51
|
Troha K, Ayres JS. Cooperative defenses during enteropathogenic infection. Curr Opin Microbiol 2022; 65:123-130. [PMID: 34847524 PMCID: PMC8818259 DOI: 10.1016/j.mib.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
During their co-evolution with pathogens, hosts acquired defensive health strategies that allow them to maintain their health or promote recovery when challenged with infections. The cooperative defense system is a largely unexplored branch of these evolved defense strategies. Cooperative defenses limit physiological damage and promote health without having a negative impact on a pathogen's ability to survive and replicate within the host. Here, we review recent discoveries in the new field of cooperative defenses using the model pathogens Citrobacter rodentium and Salmonella enterica. We discuss not only host-encoded but also pathogen-encoded mechanisms of cooperative defenses. Cooperative defenses remain an untapped resource in clinical medicine. With a global pandemic exacerbated by a lack of vaccine access and a worldwide rise in antibiotic resistance, the study of cooperative defenses offers an opportunity to safeguard health in the face of pathogenic infection.
Collapse
Affiliation(s)
- Katia Troha
- Molecular and Systems Physiology Lab, Gene Expression Lab, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Janelle S. Ayres
- Molecular and Systems Physiology Lab, Gene Expression Lab, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Correspondence:
| |
Collapse
|
52
|
Kaushik V, Sharma S, Tiwari M, Tiwari V. Anti-persister strategies against stress induced bacterial persistence. Microb Pathog 2022; 164:105423. [PMID: 35092834 DOI: 10.1016/j.micpath.2022.105423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/22/2023]
Abstract
The increase in antibiotic non-responsive bacteria is the leading concern in current research-oriented to eliminate pathogens. Nowadays, the excess use of antibiotics without specifically understanding the potentiality of killing pathogens and bacterial survival patterns has helped bacteria emerge indefatigably. Bacteria use various mechanisms such as resistance, persistence, and tolerance to ensure survival. Among these, persistence is a mechanism by which bacteria reside in their dormant state, bypassing the effects of treatments, making it crucial for bacterial survival. Persistent bacterial cells arise from the normal bacterial population as a slow-growing subset of bacteria with no metabolic flux. This behavior renders it to survive for a longer duration and at higher concentrations of antibiotics. They are one of the underlying causes of recurrence of bacterial infections. The present article explains the detailed molecular mechanisms and strategies of bacterial persistence, including the toxin-antitoxin modules, DNA damage, the formation of inactive ribosomal complexes, (p)ppGpp network, antibiotic-induced persistence, which are triggered by drug-induced stress. The article also comprehensively covers the epigenetic memory of persistence in bacteria, and anti-persistent therapeutics like antimicrobial molecules, synthetic peptides, acyldepsipeptide antibiotics, and endolysin therapy to reduce persister cell formation and control their frequency. These strategies could be utilized in combating the pathogenic bacteria undergoing persistence.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
53
|
Lin M, Wang A, Ren L, Qiao W, Wandera SM, Dong R. Challenges of pathogen inactivation in animal manure through anaerobic digestion: a short review. Bioengineered 2022; 13:1149-1161. [PMID: 35258411 PMCID: PMC8805936 DOI: 10.1080/21655979.2021.2017717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Animal manure is the main source of bioenergy production by anaerobic digestion (AD). However, the pathogenic bacteria in manure may pose a high risk to human health by contaminating the environment if not effectively inactivated during AD. Worldwide, more than 20,000 biogas plants are running for the treatment of animal manure. AD has been playing the important role in establishing a circular economy in the agricultural sector and may contribute to the United Nations sustainable development goal (UN SDG). Nevertheless, whether AD is a reliable approach for pathogens inactivation has been challenged. A comprehensive understanding of the coping mechanisms of pathogens with adverse conditions and the challenges of establishing the AD process to inactivate effectively pathogens are yet to be analyzed. In this review, the diversity and resistance of pathogens in animal manure are summarized. The efficiencies and the difficulties of their inactivations in AD are also analyzed. In particular, three forms of pathogens i.e. sporing-forming pathogens, viable but non-culturable (VBNC) pathogens, and persistent pathogens are discussed. The factors influencing the pathogens’ inactivation and AD efficiencies are analyzed. The trade-off between energy production and pathogens inactivation in an AD system was consequently pointed out. This review concluded that the development of anaerobic processes should meet the goals of high efficient bioenergy production and deep hygienization.
Collapse
Affiliation(s)
- Min Lin
- College of Engineering, China Agricultural University, Beijing, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Lijuan Ren
- College of Engineering, China Agricultural University, Beijing, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Simon Mdondo Wandera
- Department of Civil, Construction & Environmental Engineering, Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
54
|
PHLPP Signaling in Immune Cells. Curr Top Microbiol Immunol 2022; 436:117-143. [DOI: 10.1007/978-3-031-06566-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
55
|
Wang Z, Xing B. Small-molecule fluorescent probes: big future for specific bacterial labeling and infection detection. Chem Commun (Camb) 2021; 58:155-170. [PMID: 34882159 DOI: 10.1039/d1cc05531c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial infections remain a global healthcare problem that is particularly attributed to the spread of antibiotic resistance and the evolving pathogenicity. Accurate and swift approaches for infection diagnosis are urgently needed to facilitate antibiotic stewardship and effective medical treatment. Direct optical imaging for specific bacterial labeling and infection detection offers an attractive prospect of precisely monitoring the infectious disease status and therapeutic response in real time. This feature article focuses on the recent advances of small-molecule probes developed for fluorescent imaging of bacteria and infection, which covers the probe design, responsive mechanisms and representative applications. In addition, the perspective and challenges to advance small-molecule fluorescent probes in the field of rapid drug-resistant bacterial detection and clinical diagnosis of bacterial infections are discussed. We envision that the continuous advancement and clinical translations of such a technique will have a strong impact on future anti-infective medicine.
Collapse
Affiliation(s)
- Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 637371, Singapore. .,School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
56
|
Yu Y, Li J, Zhang Y, Ma Z, Sun H, Wei X, Bai Y, Wu Z, Zhang X. A bioinspired hierarchical nanoplatform targeting and responding to intracellular pathogens to eradicate parasitic infections. Biomaterials 2021; 280:121309. [PMID: 34896862 DOI: 10.1016/j.biomaterials.2021.121309] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
Intracellular bacteria-mediated antibiotic tolerance, which acts as a "Trojan horse," plays a critical and underappreciated role in chronic and recurrent infections. Failure of conventional antibiotic therapy is often encountered because infected cells prevent drug permeation or the drug concentration is too low at the site of resident bacteria. New paradigms are therefore urgently needed for intracellular anti-infective therapy. Here, a novel therapeutic was developed for targeted delivery of antibiotics into bacteria-infected macrophages to improve drug accumulation in intracellular niches and bactericidal activity of antibiotics against intracellular pathogens. This hierarchical nanoplatform includes a glycocalyx-mimicking shell that enables rapid uptake by macrophages. Subsequently, the targeting moieties are activated in response to the bacteria, and the release of entrapped antibiotics is triggered by bacteria and bacteria-secreted enzymes. The self-immolative drug delivery nanoplatform eliminates intracellular pathogenic bacteria residing in macrophages more efficiently compared to drugs alone. The in vivo dynamically monitored nanosystem also efficiently inhibited the growth of intracellular Staphylococcus aureus in infected muscles of mice with negligible systemic toxicity. The novel dual-targeting design of an all-in-one therapeutic platform can be used as an alternative strategy to reanimate antibiotic therapy against multifarious intracellular bacterial infections.
Collapse
Affiliation(s)
- Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Zhuang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Haonan Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Yayun Bai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Zhongming Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
57
|
Cai D, Brickey WJ, Ting JP, Sad S. Isolates of Salmonella typhimurium circumvent NLRP3 inflammasome recognition in macrophages during the chronic phase of infection. J Biol Chem 2021; 298:101461. [PMID: 34864057 PMCID: PMC8715120 DOI: 10.1016/j.jbc.2021.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Inflammasome signaling results in cell death and release of cytokines from the IL-1 family, which facilitates control over an infection. However, some pathogens such as Salmonella typhimurium (ST) activate various innate immune signaling pathways, including inflammasomes, yet evade these cell death mechanisms, resulting in a chronic infection. Here we investigated inflammasome signaling induced by acute and chronic isolates of ST obtained from different organs. We show that ST isolated from infected mice during the acute phase displays an increased potential to activate inflammasome signaling, which then undergoes a protracted decline during the chronic phase of infection. This decline in inflammasome signaling was associated with reduced expression of virulence factors, including flagella and the Salmonella pathogenicity island I genes. This reduction in cell death of macrophages induced by chronic isolates had the greatest impact on the NLRP3 inflammasome, which correlated with a reduction in caspase-1 activation. Furthermore, rapid cell death induced by Casp-1/11 by ST in macrophages limited the subsequent activation of cell death cascade proteins Casp-8, RipK1, RipK3, and MLKL to prevent the activation of alternative forms of cell death. We observed that the lack of the ability to induce cell death conferred a competitive fitness advantage to ST only during the acute phase of infection. Finally, we show that the chronic isolates displayed a significant attenuation in their ability to infect mice through the oral route. These results reveal that ST adapts during chronic infection by circumventing inflammasome recognition to promote the survival of both the host and the pathogen.
Collapse
Affiliation(s)
- David Cai
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Willie June Brickey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jenny P Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
58
|
Kiarely Souza E, Pereira-Dutra FS, Rajão MA, Ferraro-Moreira F, Goltara-Gomes TC, Cunha-Fernandes T, Santos JDC, Prestes EB, Andrade WA, Zamboni DS, Bozza MT, Bozza PT. Lipid droplet accumulation occurs early following Salmonella infection and contributes to intracellular bacterial survival and replication. Mol Microbiol 2021; 117:293-306. [PMID: 34783412 DOI: 10.1111/mmi.14844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/20/2023]
Abstract
Salmonellosis is a public health problem caused by Salmonella sp., a highly adapted facultative intracellular pathogen. After internalization, Salmonella sp. Manipulates several host processes, mainly through the activation of the type III secretion system (T3SS), including modification of host lipid metabolism and lipid droplet (LD) accumulation. LDs are dynamic and complex lipid-rich organelles involved in several cellular processes. The present study investigated the mechanism involved in LD biogenesis in Salmonella-infected macrophages and its role in bacterial pathogenicity. Here, we reported that S. Typhimurium induced a rapid time-dependent increase of LD formation in macrophages. The LD biogenesis was demonstrated to depend on Salmonella's viability and SPI1-related T3SS activity, with the participation of Toll-Like Receptor (TLR) signaling. We also observed that LD accumulation occurs through TLR2-dependent signaling and is counter-regulated by TLR4. Last, the pharmacologic modulation of LD formation by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) and cytosolic phospholipase A2 (cPLA2) significantly reduced the intracellular bacterial proliferation and impaired the prostaglandin E2 (PGE2 ) synthesis. Collectively, our data suggest the role of LDs on S. typhimurium intracellular survival and replication in macrophages. This data set provides new perspectives for future investigations about LDs in host-pathogen interaction.
