedic Surgery, Musculoskeletal Oncology Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA Department of Surgery, University of California, San Diego, CA, USA
| | - Huirong Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095, USA
| |
Collapse
|