51
|
Couves EC, Bubeck D. Capturing pore-forming intermediates of MACPF and binary toxin assemblies by cryoEM. Curr Opin Struct Biol 2022; 75:102401. [PMID: 35700576 DOI: 10.1016/j.sbi.2022.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022]
Abstract
Deployed by both pathogenic bacteria and host immune systems, pore-forming proteins rupture target membranes and can serve as conduits for effector proteins. Understanding how these proteins work relies on capturing assembly intermediates. Advances in cryoEM allowing in silico purification of heterogeneous assemblies has led to new insights into two main classes of pore-forming proteins: membrane attack complex perforin (MACPF) proteins and binary toxins. The structure of an immune activation complex, sMAC, shows how pores form by sequential templating and insertion of β-hairpins. CryoEM structures of bacterial binary toxins present a series of transitions along the pore formation pathway and reveal a general mechanism of effector protein translocation. Future developments in time-resolved cryoEM could capture and place short-lived states along the trajectory of pore-formation.
Collapse
Affiliation(s)
- Emma C Couves
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ, United Kingdom. https://twitter.com/@EmmaCouves
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
52
|
Dynamic interplay between the periplasmic chaperone SurA and the BAM complex in outer membrane protein folding. Commun Biol 2022; 5:560. [PMID: 35676411 PMCID: PMC9177699 DOI: 10.1038/s42003-022-03502-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Correct folding of outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria depends on delivery of unfolded OMPs to the β-barrel assembly machinery (BAM). How unfolded substrates are presented to BAM remains elusive, but the major OMP chaperone SurA is proposed to play a key role. Here, we have used hydrogen deuterium exchange mass spectrometry (HDX-MS), crosslinking, in vitro folding and binding assays and computational modelling to show that the core domain of SurA and one of its two PPIase domains are key to the SurA-BAM interaction and are required for maximal catalysis of OMP folding. We reveal that binding causes changes in BAM and SurA conformation and/or dynamics distal to the sites of binding, including at the BamA β1-β16 seam. We propose a model for OMP biogenesis in which SurA plays a crucial role in OMP delivery and primes BAM to accept substrates for folding. Interaction of the outer membrane protein (OMP) chaperone SurA and the OMP folding catalyst BAM results in changes in the conformational ensembles of both species, suggesting a mechanism for delivery of OMPs to BAM in Gram-negative bacteria.
Collapse
|
53
|
Mamou G, Corona F, Cohen-Khait R, Housden NG, Yeung V, Sun D, Sridhar P, Pazos M, Knowles TJ, Kleanthous C, Vollmer W. Peptidoglycan maturation controls outer membrane protein assembly. Nature 2022; 606:953-959. [PMID: 35705811 PMCID: PMC9242858 DOI: 10.1038/s41586-022-04834-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Linkages between the outer membrane of Gram-negative bacteria and the peptidoglycan layer are crucial for the maintenance of cellular integrity and enable survival in challenging environments1–5. The function of the outer membrane is dependent on outer membrane proteins (OMPs), which are inserted into the membrane by the β-barrel assembly machine6,7 (BAM). Growing Escherichia coli cells segregate old OMPs towards the poles by a process known as binary partitioning, the basis of which is unknown8. Here we demonstrate that peptidoglycan underpins the spatiotemporal organization of OMPs. Mature, tetrapeptide-rich peptidoglycan binds to BAM components and suppresses OMP foldase activity. Nascent peptidoglycan, which is enriched in pentapeptides and concentrated at septa9, associates with BAM poorly and has little effect on its activity, leading to preferential insertion of OMPs at division sites. The synchronization of OMP biogenesis with cell wall growth results in the binary partitioning of OMPs as cells divide. Our study reveals that Gram-negative bacteria coordinate the assembly of two major cell envelope layers by rendering OMP biogenesis responsive to peptidoglycan maturation, a potential vulnerability that could be exploited in future antibiotic design. Peptidoglycan stem peptides in the Gram-negative bacterial cell wall regulate the insertion of essential outer membrane proteins, thus representing a potential target for antibiotic design.
Collapse
Affiliation(s)
- Gideon Mamou
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Federico Corona
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ruth Cohen-Khait
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Nicholas G Housden
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Vivian Yeung
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Dawei Sun
- Structural Biology, Genentech, South San Francisco, CA, USA
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Manuel Pazos
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Molecular Biology, Center of Molecular Biology 'Severo Ochoa' (UAM-CSIC), Autonomous University of Madrid, Madrid, Spain
| | | | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK.