Collapse
Affiliation(s)
- Ellen Kiarely Souza
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Program of Immunology and Inflammation, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Filipe S Pereira-Dutra
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Matheus A Rajão
- Program of Immunology and Tumor Biology, Instituto Nacional do Câncer, INCA, Rio de Janeiro, Brazil
| | - Felipe Ferraro-Moreira
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Taynná C Goltara-Gomes
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tamires Cunha-Fernandes
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Julia da Cunha Santos
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Elisa B Prestes
- Laboratory of Inflammation and Immunity, Department of Immunity, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Warrison A Andrade
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Dario S Zamboni
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo T Bozza
- Laboratory of Inflammation and Immunity, Department of Immunity, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
59
|
Virulence Comparison of Salmonella enterica Subsp. enterica Isolates from Chicken and Whole Genome Analysis of the High Virulent Strain S. Enteritidis 211. Microorganisms 2021; 9:microorganisms9112239. [PMID: 34835366 PMCID: PMC8619400 DOI: 10.3390/microorganisms9112239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 01/28/2023] Open
Abstract
Background: Salmonellaenterica is one of the common pathogens in both humans and animals that causes salmonellosis and threatens public health all over the world. Methods and Results: Here we determined the virulence phenotypes of nine Salmonellaenterica subsp. enterica (S. enterica) isolates in vitro and in vivo, including pathogenicity to chicken, cell infection, biofilm formation and virulence gene expressions. S. Enteritidis 211 (SE211) was highly pathogenic with notable virulence features among the nine isolates. The combination of multiple virulence genes contributed to the conferring of the high virulence in SE211. Importantly, many mobile genetic elements (MGEs) were found in the genome sequence of SE211, including a virulence plasmid, genomic islands, and prophage regions. The MGEs and CRISPR-Cas system might function synergistically for gene transfer and immune defense. In addition, the neighbor joining tree and the minimum spanning tree were constructed in this study. Conclusions: This study provided both the virulence phenotypes and genomic features, which might contribute to the understanding of bacterial virulence mechanisms in Salmonella enterica subsp. enterica. The first completed genomic sequence for the high virulent S. Enteritidis isolate SE211 and the comparative genomics and phylogenetic analyses provided a preliminary understanding of S. enterica genetics and laid the foundation for further study.
Collapse
|
60
|
Formaglio P, Alabdullah M, Siokis A, Handschuh J, Sauerland I, Fu Y, Krone A, Gintschel P, Stettin J, Heyde S, Mohr J, Philipsen L, Schröder A, Robert PA, Zhao G, Khailaie S, Dudeck A, Bertrand J, Späth GF, Kahlfuß S, Bousso P, Schraven B, Huehn J, Binder S, Meyer-Hermann M, Müller AJ. Nitric oxide controls proliferation of Leishmania major by inhibiting the recruitment of permissive host cells. Immunity 2021; 54:2724-2739.e10. [PMID: 34687607 PMCID: PMC8691385 DOI: 10.1016/j.immuni.2021.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Nitric oxide (NO) is an important antimicrobial effector but also prevents unnecessary tissue damage by shutting down the recruitment of monocyte-derived phagocytes. Intracellular pathogens such as Leishmania major can hijack these cells as a niche for replication. Thus, NO might exert containment by restricting the availability of the cellular niche required for efficient pathogen proliferation. However, such indirect modes of action remain to be established. By combining mathematical modeling with intravital 2-photon biosensors of pathogen viability and proliferation, we show that low L. major proliferation results not from direct NO impact on the pathogen but from reduced availability of proliferation-permissive host cells. Although inhibiting NO production increases recruitment of these cells, and thus pathogen proliferation, blocking cell recruitment uncouples the NO effect from pathogen proliferation. Therefore, NO fulfills two distinct functions for L. major containment: permitting direct killing and restricting the supply of proliferation-permissive host cells. Direct killing of L. major by NO occurs only during the peak of the immune response Efficient L. major proliferation requires newly recruited monocyte-derived cells Loss of NO production increases both pathogen proliferation and monocyte recruitment NO dampens L. major proliferation indirectly, limiting the pathogen’s cellular niche
Collapse
Affiliation(s)
- Pauline Formaglio
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany.
| | - Mohamad Alabdullah
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Anastasios Siokis
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Juliane Handschuh
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Ina Sauerland
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Yan Fu
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Anna Krone
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Patricia Gintschel
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Juliane Stettin
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Sandrina Heyde
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Juliane Mohr
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Anja Schröder
- Experimental Orthopedics, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto von Guericke University, Magdeburg 39120, Germany
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany; Department of Immunology, University of Oslo, Oslo 0372, Norway
| | - Gang Zhao
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Jessica Bertrand
- Experimental Orthopedics, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto von Guericke University, Magdeburg 39120, Germany
| | - Gerald F Späth
- Molecular Parasitology and Signalling Unit, Institut Pasteur, Paris 75015, France
| | - Sascha Kahlfuß
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Paris 75015, France
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
| | - Sebastian Binder
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany; Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I(3)), Otto-von-Guericke-University, Magdeburg 39120, Germany; Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
| |
Collapse
|
61
|
Foster N, Tang Y, Berchieri A, Geng S, Jiao X, Barrow P. Revisiting Persistent Salmonella Infection and the Carrier State: What Do We Know? Pathogens 2021; 10:1299. [PMID: 34684248 PMCID: PMC8537056 DOI: 10.3390/pathogens10101299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
One characteristic of the few Salmonella enterica serovars that produce typhoid-like infections is that disease-free persistent infection can occur for months or years in a small number of individuals post-convalescence. The bacteria continue to be shed intermittently which is a key component of the epidemiology of these infections. Persistent chronic infection occurs despite high levels of circulating specific IgG. We have reviewed the information on the basis for persistence in S. Typhi, S. Dublin, S. Gallinarum, S. Pullorum, S. Abortusovis and also S. Typhimurium in mice as a model of persistence. Persistence appears to occur in macrophages in the spleen and liver with shedding either from the gall bladder and gut or the reproductive tract. The involvement of host genetic background in defining persistence is clear from studies with the mouse but less so with human and poultry infections. There is increasing evidence that the organisms (i) modulate the host response away from the typical Th1-type response normally associated with immune clearance of an acute infection to Th2-type or an anti-inflammatory response, and that (ii) the bacteria modulate transformation of macrophage from M1 to M2 type. The bacterial factors involved in this are not yet fully understood. There are early indications that it might be possible to remodulate the response back towards a Th1 response by using cytokine therapy.
Collapse
Affiliation(s)
- Neil Foster
- SRUC Aberdeen Campus, Craibstone Estate, Ferguson Building, Aberdeen AB21 9YA, UK
| | - Ying Tang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518055, China;
| | - Angelo Berchieri
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Via de Acesso Paulo Donato Castellane, s/n, 14884-900 Jaboticabal, SP, Brazil;
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (S.G.); (X.J.)
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (S.G.); (X.J.)
| | - Paul Barrow
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, UK;
| |
Collapse
|
62
|
Antibacterial Activity of Ikarugamycin against Intracellular Staphylococcus aureus in Bovine Mammary Epithelial Cells In Vitro Infection Model. BIOLOGY 2021; 10:biology10100958. [PMID: 34681057 PMCID: PMC8533619 DOI: 10.3390/biology10100958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Antibiotics are widely used for the treatment and control of bovine mastitis. However, the treatment has only been partially effective, as the cure percentage only ranging from 10–30%. Infection by Staphylococcus aureus (S. aureus) is particularly difficult to treat due to the bacteria’s ability to enter and resides inside the host cells. Most antibiotics are ineffective against intracellular bacterial due to the poor penetration into host cells to achieve optimal intracellular bactericidal bioavailability levels. There is therefore, an increasing need to evaluate candidate active substances and develop novel antibiotics effective against intracellular persistence infection. In this study, we examine the potential antibacterial properties of ikarugamycin compound as an alternative drug candidate to be explored for treating persistent bovine mastitis caused by intracellular S. aureus using bovine mammary cell line as an in vitro infection model. We also assessed the potential cytotoxicity effect of ikarugamycin in the infection model. We found that, the ikarugamycin possessed intracellular killing activity against S. aureus within the mammary epithelial cell. This finding highlights the potential application of ikarugamycin as a novel antimicrobial for the treatment of S. aureus mastitis. Abstract Staphylococcus aureus is an ubiquitous and versatile pathogen associated with a wide range of diseases. In animals, this bacterium is one of the causative agents of bovine mastitis, responsible for huge economic losses in the dairy industry. Besides the development of antibiotic resistance, the intracellular survival of S. aureus within udder cells has rendered many antibiotics ineffective, leading to therapeutic failure. Our study therefore aims to investigate the in vitro bactericidal activity of ikarugamycin (IKA) against intracellular S. aureus using a bovine mammary epithelial cells (Mac-T cells) infection model and determine the cytotoxic effect. Minimum inhibitory concentration (MIC) was used to determine the antibacterial activity of IKA, and Mac-T cells were infected with S. aureus using gentamicin protection assay. IKA intracellular antibacterial activity assays were used to determine the bactericidal activity of IKA against intracellular S. aureus. The cytotoxicity of IKA against Mac-T cells was evaluated using the resazurin assay. We showed that, S. aureus is susceptible to IKA with a MIC value of 0.6 μg/mL. IKA at 4 × MIC and 8 × MIC have bactericidal activity by reducing 3 and 5 logs10 CFU/mL of S. aureus in the first six-hour of treatment respectively. In addition, IKA demonstrated intracellular killing activity by killing 90% of intracellular S. aureus at 5 μg/mL. This level is comparatively lower than 9.2 μg/mL determined as the half-maximal inhibitory concentration (IC50) of IKA required to kill 50% of Mac-T cells, highlighting a lower concentration required for bactericidal effect compared to the cytotoxic effect. The study highlighted that importance of IKA as a potential antibiotic candidate to be explored for the in vivo efficacy in treating S. aureus mastitis.
Collapse
|
63
|
Aromolaran O, Beder T, Adedeji E, Ajamma Y, Oyelade J, Adebiyi E, Koenig R. Predicting host dependency factors of pathogens in Drosophila melanogaster using machine learning. Comput Struct Biotechnol J 2021; 19:4581-4592. [PMID: 34471501 PMCID: PMC8385402 DOI: 10.1016/j.csbj.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Pathogens causing infections, and particularly when invading the host cells, require the host cell machinery for efficient regeneration and proliferation during infection. For their life cycle, host proteins are needed and these Host Dependency Factors (HDF) may serve as therapeutic targets. Several attempts have approached screening for HDF producing large lists of potential HDF with, however, only marginal overlap. To get consistency into the data of these experimental studies, we developed a machine learning pipeline. As a case study, we used publicly available lists of experimentally derived HDF from twelve different screening studies based on gene perturbation in Drosophila melanogaster cells or in vivo upon bacterial or protozoan infection. A total of 50,334 gene features were generated from diverse categories including their functional annotations, topology attributes in protein interaction networks, nucleotide and protein sequence features, homology properties and subcellular localization. Cross-validation revealed an excellent prediction performance. All feature categories contributed to the model. Predicted and experimentally derived HDF showed a good consistency when investigating their common cellular processes and function. Cellular processes and molecular function of these genes were highly enriched in membrane trafficking, particularly in the trans-Golgi network, cell cycle and the Rab GTPase binding family. Using our machine learning approach, we show that HDF in organisms can be predicted with high accuracy evidencing their common investigated characteristics. We elucidated cellular processes which are utilized by invading pathogens during infection. Finally, we provide a list of 208 novel HDF proposed for future experimental studies.
