51
|
Chen TQ, Wei XJ, Liu HY, Zhan SH, Yang XJ. Telocyte-Derived Exosomes Provide an Important Source of Wnts That Inhibits Fibrosis and Supports Regeneration and Repair of Endometrium. Cell Transplant 2023; 32:9636897231212746. [PMID: 38006220 PMCID: PMC10676634 DOI: 10.1177/09636897231212746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Intrauterine adhesions (IUAs) often occurred after common obstetrical and gynecological procedures or infections in women of reproductive age. It was characterized by the formation of endometrial fibrosis and prevention of endometrial regeneration, usually with devastating fertility consequences and poor treatment outcomes so far. Telocytes (TCs), as a novel interstitial cell type, present in female uterus with in vitro therapeutic potential in decidualization-defective gynecologic diseases. This study aims to further investigate the role of TC-derived Wnt ligands carried by exosomes (Exo) in reversal of fibrosis and enhancement of regeneration repair in endometrium. IUA cellular and animal models were established from endometrial stromal cells (ESCs) and mice, followed with treatment of TC-conditioned medium (TCM) or TC-derived Exo. In cellular model, fibrosis markers (collagen type 1 alpha 1 [COL1A1], fibronectin [FN], and α-smooth muscle actin [α-SMA]), angiogenesis (vascular endothelial growth factor [VEGF]), and pathway protein (β-catenin) were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting (WB), and immunofluorescence. Results showed that, TCs (either TCM or TC-derived Exo) provide a source of Wnts that inhibit cellular fibrosis, as evidenced by significantly elevated VEGF and β-catenin with decreased fibrotic markers, whereas TCs lost salvage on fibrosis after being blocked with Wnt/β-catenin inhibitors (XAV939 or ETC-159). Further in mouse model, regeneration repair (endometrial thickness, number of glands, and fibrosis area ratio), fibrosis markers (fibronectin [FN]), mesenchymal-epithelial transition (MET) (E-cadherin, N-cadherin), and angiogenesis (VEGF, microvessel density [MVD]) were studied by hematoxylin-eosin (HE), Masson staining, and immunohistochemistry. Results demonstrated that TC-Exo treatment effectively promotes regeneration repair of endometrium by relieving fibrosis, enhancing MET, and angiogenesis. These results confirmed new evidence for therapeutic perspective of TC-derived Exo in IUAs.
Collapse
Affiliation(s)
- Tian-Quan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiao-Jiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Yan Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sheng-Hua Zhan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
52
|
Role of EZH2 in Uterine Gland Development. Int J Mol Sci 2022; 23:ijms232415665. [PMID: 36555314 PMCID: PMC9779349 DOI: 10.3390/ijms232415665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a core component of polycomb repressive complex 2 that plays a vital role in transcriptional repression of gene expression. Conditional ablation of EZH2 using progesterone receptor (Pgr)-Cre in the mouse uterus has uncovered its roles in regulating uterine epithelial cell growth and stratification, suppressing decidual myofibroblast activation, and maintaining normal female fertility. However, it is unclear whether EZH2 plays a role in the development of uterine glands, which are required for pregnancy success. Herein, we created mice with conditional deletion of Ezh2 using anti-Mullerian hormone receptor type 2 (Amhr2)-Cre recombinase that is expressed in mesenchyme-derived cells of the female reproductive tract. Strikingly, these mice showed marked defects in uterine adenogenesis. Unlike Ezh2 Pgr-Cre conditional knockout mice, deletion of Ezh2 using Amhr2-Cre did not lead to the differentiation of basal-like cells in the uterus. The deficient uterine adenogenesis was accompanied by impaired uterine function and pregnancy loss. Transcriptomic profiling using next generation sequencing revealed dysregulation of genes associated with signaling pathways that play fundamental roles in development and disease. In summary, this study has identified an unrecognized role of EZH2 in uterine gland development, a postnatal event critical for pregnancy success and female fertility.
Collapse
|
53
|
Kelleher AM, Allen CC, Davis DJ, Spencer TE. Prss29 Cre recombinase mice are useful to study adult uterine gland function. Genesis 2022; 60:e23493. [PMID: 35866844 DOI: 10.1002/dvg.23493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/25/2023]
Abstract
All mammalian uteri contain glands in their endometrium that develop only or primarily after birth. In mice, those endometrial glands govern post implantation pregnancy establishment via regulation of blastocyst implantation, stromal cell decidualization, and placental development. Here, we describe a new uterine glandular epithelium (GE) specific Cre recombinase mouse line that is useful for the study of uterine gland function during pregnancy. Utilizing CRISPR-Cas9 genome editing, Cre recombinase was inserted into the endogenous serine protease 29 precursor (Prss29) gene. Both Prss29 mRNA and Cre recombinase activity was specific to the GE of the mouse uterus following implantation, but was absent from other areas of the female reproductive tract. Next, Prss29-Cre mice were crossed with floxed forkhead box A2 (Foxa2) mice to conditionally delete Foxa2 specifically in the endometrial glands. Foxa2 was absent in the glands of the post-implantation uterus, and Foxa2 deleted mice exhibited complete infertility after their first pregnancy. These results establish that Prss29-Cre mice are a valuable resource to elucidate and explore the functions of glands in the adult uterus.
Collapse
Affiliation(s)
- Andrew M Kelleher
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA.,Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Carolyn C Allen
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Daniel J Davis
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA.,Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
54
|
Jia X, Zhou Y, Mao X, Huai N, Guo X, Zhang Z. 4,4'-(9-Fluorenylidene)dianiline (BAFL) is antiestrogenic and has adverse effects on female development in CD-1 mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114202. [PMID: 36270036 DOI: 10.1016/j.ecoenv.2022.114202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Many phenolic compounds have been found to have endocrine disrupting activities, but their arylamine analogs, the phenolic hydroxyl groups substituted by aniline amino groups, have rarely been reported. 4,4'-(9-Fluorenylidene)dianiline (BAFL) is an arylamine analog of fluorene-9-bisphenol (BHPF) and BHPF has been reported to be a strong antiestrogen which could cause endometrial atrophy, ovarian damage and adverse pregnancy outcomes in animals. BAFL has been widely used as material to synthetize polymers, such as polyimides, polyamide, and polyamine, for various uses since the 1970s. Here, we assessed the antiestrogenicity of BAFL using a variety of methods and looked into its impacts on the development of females in CD-1 mice. With the aid of a yeast estrogen screen assay, we found BAFL possessed obviously antiestrogenic activity (IC50 = 8.15 × 10-6 M), which close to that of tamoxifen and BHPF. Using a 10-d mouse uterotrophic assay, we found that BAFL obviously decreased uterine weight in a dose-dependent way. Histological analyses of mouse uteri revealed that BAFL induced marked endometrial atrophy and inhibited the uterine development. Immunohistochemical analyses showed that Sprr2d, an estrogen-responsive gene encoding protein, was mainly expressed in endometrial epithelial cells and BAFL decreased the areas and levels of Sprr2d staining in mouse uteri. It was clear from uterine transcriptome investigations that BAFL significantly downregulated the expressions of multiple genes responding to estrogen. Molecular docking showed that BAFL could effectively occupy the antagonist-binding pocket of hERα, and one of the amino groups of BAFL formed hydrogen bonds with the side chains of Arg394 and Glu353 in the receptor. These results indicated that BAFL exhibited clearly antiestrogenic characteristics and could interfere with normal female development in mice, which should be avoided using in commodities that come into direct contact with humans. Moreover, this study indicated that the arylamine analogs of phenolic endocrine disrupting chemicals might also have endocrine disrupting activities.
Collapse
Affiliation(s)
- Xiaojing Jia
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Ying Zhou
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xingtai Mao
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Narma Huai
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xuan Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Zhaobin Zhang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China.
| |
Collapse
|
55
|
Bovine and human endometrium-derived hydrogels support organoid culture from healthy and cancerous tissues. Proc Natl Acad Sci U S A 2022; 119:e2208040119. [PMID: 36279452 PMCID: PMC9636948 DOI: 10.1073/pnas.2208040119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organoid technology has provided unique insights into human organ development, function, and diseases. Patient-derived organoids are increasingly used for drug screening, modeling rare disorders, designing regenerative therapies, and understanding disease pathogenesis. However, the use of Matrigel to grow organoids represents a major challenge in the clinical translation of organoid technology. Matrigel is a poorly defined mixture of extracellular matrix proteins and growth factors extracted from the Engelbreth–Holm–Swarm mouse tumor. The extracellular matrix is a major driver of multiple cellular processes and differs significantly between tissues as well as in healthy and disease states of the same tissue. Therefore, we envisioned that the extracellular matrix derived from a native healthy tissue would be able to support organoid growth akin to organogenesis in vivo. Here, we have developed hydrogels from decellularized human and bovine endometrium. These hydrogels supported the growth of mouse and human endometrial organoids, which was comparable to Matrigel. Organoids grown in endometrial hydrogels were proteomically more similar to the native tissue than those cultured in Matrigel. Proteomic and Raman microspectroscopy analyses showed that the method of decellularization affects the biochemical composition of hydrogels and, subsequently, their ability to support organoid growth. The amount of laminin in hydrogels correlated with the number and shape of organoids. We also demonstrated the utility of endometrial hydrogels in developing solid scaffolds for supporting high-throughput, cell culture–based applications. In summary, endometrial hydrogels overcome a major limitation of organoid technology and greatly expand the applicability of organoids to understand endometrial biology and associated pathologies.
Collapse
|
56
|
Liu HD, Wang SW. Role of noncoding RNA in the pathophysiology and treatment of intrauterine adhesion. Front Genet 2022; 13:948628. [PMID: 36386826 PMCID: PMC9650223 DOI: 10.3389/fgene.2022.948628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intrauterine adhesion (IUA) is one of the most common diseases of the reproductive system in women. It is often accompanied by serious clinical problems that damage reproductive function, such as menstrual disorder, infertility, or recurrent abortion. The clinical effect of routine treatment is not ideal, and the postoperative recurrence rate is still very high. Therefore, exploring the pathological mechanism of IUA and finding new strategies for the effective prevention and treatment of IUA are needed. The main pathological mechanism of IUA is endometrial fibrosis and scar formation. Noncoding RNA (ncRNA) plays an important role in the fibrosis process, which is one of the latest research advances in the pathophysiology of IUA. Moreover, the exosomal miRNAs derived from mesenchymal stem cells can be used to improve IUA. This paper reviewed the role of ncRNAs in IUA pathogenesis, summarized the core pathways of endometrial fibrosis regulated by ncRNAs, and finally introduced the potential of ncRNAs as a therapeutic target.