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
54
|
Doyle MT, Bernstein HD. Function of the Omp85 Superfamily of Outer Membrane Protein Assembly Factors and Polypeptide Transporters. Annu Rev Microbiol 2022; 76:259-279. [PMID: 35650668 DOI: 10.1146/annurev-micro-033021-023719] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Omp85 protein superfamily is found in the outer membrane (OM) of all gram-negative bacteria and eukaryotic organelles of bacterial origin. Members of the family catalyze both the membrane insertion of β-barrel proteins and the translocation of proteins across the OM. Although the mechanism(s) by which these proteins function is unclear, striking new insights have emerged from recent biochemical and structural studies. In this review we discuss the entire Omp85 superfamily but focus on the function of the best-studied member, BamA, which is an essential and highly conserved component of the bacterial barrel assembly machinery (BAM). Because BamA has multiple functions that overlap with those of other Omp85 proteins, it is likely the prototypical member of the Omp85 superfamily. Furthermore, BamA has become a protein of great interest because of the recent discovery of small-molecule inhibitors that potentially represent an important new class of antibiotics. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
55
|
Doyle MT, Jimah JR, Dowdy T, Ohlemacher SI, Larion M, Hinshaw JE, Bernstein HD. Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. Cell 2022; 185:1143-1156.e13. [PMID: 35294859 DOI: 10.1016/j.cell.2022.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 02/13/2022] [Indexed: 02/08/2023]
Abstract
Transmembrane β barrel proteins are folded into the outer membrane (OM) of Gram-negative bacteria by the β barrel assembly machinery (BAM) via a poorly understood process that occurs without known external energy sources. Here, we used single-particle cryo-EM to visualize the folding dynamics of a model β barrel protein (EspP) by BAM. We found that BAM binds the highly conserved "β signal" motif of EspP to correctly orient β strands in the OM during folding. We also found that the folding of EspP proceeds via "hybrid-barrel" intermediates in which membrane integrated β sheets are attached to the essential BAM subunit, BamA. The structures show an unprecedented deflection of the membrane surrounding the EspP intermediates and suggest that β sheets progressively fold toward BamA to form a β barrel. Along with in vivo experiments that tracked β barrel folding while the OM tension was modified, our results support a model in which BAM harnesses OM elasticity to accelerate β barrel folding.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Jimah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shannon I Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
56
|
Horne JE, Radford SE. Roll out the barrel! Outer membrane tension resolves an unexpected folding intermediate. Cell 2022; 185:1107-1109. [DOI: 10.1016/j.cell.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/01/2022]
|
57
|
Vendrell-Fernández S, Lozano-Picazo P, Cuadros-Sánchez P, Tejero-Ojeda MM, Giraldo R. Conversion of the OmpF Porin into a Device to Gather Amyloids on the E. coli Outer Membrane. ACS Synth Biol 2022; 11:655-667. [PMID: 34852197 DOI: 10.1021/acssynbio.1c00347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein amyloids are ubiquitous in natural environments. They typically originate from microbial secretions or spillages from mammals infected by prions, currently raising concerns about their infectivity and toxicity in contexts such as gut microbiota or soils. Exploiting the self-assembly potential of amyloids for their scavenging, here, we report the insertion of an amyloidogenic sequence stretch from a bacterial prion-like protein (RepA-WH1) in one of the extracellular loops (L5) of the abundant Escherichia coli outer membrane porin OmpF. The expression of this grafted porin enables bacterial cells to trap on their envelopes the same amyloidogenic sequence when provided as an extracellular free peptide. Conversely, when immobilized on a surface as bait, the full-length prion-like protein including the amyloidogenic peptide can catch bacteria displaying the L5-grafted OmpF. Polyphenolic molecules known to inhibit amyloid assembly interfere with peptide recognition by the engineered OmpF, indicating that this is compatible with the kind of homotypic interactions expected for amyloid assembly. Our study suggests that synthetic porins may provide suitable scaffolds for engineering biosensor and clearance devices to tackle the threat posed by pathogenic amyloids.
Collapse
Affiliation(s)
- Sol Vendrell-Fernández
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | - Paloma Lozano-Picazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| | - Paula Cuadros-Sánchez
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | - María M. Tejero-Ojeda
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| | - Rafael Giraldo
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| |
Collapse
|
58
|
Hermansen S, Linke D, Leo JC. Transmembrane β-barrel proteins of bacteria: From structure to function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:113-161. [PMID: 35034717 DOI: 10.1016/bs.apcsb.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The outer membrane of Gram-negative bacteria is a specialized organelle conferring protection to the cell against various environmental stresses and resistance to many harmful compounds. The outer membrane has a number of unique features, including an asymmetric lipid bilayer, the presence of lipopolysaccharides and an individual proteome. The vast majority of the integral transmembrane proteins in the outer membrane belongs to the family of β-barrel proteins. These evolutionarily related proteins share a cylindrical, anti-parallel β-sheet core fold spanning the outer membrane. The loops and accessory domains attached to the β-barrel allow for a remarkable versatility in function for these proteins, ranging from diffusion pores and transporters to enzymes and adhesins. We summarize the current knowledge on β-barrel structure and folding and give an overview of their functions, evolution, and potential as drug targets.
Collapse
Affiliation(s)
- Simen Hermansen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Antimicrobial resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.
| |
Collapse
|
59
|
A noncanonical chaperone interacts with drug efflux pumps during their assembly into bacterial outer membranes. PLoS Biol 2022; 20:e3001523. [PMID: 35061668 PMCID: PMC8809574 DOI: 10.1371/journal.pbio.3001523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/02/2022] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteria have membrane-spanning efflux pumps to secrete toxic compounds ranging from heavy metal ions to organic chemicals, including antibiotic drugs. The overall architecture of these efflux pumps is highly conserved: with an inner membrane energy-transducing subunit coupled via an adaptor protein to an outer membrane conduit subunit that enables toxic compounds to be expelled into the environment. Here, we map the distribution of efflux pumps across bacterial lineages to show these proteins are more widespread than previously recognised. Complex phylogenetics support the concept that gene cassettes encoding the subunits for these pumps are commonly acquired by horizontal gene transfer. Using TolC as a model protein, we demonstrate that assembly of conduit subunits into the outer membrane uses the chaperone TAM to physically organise the membrane-embedded staves of the conduit subunit of the efflux pump. The characteristics of this assembly pathway have impact for the acquisition of efflux pumps across bacterial species and for the development of new antimicrobial compounds that inhibit efflux pump function. A crosslinking study reveals novel insights into how the chaperone TAM helps Gram-negative bacteria insert the drug efflux pump subunit TolC into their outer membrane. Bioinformatic analyses show that TolC-like proteins can be found in all LPS-containing bacteria, but also in some monodermic Firmicutes.