Collapse
Affiliation(s)
- Olufemi Aromolaran
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Eunice Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Jelili Oyelade
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Department of Computer & Information Sciences, Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
64
|
Effect of Helicobacter pylori and Helminth Coinfection on the Immune Response to Mycobacterium tuberculosis. Curr Microbiol 2021; 78:3351-3371. [PMID: 34251513 DOI: 10.1007/s00284-021-02604-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis remains one of the main causes of morbidity and mortality worldwide despite decades of efforts to eradicate the disease. Although the immune response controls the infection in most infected individuals (90%), the ability of the bacterium to persist throughout the host's life leads to a risk of reactivation. Underlying conditions including human immunodeficiency virus (HIV) infection, organ transplantation, and immunosuppressive therapies are considered risk factors for progression to active disease. However, many individuals infected with Mycobacterium tuberculosis may develop clinical disease in the absence of underlying immunosuppression. It is also possible that unknown conditions may drive the progression to disease. The human microbiota can be an important modulator of the immune system; it can not only trigger inflammatory disorders, but also drive the response to other infectious diseases. In developing countries, chronic mucosal infections with Helicobacter pylori and helminths may be particularly important, as these infections frequently coexist throughout the host's life. However, little is known about the interactions of these pathogens with the immune system and their effects on M. tuberculosis clinical disease, if any. In this review, we discuss the potential effects of H. pylori and helminth co-infections on the immune response to M. tuberculosis. This may contribute to our understanding of host-pathogen interactions and in designing new strategies for the prevention and control of tuberculosis.
Collapse
|
65
|
McCutcheon JP. The Genomics and Cell Biology of Host-Beneficial Intracellular Infections. Annu Rev Cell Dev Biol 2021; 37:115-142. [PMID: 34242059 DOI: 10.1146/annurev-cellbio-120219-024122] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbes gain access to eukaryotic cells as food for bacteria-grazing protists, for host protection by microbe-killing immune cells, or for microbial benefit when pathogens enter host cells to replicate. But microbes can also gain access to a host cell and become an important-often required-beneficial partner. The oldest beneficial microbial infections are the ancient eukaryotic organelles now called the mitochondrion and plastid. But numerous other host-beneficial intracellular infections occur throughout eukaryotes. Here I review the genomics and cell biology of these interactions with a focus on intracellular bacteria. The genomes of host-beneficial intracellular bacteria have features that span a previously unfilled gap between pathogens and organelles. Host cell adaptations to allow the intracellular persistence of beneficial bacteria are found along with evidence for the microbial manipulation of host cells, but the cellular mechanisms of beneficial bacterial infections are not well understood. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- John P McCutcheon
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA;
| |
Collapse
|
66
|
Yu J, Li S, Wang L, Dong Z, Si L, Bao L, Wu L. Pathogenesis of Brucella epididymoorchitis-game of Brucella death. Crit Rev Microbiol 2021; 48:96-120. [PMID: 34214000 DOI: 10.1080/1040841x.2021.1944055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonotic disease caused by Brucella spp. Human infection often results from direct contact with tissues from infected animals or by consumption of undercooked meat and unpasteurised dairy products, causing serious economic losses and public health problems. The male genitourinary system is a common involved system in patients with brucellosis. Among them, unilateral orchitis and epididymitis are the most common. Although the clinical and imaging aspect of orchi-epididymitis caused by brucellosis have been widely described, the cellular and molecular mechanisms involved in the damage and the immune response in testis and epididymis have not been fully elucidated. In this review, we first summarised the clinical characteristics of Brucella epididymo-orchitis and the composition of testicular and epididymal immune system. Secondly, with regard to the mechanism of Brucella epididymoorchitis, we mainly discussed the process of Brucella invading testis and epididymis in temporal and spatial order, including i) Brucella evades innate immune recognition of testicular PRRs;ii) Brucella overcomes the immune storm triggered by the invasion of testis through bacterial lipoproteins and virulence factors, and changes the secretion mode of cytokines; iii) Brucella breaks through the blood-testis barrier with the help of macrophages, and inflammatory cytokines promote the oxidative stress of Sertoli cells, damaging the integrity of BTB; iv) Brucella inhibits apoptosis of testicular phagocytes. Finally, we revealed the structure and sequence of testis invaded by Brucella at the tissue level. This review will enable us to better understand the pathogenesis of orchi-epididymitis caused by brucellosis and shed light on the development of new treatment strategies for the treatment of brucellosis and the prevention of transition to chronic form. Facing the testicle with immunity privilege, Brucella is like Bruce Lee in the movie Game of Death, winning is survival while losing is death.HIGHLIGHTSWe summarized the clinical features and pathological changes of Brucellaepididymoorchitis.Our research reveals the pathogenesis of Brucella epididymoorchitis, which mainly includes the subversion of testicular immune privilege by Brucella and a series of destructive reactions derived from it.As a basic framework and valuable resource, this study can promote the exploration of the pathogenesis of Brucella and provide reference for determining new therapeutic targets for brucellosis in the future.
Collapse
Affiliation(s)
- Jiuwang Yu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Sha Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lu Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lengge Si
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lan Wu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
67
|
Lopez Chiloeches M, Bergonzini A, Frisan T. Bacterial Toxins Are a Never-Ending Source of Surprises: From Natural Born Killers to Negotiators. Toxins (Basel) 2021; 13:426. [PMID: 34204481 PMCID: PMC8235270 DOI: 10.3390/toxins13060426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The idea that bacterial toxins are not only killers but also execute more sophisticated roles during bacteria-host interactions by acting as negotiators has been highlighted in the past decades. Depending on the toxin, its cellular target and mode of action, the final regulatory outcome can be different. In this review, we have focused on two families of bacterial toxins: genotoxins and pore-forming toxins, which have different modes of action but share the ability to modulate the host's immune responses, independently of their capacity to directly kill immune cells. We have addressed their immuno-suppressive effects with the perspective that these may help bacteria to avoid clearance by the host's immune response and, concomitantly, limit detrimental immunopathology. These are optimal conditions for the establishment of a persistent infection, eventually promoting asymptomatic carriers. This immunomodulatory effect can be achieved with different strategies such as suppression of pro-inflammatory cytokines, re-polarization of the immune response from a pro-inflammatory to a tolerogenic state, and bacterial fitness modulation to favour tissue colonization while preventing bacteraemia. An imbalance in each of those effects can lead to disease due to either uncontrolled bacterial proliferation/invasion, immunopathology, or both.
Collapse
Affiliation(s)
| | | | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden; (M.L.C.); (A.B.)
| |
Collapse
|
68
|
Wu Y, Li C, van der Mei HC, Busscher HJ, Ren Y. Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. Antibiotics (Basel) 2021; 10:623. [PMID: 34073750 PMCID: PMC8225221 DOI: 10.3390/antibiotics10060623] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles possess unique features due to their small size and can be composed of different surface chemistries. Carbon quantum dots possess several unique physico-chemical and antibacterial activities. This review provides an overview of different methods to prepare carbon quantum dots from different carbon sources in order to provide guidelines for choosing methods and carbon sources that yield carbon quantum dots with optimal antibacterial efficacy. Antibacterial activities of carbon quantum dots predominantly involve cell wall damage and disruption of the matrix of infectious biofilms through reactive oxygen species (ROS) generation to cause dispersal of infecting pathogens that enhance their susceptibility to antibiotics. Quaternized carbon quantum dots from organic carbon sources have been found to be equally efficacious for controlling wound infection and pneumonia in rodents as antibiotics. Carbon quantum dots derived through heating of natural carbon sources can inherit properties that resemble those of the carbon sources they are derived from. This makes antibiotics, medicinal herbs and plants or probiotic bacteria ideal sources for the synthesis of antibacterial carbon quantum dots. Importantly, carbon quantum dots have been suggested to yield a lower chance of inducing bacterial resistance than antibiotics, making carbon quantum dots attractive for large scale clinical use.
Collapse
Affiliation(s)
- Yanyan Wu
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Cong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou 215123, China
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
69
|
Duan B, Shao L, Liu R, Msuthwana P, Hu J, Wang C. Lactobacillus rhamnosus GG defense against Salmonella enterica serovar Typhimurium infection through modulation of M1 macrophage polarization. Microb Pathog 2021; 156:104939. [PMID: 33964416 DOI: 10.1016/j.micpath.2021.104939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
Lactobacillus rhamnosus GG (LGG), a model probiotic strain, plays an important role in immune regulatory activity to prevent and treat intestinal inflammation or diarrhea. However, the effect of the immune modulation of LGG on macrophages to prevent Salmonella infection has not been thoroughly studied. In this study, C57BL/6 mice were pre-administered LGG for 7 days continuously, and then infected with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium). The results of the in vivo study indicated that LGG could reduce body weight loss, death rate and intestinal inflammatory response caused by S. Typhimurium. LGG also limited S. Typhimurium dissemination to liver and spleen, and thereby protected against infection. In vitro study, we observed that LGG enhanced the phagocytic and bactericidal ability of macrophages and upregulated M1 macrophage characters (e.g. iNOS, NO and IL-12) against S. Typhimurium. In addition, LGG also elevated IL-10 secretion, which was helpful to ameliorate intestinal inflammatory injury caused by S. Typhimurium. In conclusion, LGG could modulate M1 macrophage polarization and offer protective effects against S. Typhimurium infection.
Collapse
Affiliation(s)
- Bingjie Duan
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China
| | - Lina Shao
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China
| | - Ruihan Liu
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China
| | - Petunia Msuthwana
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Changchun, China.
| |
Collapse
|
70
|
Sadhu S, Rizvi ZA, Pandey RP, Dalal R, Rathore DK, Kumar B, Pandey M, Kumar Y, Goel R, Maiti TK, Johri AK, Tiwari A, Pandey AK, Awasthi A. Gefitinib Results in Robust Host-Directed Immunity Against Salmonella Infection Through Proteo-Metabolomic Reprogramming. Front Immunol 2021; 12:648710. [PMID: 33868285 PMCID: PMC8044459 DOI: 10.3389/fimmu.2021.648710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
The global rise of antibiotic-resistant strains of Salmonella has necessitated the development of alternative therapeutic strategies. Recent studies have shown that targeting host factors may provide an alternative approach for the treatment of intracellular pathogens. Host-directed therapy (HDT) modulates host cellular factors that are essential to support the replication of the intracellular pathogens. In the current study, we identified Gefitinib as a potential host directed therapeutic drug against Salmonella. Further, using the proteome analysis of Salmonella-infected macrophages, we identified EGFR, a host factor, promoting intracellular survival of Salmonella via mTOR-HIF-1α axis. Blocking of EGFR, mTOR or HIF-1α inhibits the intracellular survival of Salmonella within the macrophages and in mice. Global proteo-metabolomics profiling indicated the upregulation of host factors predominantly associated with ATP turn over, glycolysis, urea cycle, which ultimately promote the activation of EGFR-HIF1α signaling upon infection. Importantly, inhibition of EGFR and HIF1α restored both proteomics and metabolomics changes caused by Salmonella infection. Taken together, this study identifies Gefitinib as a host directed drug that holds potential translational values against Salmonella infection and might be useful for the treatment of other intracellular infections.