Collapse
Affiliation(s)
- Hui-Dong Liu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shao-Wei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Shao-Wei Wang,
| |
Collapse
|
57
|
Lee SH, Lim CL, Shen W, Tan SMX, Woo ARE, Yap YHY, Sian CAS, Goh WWB, Yu WP, Li L, Lin VCL. Activation function 1 of progesterone receptor is required for progesterone antagonism of oestrogen action in the uterus. BMC Biol 2022; 20:222. [PMID: 36199058 PMCID: PMC9535881 DOI: 10.1186/s12915-022-01410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Progesterone receptor (PGR) is a master regulator of uterine function through antagonistic and synergistic interplays with oestrogen receptors. PGR action is primarily mediated by activation functions AF1 and AF2, but their physiological significance is unknown. RESULTS We report the first study of AF1 function in mice. The AF1 mutant mice are infertile with impaired implantation and decidualization. This is associated with a delay in the cessation of epithelial proliferation and in the initiation of stromal proliferation at preimplantation. Despite tissue selective effect on PGR target genes, AF1 mutations caused global loss of the antioestrogenic activity of progesterone in both pregnant and ovariectomized models. Importantly, the study provides evidence that PGR can exert an antioestrogenic effect by genomic inhibition of Esr1 and Greb1 expression. ChIP-Seq data mining reveals intermingled PGR and ESR1 binding on Esr1 and Greb1 gene enhancers. Chromatin conformation analysis shows reduced interactions in these genes' loci in the mutant, coinciding with their upregulations. CONCLUSION AF1 mediates genomic inhibition of ESR1 action globally whilst it also has tissue-selective effect on PGR target genes.
Collapse
Affiliation(s)
- Shi Hao Lee
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Chew Leng Lim
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wei Shen
- grid.35155.370000 0004 1790 4137College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Samuel Ming Xuan Tan
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Amanda Rui En Woo
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Yeannie H. Y. Yap
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore ,grid.459705.a0000 0004 0366 8575Present Address: Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor Malaysia
| | - Caitlyn Ang Su Sian
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wilson Wen Bin Goh
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wei-Ping Yu
- grid.185448.40000 0004 0637 0221Animal Gene Editing Laboratory (AGEL), Biological Resource Centre, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore ,grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore
| | - Li Li
- College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Valerie C. L. Lin
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| |
Collapse
|
58
|
Jia X, Mao X, Zhou Y, Guo X, Huai N, Hu Y, Sun L, Guo J, Zhang Z. Antiestrogenic property of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF) and its effects on female development in CD-1 mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113906. [PMID: 35878500 DOI: 10.1016/j.ecoenv.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Identifying chemicals with endocrine disrupting properties linked to disease outcomes is a key concern, as stated in the WHO-UNEP 2012 report on endocrine-disrupting chemicals. The chemical 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF) is widely and increasingly applied in synthesizing fluorene-based cardo polymers with superior optical, thermal and mechanical properties for various uses. However, little toxicological information is available regarding its safety. Here, we studied the endocrine disrupting property of BPEF by multiple toxicological tools and investigated its effects on female development in adolescent mice. Using the yeast two-hybrid bioassay, BPEF showed strong antiestrogenicity which was similar to that of tamoxifen, an effective antiestrogenic drug. In adolescent CD-1 mice, BPEF significantly decreased the uterine weight at relatively low doses and induced marked endometrial atrophy. Immunohistochemical staining and transcriptome analyses of the mice uteri revealed that BPEF could repressed the expressions of estrogen-responsive genes. Molecular simulation indicated that BPEF could be docked into the antagonist pocket of human estrogen receptor α, and the formation of hydrogen bonds and hydrophobic interactions between BPEF and the active site of receptor maintained their strong binding. All of the data demonstrated that BPEF possessed strong antiestrogenic property and might disrupt female development, suggesting it should be avoided in making products that might directly expose to people, particularly immature women.
Collapse
Affiliation(s)
- Xiaojing Jia
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xingtai Mao
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Ying Zhou
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xuan Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Narma Huai
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Ying Hu
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Libei Sun
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Jilong Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Zhaobin Zhang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China.
| |
Collapse
|
59
|
Li X, Kodithuwakku SP, Chan RWS, Yeung WSB, Yao Y, Ng EHY, Chiu PCN, Lee CL. Three-dimensional culture models of human endometrium for studying trophoblast-endometrium interaction during implantation. Reprod Biol Endocrinol 2022; 20:120. [PMID: 35964080 PMCID: PMC9375428 DOI: 10.1186/s12958-022-00973-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
During implantation, a symphony of interaction between the trophoblast originated from the trophectoderm of the implanting blastocyst and the endometrium leads to a successful pregnancy. Defective interaction between the trophoblast and endometrium often results in implantation failure, pregnancy loss, and a number of pregnancy complications. Owing to ethical concerns of using in vivo approaches to study human embryo implantation, various in vitro culture models of endometrium were established in the past decade ranging from two-dimensional cell-based to three-dimensional extracellular matrix (ECM)/tissue-based culture systems. Advanced organoid systems have also been established for recapitulation of different cellular components of the maternal-fetal interface, including the endometrial glandular organoids, trophoblast organoids and blastoids. However, there is no single ideal model to study the whole implantation process leaving more research to be done pursuing the establishment of a comprehensive in vitro model that can recapitulate the biology of trophoblast-endometrium interaction during early pregnancy. This would allow us to have better understanding of the physiological and pathological process of trophoblast-endometrium interaction during implantation.
Collapse
Affiliation(s)
- Xintong Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Suranga P Kodithuwakku
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Rachel W S Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
60
|
Xin L, Wei C, Tong X, Dai Y, Huang D, Chen J, Ma L, Zhang S. In situ delivery of apoptotic bodies derived from mesenchymal stem cells via a hyaluronic acid hydrogel: A therapy for intrauterine adhesions. Bioact Mater 2022; 12:107-119. [PMID: 35087967 PMCID: PMC8777284 DOI: 10.1016/j.bioactmat.2021.10.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell-based and stem cell-derived exosome-based therapies have shown promising potential for endometrial regeneration and the clinical treatment of intrauterine adhesions (IUAs). Evidence shows that apoptosis occurs in a majority of grafted stem cells, and apoptotic bodies (ABs) play a critical role in compensatory tissue regeneration. However, the therapeutic potential of AB-based therapy and its mechanism have not been explored in detail. Here, a cell-free therapeutic strategy was developed by incorporating mesenchymal stem cell-derived ABs into a hyaluronic acid (HA) hydrogel to achieve endometrial regeneration and fertility restoration. Specifically, we found that the ABs could induce macrophage immunomodulation, cell proliferation, and angiogenesis in vitro. The HA hydrogel promoted the retention of ABs and facilitated their continuous release. In a murine model of acute endometrial damage and a rat model of IUAs, in situ injection of the AB-laden HA hydrogel could efficiently reduce fibrosis and promote endometrial regeneration, resulting in the fertility restoration. Consequently, ABs show good potential as therapeutic vesicles, and the AB-laden HA hydrogel appears to be a clinically feasible and cell-free alternative for endometrial regeneration and IUA treatment. Human umbilical cord derived apoptotic bodies induce macrophage immunomodulation, cell proliferation and angiogenesis A strategy of apoptotic bodies associated with hyaluronic acid hydrogel promotes apoptotic bodies retention and continuous release The implantation of the apoptotic body-laden hyaluronic acid hydrogel into uterine cavity effectively promoted endometrial regeneration and fertility restoration in a rodent model of intrauterine adhesion
Collapse
|
61
|
The Role of Endometrial Stem/Progenitor Cells in Recurrent Reproductive Failure. J Pers Med 2022; 12:jpm12050775. [PMID: 35629197 PMCID: PMC9143189 DOI: 10.3390/jpm12050775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Recurrent implantation failure (RIF) and recurrent pregnancy loss (RPL), collectively referred to as recurrent reproductive failure (RRF), are both challenging conditions with many unanswered questions relating to causes and management options. Both conditions are proposed to be related to an aberrant endometrial microenvironment, with different proposed aetiologies related to a restrictive or permissive endometrium for an invading embryo. The impressive regenerative capacity of the human endometrium has been well-established and has led to the isolation and characterisation of several subtypes of endometrial stem/progenitor cells (eSPCs). eSPCs are known to be involved in the pathogenesis of endometrium-related disorders (such as endometriosis) and have been proposed to be implicated in the pathogenesis of RRF. This review appraises the current knowledge of eSPCs, and their involvement in RRF, highlighting the considerable unknown aspects in this field, and providing avenues for future research to facilitate much-needed advances in the diagnosis and management of millions of women suffering with RRF.
Collapse
|
62
|
Sun B, Yeh J. Non-Invasive and Mechanism-Based Molecular Assessment of Endometrial Receptivity During the Window of Implantation: Current Concepts and Future Prospective Testing Directions. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:863173. [PMID: 36303672 PMCID: PMC9580756 DOI: 10.3389/frph.2022.863173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
Suboptimal endometrial receptivity and altered embryo-endometrial crosstalk account for approximately two-thirds of human implantation failures. Current tests of the window of implantation, such as endometrial thickness measurements and the endometrial receptivity assay, do not consistently improve clinical outcomes as measured by live birth rates. Understanding the mechanisms regulating the endometrial receptivity during the window of implantation is a critical step toward developing clinically meaningful tests. In this narrative review, the available literature is evaluated regarding mechanisms that regulate the endometrial receptivity during the window of implantation and the current tests developed. Overall, both animal and human studies point to five possible and interrelated mechanisms regulating the endometrial window of implantation: suitable synchrony between endometrial cells, adequate synchrony between the endometrium and the embryo, standard progesterone signaling and endometrial responses to progesterone, silent genetic variations, and typical morphological characteristics of the endometrial glands. The biological basis of current clinical markers or tests of window of implantation is poor. Future studies to elucidate the mechanisms shaping the window of implantation and to investigate the potential markers based on these mechanisms are required. In addition, molecular testing of the endometrium at single-cell resolution should be an initial step toward developing clinically meaningful tests for the optimal window of implantation. As understanding of the optimal window of implantation continues to evolve, one can envision the future development of non-invasive, mechanism-based testing of the window of implantation.
Collapse
Affiliation(s)
- Bei Sun
- Sackler Faculty of Medicine, Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv University, Tel Aviv, Israel
| | - John Yeh
- Reproductive Endocrinology and Infertility, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, United States
- *Correspondence: John Yeh
| |
Collapse
|
63
|
Tang S, Cope DI, Vasquez YM, Monsivais D. BMP/SMAD1/5 Signaling in the Endometrial Epithelium Is Essential for Receptivity and Early Pregnancy. Endocrinology 2022; 163:6564025. [PMID: 35383354 PMCID: PMC9049119 DOI: 10.1210/endocr/bqac043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/19/2022]
Abstract
The biological processes that control endometrial receptivity and embryo implantation are critical for the successful outcome of pregnancy. The endometrium is the complex inner lining of the uterine wall that is under the cyclical control of estrogen and progesterone and is a site of intimate contact between mother and blastocyst. The bone morphogenetic signaling (BMP) pathway is a highly conserved signaling pathway that controls key cellular processes throughout pregnancy and exerts intracellular effects via the SMAD1/5 transcription factors. To delineate the endometrial compartment-specific roles of BMP signaling, we generated mice with epithelial-specific conditional deletion of SMAD1/5 using Lactoferrin-icre (Smad1flox/flox;Smad5flox/flox;Lactoferrin-cre, "Smad1/5 cKO"). Histological analysis of the reproductive tracts showed that Smad1/5 cKO mice were developmentally normal and displayed no defects in glandular morphology. In fertility analyses, single SMAD1 or SMAD5 deletion had no effect on fertility; however, double-conditional deletion of SMAD1 and SMAD5 resulted in severe subfertility. Timed mating analyses revealed endometrial receptivity defects in the Smad1/5 cKO mice beginning at 3.5 days post coitum (dpc) that perturbed embryo implantation at 4.5 dpc, as demonstrated by the detection of unattached blastocysts in the uterus, decreased COX2 expression, and FOXO1 cytoplasmic mislocalization. We also found that defects that arose during peri-implantation adversely affected embryonic and decidual development at 5.5 and 6.5 dpc. Thus, uterine epithelial BMP/SMAD1/5 signaling is essential during early pregnancy and SMAD1/5 epithelial-specific deletion has detrimental effects on stromal cell decidualization and pregnancy development.