Collapse
|
60
|
Eaglesfield R, Tokatlidis K. Targeting and Insertion of Membrane Proteins in Mitochondria. Front Cell Dev Biol 2022; 9:803205. [PMID: 35004695 PMCID: PMC8740019 DOI: 10.3389/fcell.2021.803205] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial membrane proteins play an essential role in all major mitochondrial functions. The respiratory complexes of the inner membrane are key for the generation of energy. The carrier proteins for the influx/efflux of essential metabolites to/from the matrix. Many other inner membrane proteins play critical roles in the import and processing of nuclear encoded proteins (∼99% of all mitochondrial proteins). The outer membrane provides another lipidic barrier to nuclear-encoded protein translocation and is home to many proteins involved in the import process, maintenance of ionic balance, as well as the assembly of outer membrane components. While many aspects of the import and assembly pathways of mitochondrial membrane proteins have been elucidated, many open questions remain, especially surrounding the assembly of the respiratory complexes where certain highly hydrophobic subunits are encoded by the mitochondrial DNA and synthesised and inserted into the membrane from the matrix side. This review will examine the various assembly pathways for inner and outer mitochondrial membrane proteins while discussing the most recent structural and biochemical data examining the biogenesis process.
Collapse
Affiliation(s)
- Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Scotland, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Scotland, United Kingdom
| |
Collapse
|
61
|
Gopinath A, Joseph B. Conformational Flexibility of the Protein Insertase BamA in the Native Asymmetric Bilayer Elucidated by ESR Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202113448. [PMID: 34761852 PMCID: PMC9299766 DOI: 10.1002/anie.202113448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 12/15/2022]
Abstract
The β-barrel assembly machinery (BAM) consisting of the central β-barrel BamA and four other lipoproteins mediates the folding of the majority of the outer membrane proteins. BamA is placed in an asymmetric bilayer and its lateral gate is suggested to be the functional hotspot. Here we used in situ pulsed electron-electron double resonance spectroscopy to characterize BamA in the native outer membrane. In the detergent micelles, the data is consistent with mainly an inward-open conformation of BamA. The native membrane considerably enhanced the conformational heterogeneity. The lateral gate and the extracellular loop 3 exist in an equilibrium between different conformations. The outer membrane provides a favorable environment for occupying multiple conformational states independent of the lipoproteins. Our results reveal a highly dynamic behavior of the lateral gate and other key structural elements and provide direct evidence for the conformational modulation of a membrane protein in situ.
Collapse
Affiliation(s)
- Aathira Gopinath
- Institute of BiophysicsDepartment of PhysicsCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| | - Benesh Joseph
- Institute of BiophysicsDepartment of PhysicsCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| |
Collapse
|
62
|
The sacrificial adaptor protein Skp functions to remove stalled substrates from the β-barrel assembly machine. Proc Natl Acad Sci U S A 2022; 119:2114997119. [PMID: 34969846 PMCID: PMC8740687 DOI: 10.1073/pnas.2114997119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/25/2023] Open
Abstract
The outer membrane (OM) of gram-negative bacteria acts as a robust permeability barrier to enable cell survival in a wide variety of harsh environments. Crucial to OM integrity are β-barrel outer membrane proteins (OMPs) that are assembled into the membrane by the broadly conserved β-barrel assembly machine (Bam) complex. Here, we identify specific roles for the periplasmic chaperone Skp in functioning as a sacrificial adaptor protein to remove stalled substrates from the Bam complex, imposing an active quality control mechanism that ensures efficient assembly of nascent OMPs into the OM. This work identifies the molecular mechanism of the Skp/DegP functional relationship and clarifies the long-standing paradox of how substrate release from the high-affinity, long-lived Skp–OMP complex is achieved in vivo. The biogenesis of integral β-barrel outer membrane proteins (OMPs) in gram-negative bacteria requires transport by molecular chaperones across the aqueous periplasmic space. Owing in part to the extensive functional redundancy within the periplasmic chaperone network, specific roles for molecular chaperones in OMP quality control and assembly have remained largely elusive. Here, by deliberately perturbing the OMP assembly process through use of multiple folding-defective substrates, we have identified a role for the periplasmic chaperone Skp in ensuring efficient folding of OMPs by the β-barrel assembly machine (Bam) complex. We find that β-barrel substrates that fail to integrate into the membrane in a timely manner are removed from the Bam complex by Skp, thereby allowing for clearance of stalled Bam–OMP complexes. Following the displacement of OMPs from the assembly machinery, Skp subsequently serves as a sacrificial adaptor protein to directly facilitate the degradation of defective OMP substrates by the periplasmic protease DegP. We conclude that Skp acts to ensure efficient β-barrel folding by directly mediating the displacement and degradation of assembly-compromised OMP substrates from the Bam complex.