Collapse
Affiliation(s)
- Srikanth Sadhu
- Infection and Immunobiology, Translational Health Science and Technology Institute, Faridabad, India
| | - Zaigham Abbas Rizvi
- Infection and Immunobiology, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Rajdeep Dalal
- Infection and Immunobiology, Translational Health Science and Technology Institute, Faridabad, India
| | - Deepak Kumar Rathore
- Infection and Immunity, Translational Health Science and Technology Institute, Faridabad, India
| | - Bhoj Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, Faridabad, India
| | - Manitosh Pandey
- Infection and Immunity, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non Communicable Diseases, Translational Health Science and Technology Institute, Faridabad, India
| | - Renu Goel
- Non Communicable Diseases, Translational Health Science and Technology Institute, Faridabad, India
| | - Tushar K. Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, Faridabad, India
| | - Atul Kumar Johri
- Infection and Immunity, Jawaharlal Nehru University, New Delhi, India
| | - Ashutosh Tiwari
- Infection and Immunobiology, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Kumar Pandey
- Infection and Immunity, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Awasthi
- Infection and Immunobiology, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
71
|
Magalhães J, Franko N, Raboni S, Annunziato G, Tammela P, Bruno A, Bettati S, Armao S, Spadini C, Cabassi CS, Mozzarelli A, Pieroni M, Campanini B, Costantino G. Discovery of Substituted (2-Aminooxazol-4-yl)Isoxazole-3-carboxylic Acids as Inhibitors of Bacterial Serine Acetyltransferase in the Quest for Novel Potential Antibacterial Adjuvants. Pharmaceuticals (Basel) 2021; 14:ph14020174. [PMID: 33672408 PMCID: PMC7931047 DOI: 10.3390/ph14020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Many bacteria and actinomycetales use L-cysteine biosynthesis to increase their tolerance to antibacterial treatment and establish a long-lasting infection. In turn, this might lead to the onset of antimicrobial resistance that currently represents one of the most menacing threats to public health worldwide. The biosynthetic machinery required to synthesise L-cysteine is absent in mammals; therefore, its exploitation as a drug target is particularly promising. In this article, we report a series of inhibitors of Salmonella thyphimurium serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of L-cysteine biosynthesis. The development of such inhibitors started with the virtual screening of an in-house library of compounds that led to the selection of seven structurally unrelated hit derivatives. A set of molecules structurally related to hit compound 5, coming either from the original library or from medicinal chemistry efforts, were tested to determine a preliminary structure–activity relationship and, especially, to improve the inhibitory potency of the derivatives, that was indeed ameliorated by several folds compared to hit compound 5 Despite these progresses, at this stage, the most promising compound failed to interfere with bacterial growth when tested on a Gram-negative model organism, anticipating the need for further research efforts.
Collapse
Affiliation(s)
- Joana Magalhães
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
| | - Nina Franko
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
| | - Samanta Raboni
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
- Institute of Biophysics, CNR, 56124 Pisa, Italy;
| | - Giannamaria Annunziato
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
- Centro Interdipartimentale Misure (CIM) ‘G. Casnati’, University of Parma, 43124 Parma, Italy
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland;
| | - Agostino Bruno
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
| | - Stefano Bettati
- Institute of Biophysics, CNR, 56124 Pisa, Italy;
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Stefano Armao
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
| | - Costanza Spadini
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (C.S.); (C.S.C.)
| | - Clotilde Silvia Cabassi
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (C.S.); (C.S.C.)
| | - Andrea Mozzarelli
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
- Institute of Biophysics, CNR, 56124 Pisa, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Marco Pieroni
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
- Centro Interdipartimentale Misure (CIM) ‘G. Casnati’, University of Parma, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-0521-905054
| | - Barbara Campanini
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
| | - Gabriele Costantino
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
- Centro Interdipartimentale Misure (CIM) ‘G. Casnati’, University of Parma, 43124 Parma, Italy
| |
Collapse
|
72
|
Buccini DF, Cardoso MH, Franco OL. Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections. Front Cell Infect Microbiol 2021; 10:612931. [PMID: 33614528 PMCID: PMC7892433 DOI: 10.3389/fcimb.2020.612931] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections caused by intracellular pathogens are difficult to control. Conventional antibiotic therapies are often ineffective, as high doses are needed to increase the number of antibiotics that will cross the host cell membrane to act on the intracellular bacterium. Moreover, higher doses of antibiotics may lead to elevated severe toxic effects against host cells. In this context, antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) have shown great potential to treat such infections by acting directly on the intracellular pathogenic bacterium or performing the delivery of cargos with antibacterial activities. Therefore, in this mini-review, we cover the main AMPs and CPPs described to date, aiming at intracellular bacterial infection treatment. Moreover, we discuss some of the proposed mechanisms of action for these peptide classes and their conjugation with other antimicrobials.
Collapse
Affiliation(s)
- Danieli F Buccini
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon H Cardoso
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octavio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
73
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
74
|
Jiang Y, Han M, Bo Y, Feng Y, Li W, Wu JR, Song Z, Zhao Z, Tan Z, Chen Y, Xue T, Fu Z, Kuo SH, Lau GW, Luijten E, Cheng J. "Metaphilic" Cell-Penetrating Polypeptide-Vancomycin Conjugate Efficiently Eradicates Intracellular Bacteria via a Dual Mechanism. ACS CENTRAL SCIENCE 2020; 6:2267-2276. [PMID: 33376787 PMCID: PMC7760462 DOI: 10.1021/acscentsci.0c00893] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 05/02/2023]
Abstract
Infections by intracellular pathogens are difficult to treat because of the poor accessibility of antibiotics to the pathogens encased by host cell membranes. As such, a strategy that can improve the membrane permeability of antibiotics would significantly increase their efficiency against the intracellular pathogens. Here, we report the design of an adaptive, metaphilic cell-penetrating polypeptide (CPP)-antibiotic conjugate (VPP-G) that can effectively eradicate the intracellular bacteria both in vitro and in vivo. VPP-G was synthesized by attaching vancomycin to a highly membrane-penetrative guanidinium-functionalized metaphilic CPP. VPP-G effectively kills not only extracellular but also far more challenging intracellular pathogens, such as S. aureus, methicillin-resistant S. aureus, and vancomycin-resistant Enterococci. VPP-G enters the host cell via a unique metaphilic membrane penetration mechanism and kills intracellular bacteria through disruption of both cell wall biosynthesis and membrane integrity. This dual antimicrobial mechanism of VPP-G prevents bacteria from developing drug resistance and could also potentially kill dormant intracellular bacteria. VPP-G effectively eradicates MRSA in vivo, significantly outperforming vancomycin, which represents one of the most effective intracellular antibacterial agents reported so far. This strategy can be easily adapted to develop other conjugates against different intracellular pathogens by attaching different antibiotics to these highly membrane-penetrative metaphilic CPPs.
Collapse
Affiliation(s)
- Yunjiang Jiang
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ming Han
- Applied Physics Graduate Program, Department of Materials Science and Engineering,Department of Engineering
Sciences and Applied Mathematics, Department of Chemistry, Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Chicago
Materials Research Center, University of
Chicago, Chicago, Illinois 60637, United States
| | - Yang Bo
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yujun Feng
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wenming Li
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jason Ren Wu
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ziyuan Song
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zihao Zhao
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zhengzhong Tan
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yingying Chen
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tianrui Xue
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zihuan Fu
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shanny Hsuan Kuo
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gee W. Lau
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Erik Luijten
- Applied Physics Graduate Program, Department of Materials Science and Engineering,Department of Engineering
Sciences and Applied Mathematics, Department of Chemistry, Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Jianjun Cheng
- Department
of Materials Science and Engineering, Beckman Institute for Advanced
Science and Technology, Department of Bioegineering, Department of Chemistry, Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
75
|
Wrande M, Vestö K, Puiac Banesaru S, Anwar N, Nordfjell J, Liu L, McInerney GM, Rhen M. Replication of Salmonella enterica serovar Typhimurium in RAW264.7 Phagocytes Correlates With Hypoxia and Lack of iNOS Expression. Front Cell Infect Microbiol 2020; 10:537782. [PMID: 33330118 PMCID: PMC7734562 DOI: 10.3389/fcimb.2020.537782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Salmonella infection associates with tissue hypoxia, while inducible nitric oxide synthase (iNOS), relying for its activity on molecular oxygen, stands as a central host defence measure in murine salmonellosis. Here, we have detailed hypoxia and iNOS responses of murine macrophage-like RAW264.7 cells upon infection with Salmonella enterica serovar Typhimurium. We noted that only a proportion of the infected RAW264.7 cells became hypoxic or expressed iNOS. Heavily infected cells became hypoxic, while in parallel such cells tended not to express iNOS. While a proportion of the infected RAW264.7 cells revealed shutdown of protein synthesis, this was only detectable after 12 h post infection and after iNOS expression was induced in the cell culture. Our data implicate an intrinsic heterogeneity with regard to hypoxia and iNOS expression in a cell culture-based infection setting.
Collapse
Affiliation(s)
- Marie Wrande
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kim Vestö
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Speranta Puiac Banesaru
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Naeem Anwar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan Nordfjell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lifeng Liu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
76
|
Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication. PLoS One 2020; 15:e0240949. [PMID: 33290416 PMCID: PMC7723272 DOI: 10.1371/journal.pone.0240949] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 01/20/2023] Open
Abstract
Salmonellosis and listeriosis together accounted for more than one third of foodborne illnesses in the United States and almost half the hospitalizations for gastrointestinal diseases in 2018 while tuberculosis afflicted over 10 million people worldwide causing almost 2 million deaths. Regardless of the intrinsic virulence differences among Listeria monocytogenes, Salmonella enterica and Mycobacterium tuberculosis, these intracellular pathogens share the ability to survive and persist inside the macrophage and other cells and thrive in iron rich environments. Interferon-gamma (IFN-γ) is a central cytokine in host defense against intracellular pathogens and has been shown to promote iron export in macrophages. We hypothesize that IFN-γ decreases iron availability to intracellular pathogens consequently limiting replication in these cells. In this study, we show that IFN-γ regulates the expression of iron-related proteins hepcidin, ferroportin, and ferritin to induce iron export from macrophages. Listeria monocytogenes, S. enterica, and M. tuberculosis infections significantly induce iron sequestration in human macrophages. In contrast, IFN-γ significantly reduces hepcidin secretion in S. enterica and M. tuberculosis infected macrophages. Similarly, IFN-γ-activated macrophages express higher ferroportin levels than untreated controls even after infection with L. monocytogenes bacilli; bacterial infection greatly down-regulates ferroportin expression. Collectively, IFN-γ significantly inhibits pathogen-associated intracellular iron sequestration in macrophages and consequently retards the growth of intracellular bacterial pathogens by decreasing iron availability.