Collapse
Affiliation(s)
- Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominique I Cope
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yasmin M Vasquez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Diana Monsivais, PhD, Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Smith S217, Houston, TX 77030, USA.
| |
Collapse
|
64
|
Zhang Y, Wang S. The possible role of long non-coding RNAs in recurrent miscarriage. Mol Biol Rep 2022; 49:9687-9697. [PMID: 35397764 PMCID: PMC9515028 DOI: 10.1007/s11033-022-07427-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Recurrent miscarriage (RM) is a complicated disease in reproductive medicine that impacts many families. Currently, the etiology of RM is thought to include chromosome abnormalities, reproductive tract malformations, autoimmune dysfunction, infection, and environmental factors. However, the underlying mechanisms of RM remain unknown. At present, research on long non-coding RNAs (lncRNAs) is rapidly emerging and becoming a hot research topic in epigenetic studies. Recent studies revealed that lncRNAs are strongly linked to RM and play a crucial role in epigenetic, cell cycle, cell differentiation regulation, and other life activities. This article mainly reviews the difference in lncRNA expression in patients with RM and regulation of susceptibility, endometrial receptivity, and the maternal-fetal interface. Meanwhile, the correlation between lncRNAs and RM is expounded, which provides new insights for the early diagnosis and treatment of RM.
Collapse
Affiliation(s)
- Yanan Zhang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China.
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, 324 Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
65
|
Li R, Wang TY, Xu X, Emery OM, Yi M, Wu SP, DeMayo FJ. Spatial transcriptomic profiles of mouse uterine microenvironments at pregnancy day 7.5†. Biol Reprod 2022; 107:529-545. [PMID: 35357464 PMCID: PMC9382390 DOI: 10.1093/biolre/ioac061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/03/2022] [Accepted: 03/30/2022] [Indexed: 01/17/2023] Open
Abstract
Uterine dysfunctions lead to fertility disorders and pregnancy complications. Normal uterine functions at pregnancy depend on crosstalk among multiple cell types in uterine microenvironments. Here, we performed the spatial transcriptomics and single-cell RNA-seq assays to determine local gene expression profiles at the embryo implantation site of the mouse uterus on pregnancy day 7.5 (D7.5). The spatial transcriptomic annotation identified 11 domains of distinct gene signatures, including a mesometrial myometrium, an anti-mesometrial myometrium, a mesometrial decidua enriched with natural killer cells, a vascular sinus zone for maternal vessel remodeling, a fetal-maternal interface, a primary decidual zone, a transition decidual zone, a secondary decidual zone, undifferentiated stroma, uterine glands, and the embryo. The scRNA-Seq identified 12 types of cells in the D7.5 uterus including three types of stromal fibroblasts with differentiated and undifferentiated markers, one cluster of epithelium including luminal and glandular epithelium, mesothelium, endothelia, pericytes, myelomonocytic cell, natural killer cells, and lymphocyte B. These single-cell RNA signatures were then utilized to deconvolute the cell-type compositions of each individual uterine microenvironment. Functional annotation assays on spatial transcriptomic data revealed uterine microenvironments with distinguished metabolic preferences, immune responses, and various cellular behaviors that are regulated by region-specific endocrine and paracrine signals. Global interactome among regions is also projected based on the spatial transcriptomic data. This study provides high-resolution transcriptome profiles with locality information at the embryo implantation site to facilitate further investigations on molecular mechanisms for normal pregnancy progression.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tian-yuan Wang
- Integrative Bioinformatics Supportive Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Olivia M Emery
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - MyeongJin Yi
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Francesco J DeMayo
- Correspondence: Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, 111 T. W. Alexander Dr., Research Triangle Park, NC 27709, USA. Tel: +9842873987; E-mail:
| |
Collapse
|
66
|
Mei X, Xu L, Ren Y, Yu M, Kuang L, Li C, Zhang Y, Lu C, Wang Z, Guo Z, Xie X, Huang D, Zhang M. Transcriptome Comparison of Chorion-Attached and Non-chorion-attached Endometrium in Mid-gestation of Rabbit. Front Vet Sci 2022; 9:838802. [PMID: 35372533 PMCID: PMC8965606 DOI: 10.3389/fvets.2022.838802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
Background The chorion from the placenta is directly attached to the endometrium (CA) after embryo implantation while some parts of the endometrium are not chorion-attached (NCA). The differences in gene expression between the CA and NCA endometrium mid-gestation are unknown. Our objective was to compare the gene expression profiles of the CA and NCA endometrium of rabbit, to identify the differentially expressed genes (DEGs), and correlate the differences with the physiological state of the endometrium at mid-gestation of rabbit. Methods We used transcriptome sequencing to reveal the differences in gene expression between CA and NCA endometrium (n = 3), and then determined the concentration of inflammatory cytokines in CA and NCA tissue and serum by ELISA. Results Six Hundred and Forty-Six DEGs were identified between the CA and NCA endometrium [p < 0.05, |log2 (fold change) |≥ 2], The expression levels of 590 DEGs were higher in the NCA endometrium than in the CA endometrium, while the expression level of only 56 DEGs were higher in CA than in NCA. The DEGs were enriched in gene ontology (GO) terms and pathways related to immune regulation and cellular adhesions. Six hub-genes related to inflammatory mediator regulation of transient receptor potential (TRP) channels and chemokine signaling pathways had a lower expression level in the CA endometrium compared to the NCA endometrium, and the expression levels of genes related to focal adhesion and extracellular matrix (ECM)-receptors were significantly higher in NCA endometrium than in CA endometrium. The level of pro-inflammatory cytokines accumulated in the CA endometrium, and high abundance of integrin-β and THBS1 were localized in the luminal epithelium of the NCA endometrium, but not in the CA endometrium. Conclusions Our study reveals differences in gene expression between the CA and NCA endometrium at mid-gestation of rabbit, and suggests implications for endometrial physiological function. The CA endometrium showed relative low-level gene expression compared to the NCA endometrium, while the NCA endometrium performed physiological functions related to focal adhesion and ECM-receptor interaction.
Collapse
Affiliation(s)
- Xiuli Mei
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ling Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Ren
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Minjie Yu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liangde Kuang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Congyan Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yan Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chuanzhi Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhicheng Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Guo
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xiaohong Xie
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Dengping Huang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Dengping Huang
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Ming Zhang
| |
Collapse
|
67
|
Kang J, Liu Y, Zhang Y, Yan W, Wu Y, Su R. The Influence of the Prolactins on the Development of the Uterus in Neonatal Mice. Front Vet Sci 2022; 9:818827. [PMID: 35252420 PMCID: PMC8891943 DOI: 10.3389/fvets.2022.818827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The endometrial gland is one of the most important components of the mammalian uterus. However, few studies have been conducted on the regulatory mechanisms of adenogenesis during the development of endometrium. In the present study, we detected the genes expression of 35 different prolactin family members (PRLs) together with the prolactin receptor (PRL-R) in the endometrium of neonatal mice along with the adenogenesis process, to address which prolactin-like genes play a key role during gland development in mice. We found that: (1) The expression of Prl1a1, Prl3d1, Prl5a1, Prl7a1, Prl7a2, Prl7d1, Prl8a6, Prl8a8, and Prl8a9 genes were significantly increased along with the development of uterine glands. Prl7c1 and Prl8a1 were observably up-regulated on Postnatal day 5 (PND5) when the uterine glandular bud invagination begins. Prl3a1, Prl3b1, and Prl7b1 suddenly increased significantly on PND9. But, Prl3c1 and Prl8a2 were markedly down-regulated on PND5 and the expression of Prl6a1 and Prlr were stable extremely. (2) After continuous injection of Progesterone (P4), a well-known method to suppress the endometrial adenogenesis, the expression of Prl1a1, Prl3d1, Prl5a1, Prl7a1, Prl7a2, Prl7d1, Prl8a6, Prl8a8, Prl8a9, and Prlr were suppressed on PND7. And on PND9, Prl1a1, Prl3d1, Prl8a6, Prl8a8, and Prl8a9 were significantly inhibited. (3) Further analysis of the epithelial and stroma showed that these PRLs were mainly expressed in the endometrial stroma of neonatal mice. Our results indicate that multiple PRLs are involved in uterine development and endometrial adenogenesis. Continued progesterone therapy may alter the expression pattern of these PRLs in endometrial stromal cells, thereby altering the interaction and communication between stroma and epithelium, and ultimately leading to complete suppression of endometrial adenogenesis.
Collapse
|
68
|
Han D, Sun P, Hu Y, Wang J, Hua G, Chen J, Shao C, Tian F, Darwish HYA, Tai Y, Yang X, Chang J, Ma Y. The Immune Barrier of Porcine Uterine Mucosa Differs Dramatically at Proliferative and Secretory Phases and Could Be Positively Modulated by Colonizing Microbiota. Front Immunol 2021; 12:750808. [PMID: 34917075 PMCID: PMC8670328 DOI: 10.3389/fimmu.2021.750808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Endometrial immune response is highly associated with the homeostatic balance of the uterus and embryo development; however, the underlying molecular regulatory mechanisms are not fully elucidated. Herein, the porcine endometrium showed significant variation in mucosal immunity in proliferative and secretory phases by single-cell RNA sequencing. The loose arrangement and high motility of the uterine epithelium in the proliferative phase gave opportunities for epithelial cells and dendritic cells to cross talk with colonizing microbial community, guiding lymphocyte migration into the mucosal and glandular epithelium. The migrating lymphocytes were primarily NK and CD8+ T cells, which were robustly modulated by the chemokine signaling. In the secretory phase, the significantly strengthened mechanical mucosal barrier and increased immunoglobulin A alleviated the migration of lymphocytes into the epithelium when the neuro-modulation, mineral uptake, and amino acid metabolism were strongly upregulated. The noticeably increased intraepithelial lymphocytes were positively modulated by the bacteria in the uterine cavity. Our findings illustrated that significant mucosal immunity variation in the endometrium in the proliferative and secretory phases was closely related to intraepithelial lymphocyte migration, which could be modulated by the colonizing bacteria after cross talk with epithelial cells with higher expressions of chemokine.
