51
|
Tempest R, Guarnerio S, Maani R, Cooper J, Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13112788. [PMID: 34205140 PMCID: PMC8199963 DOI: 10.3390/cancers13112788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Transglutaminase-2 (TG2) is the most highly and ubiquitously expressed member of the transglutaminase enzyme family and is primarily involved in protein cross-linking. TG2 has been implicated in the development and progression of numerous cancers, with a direct role in multiple cellular processes and pathways linked to apoptosis, chemoresistance, epithelial-mesenchymal transition, and stem cell phenotype. The tumour microenvironment (TME) is critical in the formation, progression, and eventual metastasis of cancer, and increasing evidence points to a role for TG2 in matrix remodelling, modulation of biomechanical properties, cell adhesion, motility, and invasion. There is growing interest in targeting the TME therapeutically in response to advances in the understanding of its critical role in disease progression, and a number of approaches targeting biophysical properties and biomechanical signalling are beginning to show clinical promise. In this review we aim to highlight the wide array of processes in which TG2 influences the TME, focussing on its potential role in the dynamic tissue remodelling and biomechanical events increasingly linked to invasive and aggressive behaviour. Drug development efforts have yielded a range of TG2 inhibitors, and ongoing clinical trials may inform strategies for targeting the biomolecular and biomechanical function of TG2 in the TME.
Collapse
|
52
|
Wang D, Wei Y, Tian J, He D, Zhang R, Ji X, Huang X, Sun J, Gao J, Wang Z, Pang Q, Liu Q. Oxiracetam Mediates Neuroprotection Through the Regulation of Microglia Under Hypoxia-Ischemia Neonatal Brain Injury in Mice. Mol Neurobiol 2021; 58:3918-3937. [PMID: 33886092 DOI: 10.1007/s12035-021-02376-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
In neonatal hypoxic-ischemic brain damage (HIBD), in addition to damage caused by hypoxia and ischemia, over-activation of inflammation leads to further deterioration of the condition, thus greatly shortening the optimal treatment time window. Ischemic penumbra, the edematous area encompassing the infarct core, is characterized by typical activation of microglia and overt inflammation, and prone to incorporate into the infarct core gradually after ischemia onset. If treated in time, the cells located in the penumbra can survive, thereby impeding the expansion of the infarction. We demonstrated for the first time that in the acute phase of HIBD in neonatal mice, treatment of Oxiracetam (ORC) significantly curtailed the size of ischemic penumbra together with drastic reduction of infarction. By staining various cellular markers, we found that the penumbra was defined and concentrated with activated microglia. We also analyzed transmission electron microscopy and Luminex assay results to elucidate the mechanisms involved. We further confirmed that ORC switched polarization of microglia from the inflammatory towards the alternatively activated phenotype, thus promoting microglia from being neurotoxic into neuroprotective. Meanwhile, ORC decreased proliferation of microglia; however, their functions of phagocytosis and autophagy were otherwise enhanced. Last, we clarified that ORC promoted autophagy through the AMPK/mTOR pathway, which further induced the transition of the inflammatory to the alternatively activated phenotype in microglia. The pro-inflammatory factors secretion was inhibited as well, thereby reducing the progression of the infarction. Taken together, it is concluded that Oxiracetam reduced the expansion of ischemic infarction in part via regulating the interplay between microglia activation and autophagy, which would delay the progression of HIBD and effectively prolong the time window for the clinical treatment of HIBD.
Collapse
Affiliation(s)
- Dan Wang
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Department of Reproductive Medicine, Dongchangfu County Maternal and Child Health Hospital, Liaocheng, 252000, Shandong, China
| | - Yanbang Wei
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jingxia Tian
- Department of Gynaecology and Obstetrics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shandong, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaoming Huang
- Department of Neurosurgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Sun
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jiajia Gao
- Department of Neurosurgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zixiao Wang
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
53
|
Declercq M, de Zeeuw P, Conchinha NV, Geldhof V, Ramalho AS, García-Caballero M, Brepoels K, Ensinck M, Carlon MS, Bird MJ, Vinckier S, Proesmans M, Vermeulen F, Dupont L, Ghesquière B, Dewerchin M, Carmeliet P, Cassiman D, Treps L, Eelen G, Witters P. Transcriptomic analysis of CFTR-impaired endothelial cells reveals a pro-inflammatory phenotype. Eur Respir J 2021; 57:13993003.00261-2020. [PMID: 33184117 DOI: 10.1183/13993003.00261-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is a life-threatening disorder characterised by decreased pulmonary mucociliary and pathogen clearance, and an exaggerated inflammatory response leading to progressive lung damage. CF is caused by bi-allelic pathogenic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel. CFTR is expressed in endothelial cells (ECs) and EC dysfunction has been reported in CF patients, but a role for this ion channel in ECs regarding CF disease progression is poorly described.We used an unbiased RNA sequencing approach in complementary models of CFTR silencing and blockade (by the CFTR inhibitor CFTRinh-172) in human ECs to characterise the changes upon CFTR impairment. Key findings were further validated in vitro and in vivo in CFTR-knockout mice and ex vivo in CF patient-derived ECs.Both models of CFTR impairment revealed that EC proliferation, migration and autophagy were downregulated. Remarkably though, defective CFTR function led to EC activation and a persisting pro-inflammatory state of the endothelium with increased leukocyte adhesion. Further validation in CFTR-knockout mice revealed enhanced leukocyte extravasation in lung and liver parenchyma associated with increased levels of EC activation markers. In addition, CF patient-derived ECs displayed increased EC activation markers and leukocyte adhesion, which was partially rescued by the CFTR modulators VX-770 and VX-809.Our integrated analysis thus suggests that ECs are no innocent bystanders in CF pathology, but rather may contribute to the exaggerated inflammatory phenotype, raising the question of whether normalisation of vascular inflammation might be a novel therapeutic strategy to ameliorate the disease severity of CF.
Collapse
Affiliation(s)
- Mathias Declercq
- Dept of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Nadine V Conchinha
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anabela S Ramalho
- Stem Cell and Developmental Biology, CF Centre, Woman and Child, KU Leuven, Leuven, Belgium
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Katleen Brepoels
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Marjolein Ensinck
- Laboratory for Molecular Virology and Drug Discovery, Dept of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Marianne S Carlon
- Laboratory for Molecular Virology and Drug Discovery, Dept of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Matthew J Bird
- Laboratory of Hepatology, Dept of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Metabolomics Expertise Centre, Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | | | - François Vermeulen
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lieven Dupont
- Dept of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Centre, Centre for Cancer Biology, VIB, Leuven, Belgium.,Metabolomics Expertise Centre, Dept of Oncology, KU Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - David Cassiman
- Laboratory of Hepatology, Dept of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Centre of Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.,Equal co-authorship
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.,Equal co-authorship
| | - Peter Witters
- Dept of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Leuven, Belgium.,Dept of Paediatrics, University Hospitals Leuven, Leuven, Belgium.,Centre of Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium.,Equal co-authorship
| |
Collapse
|
54
|
Ferrari E, Monzani R, Saverio V, Gagliardi M, Pańczyszyn E, Raia V, Villella VR, Bona G, Pane M, Amoruso A, Corazzari M. Probiotics Supplements Reduce ER Stress and Gut Inflammation Associated with Gliadin Intake in a Mouse Model of Gluten Sensitivity. Nutrients 2021; 13:1221. [PMID: 33917155 PMCID: PMC8067866 DOI: 10.3390/nu13041221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Exposure to gluten, a protein present in wheat rye and barley, is the major inducer for human Celiac Disease (CD), a chronic autoimmune enteropathy. CD occurs in about 1% worldwide population, in genetically predisposed individuals bearing human leukocyte antigen (HLA) DQ2/DQ8. Gut epithelial cell stress and the innate immune activation are responsible for the breaking oral tolerance to gliadin, a gluten component. To date, the only treatment available for CD is a long-term gluten-free diet. Several studies have shown that an altered composition of the intestinal microbiota (dysbiosis) could play a key role in the pathogenesis of CD through the modulation of intestinal permeability and the regulation of the immune system. Here, we show that gliadin induces a chronic endoplasmic reticulum (ER) stress condition in the small intestine of a gluten-sensitive mouse model and that the coadministration of probiotics efficiently attenuates both the unfolded protein response (UPR) and gut inflammation. Moreover, the composition of probiotics formulations might differ in their activity at molecular level, especially toward the three axes of the UPR. Therefore, probiotics administration might potentially represent a new valuable strategy to treat gluten-sensitive patients, such as those affected by CD.
Collapse
Affiliation(s)
- Eleonora Ferrari
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Romina Monzani
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Valentina Saverio
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Mara Gagliardi
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Elżbieta Pańczyszyn
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University Naples, 80134 Naples, Italy;
- European Institute for Research in Cystic Fibrosis (IERFC-Onlus), San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Valeria Rachela Villella
- European Institute for Research in Cystic Fibrosis (IERFC-Onlus), San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Gianni Bona
- Division of Pediatrics, Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Marco Pane
- Probiotical Research Srl, 28100 Novara, Italy; (M.P.); (A.A.)
| | - Angela Amoruso
- Probiotical Research Srl, 28100 Novara, Italy; (M.P.); (A.A.)
| | - Marco Corazzari
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.F.); (R.M.); (V.S.); (M.G.); (E.P.)
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
55
|
Abstract
Ion exchange between intracellular and extracellular spaces is the basic mechanism for controlling cell metabolism and signal transduction. This process is mediated by ion channels and transporters on the plasma membrane, or intracellular membranes that surround various organelles, in response to environmental stimuli. Macroautophagy (hereafter referred to as autophagy) is one of the lysosomal-dependent degradation pathways that maintains homeostasis through the degradation and recycling of cellular components (e.g., dysfunctional proteins and damaged organelles). Although autophagy-related (ATG) proteins play a central role in regulating the formation of autophagy-related member structures (e.g., phagophores, autophagosomes, and autolysosomes), the autophagic process also involves changes in expression and function of ion channels and transporters. Here we discuss current knowledge of the mechanisms that regulate autophagy in mammalian cells, with special attention to the ion channels and transporters. We also highlight prospects for the development of drugs targeting ion channels and transporters in autophagy.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
56
|
Dysfunctional Inflammation in Cystic Fibrosis Airways: From Mechanisms to Novel Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22041952. [PMID: 33669352 PMCID: PMC7920244 DOI: 10.3390/ijms22041952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.