Collapse
|
77
|
Sjaastad FV, Kucaba TA, Dileepan T, Swanson W, Dail C, Cabrera-Perez J, Murphy KA, Badovinac VP, Griffith TS. Polymicrobial Sepsis Impairs Antigen-Specific Memory CD4 T Cell-Mediated Immunity. Front Immunol 2020; 11:1786. [PMID: 32903436 PMCID: PMC7435018 DOI: 10.3389/fimmu.2020.01786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/03/2020] [Indexed: 11/13/2022] Open
Abstract
Patients who survive sepsis display prolonged immune dysfunction and heightened risk of secondary infection. CD4 T cells support a variety of cells required for protective immunity, and perturbations to the CD4 T cell compartment can decrease overall immune system fitness. Using the cecal ligation and puncture (CLP) mouse model of sepsis, we investigated the impact of sepsis on endogenous Ag-specific memory CD4 T cells generated in C57BL/6 (B6) mice infected with attenuated Listeria monocytogenes (Lm) expressing the I-Ab-restricted 2W1S epitope (Lm-2W). The number of 2W1S-specific memory CD4 T cells was significantly reduced on day 2 after sepsis induction, but recovered by day 14. In contrast to the transient numerical change, the 2W1S-specific memory CD4 T cells displayed prolonged functional impairment after sepsis, evidenced by a reduced recall response (proliferation and effector cytokine production) after restimulation with cognate Ag. To define the extent to which the observed functional impairments in the memory CD4 T cells impacts protection to secondary infection, B6 mice were infected with attenuated Salmonella enterica-2W (Se-2W) 30 days before sham or CLP surgery, and then challenged with virulent Se-2W after surgery. Pathogen burden was significantly higher in the CLP-treated mice compared to shams. Similar reductions in functional capacity and protection were noted for the endogenous OVA323-specific memory CD4 T cell population in sepsis survivors upon Lm-OVA challenge. Our data collectively show CLP-induced sepsis alters the number and function of Ag-specific memory CD4 T cells, which contributes (in part) to the characteristic long-lasting immunoparalysis seen after sepsis.
Collapse
Affiliation(s)
- Frances V Sjaastad
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Whitney Swanson
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Cody Dail
- Medical Student Summer Research Program in Infection and Immunity, University of Minnesota, Minneapolis, MN, United States
| | - Javier Cabrera-Perez
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States.,Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, United States
| | - Katherine A Murphy
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Vladimir P Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Department of Pathology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States.,Department of Urology, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Minneapolis VA Health Care System, Minneapolis, MN, United States
| |
Collapse
|
78
|
Pradhan D, Pradhan J, Mishra A, Karmakar K, Dhiman R, Chakravortty D, Negi VD. Immune modulations and survival strategies of evolved hypervirulent Salmonella Typhimurium strains. Biochim Biophys Acta Gen Subj 2020; 1864:129627. [PMID: 32360143 DOI: 10.1016/j.bbagen.2020.129627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Evolving multidrug-resistance and hypervirulence in Salmonella is due to multiple host-pathogen, and non-host environmental interactions. Previously we had studied Salmonella adaptation upon repeated exposure in different in-vitro and in-vivo environmental conditions. This study deals with the mechanistic basis of hypervirulence of the passaged hypervirulent Salmonella strains reported previously. METHODS Real-time PCR, flow cytometry, western blotting, and confocal microscopy were employed to check the alteration of signaling pathways by the hypervirulent strains. The hypervirulence was also looked in-vivo in the Balb/c murine model system. RESULTS The hypervirulent strains altered cytokine production towards anti-inflammatory response via NF-κB and Akt-NLRC4 signaling in RAW-264.7 and U-937 cells. They also impaired lysosome number, as well as co-localization with the lysosome as compared to unpassaged WT-STM. In Balb/c mice also they caused decreased antimicrobial peptides, reduced nitric oxide level, altered cytokine production, and reduced CD4+ T cell population leading to increased organ burden. CONCLUSIONS Hypervirulent Salmonella strains infection resulted in an anti-inflammatory environment by upregulating IL-10 and down-regulating IL-1β expression. They also evaded lysosomal degradation for their survival. With inhibition of NF-κB and Akt signaling, cytokine expression, lysosome number, as well as the bacterial burden was reverted, indicating the infection mediated immune modulation by the hypervirulent Salmonella strains through these pathways. GENERAL SIGNIFICANCE Understanding the mechanism of adaptation can provide better disease prognosis by either targeting the bacterial gene or by strengthening the host immune system that might ultimately help in controlling salmonellosis.
Collapse
Affiliation(s)
- Diana Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Jasmin Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India; Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar, west Bengal 736165, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
79
|
Guo Y, Gu D, Huang T, Cao L, Zhu X, Zhou Y, Wang K, Kang X, Meng C, Jiao X, Pan Z. Essential role of Salmonella Enteritidis DNA adenine methylase in modulating inflammasome activation. BMC Microbiol 2020; 20:226. [PMID: 32723297 PMCID: PMC7389876 DOI: 10.1186/s12866-020-01919-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Background Salmonella Enteritidis (SE) is one of the major foodborne zoonotic pathogens of worldwide importance which can induce activation of NLRC4 and NLRP3 inflammasomes during infection. Given that the inflammasomes play an essential role in resisting bacterial infection, Salmonella has evolved various strategies to regulate activation of the inflammasome, most of which largely remain unclear. Results A transposon mutant library in SE strain C50336 was screened for the identification of the potential factors that regulate inflammasome activation. We found that T3SS-associated genes invC, prgH, and spaN were required for inflammasome activation in vitro. Interestingly, C50336 strains with deletion or overexpression of Dam were both defective in activation of caspase-1, secretion of IL-1β and phosphorylation of c-Jun N-terminal kinase (Jnk). Transcriptome sequencing (RNA-seq) results showed that most of the differentially expressed genes and enriched KEGG pathways between the C50336-VS-C50336Δdam and C50336-VS-C50336::dam groups overlapped, which includes multiple signaling pathways related to the inflammasome. C50336Δdam and C50336::dam were both found to be defective in suppressing the expression of several anti-inflammasome factors. Moreover, overexpression of Dam in macrophages by lentiviral infection could specifically enhance the activation of NLRP3 inflammasome independently via promoting the Jnk pathway. Conclusions These data indicated that Dam was essential for modulating inflammasome activation during SE infection, there were complex and dynamic interplays between Dam and the inflammasome under different conditions. New insights were provided about the battle between SE and host innate immunological mechanisms.
Collapse
Affiliation(s)
- Yaxin Guo
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tingting Huang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Liyan Cao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kangru Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of A griculture of China, Yangzhou University, Yangzhou, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
80
|
Yang X, Xia P, Zhang Y, Lian S, Li H, Zhu G, Wang P. Photothermal Nano-antibiotic for Effective Treatment of Multidrug-Resistant Bacterial Infection. ACS APPLIED BIO MATERIALS 2020; 3:5395-5406. [DOI: 10.1021/acsabm.0c00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xueqin Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengpeng Xia
- Institute of comparative medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ya Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Siqi Lian
- Institute of comparative medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Haofei Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guoqiang Zhu
- Institute of comparative medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
81
|
Gunderson EL, Vogel I, Chappell L, Bulman CA, Lim KC, Luo M, Whitman JD, Franklin C, Choi YJ, Lefoulon E, Clark T, Beerntsen B, Slatko B, Mitreva M, Sullivan W, Sakanari JA. The endosymbiont Wolbachia rebounds following antibiotic treatment. PLoS Pathog 2020; 16:e1008623. [PMID: 32639986 PMCID: PMC7371230 DOI: 10.1371/journal.ppat.1008623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/20/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Antibiotic treatment has emerged as a promising strategy to sterilize and kill filarial nematodes due to their dependence on their endosymbiotic bacteria, Wolbachia. Several studies have shown that novel and FDA-approved antibiotics are efficacious at depleting the filarial nematodes of their endosymbiont, thus reducing female fecundity. However, it remains unclear if antibiotics can permanently deplete Wolbachia and cause sterility for the lifespan of the adult worms. Concerns about resistance arising from mass drug administration necessitate a careful exploration of potential Wolbachia recrudescence. In the present study, we investigated the long-term effects of the FDA-approved antibiotic, rifampicin, in the Brugia pahangi jird model of infection. Initially, rifampicin treatment depleted Wolbachia in adult worms and simultaneously impaired female worm fecundity. However, during an 8-month washout period, Wolbachia titers rebounded and embryogenesis returned to normal. Genome sequence analyses of Wolbachia revealed that despite the population bottleneck and recovery, no genetic changes occurred that could account for the rebound. Clusters of densely packed Wolbachia within the worm's ovarian tissues were observed by confocal microscopy and remained in worms treated with rifampicin, suggesting that they may serve as privileged sites that allow Wolbachia to persist in worms while treated with antibiotic. To our knowledge, these clusters have not been previously described and may be the source of the Wolbachia rebound.
Collapse
Affiliation(s)
- Emma L. Gunderson
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Ian Vogel
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Laura Chappell
- Dept. of Molecular, Cell and Developmental Biology; University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Christina A. Bulman
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - K. C. Lim
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Mona Luo
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Jeffrey D. Whitman
- Dept. of Laboratory Medicine; University of California, San Francisco; San Francisco, California, United States of America
| | - Chris Franklin
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Young-Jun Choi
- Division of Infectious Diseases; Washington University School of Medicine, St. Louis; St. Louis, Missouri, United States of America
| | - Emilie Lefoulon
- Molecular Parasitology Division; New England BioLabs; Ipswich, Massachusetts, United States of America
| | - Travis Clark
- Veterinary Pathobiology; University of Missouri-Columbia; Columbia, Missouri, United States of America
| | - Brenda Beerntsen
- Veterinary Pathobiology; University of Missouri-Columbia; Columbia, Missouri, United States of America
| | - Barton Slatko
- Molecular Parasitology Division; New England BioLabs; Ipswich, Massachusetts, United States of America
| | - Makedonka Mitreva
- Division of Infectious Diseases; Washington University School of Medicine, St. Louis; St. Louis, Missouri, United States of America
| | - William Sullivan
- Dept. of Molecular, Cell and Developmental Biology; University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Judy A. Sakanari
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| |
Collapse
|
82
|
Bittencourt MLF, Rodrigues RP, Kitagawa RR, Gonçalves RDCR. The gastroprotective potential of silibinin against Helicobacter pylori infection and gastric tumor cells. Life Sci 2020; 256:117977. [PMID: 32603822 DOI: 10.1016/j.lfs.2020.117977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
AIMS Silibinin is the major component of flavonolignans complex mixture (Silymarin), which is obtained from Silybum marianum (L.) Gaertn. Despite several reports about silibinin, little is known about its effects on gastric diseases. Then, the present study aims to evaluate the silibinin effect against Helicobacter pylori infection, gastric tumor cells and immunomodulation. MAIN METHODS The anti-H. pylori effect was performed on 43504 and 43629 strains by minimum inhibitory concentration (MIC) determination, observing morphological alterations by scanning electron microscopy and in silico evaluation by molecular docking. Immunomodulatory activity (Interleukins-6 and 10, TNF-α and NO inhibition) was determined in H. pylori-stimulated macrophages and the cytotoxic activity on gastric adenocarcinoma cells prior and after metabolization by S9 fraction. KEY FINDINGS Silibinin showed anti-H. pylori activity with MIC of 256 μg/mL, promoted important morphological changes in the bacterial cell wall, as blebs and clusters, suggesting interaction with Penicillin Binding Protein (PBP) subunits. Immunomodulatory potential was observed at 50 μg/mL with the inhibition of produced cytokines and NO by H. pylori-stimulated macrophages of 100% for TNF-ɑ, 56.83% for IL-6, and 70.29% for IL-10 and 73.33% for NO. Moreover, silibinin demonstrated significant cytotoxic activity on adenocarcinoma cells (CI50: 60.17 ± 0.95 μg/mL) with a higher selectivity index (SI: 1.52) compared to cisplatin. After metabolization silibinin showed an increase of cytotoxicity with a CI50 six-fold decrease (10.46 ± 0.25). SIGNIFICANCE The use of silibinin may become an important alternative tool in the prevention and treatment of H. pylori infection and, consequently, in gastric cancer.