Collapse
Affiliation(s)
- Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Sun
- Research and Development Department for Breeding Poultry Feed, Shandong Hekangyuan Biological Breeding Co., Ltd, Jinan, China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoying Hua
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianfei Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuyun Shao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Fan Tian
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Hesham Y A Darwish
- Department of Applied Biotechnology, Molecular Biology Researches & Studies Institute, Assiut University, Assiut, Egypt
| | - Yurong Tai
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyu Chang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
69
|
Li R, Wang X, Huang Z, Balaji J, Kim TH, Wang T, Zhou L, Deleon A, Cook ME, Marbrey MW, Wu SP, Jeong JW, Arora R, DeMayo FJ. The role of epithelial progesterone receptor isoforms in embryo implantation. iScience 2021; 24:103487. [PMID: 34934913 DOI: 10.1016/j.isci.2021.103487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
The loss of uterine epithelial progesterone receptor (PGR) is crucial for successful embryo implantation in both humans and mice. The two major isoforms PGRA and PGRB have divergent functions under both physiological and pathological conditions. The present study compares phenotypes and gene signatures of PGRA and PGRB in uterine epithelium using uterine epithelial-specific constitutively expressed PGRA or PGRB mouse models. The cistrome and transcriptome analysis reveals substantial overlap between epithelial PGRA and PGRB, and both disrupt embryo implantation through FOXO1 pathways. Constitutive epithelial PGRA and PGRB expression impairs ESR1 occupancy at the promoter of Lif leading to reduced Lif transcription and further exaggerates SGK1 expression leading to enhanced PI3K-SGK1 activities, and both contribute to the decline of nuclear FOXO1 expression. Our study demonstrates that PGRA and PGRB in the uterine epithelium act on a similar set of target genes and commonly regulate the LIF-SGK1-FOXO1 signaling pathway for embryo implantation.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Xiaoqiu Wang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jayani Balaji
- Department of Obstetrics, Gynecology and Reproductive Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48823, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Lecong Zhou
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Ashley Deleon
- Laser Capture Microdissection Core Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA.,Kelly Government Solutions, Rockville, MD, 20852, USA
| | - Molly E Cook
- Epigenomics and DNA Sequencing Core, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Margeaux W Marbrey
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Jae Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48823, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
70
|
Kang ML, Goo JTT, Lee DJK. CHOP protocol: streamlining access to definitive intervention for major trauma victims. Singapore Med J 2021; 62:620-622. [PMID: 32728086 PMCID: PMC8804424 DOI: 10.11622/smedj.2020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Min Li Kang
- Department of Surgery, Khoo Teck Puat Hospital, Singapore
| | | | | |
Collapse
|
71
|
Ye Q, Zeng X, Cai S, Qiao S, Zeng X. Mechanisms of lipid metabolism in uterine receptivity and embryo development. Trends Endocrinol Metab 2021; 32:1015-1030. [PMID: 34625374 DOI: 10.1016/j.tem.2021.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023]
Abstract
Metabolic regulation plays important roles in embryo development and uterine receptivity during early pregnancy, ultimately influencing pregnancy efficiency in mammals. The important roles of lipid metabolism during early pregnancy have not been fully understood. Here, we described the regulatory roles of phospholipid, sphingolipid, and cholesterol metabolism on early embryo development, implantation, and uterine receptivity through production of cannabinoids, prostaglandins, lysophosphatidic acid, sphingosine-1-phosphate, and steroid hormones. Moreover, the impacts of lipids and fatty acids on embryo development potential and the related epigenetic modifications are also discussed. This review aims to elucidate the modulations of lipid metabolism on uterine receptivity and embryo development, contributing to novel strategies to establish dietary balanced lipids and fatty acids for reducing early embryo loss.
Collapse
Affiliation(s)
- Qianhong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China.
| |
Collapse
|
72
|
Fukui Y, Hirota Y, Saito-Fujita T, Aikawa S, Hiraoka T, Kaku T, Hirata T, Akaeda S, Matsuo M, Shimizu-Hirota R, Takeda N, Ikawa M, Osuga Y. Uterine Epithelial LIF Receptors Contribute to Implantation Chamber Formation in Blastocyst Attachment. Endocrinology 2021; 162:6353290. [PMID: 34402888 DOI: 10.1210/endocr/bqab169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/28/2022]
Abstract
Recent studies have demonstrated that the formation of an implantation chamber composed of a uterine crypt, an implantation-competent blastocyst, and uterine glands is a critical step in blastocyst implantation in mice. Leukemia inhibitory factor (LIF) activates signal transducer and activator of transcription 3 (STAT3) precursors via uterine LIF receptors (LIFRs), allowing successful blastocyst implantation. Our recent study revealed that the role of epithelial STAT3 is different from that of stromal STAT3. However, both are essential for blastocyst attachment, suggesting the different roles of epithelial and stromal LIFR in blastocyst implantation. However, how epithelial and stromal LIFR regulate the blastocyst implantation process remains unclear. To investigate the roles of LIFR in the uterine epithelium and stroma, we generated Lifr-floxed/lactoferrin (Ltf)-iCre (Lifr eKO) and Lifr-floxed/antimüllerian hormone receptor type 2 (Amhr2)-Cre (Lifr sKO) mice with deleted epithelial and stromal LIFR, respectively. Surprisingly, fertility and blastocyst implantation in the Lifr sKO mice were normal despite stromal STAT3 inactivation. In contrast, blastocyst attachment failed, and no implantation chambers were formed in the Lifr eKO mice with epithelial inactivation of STAT3. In addition, normal responsiveness to ovarian hormones was observed in the peri-implantation uteri of the Lifr eKO mice. These results indicate that the epithelial LIFR-STAT3 pathway initiates the formation of implantation chambers, leading to complete blastocyst attachment, and that stromal STAT3 regulates blastocyst attachment without stromal LIFR control. Thus, uterine epithelial LIFR is critical to implantation chamber formation and blastocyst attachment.
Collapse
Affiliation(s)
- Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsuaki Kaku
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyuki Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Norihiko Takeda
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
73
|
Garrido-Gomez T, Castillo-Marco N, Clemente-Ciscar M, Cordero T, Muñoz-Blat I, Amadoz A, Jimenez-Almazan J, Monfort-Ortiz R, Climent R, Perales-Marin A, Simon C. Disrupted PGR-B and ESR1 signaling underlies defective decidualization linked to severe preeclampsia. eLife 2021; 10:70753. [PMID: 34709177 PMCID: PMC8553341 DOI: 10.7554/elife.70753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Decidualization of the uterine mucosa drives the maternal adaptation to invasion by the placenta. Appropriate depth of placental invasion is needed to support a healthy pregnancy; shallow invasion is associated with the development of severe preeclampsia (sPE). Maternal contribution to sPE through failed decidualization is an important determinant of placental phenotype. However, the molecular mechanism underlying the in vivo defect linking decidualization to sPE is unknown. Methods: Global RNA sequencing was applied to obtain the transcriptomic profile of endometrial biopsies collected from nonpregnant women who suffer sPE in a previous pregnancy and women who did not develop this condition. Samples were randomized in two cohorts, the training and the test set, to identify the fingerprinting encoding defective decidualization in sPE and its subsequent validation. Gene Ontology enrichment and an interaction network were performed to deepen in pathways impaired by genetic dysregulation in sPE. Finally, the main modulators of decidualization, estrogen receptor 1 (ESR1) and progesterone receptor B (PGR-B), were assessed at the level of gene expression and protein abundance. Results: Here, we discover the footprint encoding this decidualization defect comprising 120 genes—using global gene expression profiling in decidua from women who developed sPE in a previous pregnancy. This signature allowed us to effectively segregate samples into sPE and control groups. ESR1 and PGR were highly interconnected with the dynamic network of the defective decidualization fingerprint. ESR1 and PGR-B gene expression and protein abundance were remarkably disrupted in sPE. Conclusions: Thus, the transcriptomic signature of impaired decidualization implicates dysregulated hormonal signaling in the decidual endometria in women who developed sPE. These findings reveal a potential footprint that could be leveraged for a preconception or early prenatal screening of sPE risk, thus improving prevention and early treatments. Funding: This work has been supported by the grant PI19/01659 (MCIU/AEI/FEDER, UE) from the Spanish Carlos III Institute awarded to TGG. NCM was supported by the PhD program FDGENT/2019/008 from the Spanish Generalitat Valenciana. IMB was supported by the PhD program PRE2019-090770 and funding was provided by the grant RTI2018-094946-B-100 (MCIU/AEI/FEDER, UE) from the Spanish Ministry of Science and Innovation with CS as principal investigator. This research was funded partially by Igenomix S.L.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rogelio Monfort-Ortiz
- Department of Obstetrics and Gynecology, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Reyes Climent
- Department of Obstetrics and Gynecology, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Alfredo Perales-Marin
- Department of Obstetrics and Gynecology, University and Polytechnic La Fe Hospital, Valencia, Spain.,Department of Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain
| | - Carlos Simon
- Igenomix Foundation, INCLIVA, Valencia, Spain.,Department of Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain.,Obstetrics & Gynecology, BIDMC Harvard University, Boston, United States
| |
Collapse
|
74
|
Manzan-Martins C, Paulesu L. Impact of bisphenol A (BPA) on cells and tissues at the human materno-fetal interface. Tissue Cell 2021; 73:101662. [PMID: 34628212 DOI: 10.1016/j.tice.2021.101662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor extensively used in the production of polycarbonate plastics and epoxy resins and a component of liquid and food containers. It is a hazard in the prenatal period because of its presence in the placenta, fetal membranes, amniotic fluid, maternal and fetal blood and its ability to cross the placenta and reach the fetus. Estimation of the risk of BPA exposure during in utero life is extremely important in order to prevent complications of pregnancy and fetal growth. This review describes in vitro models of the human materno-fetal interface. It also outlines the effects of BPA at doses indicated as "physiological", namely at the concentrations found in the general population, and at "supraphysiological" and "subphysiological" doses, i.e. above and below the physiological range. This work will help clarify the discrepancies observed in studies on the effects of BPA on human reproduction and pregnancy, and it will be useful for the choice of appropriate in vitro models for future studies aimed at identifying the potential impact of BPA on specific functional processes.
Collapse
Affiliation(s)
| | - L Paulesu
- Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
75
|
Kelleher AM, Setlem R, Dantzer F, DeMayo FJ, Lydon JP, Kraus WL. Deficiency of PARP-1 and PARP-2 in the mouse uterus results in decidualization failure and pregnancy loss. Proc Natl Acad Sci U S A 2021; 118:e2109252118. [PMID: 34580230 PMCID: PMC8501838 DOI: 10.1073/pnas.2109252118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Miscarriage is a common complication of pregnancy for which there are few clinical interventions. Deficiency in endometrial stromal cell decidualization is considered a major contributing factor to pregnancy loss; however, our understanding of the underlying mechanisms of decidual deficiency are incomplete. ADP ribosylation by PARP-1 and PARP-2 has been linked to physiological processes essential to successful pregnancy outcomes. Here, we report that the catalytic inhibition or genetic ablation of PARP-1 and PARP-2 in the uterus lead to pregnancy loss in mice. Notably, the absence of PARP-1 and PARP-2 resulted in increased p53 signaling and an increased population of senescent decidual cells. Molecular and histological analysis revealed that embryo attachment and the removal of the luminal epithelium are not altered in uterine Parp1, Parp2 knockout mice, but subsequent decidualization failure results in pregnancy loss. These findings provide evidence for a previously unknown function of PARP-1 and PARP-2 in mediating decidualization for successful pregnancy establishment.