Collapse
|
57
|
Transglutaminase 2 as a Marker for Inflammation and Therapeutic Target in Sepsis. Int J Mol Sci 2021; 22:ijms22041897. [PMID: 33672962 PMCID: PMC7918628 DOI: 10.3390/ijms22041897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis results in lethal organ malfunction due to dysregulated host response to infection, which is a condition with increasing prevalence worldwide. Transglutaminase 2 (TG2) is a crosslinking enzyme that forms a covalent bond between lysine and glutamine. TG2 plays important roles in diverse cellular processes, including extracellular matrix stabilization, cytoskeletal function, cell motility, adhesion, signal transduction, apoptosis, and cell survival. We have shown that the co-culture of Candida albicans and hepatocytes activates and induces the translocation of TG2 into the nucleus. In addition, the expression and activation of TG2 in liver macrophages was dramatically induced in the lipopolysaccharide-injected and cecal ligation puncture-operated mouse models of sepsis. Based on these findings and recently published research, we have reviewed the current understanding of the relationship between TG2 and sepsis. Following the genetic and pharmacological inhibition of TG2, we also assessed the evidence regarding the use of TG2 as a potential marker and therapeutic target in inflammation and sepsis.
Collapse
|
58
|
Venditto VJ, Haydar D, Abdel-Latif A, Gensel JC, Anstead MI, Pitts MG, Creameans J, Kopper TJ, Peng C, Feola DJ. Immunomodulatory Effects of Azithromycin Revisited: Potential Applications to COVID-19. Front Immunol 2021; 12:574425. [PMID: 33643308 PMCID: PMC7906979 DOI: 10.3389/fimmu.2021.574425] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
The rapid advancement of the COVID-19 pandemic has prompted an accelerated pursuit to identify effective therapeutics. Stages of the disease course have been defined by viral burden, lung pathology, and progression through phases of the immune response. Immunological factors including inflammatory cell infiltration and cytokine storm have been associated with severe disease and death. Many immunomodulatory therapies for COVID-19 are currently being investigated, and preliminary results support the premise of targeting the immune response. However, because suppressing immune mechanisms could also impact the clearance of the virus in the early stages of infection, therapeutic success is likely to depend on timing with respect to the disease course. Azithromycin is an immunomodulatory drug that has been shown to have antiviral effects and potential benefit in patients with COVID-19. Multiple immunomodulatory effects have been defined for azithromycin which could provide efficacy during the late stages of the disease, including inhibition of pro-inflammatory cytokine production, inhibition of neutrophil influx, induction of regulatory functions of macrophages, and alterations in autophagy. Here we review the published evidence of these mechanisms along with the current clinical use of azithromycin as an immunomodulatory therapeutic. We then discuss the potential impact of azithromycin on the immune response to COVID-19, as well as caution against immunosuppressive and off-target effects including cardiotoxicity in these patients. While azithromycin has the potential to contribute efficacy, its impact on the COVID-19 immune response requires additional characterization so as to better define its role in individualized therapy.
Collapse
Affiliation(s)
- Vincent J. Venditto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ahmed Abdel-Latif
- Gill Heart Institute and Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - John C. Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Michael I. Anstead
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Michelle G. Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Jarrod Creameans
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Timothy J. Kopper
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Chi Peng
- Gill Heart Institute and Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - David J. Feola
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
59
|
Fujii S, Hara H, Araya J, Takasaka N, Kojima J, Ito S, Minagawa S, Yumino Y, Ishikawa T, Numata T, Kawaishi M, Hirano J, Odaka M, Morikawa T, Nishimura S, Nakayama K, Kuwano K. Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology 2021; 1:630-641. [PMID: 22934255 PMCID: PMC3429567 DOI: 10.4161/onci.20297] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tobacco smoke-induced accelerated cell senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cell senescence is accompanied by the accumulation of damaged cellular components suggesting that in COPD, inhibition of autophagy may contribute to cell senescence. Here we look at whether autophagy contributes to cigarette smoke extract (CSE) - induced cell senescence of primary human bronchial epithelial cells (HBEC), and further evaluate p62 and ubiquitinated protein levels in lung homogenates from COPD patients. We demonstrate that CSE transiently induces activation of autophagy in HBEC, followed by accelerated cell senescence and concomitant accumulation of p62 and ubiquitinated proteins. Autophagy inhibition further enhanced accumulations of p62 and ubiquitinated proteins, resulting in increased senescence and senescence-associated secretory phenotype (SASP) with interleukin (IL)-8 secretion. Conversely, autophagy activation by Torin1, a mammalian target of rapamycin (mTOR inhibitor), suppressed accumulations of p62 and ubiquitinated proteins and inhibits cell senescence. Despite increased baseline activity, autophagy induction in response to CSE was significantly decreased in HBEC from COPD patients. Increased accumulations of p62 and ubiquitinated proteins were detected in lung homogenates from COPD patients. Insufficient autophagic clearance of damaged proteins, including ubiquitinated proteins, is involved in accelerated cell senescence in COPD, suggesting a novel protective role for autophagy in the tobacco smoke-induced senescence-associated lung disease, COPD.
Collapse
Affiliation(s)
- Satoko Fujii
- Division of Respiratory Diseases; Department of Internal Medicine; Jikei University School of Medicine; Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
de Carvalho MV, Gonçalves-de-Albuquerque CF, Silva AR. PPAR Gamma: From Definition to Molecular Targets and Therapy of Lung Diseases. Int J Mol Sci 2021; 22:E805. [PMID: 33467433 PMCID: PMC7830538 DOI: 10.3390/ijms22020805] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate the expression of genes related to lipid and glucose metabolism and inflammation. There are three members: PPARα, PPARβ or PPARγ. PPARγ have several ligands. The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands, we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT) or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein (MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases. Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury and including definition and mechanisms of regulation, biological effects and molecular targets, and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-based therapy.
Collapse
Affiliation(s)
- Márcia V. de Carvalho
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
| | - Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
61
|
Gardner AI, Wu Y, Verhaegh R, Liu Y, Wilker B, Soddemann M, Keitsch S, Edwards MJ, Haq IJ, Kamler M, Becker KA, Brodlie M, Gulbins E. Interferon regulatory factor 8 regulates expression of acid ceramidase and infection susceptibility in cystic fibrosis. J Biol Chem 2021; 296:100650. [PMID: 33839155 PMCID: PMC8113888 DOI: 10.1016/j.jbc.2021.100650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Most patients with cystic fibrosis (CF) suffer from acute and chronic pulmonary infections with bacterial pathogens, which often determine their life quality and expectancy. Previous studies have demonstrated a downregulation of the acid ceramidase in CF epithelial cells resulting in an increase of ceramide and a decrease of sphingosine. Sphingosine kills many bacterial pathogens, and the downregulation of sphingosine seems to determine the infection susceptibility of cystic fibrosis mice and patients. It is presently unknown how deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) connects to a marked downregulation of the acid ceramidase in human and murine CF epithelial cells. Here, we employed quantitative PCR, western blot analysis, and enzyme activity measurements to study the role of IRF8 for acid ceramidase regulation. We report that genetic deficiency or functional inhibition of CFTR/Cftr results in an upregulation of interferon regulatory factor 8 (IRF8) and a concomitant downregulation of acid ceramidase expression with CF and an increase of ceramide and a reduction of sphingosine levels in tracheal and bronchial epithelial cells from both human individuals or mice. CRISPR/Cas9- or siRNA-mediated downregulation of IRF8 prevented changes of acid ceramidase, ceramide, and sphingosine in CF epithelial cells and restored resistance to Pseudomonas aeruginosa infections, which is one of the most important and common pathogens in lung infection of patients with CF. These studies indicate that CFTR deficiency causes a downregulation of acid ceramidase via upregulation of IRF8, which is a central pathway to control infection susceptibility of CF cells.
Collapse
Affiliation(s)
- Aaron Ions Gardner
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yuqing Wu
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rabea Verhaegh
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yongjie Liu
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Iram J Haq
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Malcolm Brodlie
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne, UK.
| | - Erich Gulbins
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
62
|
Liu YS, Yang Q, Li S, Luo L, Liu HY, Li XY, Gao ZN. Luteolin attenuates angiotensin II‑induced renal damage in apolipoprotein E‑deficient mice. Mol Med Rep 2020; 23:157. [PMID: 33355379 PMCID: PMC7789115 DOI: 10.3892/mmr.2020.11796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Renal damage is a common and severe condition encountered in the clinic. Luteolin (Lut) exhibits anti-inflammatory, anti-fibrotic and anti-apoptotic effects. Thus, the present study aimed to investigate the pharmacological effects of Lut on angiotensin II (AngII)-induced renal damage in apolipoprotein E-deficient (ApoE−/−) mice. Male ApoE−/− mice (age, 8 weeks) were randomly divided into the following three groups: i) Control group (n=6); ii) AngII group (n=6); and iii) AngII + Lut group (n=6). Lut was administered by gavage (100 mg/kg/d). ApoE−/− mice were implanted with Alzet osmotic minipumps, filled with either saline vehicle or AngII solution for a maximum period of 4 weeks. After 4 weeks, metabolic characteristics were measured and the histopathological alterations in the kidney tissue were observed. The metabolic characteristics of blood creatinine (CRE) levels were lower in the AngII + Lut group compared with in the AngII group. The expression levels of collagen I and III were lower in the kidney tissues of the AngII + Lut group compared with the corresponding tissues of the AngII group. The gene expression levels of IL-1β, IL-6, TNF-α and IL-10 were also suppressed in the kidney tissues of the AngII + Lut group compared with those in the corresponding tissues of the AngII group. Furthermore, the AngII + Lut group exhibited markedly increased LC3 protein expression and notably decreased p62 protein expression in the kidney tissues compared with the expression levels in the AngII group. The data demonstrated that Lut attenuated AngII-induced collagen deposition and inflammation, while inducing autophagy. Collectively, the results suggested that Lut treatment exhibited a exerted effect on AngII-induced renal injury in ApoE−/− mice.
Collapse
Affiliation(s)
- Ying-Shu Liu
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Qin Yang
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, Liaodong 116011, P.R. China
| | - Shen Li
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Lan Luo
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Hong-Yang Liu
- Department of Heart Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Xin-Yu Li
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Zheng-Nan Gao
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| |
Collapse
|
63
|
Panzitt K, Fickert P, Wagner M. Regulation of autophagy by bile acids and in cholestasis - CholestoPHAGY or CholeSTOPagy. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166017. [PMID: 33242590 DOI: 10.1016/j.bbadis.2020.166017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is a lysosomal degradation pathway in which the cell self-digests its own components to provide nutrients in harsh environmental conditions. It also represents an opportunity to rid the cell of superfluous and damaged organelles, misfolded proteins or invaded microorganisms. Liver autophagy contributes to basic hepatic functions such as lipid, glycogen and protein turnover. Deregulated hepatic autophagy has been linked to many liver diseases including alpha-1-antitrypsin deficiency, alcoholic and non-alcoholic fatty liver diseases, hepatitis B and C infections, liver fibrosis as well as liver cancer. Recently, bile acids and the bile acid receptor FXR have been implicated in the regulation of hepatic autophagy, which implies a role of autophagy also for cholestatic liver diseases. This review summarizes the current evidence of bile acid mediated effects on autophagy and how this affects cholestatic liver diseases. Although detailed studies are lacking, we suggest a concept that the activity of autophagy in cholestasis depends on the disease stage, where autophagy may be induced at early stages ("cholestophagy") but may be impaired in prolonged cholestatic states ("cholestopagy").