Collapse
Affiliation(s)
| | - Ricardo Pereira Rodrigues
- Graduate Program in Pharmaceutical Sciences, Federal University of Espirito Santo - UFES, Vitória, Brazil
| | - Rodrigo Rezende Kitagawa
- Graduate Program in Pharmaceutical Sciences, Federal University of Espirito Santo - UFES, Vitória, Brazil; Department of Pharmaceutical Sciences, Federal University of Espirito Santo - UFES, Vitória, Brazil
| | - Rita de Cássia Ribeiro Gonçalves
- Graduate Program in Pharmaceutical Sciences, Federal University of Espirito Santo - UFES, Vitória, Brazil; Department of Pharmaceutical Sciences, Federal University of Espirito Santo - UFES, Vitória, Brazil.
| |
Collapse
|
83
|
Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol 2020; 18:479-490. [PMID: 32461608 DOI: 10.1038/s41579-020-0378-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment failure is of growing concern. Genetically encoded resistance is key in driving this process. However, there is increasing evidence that bacterial antibiotic persistence, a non-genetically encoded and reversible loss of antibiotic susceptibility, contributes to treatment failure and emergence of resistant strains as well. In this Review, we discuss the evolutionary forces that may drive the selection for antibiotic persistence. We review how some aspects of antibiotic persistence have been directly selected for whereas others result from indirect selection in disparate ecological contexts. We then discuss the consequences of antibiotic persistence on pathogen evolution. Persisters can facilitate the evolution of antibiotic resistance and virulence. Finally, we propose practical means to prevent persister formation and how this may help to slow down the evolution of virulence and resistance in pathogens.
Collapse
|
84
|
Lin HH, Chen HL, Janapatla RP, Chen CL, Chiu CH. Hyperexpression of type III secretion system of Salmonella Typhi linked to a higher cytotoxic effect to monocyte-derived macrophages by activating inflammasome. Microb Pathog 2020; 146:104222. [PMID: 32387390 DOI: 10.1016/j.micpath.2020.104222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
Abstract
Inflammasome activation is an important host response to infectious diseases, but the difference in inflammasome activation between typhoid fever and non-typhoidal Salmonella infection has been rarely studied. To determine whether inflammasome activation in macrophages after S. Typhi and S. Typhimurium infection is different, we measured pyroptosis, caspase-1 activation, and IL-1β secretion in monocyte-derived macrophages infected with S. Typhi or S. Typhimurium both in vitro and ex vivo. The role of Vi capsule and virulence genes in Salmonella pathogenicity island-1 (SPI-1), belonging to type III secretion system, was also examined. S. Typhi caused more pyroptosis, caspase-1 activation, and IL-1β production than S. Typhimurium did, predominantly within 2 h of infection, in the context of high number of infecting bacteria. Mutagenesis and complementation experiments confirmed that SPI-1 effectors but not Vi were associated with greater inflammasome activation. The expression levels of invA and hilA were significantly higher in S. Typhi than in S. Typhimurium at early log phase in SPI-1 environment. Thus, S. Typhi, relative to its non-typhoidal counterpart, S. Typhimurium, induces greater SPI-1-dependent inflammasome activation in monocyte-derived macrophages. This finding may explain why S. Typhi causes a hyperinflammatory state at bacteremic stage in typhoid fever.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
85
|
Kim S, Lee YH. Impact of small RNA RaoN on nitrosative-oxidative stress resistance and virulence of Salmonella enterica serovar Typhimurium. J Microbiol 2020; 58:499-506. [PMID: 32279276 DOI: 10.1007/s12275-020-0027-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 03/05/2020] [Indexed: 12/26/2022]
Abstract
RaoN is a Salmonella-specific small RNA that is encoded in the cspH-envE intergenic region on Salmonella pathogenicity island-11. We previously reported that RaoN is induced under conditions of acid and oxidative stress combined with nutrient limitation, contributing to the intramacrophage growth of Salmonella enterica serovar Typhimurium. However, the role of RaoN in nitrosative stress response and virulence has not yet been elucidated. Here we show that the raoN mutant strain has increased susceptibility to nitrosative stress by using a nitric oxide generating acidified nitrite. Extending previous research on the role of RaoN in oxidative stress resistance, we found that NADPH oxidase inhibition restores the growth of the raoN mutant in LPS-treated J774A.1 macrophages. Flow cytometry analysis further revealed that the inactivation of raoN leads to an increase in the intracellular level of reactive oxygen species (ROS) in Salmonella-infected macrophages, suggesting that RaoN is involved in the inhibition of NADPH oxidase-mediated ROS production by mechanisms not yet resolved. Moreover, we evaluated the effect of raoN mutation on the virulence in murine systemic infection and determined that the raoN mutant is less virulent than the wild-type strain following oral inoculation. In conclusion, small regulatory RNA RaoN controls nitrosative-oxidative stress resistance and is required for virulence of Salmonella in mice.
Collapse
Affiliation(s)
- Sinyeon Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong Heon Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan, 47011, Republic of Korea.
| |
Collapse
|
86
|
Wang M, Qazi IH, Wang L, Zhou G, Han H. Salmonella Virulence and Immune Escape. Microorganisms 2020; 8:microorganisms8030407. [PMID: 32183199 PMCID: PMC7143636 DOI: 10.3390/microorganisms8030407] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Salmonella genus represents the most common foodborne pathogens causing morbidity, mortality, and burden of disease in all regions of the world. The introduction of antimicrobial agents and Salmonella-specific phages has been considered as an effective intervention strategy to reduce Salmonella contamination. However, data from the United States, European countries, and low- and middle-income countries indicate that Salmonella cases are still a commonly encountered cause of bacterial foodborne diseases globally. The control programs have not been successful and even led to the emergence of some multidrug-resistant Salmonella strains. It is known that the host immune system is able to effectively prevent microbial invasion and eliminate microorganisms. However, Salmonella has evolved mechanisms of resisting host physical barriers and inhibiting subsequent activation of immune response through their virulence factors. There has been a high interest in understanding how Salmonella interacts with the host. Therefore, in the present review, we characterize the functions of Salmonella virulence genes and particularly focus on the mechanisms of immune escape in light of evidence from the emerging mainstream literature.
Collapse
Affiliation(s)
- Mengyao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Linli Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (H.H.); (G.Z.)
| | - Hongbing Han
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (H.H.); (G.Z.)
| |
Collapse
|
87
|
Lu J, Cheng L, Huang Y, Jiang Y, Chu CH, Peng X, Li M, Xu HHK, Zhou X, Ren B. Resumptive Streptococcus mutans Persisters Induced From Dimethylaminododecyl Methacrylate Elevated the Cariogenic Virulence by Up-Regulating the Quorum-Sensing and VicRK Pathway Genes. Front Microbiol 2020; 10:3102. [PMID: 32038546 PMCID: PMC6985435 DOI: 10.3389/fmicb.2019.03102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/23/2019] [Indexed: 02/05/2023] Open
Abstract
Bacterial persistence has become a worldwide health problem due to its ability to cause the recalcitrance and relapse of infections. The existence of bacterial persistence and their possible mechanisms have been widely reported. However, the following regrowth of persister cells is not clear although the awakening of dormant surviving persisters is the key to reinitialize bacterial infection. In this study, we investigated the growth character and cariogenic virulence during the recovery of Streptococcus mutans drug-tolerant persister cells induced by a novel quaternary ammonium: dimethylaminododecyl methacrylate (DMADDM). A remarkable lag phase was observed in S. mutans persisters when regrew at the first 24 h compared to normal cells. During the entire recovery state, persisters are metabolically active to increase the production of both water-soluble and water-insoluble glucan. The shortage of cell number in persisters resulted in the decrease of lactic acid production, but persisters gradually recovered the normal acid production ability after 72 h. The up-regulated expression of gtf and vicR was in line with comDE circuit and consistent with the virulence change during the regrowth stage. Our findings proved that lethal dosages of DMADDM induced drug-tolerant S. mutans persisters in biofilm, which had a prolonged lag phase and elevated cariogenic virulence during regrowth. The recovery and elevated virulence of persisters were regulated by quorum-sensing and VicRK pathway. This alarmed the elevated cariogenicity of persisters and highlighted the critical requirement for the drug-tolerance evaluation when developing new oral antimicrobial agents. To the best of our knowledge, we characterized the regrowth and cariogenic virulence variation of S. mutans persisters induced by quaternary ammonium for the first time. Our findings suggest that S. mutans persisters with the elevated cariogenic virulence during their regrowth stage highlighted the need of new strategy to overcome bacterial persistence. Meanwhile, the prolonged lag phase and the involvement of quorum-sensing system in the regrowth of S. mutans persisters may provide the potential targets.