Collapse
Affiliation(s)
- Andrew M Kelleher
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rohit Setlem
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Institut du Médicament de Strasbourg, UMR 7242-Biotechnologie et Signalisation Cellulaire, CNRS/Université de Strasbourg, 67412 Illkirch, France
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
76
|
Dhakal P, Fitzgerald HC, Kelleher AM, Liu H, Spencer TE. Uterine glands impact embryo survival and stromal cell decidualization in mice. FASEB J 2021; 35:e21938. [PMID: 34547143 DOI: 10.1096/fj.202101170rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Uterine glands are essential for the establishment of pregnancy and have critical roles in endometrial receptivity to blastocyst implantation, stromal cell decidualization, and placentation. Uterine gland dysfunction is considered a major contributing factor to pregnancy loss, however our understanding of how glands impact embryo survival and stromal cell decidualization is incomplete. Forkhead box A2 (FOXA2) is expressed only in the glandular epithelium and regulates its development and function. Mice with a conditional deletion of FOXA2 in the uterus are infertile due to defective embryo implantation arising from a lack of leukemia inhibitory factor (LIF), a critical factor of uterine gland origin. Here, a glandless FOXA2-deficient mouse model, coupled with LIF repletion to rescue the implantation defect, was used to investigate the roles of uterine glands in embryo survival and decidualization. Studies found that embryo survival and decidualization were compromised in glandless FOXA2-deficient mice on gestational day 6.5, resulting in abrupt pregnancy loss by day 7.5. These findings strongly support the hypothesis that uterine glands secrete factors other than LIF that impact embryo survival and stromal cell decidualization for pregnancy success.
Collapse
Affiliation(s)
- Pramod Dhakal
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Andrew M Kelleher
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA.,Division of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Hongyu Liu
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA.,Division of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
77
|
An L, Liu Y, Li M, Liu Z, Wang Z, Dai Y, Presicce GA, Du F. Site specificity of blastocyst hatching significantly influences pregnancy outcomes in mice. FASEB J 2021; 35:e21812. [PMID: 34411354 DOI: 10.1096/fj.202100653r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022]
Abstract
Blastocysts hatch from the zona pellucida (ZP) to enable implantation into the uterine endometrial epithelium, but little is known regarding the effect of hatching sites on pregnancy outcomes. Murine hatching embryos were categorized into five groups based on initial trophectoderm projection (TEP)/ZP position corresponding to the inner cell mass center. In blastocysts (3.5 dpc) post-12 hours in vitro culture, TEP rates of A-site (44.4%) and B-site (38.6%) embryos were higher than those of C-site (12.5%) and D-site (3.1%) embryos, while the O-site (1.4%) was the lowest (P < .05). Post-ET A-site (55.6%) and B-site (65.6%) birth rates were higher than those of C-site embryos (21.3%) and controls (P < .05). Furthermore, live birth rate of B-site embryos remained higher than C-site embryos (68.8% vs 31.3%; P < .05) when both were transferred into the same recipients. Different TEP site blastocysts exhibited different implantation competences: the implantation rate of C-site embryos was lower than that of both A- and B-site groups (67.7% vs 84.3% and 83.2%, respectively; P < .05) at 2 days post-ET. C-site embryos also had a distinctly higher ratio of developmental defects (47.5%) than A- and B-site embryos (22.5% and 14.6%, respectively), with implantation failure mainly associated with poor birth rate, a finding corroborated by differential gene expression analysis such as LIF, LIFR, and S100a9. Surprisingly, acidified Tyrode's solution (AAH)-treated B-site blastocysts had a significantly increased birth rate (77.1%) than C-site (55.3%) and controls (43.4%). Site specificity and differential gene expression during embryo hatching can be applied in ART screening. More importantly, assisted hatching by AAH is effective and feasible for improving pregnancy and term development, particularly at the B-site, for humans and in animal husbandry.
Collapse
Affiliation(s)
- Liyou An
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yanhong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mingyang Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhisong Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yujian Dai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
78
|
Šućurović S, Nikolić T, Brosens JJ, Mulac-Jeričević B. Analysis of heart and neural crest derivatives-expressed protein 2 (HAND2)-progesterone interactions in peri-implantation endometrium†. Biol Reprod 2021; 102:1111-1121. [PMID: 31982918 DOI: 10.1093/biolre/ioaa013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
Implantation is restricted to a narrow window when the local endometrial microenvironment is supportive of the invading embryo. The ovarian steroid hormones estrogen (E) and progesterone (P) are principal regulators of uterine receptivity. Suppression of E-dependent proliferation of luminal epithelium (LE) by P is mandatory for embryo implantation. Here, we report that the balance of E receptor α (ERα) and P receptors (PR) activity controls HAND2 expression, a key transcription factor that determines the fate of the implanting embryo and thereby pregnancy outcome. As a model, we used wild-type mice as well as mice in which either both PR isoforms or the A-isoform was genetically ablated (PRKO and PRAKO, respectively). Detailed spatiotemporal analyses of PR, HAND2, and ERα expression at implantation site demonstrated co-expression of HAND2 and PR but not ERα. Furthermore, in hormonally treated ovariectomized WT, PRAKO and PRKO mice, E suppresses endometrial HAND2 expression. Adding P together with E partially rescues HAND2 expression in WT, but not PRAKO and PRKO animals. Therefore, infertility in PRAKO mice is at least in part associated with the loss of PR-A-regulated HAND2 expression.
Collapse
Affiliation(s)
- Sandra Šućurović
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia and
| | - Tamara Nikolić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia and
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | - Biserka Mulac-Jeričević
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia and
| |
Collapse
|
79
|
Dhakal P, Spencer TE. Generation and analysis of Prss28 and Prss29 deficient mice using CRISPR-Cas9 genome-editing. Mol Reprod Dev 2021; 88:482-489. [PMID: 33973295 PMCID: PMC8530251 DOI: 10.1002/mrd.23473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Glands of the uterus are essential for the establishment of pregnancy in mice and their products regulate embryo implantation and stromal cell decidualization critical for pregnancy establishment. Forkhead box A2 (FOXA2) is expressed specifically in the glands and a critical regulator of their differentiation, development and function. Progesterone and FOXA2 regulate members of a serine proteinase gene family (Prss28 and Prss29). Here, CRISPR-Cas9 genome-editing was used to create mice with a heterozygous or homozygous deletion of Prss28 or/and Prss29 to determine their biological roles in uterine function. Female mice lacking Prss28 and Prss29 or both developed normally and were fertile without alterations in uterine histoarchitecture, uterine gland number, or and gene expression. Thus, Prss28 and Prss29 are dispensable for female fertility and do not impact endometrial gland development or uterine function mice.
Collapse
Affiliation(s)
- Pramod Dhakal
- Division of Animal Sciences, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
| | - Thomas E. Spencer
- Division of Animal Sciences, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
80
|
McDonough-Goldstein CE, Borziak K, Pitnick S, Dorus S. Drosophila female reproductive tract gene expression reveals coordinated mating responses and rapidly evolving tissue-specific genes. G3 (BETHESDA, MD.) 2021; 11:jkab020. [PMID: 33890615 PMCID: PMC8063083 DOI: 10.1093/g3journal/jkab020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Sexual reproduction in internally fertilizing species requires complex coordination between female and male reproductive systems and among the diverse tissues of the female reproductive tract (FRT). Here, we report a comprehensive, tissue-specific investigation of Drosophila melanogaster FRT gene expression before and after mating. We identified expression profiles that distinguished each tissue, including major differences between tissues with glandular or primarily nonglandular epithelium. All tissues were enriched for distinct sets of genes possessing secretion signals that exhibited accelerated evolution, as might be expected for genes participating in molecular interactions between the sexes within the FRT extracellular environment. Despite robust transcriptional differences between tissues, postmating responses were dominated by coordinated transient changes indicative of an integrated systems-level functional response. This comprehensive characterization of gene expression throughout the FRT identifies putative female contributions to postcopulatory events critical to reproduction and potentially reproductive isolation, as well as the putative targets of sexual selection and conflict.
Collapse
Affiliation(s)
| | - Kirill Borziak
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY, USA
| | - Scott Pitnick
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Biology Department, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
81
|
Koo HS, Yoon MJ, Hong SH, Ahn J, Cha H, Lee D, Ko JE, Kwon H, Choi DH, Lee KA, Ko JJ, Kang YJ. CXCL12 enhances pregnancy outcome via improvement of endometrial receptivity in mice. Sci Rep 2021; 11:7397. [PMID: 33795831 PMCID: PMC8016928 DOI: 10.1038/s41598-021-86956-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Successful pregnancy inevitably depends on the implantation of a competent embryo into a receptive endometrium. Although many substances have been suggested to improve the rate of embryo implantation targeting enhancement of endometrial receptivity, currently there rarely are effective evidence-based treatments to prevent or cure this condition. Here we strongly suggest minimally-invasive intra-uterine administration of embryo-secreted chemokine CXCL12 as an effective therapeutic intervention. Chemokine CXCL12 derived from pre- and peri-implanting embryos significantly enhances the rates of embryo attachment and promoted endothelial vessel formation and sprouting in vitro. Consistently, intra-uterine CXCL12 administration in C57BL/6 mice improved endometrial receptivity showing increased integrin β3 and its ligand osteopontin, and induced endometrial angiogenesis displaying increased numbers of vessel formation near the lining of endometrial epithelial layer with higher CD31 and CD34 expression. Furthermore, intra-uterine CXCL12 application dramatically promoted the rates of embryo implantation with no morphologically retarded embryos. Thus, our present study provides a novel evidence that improved uterine endometrial receptivity and enhanced angiogenesis induced by embryo-derived chemokine CXCL12 may aid to develop a minimally-invasive therapeutic strategy for clinical treatment or supplement for the patients with repeated implantation failure with less risk.