Collapse
Affiliation(s)
- Katrin Panzitt
- Research Unit for Translational Nuclear Receptor Research, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Peter Fickert
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Martin Wagner
- Research Unit for Translational Nuclear Receptor Research, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
64
|
Arora K, Liyanage P, Zhong Q, Naren AP. A SNARE protein Syntaxin 17 captures CFTR to potentiate autophagosomal clearance under stress. FASEB J 2020; 35:e21185. [PMID: 33191543 DOI: 10.1096/fj.201903210r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
Autophagy, a cellular stress response to starvation and bacterial infection, is executed by double-membrane-bound organelles called autophagosomes. Autophagosomes transfer cytosolic material to acidified lysosomes for degradation following soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE)-dependent fusion processes. Many of the autophagy-related disorders stem from defective end-step proteolysis inside lysosomes. The role of epithelial cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel has been argued to be critical for efficient lysosomal clearance; however, its context to autophagic clearance and the underlying mechanism is poorly defined. Here, we report that syntaxin17 (Stx17), an autophagic SNARE protein interacts with CFTR under nutritional stress and bacterial infection and incorporates it into mature autophagosomes to mediate an efficient lysosomal clearance. Lack of CFTR function and Stx17 and loss of CFTR-Stx17 interaction impairs bacterial clearance. We discover a specialized role of the Stx17-CFTR protein complex that is critical to prevent defective autophagy as has been the reported scenario in CF airway epithelial cells, infectious diseases, and lysosomal clearance disorders.
Collapse
Affiliation(s)
- Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pramodha Liyanage
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
65
|
Vishnupriya S, Priya Dharshini LC, Sakthivel KM, Rasmi RR. Autophagy markers as mediators of lung injury-implication for therapeutic intervention. Life Sci 2020; 260:118308. [PMID: 32828942 PMCID: PMC7442051 DOI: 10.1016/j.lfs.2020.118308] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Lung injury is characterized by inflammatory processes demonstrated as loss of function of the pulmonary capillary endothelial and alveolar epithelial cells. Autophagy is an intracellular digestion system that work as an inducible adaptive response to lung injury which is a resultant of exposure to various stress agents like hypoxia, ischemia-reperfusion and xenobiotics which may be manifested as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), chronic lung injury (CLI), bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), asthma, ventilator-induced lung injury (VILI), ventilator-associated lung injury (VALI), pulmonary fibrosis (PF), cystic fibrosis (CF) and radiation-induced lung injury (RILI). Numerous regulators like LC3B-II, Beclin 1, p62, HIF1/BNIP3 and mTOR play pivotal role in autophagy induction during lung injury possibly for progression/inhibition of the disease state. The present review focuses on the critical autophagic mediators and their potential cross talk with the lung injury pathophysiology thereby bringing to limelight the possible therapeutic interventions.
Collapse
Affiliation(s)
- Selvaraj Vishnupriya
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | | | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
66
|
Escudero-Hernández C. Epithelial cell dysfunction in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:133-164. [PMID: 33707053 DOI: 10.1016/bs.ircmb.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium limits host-luminal interactions and maintains gut homeostasis. Breakdown of the epithelial barrier and villous atrophy are hallmarks of coeliac disease. Besides the well characterized immune-mediated epithelial damage induced in coeliac mucosa, constitutional changes and early gluten direct effects disturb intestinal epithelial cells. The subsequent modifications in key epithelial signaling pathways leads to outnumbered immature epithelial cells that, in turn, facilitate epithelial dysfunction, promote crypt hyperplasia, and increase intestinal permeability. Consequently, underlying immune cells have a greater access to gluten, which boosts the proinflammatory immune response against gluten and positively feedback the epithelial damage loop. Gluten-free diet is an indispensable treatment for coeliac disease patients, but additional therapies are under development, including those that reinforce intestinal epithelial healing. In this chapter, we provide an overview of intestinal epithelial cell disturbances that develop during gluten intake in coeliac disease mucosa.
Collapse
|
67
|
Upregulation of CFTR Protects against Palmitate-Induced Endothelial Dysfunction by Enhancing Autophagic Flux. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8345246. [PMID: 33123317 PMCID: PMC7586166 DOI: 10.1155/2020/8345246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/23/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Saturated free fatty acids (FFAs) elevate in metabolic symptom leading to endothelial dysfunction. Cystic fibrosis transmembrane regulator (CFTR) functionally expresses in endothelial cells. The role of CFTR in FFA-induced endothelial dysfunction remains unclear. This study is aimed at exploring the effects of CFTR on palmitate- (PA-) induced endothelial dysfunction and its underlying mechanisms. We found that PA-induced endothelial dysfunction is characterized by a decrease of cell viability, reduction of NO generation and mitochondrial membrane potential, impairment of the tube formation, but an increase of ROS generation and cell apoptosis. Simultaneously, PA decreased CFTR protein expression. CFTR agonist Forskolin upregulated CFTR protein expression and protected against PA-induced endothelial dysfunction, while CFTR knockdown exacerbated endothelial dysfunction induced by PA and blunted the protective effects of Forskolin. In addition, PA impaired autophagic flux, and autophagic flux inhibitors aggravated PA-induced endothelial apoptosis. CFTR upregulation significantly restored autophagic flux in PA-insulted endothelial cells, which was involved in increasing the protein expression of Atg16L, Atg12-Atg5 complex, cathepsin B, and cathepsin D. In contrast, CFTR knockdown significantly inhibited the effects of Forskolin on autophagic flux and the expression of the autophagy-regulated proteins. Our findings illustrate that CFTR upregulation protects against PA-induced endothelial dysfunction by improving autophagic flux and underlying mechanisms are involved in enhancing autophagic signaling mediated by the Atg16L-Atg12-Atg5 complex, cathepsin B, and cathepsin D. CFTR might serve as a novel drug target for endothelial protection in cardiovascular diseases with a characteristic of elevation of FFAs.
Collapse
|
68
|
Cloonan SM, Kim K, Esteves P, Trian T, Barnes PJ. Mitochondrial dysfunction in lung ageing and disease. Eur Respir Rev 2020; 29:29/157/200165. [PMID: 33060165 DOI: 10.1183/16000617.0165-2020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial biology has seen a surge in popularity in the past 5 years, with the emergence of numerous new avenues of exciting mitochondria-related research including immunometabolism, mitochondrial transplantation and mitochondria-microbe biology. Since the early 1960s mitochondrial dysfunction has been observed in cells of the lung in individuals and in experimental models of chronic and acute respiratory diseases. However, it is only in the past decade with the emergence of more sophisticated tools and methodologies that we are beginning to understand how this enigmatic organelle regulates cellular homeostasis and contributes to disease processes in the lung. In this review, we highlight the diverse role of mitochondria in individual lung cell populations and what happens when these essential organelles become dysfunctional with ageing and in acute and chronic lung disease. Although much remains to be uncovered, we also discuss potential targeted therapeutics for mitochondrial dysfunction in the ageing and diseased lung.
Collapse
Affiliation(s)
- Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA.,School of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
69
|
Abstract
Acute Respiratory Distress Syndrome is a severe disorder affecting thousands of individuals worldwide. The available medical countermeasures do not sufficiently suppress the unacceptable high mortality rates associated with those in need. Thus, intense efforts aim to delineate the function of the lung endothelium, so to deliver new therapeutic approaches against this disease. The present manuscript attempts to shed light on the interrelations between the unfolded protein response and autophagy towards lung disease, to deliver a new line of possible therapeutic approaches against the ferocious Acute Respiratory Distress Syndrome.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| |
Collapse
|
70
|
Patergnani S, Vitto VAM, Pinton P, Rimessi A. Mitochondrial Stress Responses and "Mito-Inflammation" in Cystic Fibrosis. Front Pharmacol 2020; 11:581114. [PMID: 33101035 PMCID: PMC7554583 DOI: 10.3389/fphar.2020.581114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease associated to mutations in the cystic fibrosis transmembrane conductance regulator gene, which results in the alteration of biological fluid and electrolyte homeostasis. The characteristic pathological manifestation is represented by exaggerated proinflammatory response in lung of CF patients, driven by recurrent infections and worsen by hypersecretion of proinflammatory mediators and progressive tissue destruction. Treating inflammation remains a priority in CF. However, current anti-inflammatory treatments, including non-steroidal agents, are poorly effective and present dramatic side effects in CF patients. Different studies suggest an intimate relationship between mitochondria and CF lung disease, supporting the hypothesis that a decline in mitochondrial function endorses the development of the hyperinflammatory phenotype observed in CF lung. This allowed the implementation of a new concept: the "mito-inflammation," a compartmentalization of inflammatory process, related to the role of mitochondria in engage and sustain the inflammatory responses, resulting a druggable target to counteract the amplification of inflammatory signals in CF. Here, we will offer an overview of the contribution of mitochondria in the pathogenesis of CF lung disease, delving into mitochondrial quality control responses, which concur significantly to exacerbation of CF lung inflammatory responses. Finally, we will discuss the new therapeutic avenues that aim to target the mito-inflammation, an alternative therapeutic advantage for mitochondrial quality control that improves CF patient's inflammatory state.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Veronica A M Vitto
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
71
|
Gauthier S, Pranke I, Jung V, Martignetti L, Stoven V, Nguyen-Khoa T, Semeraro M, Hinzpeter A, Edelman A, Guerrera IC, Sermet-Gaudelus I. Urinary Exosomes of Patients with Cystic Fibrosis Unravel CFTR-Related Renal Disease. Int J Mol Sci 2020; 21:ijms21186625. [PMID: 32927759 PMCID: PMC7554933 DOI: 10.3390/ijms21186625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 01/12/2023] Open
Abstract
Background: The prevalence of chronic kidney disease is increased in patients with cystic fibrosis (CF). The study of urinary exosomal proteins might provide insight into the pathophysiology of CF kidney disease. Methods: Urine samples were collected from 19 CF patients (among those 7 were treated by cystic fibrosis transmembrane conductance regulator (CFTR) modulators), and 8 healthy subjects. Urine exosomal protein content was determined by high resolution mass spectrometry. Results: A heatmap of the differentially expressed proteins in urinary exosomes showed a clear separation between control and CF patients. Seventeen proteins were upregulated in CF patients (including epidermal growth factor receptor (EGFR); proteasome subunit beta type-6, transglutaminases, caspase 14) and 118 were downregulated (including glutathione S-transferases, superoxide dismutase, klotho, endosomal sorting complex required for transport, and matrisome proteins). Gene set enrichment analysis revealed 20 gene sets upregulated and 74 downregulated. Treatment with CFTR modulators yielded no significant modification of the proteomic content. These results highlight that CF kidney cells adapt to the CFTR defect by upregulating proteasome activity and that autophagy and endosomal targeting are impaired. Increased expression of EGFR and decreased expression of klotho and matrisome might play a central role in this CF kidney signature by inducing oxidation, inflammation, accelerated senescence, and abnormal tissue repair. Conclusions: Our study unravels novel insights into consequences of CFTR dysfunction in the urinary tract, some of which may have clinical and therapeutic implications.