Collapse
|
63
|
Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM. Nat Commun 2021; 12:7131. [PMID: 34880256 PMCID: PMC8655018 DOI: 10.1038/s41467-021-27449-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins is mediated by the β-barrel assembly machinery (BAM). The mechanism employed by BAM is complex and so far- incompletely understood. Here, we report the structures of BAM in nanodiscs, prepared using polar lipids and native membranes, where we observe an outward-open state. Mutations in the barrel domain of BamA reveal that plasticity in BAM is essential, particularly along the lateral seam of the barrel domain, which is further supported by molecular dynamics simulations that show conformational dynamics in BAM are modulated by the accessory proteins. We also report the structure of BAM in complex with EspP, which reveals an early folding intermediate where EspP threads from the underside of BAM and incorporates into the barrel domain of BamA, supporting a hybrid-barrel budding mechanism in which the substrate is folded into the membrane sequentially rather than as a single unit.
Collapse
|
64
|
Hall SCL, Clifton LA, Sridhar P, Hardy DJ, Wotherspoon P, Wright J, Whitehouse J, Gamage N, Laxton CS, Hatton C, Hughes GW, Jeeves M, Knowles TJ. Surface-tethered planar membranes containing the β-barrel assembly machinery: a platform for investigating bacterial outer membrane protein folding. Biophys J 2021; 120:5295-5308. [PMID: 34757080 PMCID: PMC8715194 DOI: 10.1016/j.bpj.2021.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/06/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The outer membrane of Gram-negative bacteria presents a robust physicochemical barrier protecting the cell from both the natural environment and acting as the first line of defense against antimicrobial materials. The proteins situated within the outer membrane are responsible for a range of biological functions including controlling influx and efflux. These outer membrane proteins (OMPs) are ultimately inserted and folded within the membrane by the β-barrel assembly machine (Bam) complex. The precise mechanism by which the Bam complex folds and inserts OMPs remains unclear. Here, we have developed a platform for investigating Bam-mediated OMP insertion. By derivatizing a gold surface with a copper-chelating self-assembled monolayer, we were able to assemble a planar system containing the complete Bam complex reconstituted within a phospholipid bilayer. Structural characterization of this interfacial protein-tethered bilayer by polarized neutron reflectometry revealed distinct regions consistent with known high-resolution models of the Bam complex. Additionally, by monitoring changes of mass associated with OMP insertion by quartz crystal microbalance with dissipation monitoring, we were able to demonstrate the functionality of this system by inserting two diverse OMPs within the membrane, pertactin, and OmpT. This platform has promising application in investigating the mechanism of Bam-mediated OMP insertion, in addition to OMP function and activity within a phospholipid bilayer environment.
Collapse
Affiliation(s)
- Stephen C L Hall
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - David J Hardy
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Wotherspoon
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jack Wright
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - James Whitehouse
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Nadisha Gamage
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science & Innovation Campus, Oxfordshire, United Kingdom
| | - Claire S Laxton
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Caitlin Hatton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gareth W Hughes
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark Jeeves
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Timothy J Knowles
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
65
|
Gopinath A, Joseph B. Conformational Flexibility of the Protein Insertase BamA in the Native Asymmetric Bilayer Elucidated by ESR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aathira Gopinath
- Institute of Biophysics Department of Physics Center for Biomolecular Magnetic Resonance (BMRZ) Goethe University Frankfurt Max-von-Laue-Str. 1 60438 Frankfurt/Main Germany
| | - Benesh Joseph
- Institute of Biophysics Department of Physics Center for Biomolecular Magnetic Resonance (BMRZ) Goethe University Frankfurt Max-von-Laue-Str. 1 60438 Frankfurt/Main Germany
| |
Collapse
|
66
|
Ritzmann N, Manioglu S, Hiller S, Müller DJ. Monitoring the antibiotic darobactin modulating the β-barrel assembly factor BamA. Structure 2021; 30:350-359.e3. [PMID: 34875215 DOI: 10.1016/j.str.2021.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
The β-barrel assembly machinery (BAM) complex is an essential component of Escherichia coli that inserts and folds outer membrane proteins (OMPs). The natural antibiotic compound darobactin inhibits BamA, the central unit of BAM. Here, we employ dynamic single-molecule force spectroscopy (SMFS) to better understand the structure-function relationship of BamA and its inhibition by darobactin. The five N-terminal polypeptide transport (POTRA) domains show low mechanical, kinetic, and energetic stabilities. In contrast, the structural region linking the POTRA domains to the transmembrane β-barrel exposes the highest mechanical stiffness and lowest kinetic stability within BamA, thus indicating a mechano-functional role. Within the β-barrel, the four N-terminal β-hairpins H1-H4 expose the highest mechanical stabilities and stiffnesses, while the four C-terminal β-hairpins H5-H6 show lower stabilities and higher flexibilities. This asymmetry within the β-barrel suggests that substrates funneling into the lateral gate formed by β-hairpins H1 and H8 can force the flexible C-terminal β-hairpins to change conformations.
Collapse
Affiliation(s)
- Noah Ritzmann
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
67
|
Thoma J, Burmann BM. Architects of their own environment: How membrane proteins shape the Gram-negative cell envelope. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:1-34. [PMID: 35034716 DOI: 10.1016/bs.apcsb.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gram-negative bacteria are surrounded by a complex multilayered cell envelope, consisting of an inner and an outer membrane, and separated by the aqueous periplasm, which contains a thin peptidoglycan cell wall. These bacteria employ an arsenal of highly specialized membrane protein machineries to ensure the correct assembly and maintenance of the membranes forming the cell envelope. Here, we review the diverse protein systems, which perform these functions in Escherichia coli, such as the folding and insertion of membrane proteins, the transport of lipoproteins and lipopolysaccharide within the cell envelope, the targeting of phospholipids, and the regulation of mistargeted envelope components. Some of these protein machineries have been known for a long time, yet still hold surprises. Others have only recently been described and some are still missing pieces or yet remain to be discovered.