Collapse
Affiliation(s)
- Hwa Seon Koo
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Min-Ji Yoon
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Seon-Hwa Hong
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Jungho Ahn
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Hwijae Cha
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Danbi Lee
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Ji-Eun Ko
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Hwang Kwon
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Dong Hee Choi
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Jung-Jae Ko
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Youn-Jung Kang
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea. .,Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea. .,Department of Biochemistry, School of Medicine, CHA University, Seongnam-si, Gyunggi-do, South Korea.
| |
Collapse
|
82
|
Chavan AR, Griffith OW, Stadtmauer DJ, Maziarz J, Pavlicev M, Fishman R, Koren L, Romero R, Wagner GP. Evolution of Embryo Implantation Was Enabled by the Origin of Decidual Stromal Cells in Eutherian Mammals. Mol Biol Evol 2021; 38:1060-1074. [PMID: 33185661 PMCID: PMC7947829 DOI: 10.1093/molbev/msaa274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian pregnancy evolved in the therian stem lineage, that is, before the common ancestor of marsupials and eutherian (placental) mammals. Ancestral therian pregnancy likely involved a brief phase of attachment between the fetal and maternal tissues followed by parturition-similar to the situation in most marsupials including the opossum. In all eutherians, however, embryo attachment is followed by implantation, allowing for a stable fetal-maternal interface and an extended gestation. Embryo attachment induces an attachment reaction in the uterus that is homologous to an inflammatory response. Here, we elucidate the evolutionary mechanism by which the ancestral inflammatory response was transformed into embryo implantation in the eutherian lineage. We performed a comparative uterine transcriptomic and immunohistochemical study of three eutherians, armadillo (Dasypus novemcinctus), hyrax (Procavia capensis), and rabbit (Oryctolagus cuniculus); and one marsupial, opossum (Monodelphis domestica). Our results suggest that in the eutherian lineage, the ancestral inflammatory response was domesticated by suppressing one of its modules detrimental to pregnancy, namely, neutrophil recruitment by cytokine IL17A. Further, we propose that this suppression was mediated by decidual stromal cells, a novel cell type in eutherian mammals. We tested a prediction of this model in vitro and showed that decidual stromal cells can suppress the production of IL17A from helper T cells. Together, these results provide a mechanistic understanding of early stages in the evolution of eutherian pregnancy.
Collapse
Affiliation(s)
- Arun R Chavan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Oliver W Griffith
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
| | - Mihaela Pavlicev
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Ruth Fishman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Yale Systems Biology Institute, Yale University, West Haven, CT
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
83
|
Zhou L, Li C, Liu X, Zhang T. Effect of Irisin on LIF and integrin αvβ3 in rats of implantation failure. Reprod Biol Endocrinol 2021; 19:18. [PMID: 33536035 PMCID: PMC7856750 DOI: 10.1186/s12958-021-00700-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The aim of this study is to investigate the effect of irisin on leukemia inhibitory factor (LIF) and integrin αvβ3 in implantation failure uterus. METHODS Early pregnant rats were randomly divided into normal group (N), mifepristone treated group (M), irisin group (I) and progestin group (P). The implantation failure model was established using mifepristone. Second, we evaluated the average number of embryos and detected the expression of LIF and integrin αvβ3 protein and mRNA in endometrium. RESULTS Compared with group M, the average number of embryos was significantly higher in group N, P and I, the expression of LIF and integrin αvβ3 in endometrium was significantly higher in group N, P and I. CONCLUSION Irisin could improve the poor receptive state of endometrium by promoting LIF and integrin αvβ3 secretion to improve blastocyst implantation in rats of implantation failure.
Collapse
Affiliation(s)
- Li Zhou
- Department of Traditional Chinese Medicine, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Chenggang Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China.
| | - Xiangshu Liu
- Department of Traditional Chinese Medicine, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Tao Zhang
- Department of Traditional Chinese Medicine, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| |
Collapse
|
84
|
Marquardt RM, Kim TH, Yoo JY, Teasley HE, Fazleabas AT, Young SL, Lessey BA, Arora R, Jeong JW. Endometrial epithelial ARID1A is critical for uterine gland function in early pregnancy establishment. FASEB J 2021; 35:e21209. [PMID: 33222288 PMCID: PMC8076973 DOI: 10.1096/fj.202002178r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022]
Abstract
Though endometriosis and infertility are clearly associated, the pathophysiological mechanism remains unclear. Previous work has linked endometrial ARID1A loss to endometriosis-related endometrial non-receptivity. Here, we show in mice that ARID1A binds and regulates transcription of the Foxa2 gene required for endometrial gland function. Uterine-specific deletion of Arid1a compromises gland development and diminishes Foxa2 and Lif expression. Deletion of Arid1a with Ltf-iCre in the adult mouse endometrial epithelium preserves the gland development while still compromising the gland function. Mice lacking endometrial epithelial Arid1a are severely sub-fertile due to defects in implantation, decidualization, and endometrial receptivity from disruption of the LIF-STAT3-EGR1 pathway. FOXA2 is also reduced in the endometrium of women with endometriosis in correlation with diminished ARID1A, and both ARID1A and FOXA2 are reduced in nonhuman primates induced with endometriosis. Our findings describe a role for ARID1A in the endometrial epithelium supporting early pregnancy establishment through the maintenance of gland function.
Collapse
Affiliation(s)
- Ryan M. Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Jung-Yoon Yoo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanna E. Teasley
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
85
|
Liu Q. Effects of Environmental Endocrine-Disrupting Chemicals on Female Reproductive Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:205-229. [PMID: 33523436 DOI: 10.1007/978-981-33-4187-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environmental endocrine-disrupting chemicals (EDCs) are xenobiotic compounds that are frequently contacted in daily life. With the species and quantity of substances created and utilized by human beings significantly surpassing the self-purification capacity of nature, a large number of hazardous substances are enriched in the human body through the respiratory tract, digestive tract, and skin. Some of these compounds cause many problems endangering female reproductive health by simulating/antagonizing endogenous hormones or affecting the synthesis, metabolism, and bioavailability of endogenous hormones, including reproductive disorders, fetal birth defects, fetal developmental abnormalities, endocrine and metabolic disorders, and even gynecological malignancies. Therefore, the study of the relationship between environmental EDCs and female reproductive diseases and related mechanisms is of considerable significance to women, children health care, and improve the quality of the population.
Collapse
Affiliation(s)
- Qicai Liu
- Center for Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
86
|
Abstract
Recurrent pregnancy loss is a distressing pregnancy disorder experienced by ~2.5% of women trying to conceive. Recurrent pregnancy loss is defined as the failure of two or more clinically recognized pregnancies before 20-24 weeks of gestation and includes embryonic and fetal losses. The diagnosis of an early pregnancy loss is relatively straightforward, although progress in predicting and preventing recurrent pregnancy loss has been hampered by a lack of standardized definitions, the uncertainties surrounding the pathogenesis and the highly variable clinical presentation. The prognosis for couples with recurrent pregnancy loss is generally good, although the likelihood of a successful pregnancy depends on maternal age and the number of previous losses. Recurrent pregnancy loss can be caused by chromosomal errors, anatomical uterine defects, autoimmune disorders and endometrial dysfunction. Available treatments target the putative risk factors of pregnancy loss, although the effectiveness of many medical interventions is controversial. Regardless of the underlying aetiology, couples require accurate information on their chances of having a baby and appropriate support should be offered to reduce the psychological burden associated with multiple miscarriages. Future research must investigate the pathogenesis of recurrent pregnancy loss and evaluate novel diagnostic tests and treatments in adequately powered clinical trials.
Collapse
|
87
|
Fang X, Ni N, Gao Y, Lydon JP, Ivanov I, Rijnkels M, Bayless KJ, Li Q. Transforming growth factor beta signaling and decidual integrity in mice†. Biol Reprod 2020; 103:1186-1198. [PMID: 32902612 PMCID: PMC7711917 DOI: 10.1093/biolre/ioaa155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/28/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor beta (TGFβ) signaling regulates multifaceted reproductive processes. It has been shown that the type 1 receptor of TGFβ (TGFBR1) is indispensable for female reproductive tract development, implantation, placental development, and fertility. However, the role of TGFβ signaling in decidual development and function remains poorly defined. Our objective is to determine the impact of uterine-specific deletion of Tgfbr1 on decidual integrity, with a focus on the cellular and molecular properties of the decidua during development. Our results show that the developmental dynamics of the decidua is altered in TGFBR1 conditionally depleted uteri from embryonic day (E) 5.5 to E8.5, substantiated by downregulation of genes associated with inflammatory responses and uterine natural killer cell abundance, reduced presence of nondecidualized fibroblasts in the antimesometrial region, and altered decidual cell development. Notably, conditional ablation of TGFBR1 results in the formation of decidua containing more abundant alpha smooth muscle actin (ACTA2)-positive cells at the peripheral region of the antimesometrial side versus controls at E6.5-E8.5. This finding is corroborated by upregulation of a subset of smooth muscle marker genes in Tgfbr1 conditionally deleted decidua at E6.5 and E8.5. Moreover, increased cell proliferation and enhanced decidual ERK1/2 signaling were found in Tgfbr1 conditional knockout mice upon decidual regression. In summary, conditional ablation of TGFBR1 in the uterus profoundly impacts the cellular and molecular properties of the decidua. Our results suggest that TGFBR1 in uterine epithelial and stromal compartments is important for the integrity of the decidua, a transient but crucial structure that supports embryo development.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Yang Gao
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
88
|
Cai S, Ye Q, Zeng X, Yang G, Ye C, Chen M, Yu H, Wang Y, Wang G, Huang S, Quan S, Zeng X, Qiao S. CBS and MAT2A improve methionine-mediated DNA synthesis through SAMTOR/mTORC1/S6K1/CAD pathway during embryo implantation. Cell Prolif 2020; 54:e12950. [PMID: 33179842 PMCID: PMC7791180 DOI: 10.1111/cpr.12950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/06/2023] Open
Abstract
Objectives Early pregnancy loss is a major clinical concern in animal and human reproduction, which is largely influenced by embryo implantation. The importance of methionine for embryo implantation is widely neglected. Materials and methods We performed a series of experiments with primiparous rats fed diets containing different levels of methionine during early pregnancy to investigate the role of methionine in embryonic implantation and pregnancy outcomes, and used them to perform in vivo metabolic assessments and in vitro uterine explant culture. In addition, through transcriptome analysis and silencing the expression of cystathionine β‐synthase (CBS, the key enzyme in transsulfuration pathway) and cell adhesion assay, we measured signalling within Ishikawa, pTr and JAR cells. Results We determined the relevance and underlying mechanism of methionine on embryo implantation. We showed that methionine deprivation sharply decreased embryo implantation sites, expression of CBS and transsulfuration pathway end products, which were reversed by maternal methionine supplementation during early pregnancy. Moreover, we found CBS improved methionine‐mediated cell proliferation and DNA synthesis by CBS inhibition or interference. In addition, transcriptome analysis also revealed that CBS influenced the signalling pathway‐associated cell proliferation and DNA synthesis, as well as a correlation between CBS and methionine adenosyltransferase 2A (MAT2A), implying that MAT2A was possibly involved in cell proliferation and DNA synthesis. Further analysis revealed that MAT2A influenced S‐adenosylmethionine receptor SAMTOR expression, and SAMTOR activated mTORC1 and its downstream S6K1 and CAD, ultimately enhancing DNA synthesis in the embryo and uterus. Conclusions Taken together, these studies demonstrate that CBS and MAT2A improve methionine‐mediated DNA synthesis through SAMTOR/mTORC1/S6K1/CAD pathway during embryo implantation.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| |
Collapse
|
89
|
Liu L, Chen G, Chen T, Shi W, Hu H, Song K, Huang R, Cai H, He Y. si-SNHG5-FOXF2 inhibits TGF-β1-induced fibrosis in human primary endometrial stromal cells by the Wnt/β-catenin signalling pathway. Stem Cell Res Ther 2020; 11:479. [PMID: 33176855 PMCID: PMC7656702 DOI: 10.1186/s13287-020-01990-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/21/2020] [Indexed: 11/10/2022] Open
Abstract
Background Intrauterine adhesions (IUAs) are manifestations of endometrial fibrosis characterized by inflammation and fibrinogen aggregation in the extracellular matrix (ECM). The available therapeutic interventions for IUA are insufficiently effective in the clinical setting for postoperative adhesion recurrence and infertility problems. In this study, we investigated whether si-SNHG5-FOXF2 can serve as a molecular mechanism for the inhibition of IUA fibrosis ex vivo. Methods FOXF2, TGF-β1 and collagen expression levels were measured by microarray sequencing analysis in three normal endometrium groups and six IUA patients. We induced primary human endometrial stromal cells (HESCs) into myofibroblasts (MFs) to develop an IUA cell model with various concentrations of TGF-β1 at various times. Downstream target genes of FOXF2 were screened by chromatin immunoprecipitation combined with whole-genome high-throughput sequencing (ChIP-seq). We investigated ECM formation, cell proliferation and Wnt/β-catenin signalling pathway-related proteins in primary HESCs with FOXF2 downregulation by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting (WB), immunohistochemistry (IHC), flow cytometry, ethylenediurea (EdU) and CCK8 assays. We identified long noncoding RNAs (lncRNA) SNHG5 as the upstream regulatory gene of FOXF2 through RNA immunoprecipitation (RIP), RNA pulldown and fluorescence in situ hybridization (FISH). Finally, we examined FOXF2 expression, ECM formation, cell proliferation and Wnt/β-catenin signalling pathway-related proteins in primary HESCs upon FOXF2 downregulation. Results FOXF2 was highly expressed in the endometrium of patients with IUA. Treatment of primary HESCs with 10 ng/ml TGF-β1 for 72 h was found to be most effective for developing an IUA cell model. FOXF2 regulated multiple downstream target genes, including collagen, vimentin (VIM) and cyclin D2/DK4, by ChIP-seq and ChIP-PCR. FOXF2 downregulation inhibited TGF-β1-mediated primary HESC fibrosis, including ECM formation, cell proliferation and Wnt/β-catenin signalling pathway-related protein expression. We identified lncRNA SNHG5 as an upstream gene that directly regulates FOXF2 by RIP-seq, qRT-PCR, WB and FISH. SNHG5 downregulation suppressed FOXF2 expression in the IUA cell model, resulting in synergistic repression of the Wnt/β-catenin pathway, thereby altering TGF-β1-mediated ECM aggregation in endometrial stromal cells ex vivo. Conclusions Regulation of the Wnt/β-catenin signalling pathway and ECM formation by si-SNHG5-FOXF2 effectively inhibited the profibrotic effect of TGF-β1 on primary HESCs. This finding can provide a molecular basis for antagonizing TGF-β1-mediated fibrosis in primary HESCs.