Collapse
Affiliation(s)
- Sebastien Gauthier
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
| | - Iwona Pranke
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
| | - Vincent Jung
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
- Proteomics Platform Necker, Structure Fédérative de Recherche Necker, 75015 Paris, France
- INSERM US24/CNRS UMS3633, 75015 Paris, France
- Faculté de Médecine, Paris Descartes, Université de Paris, 75015 Paris, France
| | - Loredana Martignetti
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems, Institut Curie, 75005 Paris, France; (L.M.); (V.S.)
- INSERM U900, 75005 Paris, France
- CBIO Mines-ParisTech, 75005 Paris, France
| | - Véronique Stoven
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems, Institut Curie, 75005 Paris, France; (L.M.); (V.S.)
- INSERM U900, 75005 Paris, France
- CBIO Mines-ParisTech, 75005 Paris, France
| | - Thao Nguyen-Khoa
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
- Laboratoire de Biochimie Générale, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France
- Centre de Référence Maladies Rares, Mucoviscidose et maladies de CFTR, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France;
| | - Michaela Semeraro
- Centre de Référence Maladies Rares, Mucoviscidose et maladies de CFTR, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France;
- Centre d’Investigation Clinique, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France
| | - Alexandre Hinzpeter
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
| | - Aleksander Edelman
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
| | - Ida Chiara Guerrera
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
- Proteomics Platform Necker, Structure Fédérative de Recherche Necker, 75015 Paris, France
- INSERM US24/CNRS UMS3633, 75015 Paris, France
- Faculté de Médecine, Paris Descartes, Université de Paris, 75015 Paris, France
| | - Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France; (S.G.); (I.P.); (V.J.); (T.N.-K.); (A.H.); (A.E.); (I.C.G.)
- Laboratoire de Biochimie Générale, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France
- Centre de Référence Maladies Rares, Mucoviscidose et maladies de CFTR, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France;
- Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP Centre Université de Paris, 75015 Paris, France
- European Respiratory Network, ERN Lung, 75015 Paris, France
- Correspondence: ; Tel.: +33-1-44-49-48-87
| |
Collapse
|
72
|
Recchiuti A, Isopi E, Romano M, Mattoscio D. Roles of Specialized Pro-Resolving Lipid Mediators in Autophagy and Inflammation. Int J Mol Sci 2020; 21:E6637. [PMID: 32927853 PMCID: PMC7555248 DOI: 10.3390/ijms21186637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic pathway that accounts for degradation and recycling of cellular components to extend cell survival under stress conditions. In addition to this prominent role, recent evidence indicates that autophagy is crucially involved in the regulation of the inflammatory response, a tightly controlled process aimed at clearing the inflammatory stimulus and restoring tissue homeostasis. To be efficient and beneficial to the host, inflammation should be controlled by a resolution program, since uncontrolled inflammation is the underlying cause of many pathologies. Resolution of inflammation is an active process mediated by a variety of mediators, including the so-called specialized pro-resolving lipid mediators (SPMs), a family of endogenous lipid autacoids known to regulate leukocyte infiltration and activities, and counterbalance cytokine production. Recently, regulation of autophagic mechanisms by these mediators has emerged, uncovering unappreciated connections between inflammation resolution and autophagy. Here, we summarize mechanisms of autophagy and resolution, focusing on the contribution of autophagy in sustaining paradigmatic examples of chronic inflammatory disorders. Then, we discuss the evidence that SPMs can restore dysregulated autophagy, hypothesizing that resolution of inflammation could represent an innovative approach to modulate autophagy and its impact on the inflammatory response.
Collapse
Affiliation(s)
| | | | | | - Domenico Mattoscio
- Center for Advanced Studies and Technology, Department of Medical, Oral and Biotechnology Sciences, University of Chieti—Pescara, 66100 Chieti, Italy; (A.R.); (E.I.); (M.R.)
| |
Collapse
|
73
|
Lv X, Li K, Hu Z. Autophagy and Others Respiratory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:585-597. [PMID: 32671777 DOI: 10.1007/978-981-15-4272-5_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Besides COPD, pulmonary fibrosis, and asthma, autophagy also participates in the development of many other respiratory diseases. Cystic fibrosis is an innate lung disease. Unlike idiopathic pulmonary fibrosis, cystic fibrosis has unique pathogenesis. Autophagy is an essential biological mechanism for the removal of misfolded proteins and damaged organelles in cells. Abnormal autophagy activity is involved in the pathogenesis of cystic fibrosis. Various studies have demonstrated that abnormalities or impaired autophagy are associated with cardiovascular diseases including pulmonary vascular disease. Autophagy plays a key role in maintaining normal vascular biological functions and vascular cell tissue homeostasis, and also plays an important role in the pathogenesis of various vascular diseases. For example, recent studies have found that autophagy participates in the occurrence and development of pulmonary hypertension. In addition, autophagy plays a central role in both innate and adaptive immune responses in immune cells or other cells with immune function. Thus, autophagy is the important cellular biological mechanism which causes cell fighting against pathogenic microorganisms including viruses, bacteria, and parasites. In this chapter, we discuss the work related to autophagy and other lung diseases.
Collapse
Affiliation(s)
- Xiaoxi Lv
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuowei Hu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
74
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
75
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
76
|
Pehote G, Vij N. Autophagy Augmentation to Alleviate Immune Response Dysfunction, and Resolve Respiratory and COVID-19 Exacerbations. Cells 2020; 9:cells9091952. [PMID: 32847034 PMCID: PMC7565665 DOI: 10.3390/cells9091952] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
The preservation of cellular homeostasis requires the synthesis of new proteins (proteostasis) and organelles, and the effective removal of misfolded or impaired proteins and cellular debris. This cellular homeostasis involves two key proteostasis mechanisms, the ubiquitin proteasome system and the autophagy–lysosome pathway. These catabolic pathways have been known to be involved in respiratory exacerbations and the pathogenesis of various lung diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and coronavirus disease-2019 (COVID-19). Briefly, proteostasis and autophagy processes are known to decline over time with age, cigarette or biomass smoke exposure, and/or influenced by underlying genetic factors, resulting in the accumulation of misfolded proteins and cellular debris, elevating apoptosis and cellular senescence, and initiating the pathogenesis of acute or chronic lung disease. Moreover, autophagic dysfunction results in an impaired microbial clearance, post-bacterial and/or viral infection(s) which contribute to the initiation of acute and recurrent respiratory exacerbations as well as the progression of chronic obstructive and restrictive lung diseases. In addition, the autophagic dysfunction-mediated cystic fibrosis transmembrane conductance regulator (CFTR) immune response impairment further exacerbates the lung disease. Recent studies demonstrate the therapeutic potential of novel autophagy augmentation strategies, in alleviating the pathogenesis of chronic obstructive or restrictive lung diseases and exacerbations such as those commonly seen in COPD, CF, ALI/ARDS and COVID-19.
Collapse
Affiliation(s)
- Garrett Pehote
- Michigan State University College of Osteopathic Medicine, East Lansing, MI 48823, USA;
| | - Neeraj Vij
- Department of Pediatrics and Pulmonary Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- PRECISION THERANOSTICS INC, Baltimore, MD 21202, USA
- VIJ BIOTECH, Baltimore, MD 21202, USA
- Correspondence: or ; Tel.: +1-240-623-0757
| |
Collapse
|
77
|
Kim HS, Ren G, Kim T, Bhatnagar S, Yang Q, Bahk YY, Kim JA. Metformin reduces saturated fatty acid-induced lipid accumulation and inflammatory response by restoration of autophagic flux in endothelial cells. Sci Rep 2020; 10:13523. [PMID: 32782332 PMCID: PMC7419289 DOI: 10.1038/s41598-020-70347-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy, an integral part of the waste recycling process, plays an important role in cellular physiology and pathophysiology. Impaired autophagic flux causes ectopic lipid deposition, which is defined as the accumulation of lipids in non-adipose tissue. Ectopic lipid accumulation is observed in patients with cardiometabolic syndrome, including obesity, diabetes, insulin resistance, and cardiovascular complications. Metformin is the first line of treatment for type 2 diabetes, and one of the underlying mechanisms for the anti-diabetic effect of metformin is mediated by the stimulation of AMP-activated protein kinase (AMPK). Because the activation of AMPK is crucial for the initiation of autophagy, we hypothesize that metformin reduces the accumulation of lipid droplets by increasing autophagic flux in vascular endothelial cells. Incubation of vascular endothelial cells with saturated fatty acid (SFA) increased the accumulation of lipid droplets and impaired autophagic flux. We observed that the accumulation of lipid droplets was reduced, and the autophagic flux was enhanced by treatment with metformin. The knock-down of AMPKα by using siRNA blunted the effect of metformin. Furthermore, treatment with SFA or inhibition of autophagy increased leukocyte adhesion, whereas treatment with metformin decreased the SFA-induced leukocyte adhesion. The results suggest a novel mechanism by which metformin protects vascular endothelium from SFA-induced ectopic lipid accumulation and pro-inflammatory responses. In conclusion, improving autophagic flux may be a therapeutic strategy to protect endothelial function from dyslipidemia and diabetic complications.