Collapse
Affiliation(s)
- Junzhuo Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chun-Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
88
|
Zhang C, Asif H, Holt GE, Griswold AJ, Campos M, Bejarano P, Fregien NL, Mirsaeidi M. Mycobacterium abscessus-Bronchial Epithelial Cells Cross-Talk Through Type I Interferon Signaling. Front Immunol 2019; 10:2888. [PMID: 31921151 PMCID: PMC6913194 DOI: 10.3389/fimmu.2019.02888] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
Introduction: Mycobacteria are aerobic non-motile organisms with lipid rich, hydrophobic cell walls that render them resistant to antibiotics. While there are over 150 different species of NTM, Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) are two of the most common culprits of pulmonary infection. MAB has been found to be most common in southeastern United States (Florida to Texas) and the third most rapidly growing NTM infection. It is responsible for chronic lung infections. Mycobacterial cell wall components initiate the interaction between bacteria and host. The reaction between bronchial epithelia and components in the envelope of mycobacterial cell wall is poorly understood. Methods: A lung-on-membrane model was developed with normal human bronchial epithelial (NHBE) cells re-differentiated at the air-liquid interface (ALI) and human endothelial cells on a transwell® polyester membrane. Microparticles from MAB cell walls were developed by an inhouse protocol and added to the ALI side of lung model. NHBE cells were harvested at day 3. RNA was isolated and analyzed with RNASeq. NHBE cells were lysed and protein assay was performed with western blot. We tested whether lung INF-alpha expression would increase in mice treated with intratracheal MAB cell wall particles. A paired t-test is used to compare two population means using GraphPad Prism 7 software. Results: RNAseq analysis identified 1759 differentially expressed genes between NHBE cells challenged with and without MAB microparticles with FDR < 0.5. 410 genes had a 2.5-fold change (FC) or greater. NHBE cells exposure to MAB microparticles significantly enriched the IFN I signaling pathway. Protein overexpression of IFN I family (2'-5'-Oligoadenylate Synthetase 1, Interferon-induced GTP-binding protein Mx1, Interferon-stimulated gene 15) was found in bronchial epithelial cells following exposure to MAB cell wall microparticles. IFN-α protein and gene expressions were significantly increased in mice lung challenged with microparticles in comparison with controls. Conclusion: These data strongly support the role of Type I IFN in cross-talk between NHBE cells and MAB. They also suggest that initiating immune response by NHBE cells may play a central role in innate immunity. Furthermore, this study underscores the importance of mycobacterial cell wall in initiating innate immune response.
Collapse
Affiliation(s)
- Chongxu Zhang
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, United States
| | - Huda Asif
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, United States.,Division of Pulmonary and Critical Care, University of Miami, Miami, FL, United States
| | - Gregory E Holt
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, United States.,Division of Pulmonary and Critical Care, University of Miami, Miami, FL, United States
| | - Anthony J Griswold
- School of Medicine, John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | - Michael Campos
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, United States.,Division of Pulmonary and Critical Care, University of Miami, Miami, FL, United States
| | - Pablo Bejarano
- Department of Pathology, Cleveland Clinic, Weston, FL, United States
| | - Nevis L Fregien
- School of Medicine, Department of Cell Biology, University of Miami, Miami, FL, United States
| | - Mehdi Mirsaeidi
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, United States.,Division of Pulmonary and Critical Care, University of Miami, Miami, FL, United States
| |
Collapse
|
89
|
Nabb DL, Song S, Kluthe KE, Daubert TA, Luedtke BE, Nuxoll AS. Polymicrobial Interactions Induce Multidrug Tolerance in Staphylococcus aureus Through Energy Depletion. Front Microbiol 2019; 10:2803. [PMID: 31866973 PMCID: PMC6906149 DOI: 10.3389/fmicb.2019.02803] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus is responsible for a high number of relapsing infections, which are often mediated by the protective nature of biofilms. Polymicrobial biofilms appear to be more tolerant to antibiotic treatment, however, the underlying mechanisms for this remain unclear. Polymicrobial biofilm and planktonic cultures formed by S. aureus and Candida albicans are 10- to 100-fold more tolerant to oxacillin, vancomycin, ciprofloxacin, delafloxacin, and rifampicin compared to monocultures of S. aureus. The possibility of C. albicans matrix components physically blocking antibiotic molecules from reaching S. aureus was ruled out as oxacillin, ciprofloxacin, delafloxacin, and rifampicin were able to diffuse through polymicrobial biofilms. Based on previous findings that S. aureus forms drug tolerant persister cells through ATP depletion, we examined nutrient deprivation by determining glucose availability, which indirectly correlates to ATP production via the tricarboxylic acid (TCA) cycle. Using an extracellular glucose assay, we confirmed that S. aureus and C. albicans polymicrobial cultures depleted available glucose faster than the respective monocultures. Supporting this finding, S. aureus exhibited decreased TCA cycle activity, specifically fumarase expression, when grown in the presence of C. albicans. In addition, S. aureus grown in polymicrobial cultures displayed 2.2-fold more cells with low membrane potential and a 13% reduction in intracellular ATP concentrations than in monocultures. Collectively, these data demonstrate that decreased metabolic activity through nutrient deprivation is a mechanism for increased antibiotic tolerance within polymicrobial cultures.
Collapse
Affiliation(s)
- Dan L Nabb
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Seoyoung Song
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Kennedy E Kluthe
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Trevor A Daubert
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Brandon E Luedtke
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Austin S Nuxoll
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| |
Collapse
|
90
|
Wang F, Zhang J, Zhu B, Wang J, Wang Q, Zheng M, Wen J, Li Q, Zhao G. Transcriptome Analysis of the Cecal Tonsil of Jingxing Yellow Chickens Revealed the Mechanism of Differential Resistance to Salmonella. Genes (Basel) 2019; 10:genes10120979. [PMID: 31795199 PMCID: PMC6947646 DOI: 10.3390/genes10120979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022] Open
Abstract
Salmonella is one of the most common food-borne pathogens. It can be transmitted between chickens, as well as to people by contaminated poultry products. In our study, we distinguished chickens with different resistances mainly based on bacterial loads. We compared the cecal tonsil transcriptomes between the susceptible and resistant chickens after Salmonella infection, aiming to identify the crucial genes participating in the antibacterial activity in the cecal tonsil. A total of 3214 differentially expressed genes (DEGs), including 2092 upregulated and 1122 downregulated genes, were identified between the two groups (fold change ≥ 2.0, padj < 0.05). Many DEGs were mainly involved in the regulation of two biological processes: crosstalk between the cecal tonsil epithelium and pathogenic bacteria, such as focal adhesion, extracellular-matrix-receptor interaction, and regulation of the actin cytoskeleton and host immune response including the cytokine-receptor interaction. In particular, the challenged resistant birds exhibited strong activation of the intestinal immune network for IgA production, which perhaps contributed to the resistance to Salmonella infection. These findings give insight into the mRNA profile of the cecal tonsil between the two groups after initial Salmonella stimulation, which may extend the known complexity of molecular mechanisms in chicken immune response to Salmonella.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Jin Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Bo Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Jie Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Qiao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
- State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.W.); (J.Z.); (B.Z.); (J.W.); (Q.W.); (M.Z.); (J.W.)
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
- Correspondence:
| |
Collapse
|
91
|
The msaABCR Operon Regulates the Response to Oxidative Stress in Staphylococcus aureus. J Bacteriol 2019; 201:JB.00417-19. [PMID: 31427392 DOI: 10.1128/jb.00417-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus has evolved a complex regulatory network that controls a multitude of defense mechanisms against the deleterious effects of oxidative stress stimuli, subsequently leading to the pathogen's survival and persistence in the hosts. Previously, we characterized the msaABCR operon as a regulator of virulence, antibiotic resistance, and the formation of persister cells in S. aureus Deletion of the msaABCR operon resulted in the downregulation of several genes involved in resistance against oxidative stress. Notably, those included carotenoid biosynthetic genes and the ohr gene, which is involved in resistance against organic hydroperoxides. These findings led us to hypothesize that the msaABCR operon is involved in resisting oxidative stress generated in the presence of both H2O2 and organic hydroperoxides. Here, we report that a protein product of the msaABCR operon (MsaB) transcriptionally regulates the expression of the crtOPQMN operon and the ohr gene to resist in vitro oxidative stresses. In addition to its direct regulation of the crtOPQMN operon and ohr gene, we also show that MsaB is the transcriptional repressor of sarZ (repressor of ohr). Taken together, these results suggest that the msaABCR operon regulates an oxidative stress defense mechanism, which is required to facilitate persistent and recurrent staphylococcal infections. Moving forward, we plan to investigate the role of msaABCR in the persistence of S. aureus under in vivo conditions.IMPORTANCE This study shows the involvement of the msaABCR operon in resisting oxidative stress by Staphylococcus aureus generated under in vitro and ex vivo conditions. We show that MsaB regulates the expression and production of a carotenoid pigment, staphyloxanthin, which is a potent antioxidant in S. aureus We also demonstrate that MsaB regulates the ohr gene, which is involved in defending against oxidative stress generated by organic hydroperoxides. This study highlights the importance of msaABCR in the survival of S. aureus in the presence of various environmental stimuli that mainly exert oxidative stress. The findings from this study indicate the possibility that msaABCR is involved in the persistence of staphylococcal infections and therefore could be a potential antimicrobial target to overcome recalcitrant staphylococcal infections.
Collapse
|
92
|
Abstract
Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship. Most bacteria and archaea are infected by latent viruses that change their physiology and responses to environmental stress. We use a population model of the bacterium-phage relationship to examine the role that latent phage play in the bacterial population over time in response to antibiotic treatment. We demonstrate that the stress induced by antibiotic administration, even if bacteria are resistant to killing by antibiotics, is sufficient to control the infection under certain conditions. This work expands the breadth of understanding of phage-antibiotic synergy to include both temperate and chronic viruses persisting in their latent form in bacterial populations. IMPORTANCE Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship.
Collapse
|
93
|
Andesfha E, Indrawati A, Mayasari NLPI, Rahayuningtyas I, Jusa I. Detection of Salmonella pathogenicity island and Salmonella plasmid virulence genes in Salmonella Enteritidis originated from layer and broiler farms in Java Island. J Adv Vet Anim Res 2019; 6:384-393. [PMID: 31583236 PMCID: PMC6760510 DOI: 10.5455/javar.2019.f358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The incidence of salmonellosis in humans and animals is still high due to the occurrence of virulence factors in Salmonella enterica which play a role in the process of infection in the host and the spread of disease and most of the S. enterica can infect humans and animals. The present study was aimed to identify Salmonella Enteritidis and detect virulence genes related to Salmonella pathogenicity islands (SPIs) and Salmonella plasmid virulence (Spv). MATERIALS AND METHODS A total of 27 S. Enteritidis archive isolates belonging to the National Veterinary Drug Assay Laboratory (NVDAL) were used in this study. The bacteria were collected in 2016 and 2017 from samples of the cloaca and fecal swabs from layer and broiler farms in five provinces of Java Island. Isolates were cultured in specific media, biochemical tests and Gram staining. Detection of S. Enteritidis and virulence genes was done by polymerase chain reaction (PCR) method. RESULTS Identification of serovar showed 100% (27/27) isolates were positive for the sdfI gene (304 bp). The result confirmed that all strains were S. Enteritidis. PCR based detection of virulence genes showed that 100% of isolates had virulence genes in SPI-1 to SPI-5, namely, invA, ssaQ, mgtC, spi4D, and pipA genes. All the isolates (27/27) were also positive to spvB gene-based PCR. CONCLUSION All the isolates of S. Enteritidis in this study carry virulence genes related to SPI-1 to SPI-5 and plasmid virulence. The existence of virulent genes indicates that the S. Enteritidis strain examined in this study is highly virulent and poses a potential threat of worse disease outcome in humans and animals.