Collapse
Affiliation(s)
- Limin Liu
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guobin Chen
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Taoliang Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjuan Shi
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Haiyan Hu
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Kaijing Song
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ruichun Huang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huihua Cai
- Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yuanli He
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
90
|
Wilsterman K, Bao X, Estrada AD, Comizzoli P, Bentley GE. Sex steroids influence organizational but not functional decidualization of feline endometrial cells in a 3D culture system†. Biol Reprod 2020; 101:906-915. [PMID: 31359037 DOI: 10.1093/biolre/ioz145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 07/24/2019] [Indexed: 01/23/2023] Open
Abstract
Successful implantation requires complex signaling between the uterine endometrium and the blastocyst. Prior to the blastocyst reaching the uterus, the endometrium is remodeled by sex steroids and other signals to render the endometrium receptive. In vitro models have facilitated major advances in our understanding of endometrium preparation and endometrial-blastocyst communication in mice and humans, but these systems have not been widely adapted for use in other models which might generate a deeper understanding of these processes. The objective of our study was to use a recently developed, three-dimensional culture system to identify specific roles of female sex steroids in remodeling the organization and function of feline endometrial cells. We treated endometrial cells with physiologically relevant concentrations of estradiol and progesterone, either in isolation or in combination, for 1 week. We then examined size and density of three-dimensional structures, and quantified expression of candidate genes known to vary in response to sex steroid treatments and that have functional relevance to the decidualization process. Combined sex steroid treatments recapitulated organizational patterns seen in vivo; however, sex steroid manipulations did not induce expected changes to expression of decidualization-related genes. Our results demonstrate that sex steroids may not be sufficient for complete decidualization and preparation of the feline endometrium, thereby highlighting key areas of opportunity for further study and suggesting some unique functions of felid uterine tissues.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Xinmiao Bao
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Allegra D Estrada
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, USA
| | - George E Bentley
- Integrative Biology, University of California Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
91
|
Fitzgerald HC, Schust DJ, Spencer TE. In vitro models of the human endometrium: evolution and application for women's health. Biol Reprod 2020; 104:282-293. [PMID: 33009568 DOI: 10.1093/biolre/ioaa183] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
The endometrium is the inner lining of the uterus that undergoes complex regeneration and differentiation during the human menstrual cycle. The process of endometrial shedding, regeneration, and differentiation is driven by ovarian steroid hormones and prepares the endometrium and intrauterine environment for embryo implantation and pregnancy establishment. Endometrial glands and their secretions are essential for pregnancy establishment, and cross talk between the glandular epithelium and stromal cells appears vital for decidualization and placental development. Despite being crucial, the biology of the human endometrium during pregnancy establishment and most of pregnancy is incomplete, given the ethical and practical limitations of obtaining and studying endometrium from pregnant women. As such, in vitro models of the human endometrium are required to fill significant gaps in understanding endometrial biology. This review is focused on the evolution and development of in vitro three-dimensional models of the human endometrium and provides insight into the challenges and promises of those models to improve women's reproductive health.
Collapse
Affiliation(s)
| | - Danny J Schust
- Division of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.,Division of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
92
|
Alarcón R, Rivera OE, Ingaramo PI, Tschopp MV, Dioguardi GH, Milesi MM, Muñoz-de-Toro M, Luque EH. Neonatal exposure to a glyphosate-based herbicide alters the uterine differentiation of prepubertal ewe lambs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114874. [PMID: 32599332 DOI: 10.1016/j.envpol.2020.114874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The exposure to endocrine-disrupting compounds (EDCs), such as glyphosate-based herbicides (GBHs), during early life might alter female fertility. The aim of the present study was to evaluate the effects of neonatal exposure to a GBH on sheep uterine development. To achieve this, Friesian ewe lambs were exposed to GBH (2 mg/kg of body weight/day; n = 12) or vehicle (controls; n = 10) through s.c. injections, from postnatal day (PND) 1 to PND14; on PND45, the uteri were obtained to evaluate histomorphological and molecular parameters. Morphological parameters were determined by picrosirius-hematoxylin staining. Protein expression of Ki67 (as a cell proliferation marker), p27, and molecules involved in uterine organogenetic differentiation was measured by immunohistochemistry. We also determined the mRNA expression of the IGF molecular pathway by RT-PCR. Although histomorphology was not modified, the uteri of GBH-exposed ewe lambs showed lower cell proliferation, together with higher p27 protein expression. In addition, the uteri of GBH-exposed ewe lambs showed increased gene expression of insulin-like growth factor binding protein 3 (IGFBP-3), decreased expression of ERα in the luminal (LE) and glandular (GE) epithelia and in the subepithelial stroma (SS), and lower PR expression in the LE but higher in the GE and SS. In addition, GBH treatment decreased the uterine expression of Wnt5a in the GE, of Wnt7a in the SS, of β-catenin in the LE and GE, of Hoxa10 in the SS, and of Foxa2 in the GE as compared with controls. In conclusion, neonatal exposure to GBH decreased cell proliferation and altered the expression of molecules that control proliferation and development in the uterus. All these changes might have adverse consequences on uterine differentiation and functionality, affecting the female reproductive health of sheep. GBH may be responsible for uterine subfertility, acting as an EDC.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar E Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María V Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gisela H Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Mercedes M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
93
|
Sexually dimorphic effects of forkhead box a2 (FOXA2) and uterine glands on decidualization and fetoplacental development. Proc Natl Acad Sci U S A 2020; 117:23952-23959. [PMID: 32900950 DOI: 10.1073/pnas.2014272117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glands of the uterus are essential for pregnancy establishment. Forkhead box A2 (FOXA2) is expressed specifically in the glands of the uterus and a critical regulator of glandular epithelium (GE) differentiation, development, and function. Mice with a conditional deletion of FOXA2 in the adult uterus, created using the lactotransferrin iCre (Ltf-iCre) model, have a morphologically normal uterus with glands, but lack FOXA2-dependent GE-expressed genes, such as leukemia inhibitory factor (LIF). Adult FOXA2 conditional knockout (cKO; Ltf iCre/+ Foxa2 f/f ) mice are infertile due to defective embryo implantation arising from a lack of LIF, a critical implantation factor of uterine gland origin. However, intraperitoneal injections of LIF can initiate embryo implantation in the uterus of adult FOXA2 cKO mice with pregnancies maintained to term. Here, we tested the hypothesis that FOXA2-regulated genes in the uterine glands impact development of the decidua, placenta, and fetus. On gestational day 8.5, the antimesometrial and mesometrial decidua transcriptome was noticeably altered in LIF-replaced FOXA2 cKO mice. Viable fetuses were reduced in FOXA2 cKO mice on gestational days 12.5 and 17.5. Sex-dependent differences in fetal weight, placenta histoarchitecture, and the placenta and metrial gland transcriptome were observed between control and FOXA2 cKO mice. The transcriptome of the placenta with a female fetus was considerably more altered than the placenta with a male fetus in FOXA2 cKO dams. These studies reveal previously unrecognized sexually dimorphic effects of FOXA2 and uterine glands on fetoplacental development with potential impacts on offspring health into adulthood.
Collapse
|
94
|
Vergaro P, Tiscornia G, Zambelli F, Rodríguez A, Santaló J, Vassena R. Trophoblast attachment to the endometrial epithelium elicits compartment-specific transcriptional waves in an in-vitro model. Reprod Biomed Online 2020; 42:26-38. [PMID: 33051136 DOI: 10.1016/j.rbmo.2020.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 01/02/2023]
Abstract
RESEARCH QUESTION Which are the early compartment-specific transcriptional responses of the trophoblast and the endometrial epithelium throughout early attachment during implantation? DESIGN An endometrial epithelium proxy (cell line Ishikawa) was co-cultured with spheroids of a green fluorescent protein (GFP) expressing trophoblast cell line (JEG-3). After 0, 8 and 24 h of co-culture, the compartments were sorted by fluorescence-activated cell sorting; GFP+ (trophoblast), GFP- (epithelium) and non-co-cultured control populations were analysed (in triplicate) by RNA-seq and gene set enrichment analysis (GSEA). RESULTS Trophoblast challenge induced a wave of transcriptional changes in the epithelium that resulted in 295 differentially regulated genes involving epithelial to mesenchymal transition (EMT), cell movement, apoptosis, hypoxia, inflammation, allograft rejection, myogenesis and cell signalling at 8 h. Interestingly, many of the enriched pathways were subsequently de-enriched by 24 h (i.e. EMT, cell movement, allograft rejection, myogenesis and cell signalling). In the trophoblast, the co-culture induced more transcriptional changes and regulation of a variety of pathways. A total of 1247 and 481 genes were differentially expressed after 8 h and from 8 to 24 h, respectively. Angiogenesis and hypoxia were over-represented at both stages, while EMT and cell signalling only were at 8 h; from 8 to 24 h, inflammation and oestrogen response were enriched, while proliferation was under-represented. CONCLUSIONS Successful attachment produced a series of dynamic changes in gene expression, characterized by an overall early and transient transcriptional up-regulation in the receptive epithelium, in contrast to a more dynamic transcriptional response in the trophoblast.