Collapse
Affiliation(s)
- Hae-Suk Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Teayoun Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Qinglin Yang
- Department of Nutrition, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
78
|
Costantini C, Puccetti M, Pariano M, Renga G, Stincardini C, D'Onofrio F, Bellet MM, Cellini B, Giovagnoli S, Romani L. Selectively targeting key inflammatory pathways in cystic fibrosis. Eur J Med Chem 2020; 206:112717. [PMID: 32823008 DOI: 10.1016/j.ejmech.2020.112717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 01/04/2023]
Abstract
Cystic fibrosis (CF) is a rare genetic disorder caused by a defect in the ion channel Cystic Fibrosis Transmembrane conductance Regulator (CFTR), resulting in ionic imbalance of surface fluid. Although affecting multiple organs, the progressive deterioration of respiratory function by recurrent infections and chronic inflammation represents the main cause of morbidity and mortality in CF patients. The development of modulators targeting the basic defect of CFTR has represented a major breakthrough in CF therapy, but the impact on inflammation has remained enigmatic. The emerging scenario taking hold in the field points to inflammation as a major, somehow missed, therapeutic target for prevention of lung decline. Not surprisingly, the development of anti-inflammatory drugs is taking its share in the drug development pipeline. But the path is not straightforward and targeting inflammation should be balanced with the increased risk of infection. The strategy to restore the homeostatic regulation of inflammation to efficiently respond to infection while preventing lung damage needs to be based on identifying and targeting endogenous immunoregulatory pathways that are defective in CF. We herein provide an overview of anti-inflammatory drugs currently approved or under investigation in CF patients, and present our recent studies on how the knowledge on defective immune pathways in CF may translate into innovative and selective anti-inflammatory therapeutics. Through the discovery of naturally occurring molecules or their synthetic mimics, this review emphasizes the critical importance of selectively targeting key inflammatory pathways to preserve immunocompetence in CF patients.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, Perugia, 06132, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Claudia Stincardini
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Fiorella D'Onofrio
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Marina M Bellet
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, Perugia, 06132, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.
| |
Collapse
|
79
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
80
|
Riquelme SA, Lozano C, Moustafa AM, Liimatta K, Tomlinson KL, Britto C, Khanal S, Gill SK, Narechania A, Azcona-Gutiérrez JM, DiMango E, Saénz Y, Planet P, Prince A. CFTR-PTEN-dependent mitochondrial metabolic dysfunction promotes Pseudomonas aeruginosa airway infection. Sci Transl Med 2020; 11:11/499/eaav4634. [PMID: 31270271 DOI: 10.1126/scitranslmed.aav4634] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/12/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor best known for regulating cell proliferation and metabolism. PTEN forms a complex with the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) at the plasma membrane, and this complex is known to be functionally impaired in CF. Here, we demonstrated that the combined effect of PTEN and CFTR dysfunction stimulates mitochondrial activity, resulting in excessive release of succinate and reactive oxygen species. This environment promoted the colonization of the airway by Pseudomonas aeruginosa, bacteria that preferentially metabolize succinate, and stimulated an anti-inflammatory host response dominated by immune-responsive gene 1 (IRG1) and itaconate. The recruitment of myeloid cells induced by these strains was inefficient in clearing the infection and increased numbers of phagocytes accumulated under CFTR-PTEN axis dysfunction. This central metabolic defect in mitochondrial function due to impaired PTEN activity contributes to P. aeruginosa infection in CF.
Collapse
Affiliation(s)
| | - Carmen Lozano
- Area de Microbiología Molecular, Centro de Investigación Biomédica de la Rioja (CIBIR), Microbiología Molecular, Logroño, LG 26006, Spain
| | - Ahmed M Moustafa
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kalle Liimatta
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Kira L Tomlinson
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Clemente Britto
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sara Khanal
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simren K Gill
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | | | - Jose M Azcona-Gutiérrez
- Departamento de Diagnóstico Biomédico. Laboratorio de Microbiología, Hospital San Pedro, Logroño, LG 26006, Spain
| | - Emily DiMango
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yolanda Saénz
- Area de Microbiología Molecular, Centro de Investigación Biomédica de la Rioja (CIBIR), Microbiología Molecular, Logroño, LG 26006, Spain
| | - Paul Planet
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
81
|
Currie AJ, Main ET, Wilson HM, Armstrong-James D, Warris A. CFTR Modulators Dampen Aspergillus-Induced Reactive Oxygen Species Production by Cystic Fibrosis Phagocytes. Front Cell Infect Microbiol 2020; 10:372. [PMID: 32793514 PMCID: PMC7393064 DOI: 10.3389/fcimb.2020.00372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Excessive inflammation by phagocytes during Aspergillus fumigatus infection is thought to promote lung function decline in CF patients. CFTR modulators have been shown to reduce A. fumigatus colonization in vivo, however, their antifungal and anti-inflammatory mechanisms are unclear. Other treatments including azithromycin and acebilustat may dampen Aspergillus-induced inflammation due to their immunomodulatory properties. Therefore, we set out in this study to determine the effects of current CF therapies on ROS production and fungal killing, either direct or indirect by enhancing antifungal immune mechanisms in peripheral blood immune cells from CF patients upon A. fumigatus infection. Isolated peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells (PMNs) from CF patients and healthy volunteers were challenged with A. fumigatus following pre-treatment with CFTR modulators, azithromycin or acebilustat. Ivacaftor/lumacaftor treated CF and control subject PMNs resulted in a significant reduction (p < 0.05) in Aspergillus-induced ROS. For CF PBMC, Aspergillus-induced ROS was significantly reduced when pre-treated with ivacaftor alone (p < 0.01) or in combination with lumacaftor (p < 0.01), with a comparable significant reduction in control subject PBMC (p < 0.05). Azithromycin and acebilustat had no effect on ROS production by CF or control subject phagocytes. None of the treatments showed an indirect or direct antifungal activity. In summary, CFTR modulators have potential for additional immunomodulatory benefits to prevent or treat Aspergillus-induced inflammation in CF. The comparable effects of CFTR modulators observed in phagocytes from control subjects questions their exact mechanism of action.
Collapse
Affiliation(s)
- Alexander J Currie
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Ellen T Main
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Heather M Wilson
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
82
|
Turton KB, Ingram RJ, Valvano MA. Macrophage dysfunction in cystic fibrosis: Nature or nurture? J Leukoc Biol 2020; 109:573-582. [PMID: 32678926 DOI: 10.1002/jlb.4ru0620-245r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) affect the homeostasis of chloride flux by epithelial cells. This has deleterious consequences, especially in respiratory epithelia, where the defect results in mucus accumulation distinctive of cystic fibrosis. CFTR is, however, also expressed in phagocytic cells, like macrophages. Immune cells are highly sensitive to conditioning by their environment; thus, CFTR dysfunction in epithelia influences macrophages by affecting the lung milieu, but the mutations also appear to be directly consequential for intrinsic macrophage functions. Particular mutations can alter CFTR's folding, traffic of the protein to the membrane and function. As such, understanding the intrinsic effects of CFTR mutation requires distinguishing the secondary effects of misfolded CFTR on cell stress pathways from the primary defect of CFTR dysfunction/absence. Investigations into CFTR's role in macrophages have exploited various models, each with their own advantages and limitations. This review summarizes these methodologic approaches, discussing their physiological correspondence and highlighting key findings. The controversy surrounding CFTR-dependent acidification is used as a case study to highlight difficulties in commensurability across model systems. Recent work in macrophage biology, including polarization and host-pathogen interaction studies, brought into the context of CFTR research, offers potential explanations for observed discrepancies between studies. Moreover, the rapid advancement of novel gene editing technologies and new macrophage model systems makes this assessment of the field's models and methodologies timely.
Collapse
Affiliation(s)
- Keren B Turton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Rebecca J Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
83
|
Di Pietro C, Öz HH, Murray TS, Bruscia EM. Targeting the Heme Oxygenase 1/Carbon Monoxide Pathway to Resolve Lung Hyper-Inflammation and Restore a Regulated Immune Response in Cystic Fibrosis. Front Pharmacol 2020; 11:1059. [PMID: 32760278 PMCID: PMC7372134 DOI: 10.3389/fphar.2020.01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
In individuals with cystic fibrosis (CF), lung hyper-inflammation starts early in life and is perpetuated by mucus obstruction and persistent bacterial infections. The continuous tissue damage and scarring caused by non-resolving inflammation leads to bronchiectasis and, ultimately, respiratory failure. Macrophages (MΦs) are key regulators of immune response and host defense. We and others have shown that, in CF, MΦs are hyper-inflammatory and exhibit reduced bactericidal activity. Thus, MΦs contribute to the inability of CF lung tissues to control the inflammatory response or restore tissue homeostasis. The non-resolving hyper-inflammation in CF lungs is attributed to an impairment of several signaling pathways associated with resolution of the inflammatory response, including the heme oxygenase-1/carbon monoxide (HO-1/CO) pathway. HO-1 is an enzyme that degrades heme groups, leading to the production of potent antioxidant, anti-inflammatory, and bactericidal mediators, such as biliverdin, bilirubin, and CO. This pathway is fundamental to re-establishing cellular homeostasis in response to various insults, such as oxidative stress and infection. Monocytes/MΦs rely on abundant induction of the HO-1/CO pathway for a controlled immune response and for potent bactericidal activity. Here, we discuss studies showing that blunted HO-1 activation in CF-affected cells contributes to hyper-inflammation and defective host defense against bacteria. We dissect potential cellular mechanisms that may lead to decreased HO-1 induction in CF cells. We review literature suggesting that induction of HO-1 may be beneficial for the treatment of CF lung disease. Finally, we discuss recent studies highlighting how endogenous HO-1 can be induced by administration of controlled doses of CO to reduce lung hyper-inflammation, oxidative stress, bacterial infection, and dysfunctional ion transport, which are all hallmarks of CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
84
|
Chen S, Zhang W, Sun C, Song M, Liu S, Xu M, Zhang X, Liu L, Liu C. Systemic Nanoparticle-Mediated Delivery of Pantetheinase Vanin-1 Regulates Lipolysis and Adiposity in Abdominal White Adipose Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000542. [PMID: 32714762 PMCID: PMC7375228 DOI: 10.1002/advs.202000542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/12/2020] [Indexed: 05/04/2023]
Abstract
Lipolysis in white adipose tissue (WAT) occurs in response to nutritional signals and helps to regulate lipid turnover/adiposity in animals. However, the causal relationships and the mechanisms controlling WAT morphology are not clear. In this report, Vanin-1, a pantetheinase, is shown to be a novel determinant for lipolysis and adiposity. The expression of Vanin-1 in the abdominal WAT is positively correlated with lipolysis both in mice and in humans. Mice with global Vanin-1 deficiency exhibit adipocyte hypertrophy and impaired lipolysis. Use of a nanosystem comprising P3-peptide, chitosan oligosaccharide lactate, and polyethylene glycol that controls Vanin-1 expression in the abdominal WAT shows that WAT-specific Vanin-1 knockdown blocks fasting-induced lipolysis and prevents WAT loss. However, WAT-specific Vanin-1 mRNA restoration rescues impaired lipolysis and improves glucose/insulin intolerance in diabetic db/db mice. Mechanistically, Vanin-1 induces PPARγ activity and subsequently facilitates its activation on the proximal promoters of lipolytic genes. Thus, an essential role of Vanin-1 in the regulation of lipolysis and adiposity is revealed, and a functional RNA delivering strategy for specific intervention of Vanin-1 expression in WAT is shown. These findings provide a promising approach to treat metabolic diseases caused by dysregulation of Vanin-1 and lipolysis.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing211198China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing211198China
| | - Chen Sun
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing211198China
| | - Mingming Song
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing211198China
| | - Shuang Liu
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing211198China
| | - Mengyi Xu
- State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing211198China
| | - Xiaojin Zhang
- Department of GeriatricsFirst Affiliated Hospital with Nanjing Medical UniversityNanjing210029China
| | - Li Liu
- Department of GeriatricsFirst Affiliated Hospital with Nanjing Medical UniversityNanjing210029China
| | - Chang Liu
- State key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjing210046China
| |
Collapse
|
85
|
Li Y, Liu R, Wu J, Li X. Self-eating: friend or foe? The emerging role of autophagy in fibrotic diseases. Am J Cancer Res 2020; 10:7993-8017. [PMID: 32724454 PMCID: PMC7381749 DOI: 10.7150/thno.47826] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
Fibrosis occurs in most human organs including the liver, lung, heart and kidney, and is crucial for the progression of most chronic diseases. As an indispensable catabolic process for intracellular quality control and homeostasis, autophagy occurs in most mammalian cells and is implicated in many biological processes including fibrogenesis. Although advances have been made in understanding autophagy process, the potential role of autophagy in fibrotic diseases remains controversial and has recently attracted a great deal of attention. In the current review, we summarize the commonalities of autophagy affecting different types of fibrosis in different organs, including the liver, lung, heart, and kidney as well as in cystic fibrosis, systematically outline the contradictory results and highlight the distinct role of autophagy during the various stages of fibrosis. In summary, the exact role autophagy plays in fibrogenesis depends on specific cell types and different stimuli, and identifying and evaluating the pathogenic contribution of autophagy in fibrogenesis will promote the discovery of novel therapeutic strategies for the clinical management of these fibrotic diseases.