Collapse
Affiliation(s)
- Johannes Thoma
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
68
|
Structural basis of soluble membrane attack complex packaging for clearance. Nat Commun 2021; 12:6086. [PMID: 34667172 PMCID: PMC8526713 DOI: 10.1038/s41467-021-26366-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Unregulated complement activation causes inflammatory and immunological pathologies with consequences for human disease. To prevent bystander damage during an immune response, extracellular chaperones (clusterin and vitronectin) capture and clear soluble precursors to the membrane attack complex (sMAC). However, how these chaperones block further polymerization of MAC and prevent the complex from binding target membranes remains unclear. Here, we address that question by combining cryo electron microscopy (cryoEM) and cross-linking mass spectrometry (XL-MS) to solve the structure of sMAC. Together our data reveal how clusterin recognizes and inhibits polymerizing complement proteins by binding a negatively charged surface of sMAC. Furthermore, we show that the pore-forming C9 protein is trapped in an intermediate conformation whereby only one of its two transmembrane β-hairpins has unfurled. This structure provides molecular details for immune pore formation and helps explain a complement control mechanism that has potential implications for how cell clearance pathways mediate immune homeostasis. To prevent unregulated complement activation, extracellular chaperones capture soluble precursors to the membrane attack complex (sMAC). Here, structural analysis of sMAC reveals how clusterin recognizes heterogeneous sMAC complexes and inhibits polymerization of complement protein C9.
Collapse
|
69
|
Curley CL, Fedrigoni TP, Flaherty EM, Woodilla CJ, Hagan CL. Bacterial Contact-Dependent Inhibition Protein Binds near the Open Lateral Gate in BamA Prior to Toxin Translocation. Biochemistry 2021; 60:2956-2965. [PMID: 34541845 DOI: 10.1021/acs.biochem.1c00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Contact-dependent inhibition (CDI) is a mechanism of interbacterial competition in Gram-negative bacteria. The critical component of CDI systems is a large protein named CdiA; it forms a filament on the bacterial cell surface and contains a toxin domain at its C-terminal end. Upon binding to a receptor protein on the surface of a neighboring cell, CdiA delivers the toxin domain through the outer membrane of the neighboring bacterium. The mechanism of that delivery process is poorly understood. We have characterized how CdiA from E. coli EC93 binds to its receptor, BamA, to understand how this binding event might initiate the process of toxin delivery. BamA is an essential protein that assembles β-barrel proteins into the outer membranes of all Gram-negative bacteria; this assembly process depends on BamA's unique ability to open laterally in the lipid bilayer through a gate in its own membrane-embedded β-barrel. Through site-specific photo-cross-linking and mutational analysis, we demonstrate that the BamA-CdiA interaction depends on a small number of non-conserved amino acids on the extracellular surface of BamA, but the protein interface extends over a region near BamA's lateral gate. We further demonstrate that BamA's lateral gate can open without disrupting the interaction with CdiA. CdiA thus appears to initially engage BamA in a manner that could allow it to utilize BamA's lateral gate in subsequent steps in the toxin translocation process.
Collapse
Affiliation(s)
- Cameron L Curley
- Department of Chemistry, The College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Thomas P Fedrigoni
- Department of Chemistry, The College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Erin M Flaherty
- Department of Chemistry, The College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Christopher J Woodilla
- Department of Chemistry, The College of the Holy Cross, Worcester, Massachusetts 01610, United States
| | - Christine L Hagan
- Department of Chemistry, The College of the Holy Cross, Worcester, Massachusetts 01610, United States
| |
Collapse
|
70
|
Wang Q, Guan Z, Qi L, Zhuang J, Wang C, Hong S, Yan L, Wu Y, Cao X, Cao J, Yan J, Zou T, Liu Z, Zhang D, Yan C, Yin P. Structural insight into the SAM-mediated assembly of the mitochondrial TOM core complex. Science 2021; 373:1377-1381. [PMID: 34446444 DOI: 10.1126/science.abh0704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangbo Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinjin Zhuang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Sixing Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqian Cao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbo Cao
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Zou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
71
|
Phan TH, Kuijl C, Huynh DT, Jong WSP, Luirink J, van Ulsen P. Overproducing the BAM complex improves secretion of difficult-to-secrete recombinant autotransporter chimeras. Microb Cell Fact 2021; 20:176. [PMID: 34488755 PMCID: PMC8419823 DOI: 10.1186/s12934-021-01668-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/26/2021] [Indexed: 11/14/2022] Open
Abstract
Monomeric autotransporters have been used extensively to transport recombinant proteins or protein domains to the cell surface of Gram-negative bacteria amongst others for antigen display. Genetic fusion of such antigens into autotransporters has yielded chimeras that can be used for vaccination purposes. However, not every fusion construct is transported efficiently across the cell envelope. Problems occur in particular when the fused antigen attains a relatively complex structure in the periplasm, prior to its translocation across the outer membrane. The latter step requires the interaction with periplasmic chaperones and the BAM (β-barrel assembly machinery) complex in the outer membrane. This complex catalyzes insertion and folding of β-barrel outer membrane proteins, including the β-barrel domain of autotransporters. Here, we investigated whether the availability of periplasmic chaperones or the BAM complex is a limiting factor for the surface localization of difficult-to-secrete chimeric autotransporter constructs. Indeed, we found that overproduction of in particular the BAM complex, increases surface display of difficult-to-secrete chimeras. Importantly, this beneficial effect appeared to be generic not only for a number of monomeric autotransporter fusions but also for fusions to trimeric autotransporters. Therefore, overproduction of BAM might be an attractive strategy to improve the production of recombinant autotransporter constructs.