Collapse
Affiliation(s)
- Ernes Andesfha
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Agustin Indrawati
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Ni Luh Putu Ika Mayasari
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | | | | |
Collapse
|
94
|
Youssef Y, Naffaa L, Chamseddine S, Zaghal A, Khalife M, Yazbeck N, Dbaibo G, Hanna-Wakim R. Splenic abscess with salmonella enteritidis following marsupialization of a splenic cyst. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2019. [DOI: 10.1016/j.epsc.2019.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
95
|
Abstract
In the present study, we identify and describe an important cross-talk between leptin signaling and macrophage functions in the context of Salmonella Typhimurium infection. Genetic ablation of leptin receptor or pharmacological antagonization of leptin augmented lysosomal functions in macrophages, reduced S. Typhimurium burden, and diminished inflammation both in vitro and in vivo. Leptin signaling activates mTORC2/Akt pathway through the down-regulation of Phlpp1 phosphatase, thus impairs lysosome-mediated pathogen clearance. The dynamic interplay between metabolism and immune responses in health and disease, by which different immune cells impact on metabolic processes, are being increasingly appreciated. However, the potential of master regulators of metabolism to control innate immunity are less understood. Here, we studied the cross-talk between leptin signaling and macrophage function in the context of bacterial infections. We found that upon infection with Gram-negative pathogens, such as Salmonella Typhimurium, leptin receptor (Lepr) expression increased in both mouse and human macrophages. Unexpectedly, both genetic Lepr ablation in macrophages and global pharmacologic leptin antagonization augmented lysosomal functions, reduced S. Typhimurium burden, and diminished inflammation in vitro and in vivo. Mechanistically, we show that leptin induction activates the mTORC2/Akt pathway and subsequently down-regulates Phlpp1 phosphatase, allowing for phosphorylated Akt to impair lysosomal-mediated pathogen clearance. These data highlight a link between leptin signaling, the mTORC2/Phlpp1/Akt axis, and lysosomal activity in macrophages and have important therapeutic implications for modulating innate immunity to combat Gram-negative bacterial infections.
Collapse
|
96
|
Zafar H, Rahman SU, Ali S, Javed MT. Evaluation of a Salmonella Strain Isolated from Honeybee Gut as a Potential Live Oral Vaccine Against Lethal Infection of Salmonella Typhimurium. Pol J Microbiol 2019; 68:173-183. [PMID: 31257790 DOI: 10.21307/pjm-2019-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 11/11/2022] Open
Abstract
In this research, Salmonella species were isolated from the animal, insect and human enteric sources in Faisalabad, Punjab, Pakistan. These species were characterized by different microbiological and molecular techniques including polymerase chain reaction (PCR) by amplification of the 16S rRNA gene. Furthermore, sequencing of the amplicons confirmed all ten isolates as Salmonella strains. The antigenic cross-reactivity was found maximum between the HB1 (strain isolated from honeybee) antiserum and its antigen with an antibody titer of 1:128, while the HB1 antiserum showed a cross-reactive titer range of 1:8 to 1:64. On the basis of the highest geometric mean titer (GMT) shown by the antiserum of the HB1 antigen, it was selected as the best candidate for a cross-reactive live Salmonella oral antigen. Moreover, the HB1 antigen was used a live oral antigen (1 × 1010 CFU/ml) in a safety test in rabbits and proved to be avirulent. During the animal trial, three different oral doses of the HB1 live oral antigen were evaluated in four different rabbits' groups (R1, R2, R3, and R4). The dose number 2 of 0.5 ml (two drops orally and repeated after one week) gave the best GMT measured by indirect hemagglutination (IHA) as compared to the other two doses, while R4 group was kept as control. Results of the challenge protection test also validated the efficacy of the double dose of the HB1 live vaccine, which gave the highest survival percentage. Results of this study lay the foundation for a potential cross-reactive live oral Salmonella vaccine that has proved to be immunogenic in rabbits. In this research, Salmonella species were isolated from the animal, insect and human enteric sources in Faisalabad, Punjab, Pakistan. These species were characterized by different microbiological and molecular techniques including polymerase chain reaction (PCR) by amplification of the 16S rRNA gene. Furthermore, sequencing of the amplicons confirmed all ten isolates as Salmonella strains. The antigenic cross-reactivity was found maximum between the HB1 (strain isolated from honeybee) antiserum and its antigen with an antibody titer of 1:128, while the HB1 antiserum showed a cross-reactive titer range of 1:8 to 1:64. On the basis of the highest geometric mean titer (GMT) shown by the antiserum of the HB1 antigen, it was selected as the best candidate for a cross-reactive live Salmonella oral antigen. Moreover, the HB1 antigen was used a live oral antigen (1 × 1010 CFU/ml) in a safety test in rabbits and proved to be avirulent. During the animal trial, three different oral doses of the HB1 live oral antigen were evaluated in four different rabbits’ groups (R1, R2, R3, and R4). The dose number 2 of 0.5 ml (two drops orally and repeated after one week) gave the best GMT measured by indirect hemagglutination (IHA) as compared to the other two doses, while R4 group was kept as control. Results of the challenge protection test also validated the efficacy of the double dose of the HB1 live vaccine, which gave the highest survival percentage. Results of this study lay the foundation for a potential cross-reactive live oral Salmonella vaccine that has proved to be immunogenic in rabbits.
Collapse
Affiliation(s)
- Hassan Zafar
- Institute of Microbiology, University of Agriculture , Faisalabad, Punjab , Pakistan
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture , Faisalabad, Punjab , Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture , Faisalabad, Punjab , Pakistan
| | - Muhammad Tariq Javed
- Department of Veterinary Pathology, University of Agriculture , Faisalabad, Punjab , Pakistan
| |
Collapse
|
97
|
Kushwaha GS, Oyeyemi BF, Bhavesh NS. Stringent response protein as a potential target to intervene persistent bacterial infection. Biochimie 2019; 165:67-75. [PMID: 31302165 DOI: 10.1016/j.biochi.2019.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/07/2019] [Indexed: 01/25/2023]
Abstract
More than half of the world's population is infected with persistent bacterial infections, consequently, persisters are gradually becoming a major public health concern. During the persistent phase, bacterial pathogens deploy many regulatory strategies to compensate unfavorable host environmental conditions. The stringent response is one of such gene regulatory mechanisms which is stimulated by nutrient starvation. It is regulated by the synthesis of highly phosphorylated signaling nucleotides, (p)ppGpp or alarmone. (p)ppGpp is synthesized by ppGpp synthetases, and these proteins are classified as RelA/SpoT homolog (RSH) proteins. Subsequently, (p)ppGpp modulate several molecular and biochemical processes ranging from transcription to metabolism. Imperativeness of (p)ppGpp synthetases has been investigated by numerous approaches including microbiology and animal studies, thereby establishing that Rel enzyme deleted strains of pathogenic bacteria were unable to transform in persister form. In this review, we summarize recent findings to corroborate the rationality to consider (p)ppGpp synthetase as a potential target in discovering a novel class of antimicrobial agents to combat persistent infections. Moreover, inhibition studies on Mycobacterium tuberculosis (p)ppGpp synthetase shows that these inhibitors prevent dormant state transition and biofilm formation. Also, we have highlighted the structural biology of (p)ppGpp synthetases, which may provide significant information that could be used in structure-based inhibitor design.
Collapse
Affiliation(s)
- Gajraj Singh Kushwaha
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Bolaji Fatai Oyeyemi
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
98
|
Zafar H, Rahman SU, Ali S, Javed MT. Evaluation of a Salmonella Strain Isolated from Honeybee Gut as a Potential Live Oral Vaccine Against Lethal Infection of Salmonella Typhimurium. Pol J Microbiol 2019. [PMID: 31257790 PMCID: PMC7260634 DOI: 10.33073/pjm-2019-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this research, Salmonella species were isolated from the animal, insect and human enteric sources in Faisalabad, Punjab, Pakistan. These species were characterized by different microbiological and molecular techniques including polymerase chain reaction (PCR) by amplification of the 16S rRNA gene. Furthermore, sequencing of the amplicons confirmed all ten isolates as Salmonella strains. The antigenic cross-reactivity was found maximum between the HB1 (strain isolated from honeybee) antiserum and its antigen with an antibody titer of 1:128, while the HB1 antiserum showed a cross-reactive titer range of 1:8 to 1:64. On the basis of the highest geometric mean titer (GMT) shown by the antiserum of the HB1 antigen, it was selected as the best candidate for a cross-reactive live Salmonella oral antigen. Moreover, the HB1 antigen was used a live oral antigen (1 × 1010 CFU/ml) in a safety test in rabbits and proved to be avirulent. During the animal trial, three different oral doses of the HB1 live oral antigen were evaluated in four different rabbits’ groups (R1, R2, R3, and R4). The dose number 2 of 0.5 ml (two drops orally and repeated after one week) gave the best GMT measured by indirect hemagglutination (IHA) as compared to the other two doses, while R4 group was kept as control. Results of the challenge protection test also validated the efficacy of the double dose of the HB1 live vaccine, which gave the highest survival percentage. Results of this study lay the foundation for a potential cross-reactive live oral Salmonella vaccine that has proved to be immunogenic in rabbits.
Collapse
Affiliation(s)
- Hassan Zafar
- Institute of Microbiology, University of Agriculture , Faisalabad, Punjab , Pakistan
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture , Faisalabad, Punjab , Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture , Faisalabad, Punjab , Pakistan
| | - Muhammad Tariq Javed
- Department of Veterinary Pathology, University of Agriculture , Faisalabad, Punjab , Pakistan
| |
Collapse
|
99
|
Tesema B, Zhao JY, Jiang XP, Liu GQ, Han YG, Wassie T. Kisspeptin recombinant oral vaccine: A master gene vaccine inhibiting the reproductive physiology and behavior of ram lambs. Vaccine 2019; 37:4630-4636. [DOI: 10.1016/j.vaccine.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 12/27/2022]
|
100
|
Alternative Enzyme Protection Assay To Overcome the Drawbacks of the Gentamicin Protection Assay for Measuring Entry and Intracellular Survival of Staphylococci. Infect Immun 2019; 87:IAI.00119-19. [PMID: 30782857 DOI: 10.1128/iai.00119-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022] Open
Abstract
Precise enumeration of living intracellular bacteria is the key step to estimate the invasion potential of pathogens and host immune responses to understand the mechanism and kinetics of bacterial pathogenesis. Therefore, quantitative assessment of host-pathogen interactions is essential for development of novel antibacterial therapeutics for infectious disease. The gentamicin protection assay (GPA) is the most widely used method for these estimations by counting the CFU of intracellular living pathogens. Here, we assess the longstanding drawbacks of the GPA by employing an antistaphylococcal endopeptidase as a bactericidal agent to kill extracellular Staphylococcus aureus We found that the difference between the two methods for the recovery of intracellular CFU of S. aureus was about 5 times. We prove that the accurate number of intracellular CFU could not be precisely determined by the GPA due to the internalization of gentamicin into host cells during extracellular bacterial killing. We further demonstrate that lysostaphin-mediated extracellular bacterial clearance has advantages for measuring the kinetics of bacterial internalization on a minute time scale due to the fast and tunable activity and the inability of protein to permeate the host cell membrane. From these results, we propose that accurate quantification of intracellular bacteria and measurement of internalization kinetics can be achieved by employing enzyme-mediated killing of extracellular bacteria (enzyme protection assay [EPA]) rather than the host-permeative drug gentamicin, which is known to alter host physiology.
Collapse
|