Collapse
|
86
|
Chillappagari S, Garapati V, Mahavadi P, Naehrlich L, Schmeck BT, Schmitz ML, Guenther A. Defective BACH1/HO-1 regulatory circuits in cystic fibrosis bronchial epithelial cells. J Cyst Fibros 2020; 20:140-148. [PMID: 32534959 DOI: 10.1016/j.jcf.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/01/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The stress-regulated enzyme hemeoxygenase-1 (HO-1) contributes to the cell response towards inflammation and oxidative stress. We previously reported on curtailed HO-1 expression in cystic fibrosis (CF) bronchial epithelial (CFBE41o-) cells and CF-mice, but the molecular mechanisms for this are not known. Here, we compared healthy and CF bronchial epithelial cells for regulatory circuits controlling HO-1 protein levels. METHODS In this study, we employed immunohistochemistry on CF and healthy lung sections to examine the BACH1 protein expression. Alteration of BACH1 protein levels in 16HBE14o- and CFBE41o- cells was achieved by using either siRNA-mediated knockdown of BACH1 or by increasing miRNA-155 levels. HO-1 luciferase reporter assay was chosen to examine the downstream affects after BACH1 modulation. RESULTS Human CF lungs and cells showed increased levels of the HO-1 transcriptional repressor, BACH1, and increased miR-155 expression. Knockdown studies using BACH1 siRNA and overexpression of miR-155 did not significantly rescue HO-1 expression in CFBE41o- cells. Elevated BACH1 expression detected in CF cells was refractory to the inhibitory function of miR-155 and was instead due to increased protein stability. CONCLUSION We observed defects in the inhibitory activities of miR-155 and BACH1 on HO-1 expression in CF cells. Thus various defective regulatory loops account for dysregulated BACH1 expression in CF, which in turn may contribute to low HO-1 levels.
Collapse
Affiliation(s)
- Shashipavan Chillappagari
- Institute of Biochemistry, Justus-Liebig-University, D-35392, Giessen, Germany; Department of Internal Medicine, Justus-Liebig University, Giessen, Germany; University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.
| | - Virajith Garapati
- Department of Internal Medicine, Justus-Liebig University, Giessen, Germany; University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig University, Giessen, Germany; University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Lutz Naehrlich
- University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany; Department of Pediatrics, Justus Liebig University, Giessen, Feulgenstrasse 12, 35392 Giessen, Germany
| | - Bernd T Schmeck
- University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany; Institute for Lung Research, Department of Respiratory and Critical Care Medicine, University Medical Center Marburg, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University, Marburg, Germany, Member of the German Center for Lung Research (DZL), and the German Center of Infection Research (DZIF), Marburg, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, D-35392, Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Justus-Liebig University, Giessen, Germany; University of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany; Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany
| |
Collapse
|
87
|
Cabrera S, Rodríguez-Bobadilla C, Vázquez-Morales D, Gaxiola M, Maciel M, Selman M, Pardo A. Identification of Autophagy-related Proteins in Lungs From Hypersensitivity Pneumonitis Patients. J Histochem Cytochem 2020; 68:365-376. [PMID: 32496163 DOI: 10.1369/0022155420932103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autophagy has been involved in the pathogenesis of various lung diseases. However, it is not yet known whether autophagy plays a role in hypersensitivity pneumonitis (HP). HP is an interstitial lung disease resulting from exposure to a wide variety of antigens that provoke an exaggerated immune response in susceptible individuals. The aim of this study was to explore the localization of autophagy key proteins in lungs from HP patients and controls by immunohistochemistry and analyze their expression levels by immunoblot. Macrophages and epithelial cells were strongly positive for the autophagosome biomarker LC3B (microtubule-associated protein light chain 3 beta) in HP lungs compared with controls. A similar pattern was found for the autophagy receptor p62 and the enzyme ATG4B. Unexpectedly, nuclear p62 signal was also noticed in macrophages from HP lungs. Regarding ATG5 and ATG7 localization, we observed positive staining in neutrophils, vascular smooth muscle cells, and endothelial cells. Our findings provide for the first time evidence that proteins from the autophagy machinery are highly expressed in the lungs of HP patients and describe the specific cellular and subcellular localization of LC3B, p62, ATG4B, ATG5, and ATG7 in HP lungs.
Collapse
Affiliation(s)
- Sandra Cabrera
- Fibrosis Lab, Department of Cell Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carolina Rodríguez-Bobadilla
- Fibrosis Lab, Department of Cell Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dulce Vázquez-Morales
- Fibrosis Lab, Department of Cell Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Gaxiola
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Mariana Maciel
- Fibrosis Lab, Department of Cell Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Annie Pardo
- Fibrosis Lab, Department of Cell Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
88
|
Guo Y, Sun J, Bu S, Li B, Zhang Q, Wang Q, Lai D. Melatonin protects against chronic stress-induced oxidative meiotic defects in mice MII oocytes by regulating SIRT1. Cell Cycle 2020; 19:1677-1695. [PMID: 32453975 DOI: 10.1080/15384101.2020.1767403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic stress which is common in the current society can be harmful to female reproduction and is associated with oocyte defects. However, the underlying mechanisms remain largely unknown. Herein, by using a mouse model of chronic restraint stress, we demonstrated that chronic stress could induce meiotic spindle abnormalities, chromatin misalignment, mitochondrial dysfunction and elevated ROS levels in oocytes in vivo, all of which were normalized by the administration of melatonin. Consistently, melatonin treatment during in vitro maturation also attenuated the meiotic defects induced by H2O2 by regulating autophagy and SIRT1, which could be abolished by SIRT1 inhibitor, Ex527 and autophagy inhibitor Bafilomycin A1 (Baf A1). These data indicate that melatonin can mitigate chronic stress-induced oxidative meiotic defects in mice MII oocytes by regulating SIRT1 and autophagy, providing new understanding for stress-related meiotic errors in MII oocytes and suggesting melatonin and SIRT1 could be new targets for optimizing culture system of oocytes as well as fertility management.
Collapse
Affiliation(s)
- Ying Guo
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Junyan Sun
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Shixia Bu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Boning Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Qiuwan Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Qian Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| | - Dongmei Lai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases , Shanghai, China
| |
Collapse
|
89
|
Genistein antagonizes gliadin-induced CFTR malfunction in models of celiac disease. Aging (Albany NY) 2020; 11:2003-2019. [PMID: 30981209 PMCID: PMC6503870 DOI: 10.18632/aging.101888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
In celiac disease (CD), an intolerance to dietary gluten/gliadin, antigenic gliadin peptides trigger an HLA-DQ2/DQ8-restricted adaptive Th1 immune response. Epithelial stress, induced by other non-antigenic gliadin peptides, is required for gliadin to become fully immunogenic. We found that cystic-fibrosis-transmembrane-conductance-regulator (CFTR) acts as membrane receptor for gliadin-derived peptide P31-43, as it binds to CFTR and impairs its channel function. P31-43-induced CFTR malfunction generates epithelial stress and intestinal inflammation. Maintaining CFTR in an active open conformation by the CFTR potentiators VX-770 (Ivacaftor) or Vrx-532, prevents P31-43 binding to CFTR and controls gliadin-induced manifestations. Here, we evaluated the possibility that the over-the-counter nutraceutical genistein, known to potentiate CFTR function, would allow to control gliadin-induced alterations. We demonstrated that pre-treatment with genistein prevented P31-43-induced CFTR malfunction and an epithelial stress response in Caco-2 cells. These effects were abrogated when the CFTR gene was knocked out by CRISP/Cas9 technology, indicating that genistein protects intestinal epithelial cells by potentiating CFTR function. Notably, genistein protected gliadin-sensitive mice from intestinal CFTR malfunction and gliadin-induced inflammation as it prevented gliadin-induced IFN-γ production by celiac peripheral-blood-mononuclear-cells (PBMC) cultured ex-vivo in the presence of P31-43-challenged Caco-2 cells. Our results indicate that natural compounds capable to increase CFTR channel gating might be used for the treatment of CD.