Collapse
Affiliation(s)
- Trang H Phan
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Coen Kuijl
- Medical Microbiology and Infection Control, Amsterdam Institute of Infection & Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Dung T Huynh
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Abera Bioscience AB, Solna, Sweden
| | - Peter van Ulsen
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
72
|
Miyazaki R, Watanabe T, Yoshitani K, Akiyama Y. Edge-strand of BepA interacts with immature LptD on the β-barrel assembly machine to direct it to on- and off-pathways. eLife 2021; 10:70541. [PMID: 34463613 PMCID: PMC8423444 DOI: 10.7554/elife.70541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria functions as a selective permeability barrier. Escherichia coli periplasmic Zn-metallopeptidase BepA contributes to the maintenance of OM integrity through its involvement in the biogenesis and degradation of LptD, a β-barrel protein component of the lipopolysaccharide translocon. BepA either promotes the maturation of LptD when it is on the normal assembly pathway (on-pathway) or degrades it when its assembly is compromised (off-pathway). BepA performs these functions probably on the β‐barrel assembly machinery (BAM) complex. However, how BepA recognizes and directs an immature LptD to different pathways remains unclear. Here, we explored the interactions among BepA, LptD, and the BAM complex. We found that the interaction of the BepA edge-strand located adjacent to the active site with LptD was crucial not only for proteolysis but also, unexpectedly, for assembly promotion of LptD. Site-directed crosslinking analyses indicated that the unstructured N-terminal half of the β-barrel-forming domain of an immature LptD contacts with the BepA edge-strand. Furthermore, the C-terminal region of the β-barrel-forming domain of the BepA-bound LptD intermediate interacted with a ‘seam’ strand of BamA, suggesting that BepA recognized LptD assembling on the BAM complex. Our findings provide important insights into the functional mechanism of BepA.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tetsuro Watanabe
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kohei Yoshitani
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
73
|
Abstract
Many integral membrane proteins form oligomeric complexes, but the assembly of these structures is poorly understood. Here, we show that the assembly of OmpC, a trimeric porin that resides in the Escherichia coli outer membrane (OM), can be reconstituted in vitro. Although we observed the insertion of both urea-denatured and in vitro-synthesized OmpC into pure lipid vesicles at physiological pH, the protein assembled only into dead-end dimers. In contrast, in vitro-synthesized OmpC was inserted into proteoliposomes that contained the barrel assembly machinery (Bam) complex, a conserved heterooligomer that catalyzes protein integration into the bacterial OM, and folded into heat-stable trimers by passing through a short-lived dimeric intermediate. Interestingly, complete OmpC assembly was also dependent on the addition of lipopolysaccharide (LPS), a glycolipid located exclusively in the OM. Our results strongly suggest that trimeric porins form through a stepwise process that requires the integration of the protein into the OM in an assembly-competent state. Furthermore, our results provide surprising evidence that interaction with LPS is required not only for trimerization but also for the productive insertion of individual subunits into the lipid bilayer.
Collapse
|
74
|
High-throughput suppressor screen demonstrates that RcsF monitors outer membrane integrity and not Bam complex function. Proc Natl Acad Sci U S A 2021; 118:2100369118. [PMID: 34349021 DOI: 10.1073/pnas.2100369118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The regulator of capsule synthesis (Rcs) is a complex signaling cascade that monitors gram-negative cell envelope integrity. The outer membrane (OM) lipoprotein RcsF is the sensory component, but how RcsF functions remains elusive. RcsF interacts with the β-barrel assembly machinery (Bam) complex, which assembles RcsF in complex with OM proteins (OMPs), resulting in RcsF's partial cell surface exposure. Elucidating whether RcsF/Bam or RcsF/OMP interactions are important for its sensing function is challenging because the Bam complex is essential, and partial loss-of-function mutations broadly compromise the OM biogenesis. Our recent discovery that, in the absence of nonessential component BamE, RcsF inhibits function of the central component BamA provided a genetic tool to select mutations that specifically prevent RcsF/BamA interactions. We employed a high-throughput suppressor screen to isolate a collection of such rcsF and bamA mutants and characterized their impact on RcsF/OMP assembly and Rcs signaling. Using these mutants and BamA inhibitors MRL-494L and darobactin, we provide multiple lines of evidence against the model in which RcsF senses Bam complex function. We show that Rcs activation in bam mutants results from secondary OM and lipopolysaccharide defects and that RcsF/OMP assembly is required for this activation, supporting an active role of RcsF/OMP complexes in sensing OM stress.