Collapse
Affiliation(s)
- Paula Vergaro
- Clínica EUGIN Barcelona, Spain; Facultat de Biociències, Unitat de Biologia Cel•lular, Universitat Autònoma de Barcelona, Spain
| | - Gustavo Tiscornia
- Clínica EUGIN Barcelona, Spain; Centro de Investigação em Biomedicina (CBMR), Universidade do Algarve, Portugal
| | | | | | - Josep Santaló
- Facultat de Biociències, Unitat de Biologia Cel•lular, Universitat Autònoma de Barcelona, Spain
| | | |
Collapse
|
95
|
Aldosterone from endometrial glands is benefit for human decidualization. Cell Death Dis 2020; 11:679. [PMID: 32826848 PMCID: PMC7442827 DOI: 10.1038/s41419-020-02844-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
Abstract
Local renin-angiotensin system (RAS) in female reproductive system is involved in many physiological and pathological processes, such as follicular development, ovarian angiogenesis, ovarian, and endometrial cancer progress. However, studies on the functional relevance of RAS in human endometrium are limited, especially for renin-angiotensin-aldosterone system (RAAS). In this study, we defined the location of RAS components in human endometrium. We found that angiotensin II type-1 receptor (AT1R) and aldosterone synthase (CYP11B2), major components of RAAS, are specifically expressed in endometrial gland during mid-secretory phase. Aldosterone receptor, mineralocorticoid receptor (MR), is elevated in stroma in mid-secretory endometrium. In vitro, MR is also activated by aldosterone during decidualization. Activated MR initiates LKB1 expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. The impact of PDK4 on decidualization is independent on PDHE1α inactivation. Based on co-immunoprecipitation, PDK4 interacts with p-CREB to prevent its ubiquitination for facilitating decidualization via FOXO1. Restrain of MR activation interrupts LKB1/p-AMPK/PDK4/p-CREB/FOXO1 pathway induced by aldosterone, indicating that aldosterone action on decidualization is mainly dependent on MR stimulation. Aldosterone biosynthesized in endometrial gland during mid-secretory phase promotes decidualization via activating MR/LKB1/p-AMPK/PDK4/p-CREB/FOXO1 signaling pathway. This study provides the valuable information for understanding the underlying mechanism during decidualization.
Collapse
|
96
|
Parobchak N, Rao S, Negron A, Schaefer J, Bhattacharya M, Radovick S, Babwah AV. Uterine Gpr83 mRNA is highly expressed during early pregnancy and GPR83 mediates the actions of PEN in endometrial and non-endometrial cells. F&S SCIENCE 2020; 1:67-77. [PMID: 35559741 DOI: 10.1016/j.xfss.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/28/2020] [Accepted: 06/13/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To characterize the expression and signaling of uterine GPR83 in vivo in the nonpregnant and pregnant mouse and in vitro in human endometrial and nonendometrial cells. DESIGN Controlled laboratory study. SETTING Not applicable. PATIENTS Not applicable. INTERVENTIONS None. MAIN OUTCOME MEASURES Expression of uterine Gpr83 was determined by quantitative polymerase chain reaction throughout the estrous cycle and during early pregnancy in ovarian-stimulated and non-ovarian-stimulated mice and pregnant and pseudopregnant mice. Expression was also determined in ovariectomized mice after the administration of oil, E2, P4, or E2 + P4 and in stromal cells following 6 days of in vitro decidualization. GPR83 signaling was studied in human endometrial and embryonic kidney cell lines. Cells were treated by PEN, a GPR83 ligand, and PEN-induced extracellular signal-regulated kinase (ERK) phosphorylation was assayed under conditions that blocked Gαq/11 and/or β-arrestin signaling. RESULTS Uterine Gpr83 is expressed throughout the estrous cycle and during early pregnancy; expression increases dramatically at the time of uterine receptivity, embryo implantation, and stromal cell decidualization. In the ovariectomized mouse, hormone add-back reveals that Gpr83 expression is highly responsive to the combined treatment of E2 and P4, and studies in the ovarian-stimulated mouse show that expression is also very sensitive to changes in E2 and P4 and is therefore tightly regulated by E2 and P4. At the implantation site, expression is elevated up to D6 of pregnancy and then declines rapidly on D7 and D8, suggesting that if there is any involvement in decidualization, it is likely associated with primary but not secondary stromal cell decidualization. This premise was supported by the observation that stromal cell decidualization in vitro progresses with a decline in Gpr83 expression. In ERα/PR-expressing endometrial Ishikawa cells, GPR83 mediates PEN signals in a Gαq/11-dependent manner, and studies conducted in HEK 293 cells lacking β-arrestin revealed that GPR83 also signals via a β-arrestin-dependent manner. When signaling by either one or both pathways is downregulated, cells exhibit a major reduction in responsiveness to PEN treatment, demonstrating that signaling by both pathways is significant. CONCLUSION We hypothesize that PEN/GPR83 signaling regulates uterine receptivity, embryo implantation, and primary stromal cell decidualization by coupling to Gαq/11- and β-arrestin-dependent pathways.
Collapse
Affiliation(s)
- Nataliya Parobchak
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shivani Rao
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Ariel Negron
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Jennifer Schaefer
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Child Health Institute of New Jersey, New Brunswick, New Jersey
| | - Sally Radovick
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Child Health Institute of New Jersey, New Brunswick, New Jersey
| | - Andy V Babwah
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Child Health Institute of New Jersey, New Brunswick, New Jersey.
| |
Collapse
|
97
|
Ban Z, Knöspel F, Schneider MR. Shedding light into the black box: Advances in in vitro systems for studying implantation. Dev Biol 2020; 463:1-10. [DOI: 10.1016/j.ydbio.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
|
98
|
Ercin ME, Erdil G. Effect of single-dose depot leuprolide acetate on embryonal implantation: an experimental rat model. Gynecol Endocrinol 2020; 36:611-614. [PMID: 31711323 DOI: 10.1080/09513590.2019.1689555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The objective of this article is to investigate the effect of single-dose depot leuprolide acetate in rat embryonal implantation and its association with glycodelin A, mucin-1 and leukemia inhibitory factor expression. Thirty-two pregnant Wistar Albino rats were divided into four equal groups: untreated control rats in group I (n = 8) and untreated pregnant rats in group II (n = 8) were injected intraperitoneally with single dose of normal saline, treated rats in group III (n = 8) and treated pregnant rats in group IV (n = 8) were given single 1 mg/kg subcutaneous injection of leuprolide acetate at day 8 of pregnancy. The dams were sacrificed on the 15th day of gestation, uterine horn samples were removed. Immunohistochemical examination of the tissue samples prepared from the control and experimental groups, a statistically significant difference was observed between the groups in the luminal-glandular-decidualized epithelium of the uterus with glycodelin A, mucin-1 and leukemia inhibitory factor. A statistically significant difference was observed between the groups for the concentration of glycodelin A but no statistically significant difference was found for the other two molecules. In light of our findings, leuprolide acetate adversely affected expression and concentration of all three molecules in embryonal implantation model.
Collapse
Affiliation(s)
- Mustafa Emre Ercin
- Department of Pathology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gokhan Erdil
- Department of Obstetrics and Gynecology, Arakli Bayram Halil State Hospital, Trabzon, Turkey
| |
Collapse
|
99
|
Alzamil L, Nikolakopoulou K, Turco MY. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ 2020; 28:35-51. [PMID: 32494027 PMCID: PMC7852529 DOI: 10.1038/s41418-020-0565-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Both the proper functioning of the female reproductive tract (FRT) and normal placental development are essential for women’s health, wellbeing, and pregnancy outcome. The study of the FRT in humans has been challenging due to limitations in the in vitro and in vivo tools available. Recent developments in 3D organoid technology that model the different regions of the FRT include organoids of the ovaries, fallopian tubes, endometrium and cervix, as well as placental trophoblast. These models are opening up new avenues to investigate the normal biology and pathology of the FRT. In this review, we discuss the advances, potential, and limitations of organoid cultures of the human FRT. ■. ![]()
Collapse
Affiliation(s)
- Lama Alzamil
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Centre for Trophoblast Research, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
100
|
Hu KL, Chang HM, Zhao HC, Yu Y, Li R, Qiao J. Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation. Hum Reprod Update 2020; 25:326-343. [PMID: 30649364 PMCID: PMC6450039 DOI: 10.1093/humupd/dmy046] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Initially identified as suppressors of metastasis in various types of cancer, kisspeptins are a family of neuropeptides that are key regulators of the mammalian reproductive axis. Accumulating evidence has shown that kisspeptin is able to control both the pulsatile and surge GnRH release, playing fundamental roles in female reproduction, which include the secretion of gonadotropins, puberty onset, brain sex differentiation, ovulation and the metabolic regulation of fertility. Furthermore, recent studies have demonstrated the involvement of the kisspeptin system in the processes of implantation and placentation. This review summarizes the current knowledge of the pathophysiological role and utility of these local placental regulatory factors as potential biomarkers during the early human gestation. OBJECTIVE AND RATIONALE A successful pregnancy, from the initiation of embryo implantation to parturition, is a complex process that requires the orchestration of a series of events. This review aims to concisely summarize what is known about the role of the kisspeptin system in implantation, placentation, early human pregnancy and pregnancy-related disorders, and to develop strategies for predicting, diagnosing and treating these abnormalities. SEARCH METHODS Using the PubMed and Google Scholar databases, we performed comprehensive literature searches in the English language describing the advancement of kisspeptins and the kisspeptin receptor (KISS1R) in implantation, placentation and early pregnancy in humans, since its initial identification in 1996 and ending in July 2018. OUTCOMES Recent studies have shown the coordinated spatial and temporal expression patterns of kisspeptins and KISS1R during human pregnancy. The experimental data gathered recently suggest putative roles of kisspeptin signaling in the regulation of trophoblast invasion, embryo implantation, placentation and early pregnancy. Dysregulation of the kisspeptin system may negatively affect the processes of implantation as well as placentation. Clinical studies indicate that the circulating levels of kisspeptins or the expression levels of kisspeptin/KISS1R in the placental tissues may be used as potential diagnostic markers for women with miscarriage and gestational trophoblastic neoplasia. WIDER IMPLICATIONS Comprehensive research on the pathophysiological role of the kisspeptin/KISS1R system in implantation and placentation will provide a dynamic and powerful approach to understanding the processes of early pregnancy, with potential applications in observational and analytic screening as well as the diagnosis, prognosis and treatment of implantation failure and early pregnancy-related disorders.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Hong-Cui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|