Collapse
|
90
|
Devarajan S, Meurer M, van Roermund CWT, Chen X, Hettema EH, Kemp S, Knop M, Williams C. Proteasome-dependent protein quality control of the peroxisomal membrane protein Pxa1p. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183342. [PMID: 32416190 DOI: 10.1016/j.bbamem.2020.183342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Peroxisomes are eukaryotic organelles that function in numerous metabolic pathways and defects in peroxisome function can cause serious developmental brain disorders such as adrenoleukodystrophy (ALD). Peroxisomal membrane proteins (PMPs) play a crucial role in regulating peroxisome function. Therefore, PMP homeostasis is vital for peroxisome function. Recently, we established that certain PMPs are degraded by the Ubiquitin Proteasome System yet little is known about how faulty/non-functional PMPs undergo quality control. Here we have investigated the degradation of Pxa1p, a fatty acid transporter in the yeast Saccharomyces cerevisiae. Pxa1p is a homologue of the human protein ALDP and mutations in ALDP result in the severe disorder ALD. By introducing two corresponding ALDP mutations into Pxa1p (Pxa1MUT), fused to mGFP, we show that Pxa1MUT-mGFP is rapidly degraded from peroxisomes in a proteasome-dependent manner, while wild type Pxa1-mGFP remains relatively stable. Furthermore, we identify a role for the ubiquitin ligase Ufd4p in Pxa1MUT-mGFP degradation. Finally, we establish that inhibiting Pxa1MUT-mGFP degradation results in a partial rescue of Pxa1p activity in cells. Together, our data demonstrate that faulty PMPs can undergo proteasome-dependent quality control. Furthermore, our observations may provide new insights into the role of ALDP degradation in ALD.
Collapse
Affiliation(s)
- S Devarajan
- Department of Cell Biochemistry, University of Groningen, the Netherlands
| | - M Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - C W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, the Netherlands
| | - X Chen
- Department of Cell Biochemistry, University of Groningen, the Netherlands
| | - E H Hettema
- Department of Molecular Biology, University of Sheffield, Sheffield, United Kingdom
| | - S Kemp
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, the Netherlands
| | - M Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Cell Morphogenesis and Signal Transduction, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - C Williams
- Department of Cell Biochemistry, University of Groningen, the Netherlands.
| |
Collapse
|
91
|
Rimessi A, Pozzato C, Carparelli L, Rossi A, Ranucci S, De Fino I, Cigana C, Talarico A, Wieckowski MR, Ribeiro CMP, Trapella C, Rossi G, Cabrini G, Bragonzi A, Pinton P. Pharmacological modulation of mitochondrial calcium uniporter controls lung inflammation in cystic fibrosis. SCIENCE ADVANCES 2020; 6:eaax9093. [PMID: 32494695 PMCID: PMC7202873 DOI: 10.1126/sciadv.aax9093] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 02/20/2020] [Indexed: 06/01/2023]
Abstract
Mitochondria physically associate with the endoplasmic reticulum to coordinate interorganelle calcium transfer and regulate fundamental cellular processes, including inflammation. Deregulated endoplasmic reticulum-mitochondria cross-talk can occur in cystic fibrosis, contributing to hyperinflammation and disease progression. We demonstrate that Pseudomonas aeruginosa infection increases endoplasmic reticulum-mitochondria associations in cystic fibrosis bronchial cells by stabilizing VAPB-PTPIP51 (vesicle-associated membrane protein-associated protein B-protein tyrosine phosphatase interacting protein 51) tethers, affecting autophagy. Impaired autophagy induced mitochondrial unfolding protein response and NLRP3 inflammasome activation, contributing to hyperinflammation. The mechanism by which VAPB-PTPIP51 tethers regulate autophagy in cystic fibrosis involves calcium transfer via mitochondrial calcium uniporter. Mitochondrial calcium uniporter inhibition rectified autophagy and alleviated the inflammatory response in vitro and in vivo, resulting in a valid therapeutic strategy for cystic fibrosis pulmonary disease.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Center of research on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Pozzato
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Carparelli
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Alice Rossi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Serena Ranucci
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Ida De Fino
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Cristina Cigana
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Anna Talarico
- Department of Chemistry and Pharmaceutical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Carla M. P. Ribeiro
- Department of Medicine/Pulmonary Division, Marsico Lung Institute and Cystic Fibrosis Center, Chapel Hill, NC 27599-7248, USA
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy
| | - Giulio Cabrini
- Center of research on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Department of Neurosurgery, Biomedicine and Movement, University of Verona, 37126 Verona, Italy
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Center of research on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
92
|
Flatt JF, Stevens-Hernandez CJ, Cogan NM, Eggleston DJ, Haines NM, Heesom KJ, Picard V, Thomas C, Bruce LJ. Expression of South East Asian Ovalocytic Band 3 Disrupts Erythroblast Cytokinesis and Reticulocyte Maturation. Front Physiol 2020; 11:357. [PMID: 32411010 PMCID: PMC7199003 DOI: 10.3389/fphys.2020.00357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Southeast Asian Ovalocytosis results from a heterozygous deletion of 9 amino acids in the erythrocyte anion exchange protein AE1 (band 3). The report of the first successful birth of an individual homozygous for this mutation showed an association with severe dyserythropoietic anemia. Imaging of the proband’s erythrocytes revealed the presence of band 3 at their surface, a reduction in Wr(b) antigen expression, and increases in glycophorin C, CD44, and CD147 immunoreactivity. Immunoblotting of membranes from heterozygous Southeast Asian Ovalocytosis red cells showed a quantitative increase in CD44, CD147, and calreticulin suggesting a defect in reticulocyte maturation, as well as an increase in phosphorylation at residue Tyr359 of band 3, and peroxiredoxin-2 at the membrane, suggesting altered band 3 trafficking and oxidative stress, respectively. In vitro culture of homozygous and heterozygous Southeast Asian Ovalocytosis erythroid progenitor cells produced bi- and multi-nucleated cells. Enucleation was severely impaired in the homozygous cells and reduced in the heterozygous cells. Large internal vesicular accumulations of band 3 formed, which co-localized with other plasma membrane proteins and with the autophagosome marker, LC3, but not with ER, Golgi or recycling endosome markers. Immunoprecipitation of band 3 from erythroblast cell lysates at the orthochromatic stage showed increased interaction of the mutant band 3 with heat shock proteins, ubiquitin and cytoskeleton proteins, ankyrin, spectrin and actin. We also found that the mutant band 3 forms a strong interaction with non-muscle myosins IIA and IIB, while this interaction could not be detected in wild type erythroblasts. Consistent with this, the localization of non-muscle myosin IIA and actin was perturbed in some Southeast Asian Ovalocytosis erythroblasts. These findings provide new insights toward understanding in vivo dyserythropoiesis caused by the expression of mutant membrane proteins.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Nicola M Cogan
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Daniel J Eggleston
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Nicole M Haines
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Kate J Heesom
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Veronique Picard
- Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, Hôpital Bicêtre, Paris, France.,Faculté de Pharmacie, Université Paris-Saclay, Chatenay Malabry, France
| | - Caroline Thomas
- Hématologie et Immunologie Pédiatrique, Hôpital Mère Enfants, Nantes, France
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| |
Collapse
|
93
|
Scott P, Anderson K, Singhania M, Cormier R. Cystic Fibrosis, CFTR, and Colorectal Cancer. Int J Mol Sci 2020; 21:2891. [PMID: 32326161 PMCID: PMC7215855 DOI: 10.3390/ijms21082891] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF), caused by biallelic inactivating mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, has recently been categorized as a familial colorectal cancer (CRC) syndrome. CF patients are highly susceptible to early, aggressive colorectal tumor development. Endoscopic screening studies have revealed that by the age of forty 50% of CF patients will develop adenomas, with 25% developing aggressive advanced adenomas, some of which will have already advanced to adenocarcinomas. This enhanced risk has led to new CF colorectal cancer screening recommendations, lowering the initiation of endoscopic screening to age forty in CF patients, and to age thirty in organ transplant recipients. The enhanced risk for CRC also extends to the millions of people (more than 10 million in the US) who are heterozygous carriers of CFTR gene mutations. Further, lowered expression of CFTR is reported in sporadic CRC, where downregulation of CFTR is associated with poor survival. Mechanisms underlying the actions of CFTR as a tumor suppressor are not clearly understood. Dysregulation of Wnt/β-catenin signaling and disruption of intestinal stem cell homeostasis and intestinal barrier integrity, as well as intestinal dysbiosis, immune cell infiltration, stress responses, and intestinal inflammation have all been reported in human CF patients and in animal models. Notably, the development of new drug modalities to treat non-gastrointestinal pathologies in CF patients, especially pulmonary disease, offers hope that these drugs could be repurposed for gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | - Robert Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (P.S.); (K.A.); (M.S.)
| |
Collapse
|
94
|
Wrigley R, Phipps-Green AJ, Topless RK, Major TJ, Cadzow M, Riches P, Tausche AK, Janssen M, Joosten LAB, Jansen TL, So A, Harré Hindmarsh J, Stamp LK, Dalbeth N, Merriman TR. Pleiotropic effect of the ABCG2 gene in gout: involvement in serum urate levels and progression from hyperuricemia to gout. Arthritis Res Ther 2020; 22:45. [PMID: 32164793 PMCID: PMC7069001 DOI: 10.1186/s13075-020-2136-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The ABCG2 Q141K (rs2231142) and rs10011796 variants associate with hyperuricaemia (HU). The effect size of ABCG2 rs2231142 on urate is ~ 60% that of SLC2A9, yet the effect size on gout is greater. We tested the hypothesis that ABCG2 plays a role in the progression from HU to gout by testing for association of ABCG2 rs2231142 and rs10011796 with gout using HU controls. METHODS We analysed 1699 European gout cases and 14,350 normouricemic (NU) and HU controls, and 912 New Zealand (NZ) Polynesian (divided into Eastern and Western Polynesian) gout cases and 696 controls. Association testing was performed using logistic and linear regression with multivariate adjusting for confounding variables. RESULTS In Europeans and Polynesians, the ABCG2 141K (T) allele was associated with gout using HU controls (OR = 1.85, P = 3.8E- 21 and ORmeta = 1.85, P = 1.3E- 03, respectively). There was evidence for an effect of 141K in determining HU in European (OR = 1.56, P = 1.7E- 18) but not in Polynesian (ORmeta = 1.49, P = 0.057). For SLC2A9 rs11942223, the T allele associated with gout in the presence of HU in European (OR = 1.37, P = 4.7E- 06), however significantly weaker than ABCG2 rs2231142 141K (PHet = 0.0023). In Western Polynesian and European, there was epistatic interaction between ABCG2 rs2231142 and rs10011796. Combining the presence of the 141K allele with the rs10011796 CC-genotype increased gout risk, in the presence of HU, 21.5-fold in Western Polynesian (P = 0.009) and 2.6-fold in European (P = 9.9E- 06). The 141K allele of ABCG2 associated with increased gout flare frequency in Polynesian (Pmeta = 2.5E- 03). CONCLUSION These data are consistent with a role for ABCG2 141K in gout in the presence of established HU.