Collapse
|
75
|
Wood TM, Slingerland CJ, Martin NI. A Convenient Chemoenzymatic Preparation of Chimeric Macrocyclic Peptide Antibiotics with Potent Activity against Gram-Negative Pathogens. J Med Chem 2021; 64:10890-10899. [PMID: 34283589 PMCID: PMC8365600 DOI: 10.1021/acs.jmedchem.1c00176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The continuing rise
of antibiotic resistance, particularly among
Gram-negative pathogens, threatens to undermine many aspects of modern
medical practice. To address this threat, novel antibiotics that utilize
unexploited bacterial targets are urgently needed. Over the past decade,
a number of studies have highlighted the antibacterial potential of
macrocyclic peptides that target Gram-negative outer membrane proteins
(OMPs). Recently, it was reported that the antibacterial activities
of OMP-targeting macrocyclic peptidomimetics of the antimicrobial
peptide protegrin-1 are dramatically enhanced upon linking to polymyxin
E nonapeptide (PMEN). In this study, we describe a convergent, chemoenzymatic
route for the convenient preparation of such conjugates. Specifically,
we investigated the use of both amide bond formation and azide-alkyne
ligation for connecting an OMP-targeting macrocyclic peptide to a
PMEN building block (obtained by enzymatic degradation of polymyxin
E). The conjugates obtained via both approaches display potent antibacterial
activity against a range of Gram-negative pathogens including multi-drug-resistant
isolates.
Collapse
Affiliation(s)
- Thomas M Wood
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Cornelis J Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| |
Collapse
|
76
|
Cao L, Do T, Link AJ. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J Ind Microbiol Biotechnol 2021; 48:6121428. [PMID: 33928382 PMCID: PMC8183687 DOI: 10.1093/jimb/kuab005] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products remain a critical source of medicines and drug leads. One of the most rapidly growing superclasses of natural products is RiPPs: ribosomally synthesized and posttranslationally modified peptides. RiPPs have rich and diverse bioactivities. This review highlights examples of the molecular mechanisms of action that underly those bioactivities. Particular emphasis is placed on RiPP/target interactions for which there is structural information. This detailed mechanism of action work is critical toward the development of RiPPs as therapeutics and can also be used to prioritize hits in RiPP genome mining studies.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
77
|
The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding. Nat Commun 2021; 12:4174. [PMID: 34234105 PMCID: PMC8263589 DOI: 10.1038/s41467-021-24432-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The folding of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the β-barrel assembly machinery (BAM). How lateral opening in the β-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.
Collapse
|
78
|
Xiao L, Han L, Li B, Zhang M, Zhou H, Luo Q, Zhang X, Huang Y. Structures of the β-barrel assembly machine recognizing outer membrane protein substrates. FASEB J 2021; 35:e21207. [PMID: 33368572 DOI: 10.1096/fj.202001443rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/11/2022]
Abstract
β-barrel outer membrane proteins (β-OMPs) play critical roles in nutrition acquisition, protein import/export, and other fundamental biological processes. The assembly of β-OMPs in Gram-negative bacteria is mediated by the β-barrel assembly machinery (BAM) complex, yet its precise mechanism remains elusive. Here, we report two structures of the BAM complex in detergents and in nanodisks, and two crystal structures of the BAM complex with bound substrates. Structural analysis indicates that the membrane compositions surrounding the BAM complex could modulate its overall conformations, indicating low energy barriers between different conformational states and a highly dynamic nature of the BAM complex. Importantly, structures of the BAM complex with bound substrates and the related functional analysis show that the first β-strand of the BamA β-barrel (β1BamA ) in the BAM complex is associated with the last but not the first β-strand of a β-OMP substrate via antiparallel β-strand interactions. These observations are consistent with the β-signal hypothesis during β-OMP biogenesis, and suggest that the β1BamA strand in the BAM complex may interact with the last β-strand of an incoming β-OMP substrate upon their release from the chaperone-bound state.
Collapse
Affiliation(s)
- Le Xiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Long Han
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bufan Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Manfeng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haizhen Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingshan Luo
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yihua Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
79
|
Page JE, Walker S. Natural products that target the cell envelope. Curr Opin Microbiol 2021; 61:16-24. [PMID: 33662818 PMCID: PMC8169544 DOI: 10.1016/j.mib.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
The inexorable spread of resistance to clinically used drugs demands that we maintain a full pipeline of antibiotic candidates. As organisms have struggled to survive and compete over evolutionary history, they have developed the capacity to make a remarkably diverse array of natural products that target the cell envelope. A few have been developed for use in the clinic but most have not, and there are still an enormous number of opportunities to investigate. Substrate-binding antibiotics for Gram-positive organisms, phage-derived lysins, and outer membrane protein-targeting agents for Gram-negative organisms represent promising avenues where nature's gifts may be repurposed for use in the clinic.
Collapse
Affiliation(s)
- Julia E Page
- Department of Microbiology, Harvard Medical School, HIM1013, 4 Blackfan Circle, Boston, MA, 02115, United States
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, HIM1013, 4 Blackfan Circle, Boston, MA, 02115, United States.
| |
Collapse
|
80
|
Wu X, Rapoport TA. Translocation of Proteins through a Distorted Lipid Bilayer. Trends Cell Biol 2021; 31:473-484. [PMID: 33531207 PMCID: PMC8122044 DOI: 10.1016/j.tcb.2021.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier.