Collapse
Affiliation(s)
- Rebekah Wrigley
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand
| | | | - Ruth K Topless
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand
| | - Tanya J Major
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand
| | - Philip Riches
- Rheumatic Diseases Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Anne-Kathrin Tausche
- Department of Rheumatology, University Clinic "Carl-Gustav-Carus", Dresden, Germany
| | - Matthijs Janssen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tim L Jansen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Alexander So
- Laboratory of Rheumatology, University of Lausanne, CHUV, Nestlé 05-5029, 1011, Lausanne, Switzerland
| | | | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand.
| |
Collapse
|
95
|
Lv XF, Zhang YJ, Liu X, Zheng HQ, Liu CZ, Zeng XL, Li XY, Lin XC, Lin CX, Ma MM, Zhang FR, Shang JY, Zhou JG, Liang SJ, Guan YY. TMEM16A ameliorates vascular remodeling by suppressing autophagy via inhibiting Bcl-2-p62 complex formation. Am J Cancer Res 2020; 10:3980-3993. [PMID: 32226533 PMCID: PMC7086348 DOI: 10.7150/thno.41028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Rationale: Transmembrane member 16A (TMEM16A) is a component of calcium-activated chloride channels that regulate vascular smooth muscle cell (SMC) proliferation and remodeling. Autophagy, a highly conserved cellular catabolic process in eukaryotes, exerts important physiological functions in vascular SMCs. In the current study, we investigated the relationship between TMEM16A and autophagy during vascular remodeling. Methods: We generated a transgenic mouse that overexpresses TMEM16A specifically in vascular SMCs to verify the role of TMEM16A in vascular remodeling. Techniques employed included immunofluorescence, electron microscopy, co-immunoprecipitation, and Western blotting. Results: Autophagy was activated in aortas from angiotensin II (AngII)-induced hypertensive mice with decreased TMEM16A expression. The numbers of light chain 3B (LC3B)-positive puncta in aortas correlated with the medial cross-sectional aorta areas and TMEM16A expression during hypertension. SMC-specific TMEM16A overexpression markedly inhibited AngII-induced autophagy in mouse aortas. Moreover, in mouse aortic SMCs (MASMCs), AngII-induced autophagosome formation and autophagic flux were blocked by TMEM16A upregulation and were promoted by TMEM16A knockdown. The effect of TMEM16A on autophagy was independent of the mTOR pathway, but was associated with reduced kinase activity of the vacuolar protein sorting 34 (VPS34) enzyme. Overexpression of VPS34 attenuated the effect of TMEM16A overexpression on MASMC proliferation, while the effect of TMEM16A downregulation was abrogated by a VPS34 inhibitor. Further, co-immunoprecipitation assays revealed that TMEM16A interacts with p62. TMEM16A overexpression inhibited AngII-induced p62-Bcl-2 binding and enhanced Bcl-2-Beclin-1 interactions, leading to suppression of Beclin-1/VPS34 complex formation. However, TMEM16A downregulation showed the opposite effects. Conclusion: TMEM16A regulates the four-way interaction between p62, Bcl-2, Beclin-1, and VPS34, and coordinately prevents vascular autophagy and remodeling.
Collapse
|
96
|
Deciphering the role of protein kinase CK2 in the maturation/stability of F508del-CFTR. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165611. [DOI: 10.1016/j.bbadis.2019.165611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/16/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022]
|
97
|
Anglès F, Hutt DM, Balch WE. HDAC inhibitors rescue multiple disease-causing CFTR variants. Hum Mol Genet 2020; 28:1982-2000. [PMID: 30753450 DOI: 10.1093/hmg/ddz026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding the role of the epigenome in protein-misfolding diseases remains a challenge in light of genetic diversity found in the world-wide population revealed by human genome sequencing efforts and the highly variable response of the disease population to therapeutics. An ever-growing body of evidence has shown that histone deacetylase (HDAC) inhibitors (HDACi) can have significant benefit in correcting protein-misfolding diseases that occur in response to both familial and somatic mutation. Cystic fibrosis (CF) is a familial autosomal recessive disease, caused by genetic diversity in the CF transmembrane conductance regulator (CFTR) gene, a cyclic Adenosine MonoPhosphate (cAMP)-dependent chloride channel expressed at the apical plasma membrane of epithelial cells in multiple tissues. The potential utility of HDACi in correcting the phenylalanine 508 deletion (F508del) CFTR variant as well as the over 2000 CF-associated variants remains controversial. To address this concern, we examined the impact of US Food and Drug Administration-approved HDACi on the trafficking and function of a panel of CFTR variants. Our data reveal that panobinostat (LBH-589) and romidepsin (FK-228) provide functional correction of Class II and III CFTR variants, restoring cell surface chloride channel activity in primary human bronchial epithelial cells. We further demonstrate a synergistic effect of these HDACi with Vx809, which can significantly restore channel activity for multiple CFTR variants. These data suggest that HDACi can serve to level the cellular playing field for correcting CF-causing mutations, a leveling effect that might also extend to other protein-misfolding diseases.
Collapse
Affiliation(s)
- Frédéric Anglès
- Department of Molecular Medicine, Scripps Research, North Torrey Pines Rd, La Jolla, CA, USA
| | - Darren M Hutt
- Department of Molecular Medicine, Scripps Research, North Torrey Pines Rd, La Jolla, CA, USA
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, North Torrey Pines Rd, La Jolla, CA, USA.,Skaggs Institute of Chemical Biology, North Torrey Pines Rd, La Jolla, CA, USA
| |
Collapse
|
98
|
Esposito S, Villella VR, Rossin F, Tosco A, Raia V, Luciani A. Succinate links mitochondria to deadly bacteria in cystic fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:S263. [PMID: 32015982 DOI: 10.21037/atm.2019.12.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Speranza Esposito
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Rachela Villella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Federica Rossin
- Department of Biology; University of Rome "Tor Vergata", Rome, Italy
| | - Antonella Tosco
- Pediatric Unit, Department of Translational Medical Sciences, Regional Cystic Fibrosis Center, Federico II University Naples, Naples, Italy
| | - Valeria Raia
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,Pediatric Unit, Department of Translational Medical Sciences, Regional Cystic Fibrosis Center, Federico II University Naples, Naples, Italy
| | | |
Collapse
|
99
|
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC Diaphragm dysfunction and atrophy develop during controlled mechanical ventilation. Although oxidative stress injures muscle during controlled mechanical ventilation, it is unclear whether it causes autophagy or fiber atrophy. WHAT THIS ARTICLE TELLS US THAT IS NEW Pretreatment of rats undergoing 24 h of mechanical ventilation with N-acetylcysteine prevents decreases in diaphragm contractility, inhibits the autophagy and proteasome pathways, but has no influence on the development of diaphragm fiber atrophy. BACKGROUND Diaphragm dysfunction and atrophy develop during prolonged controlled mechanical ventilation. Fiber atrophy has been attributed to activation of the proteasome and autophagy proteolytic pathways. Oxidative stress activates the proteasome during controlled mechanical ventilation, but it is unclear whether it also activates autophagy. This study investigated whether pretreatment with the antioxidant N-acetylcysteine affects controlled mechanical ventilation-induced diaphragm contractile dysfunction, fiber atrophy, and proteasomal and autophagic pathway activation. The study also explored whether proteolytic pathway activity during controlled mechanical ventilation is mediated by microRNAs that negatively regulate ubiquitin E3 ligases and autophagy-related genes. METHODS Three groups of adult male rats were studied (n = 10 per group). The animals in the first group were anesthetized and allowed to spontaneously breathe. Animals in the second group were pretreated with saline before undergoing controlled mechanical ventilation for 24 h. The animals in the third group were pretreated with N-acetylcysteine (150 mg/kg) before undergoing controlled mechanical ventilation for 24 h. Diaphragm contractility and activation of the proteasome and autophagy pathways were measured. Expressions of microRNAs that negatively regulate ubiquitin E3 ligases and autophagy-related genes were measured with quantitative polymerase chain reaction. RESULTS Controlled mechanical ventilation decreased diaphragm twitch force from 428 ± 104 g/cm (mean ± SD) to 313 ± 50 g/cm and tetanic force from 2,491 ± 411 g/cm to 1,618 ± 177 g/cm. Controlled mechanical ventilation also decreased diaphragm fiber size, increased expression of several autophagy genes, and augmented Atrogin-1, MuRF1, and Nedd4 expressions by 36-, 41-, and 8-fold, respectively. Controlled mechanical ventilation decreased the expressions of six microRNAs (miR-20a, miR-106b, miR-376, miR-101a, miR-204, and miR-93) that regulate autophagy genes. Pretreatment with N-acetylcysteine prevented diaphragm contractile dysfunction, attenuated protein ubiquitination, and downregulated E3 ligase and autophagy gene expression. It also reversed controlled mechanical ventilation-induced microRNA expression decreases. N-Acetylcysteine pretreatment had no affect on fiber atrophy. CONCLUSIONS Prolonged controlled mechanical ventilation activates the proteasome and autophagy pathways in the diaphragm through oxidative stress. Pathway activation is accomplished, in part, through inhibition of microRNAs that negatively regulate autophagy-related genes.
Collapse
|
100
|
Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators. Int J Mol Sci 2020; 21:ijms21020452. [PMID: 31936842 PMCID: PMC7013518 DOI: 10.3390/ijms21020452] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians in North America and a significant portion of Europe. The disease arises from one of many mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator, or CFTR. The most common disease-associated allele, F508del, along with several other mutations affect the folding, transport, and stability of CFTR as it transits from the endoplasmic reticulum (ER) to the plasma membrane, where it functions primarily as a chloride channel. Early data demonstrated that F508del CFTR is selected for ER associated degradation (ERAD), a pathway in which misfolded proteins are recognized by ER-associated molecular chaperones, ubiquitinated, and delivered to the proteasome for degradation. Later studies showed that F508del CFTR that is rescued from ERAD and folds can alternatively be selected for enhanced endocytosis and lysosomal degradation. A number of other disease-causing mutations in CFTR also undergo these events. Fortunately, pharmacological modulators of CFTR biogenesis can repair CFTR, permitting its folding, escape from ERAD, and function at the cell surface. In this article, we review the many cellular checkpoints that monitor CFTR biogenesis, discuss the emergence of effective treatments for CF, and highlight future areas of research on the proteostatic control of CFTR.
Collapse
|