Collapse
Affiliation(s)
- Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
81
|
Steenhuis M, van Ulsen P, Martin NI, Luirink J. A ban on BAM: an update on inhibitors of the β-barrel assembly machinery. FEMS Microbiol Lett 2021; 368:6287571. [PMID: 34048543 DOI: 10.1093/femsle/fnab059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Gram-negative pathogens are a rapidly increasing threat to human health worldwide due to high rates of antibiotic resistance and the lack of development of novel antibiotics. The protective cell envelope of gram-negative bacteria is a major permeability barrier that contributes to the problem by restricting the uptake of antibiotics. On the other hand, its unique architecture also makes it a suitable target for antibiotic interference. In particular, essential multiprotein machines that are required for biogenesis of the outer membrane have attracted attention in antibacterial design strategies. Recently, significant progress has been made in the development of inhibitors of the β-barrel assembly machine (BAM) complex. Here, we summarize the current state of drug development efforts targeting the BAM complex in pursuit of new antibiotics.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Peter van Ulsen
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Nonnensteeg 3, 2311 VJ, Leiden, The Netherlands
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
82
|
Dautin N. Folding Control in the Path of Type 5 Secretion. Toxins (Basel) 2021; 13:341. [PMID: 34064645 PMCID: PMC8151025 DOI: 10.3390/toxins13050341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.
Collapse
Affiliation(s)
- Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|
83
|
Wang X, Peterson JH, Bernstein HD. Bacterial Outer Membrane Proteins Are Targeted to the Bam Complex by Two Parallel Mechanisms. mBio 2021; 12:e00597-21. [PMID: 33947759 PMCID: PMC8262991 DOI: 10.1128/mbio.00597-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 01/23/2023] Open
Abstract
Membrane proteins that are integrated into the outer membrane of Gram-negative bacteria typically contain a unique "β barrel" structure that serves as a membrane spanning segment. A conserved "β signal" motif is located at the C terminus of the β barrel of many outer membrane proteins (OMPs), but the function of this sequence is unclear. We found that mutations in the β signal slightly delayed the assembly of three model Escherichia coli OMPs by reducing their affinity for the barrel assembly machinery (Bam) complex, a heterooligomer that catalyzes β barrel insertion, and led to the degradation of a fraction of the protein in the periplasm. Interestingly, the absence of the periplasmic chaperone SurA amplified the effect of the mutations and caused the complete degradation of the mutant proteins. In contrast, the absence of another periplasmic chaperone (Skp) suppressed the effect of the mutations and considerably enhanced the efficiency of assembly. Our results reveal the existence of two parallel OMP targeting mechanisms that rely on a cis-acting peptide (the β signal) and a trans-acting factor (SurA), respectively. Our results also challenge the long-standing view that periplasmic chaperones are redundant and provide evidence that they have specialized functions.IMPORTANCE Proteins that are embedded in the outer membrane of Gram-negative bacteria (OMPs) play an important role in protecting the cell from harmful chemicals. OMPs share a common architecture and often contain a conserved sequence motif (β motif) of unknown function. Although OMPs are escorted to the outer membrane by proteins called chaperones, the exact function of the chaperones is also unclear. Here, we show that the β motif and the chaperone SurA both target OMPs to the β barrel insertion machinery in the outer membrane. In contrast, the chaperone Skp delivers unintegrated OMPs to protein degradation complexes. Our results challenge the long-standing view that chaperones are functionally redundant and strongly suggest that they have specialized roles in OMP targeting and quality control.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
84
|
The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 2021; 593:125-129. [PMID: 33854236 DOI: 10.1038/s41586-021-03455-w] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023]
Abstract
Antibiotics that target Gram-negative bacteria in new ways are needed to resolve the antimicrobial resistance crisis1-3. Gram-negative bacteria are protected by an additional outer membrane, rendering proteins on the cell surface attractive drug targets4,5. The natural compound darobactin targets the bacterial insertase BamA6-the central unit of the essential BAM complex, which facilitates the folding and insertion of outer membrane proteins7-13. BamA lacks a typical catalytic centre, and it is not obvious how a small molecule such as darobactin might inhibit its function. Here we resolve the mode of action of darobactin at the atomic level using a combination of cryo-electron microscopy, X-ray crystallography, native mass spectrometry, in vivo experiments and molecular dynamics simulations. Two cyclizations pre-organize the darobactin peptide in a rigid β-strand conformation. This creates a mimic of the recognition signal of native substrates with a superior ability to bind to the lateral gate of BamA. Upon binding, darobactin replaces a lipid molecule from the lateral gate to use the membrane environment as an extended binding pocket. Because the interaction between darobactin and BamA is largely mediated by backbone contacts, it is particularly robust against potential resistance mutations. Our results identify the lateral gate as a functional hotspot in BamA and will allow the rational design of antibiotics that target this bacterial Achilles heel.
Collapse
|
85
|
Guérin J, Buchanan SK. Protein import and export across the bacterial outer membrane. Curr Opin Struct Biol 2021; 69:55-62. [PMID: 33901701 DOI: 10.1016/j.sbi.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 01/06/2023]
Abstract
The bacterial outer membrane forms an impermeable barrier to the environment, but a wide variety of substances must cross it without compromising the membrane. Perhaps, the most fascinating transport phenomenon is the import and export of very large protein toxins using relatively small β-barrel proteins residing in the outer membrane. Progress has been made on three systems in recent years that shed light on this process. In this review, we summarize bacteriocin (toxin) import using TonB-dependent transporters and protein secretion by autotransporters and two partner secretion systems.
Collapse
Affiliation(s)
- Jérémy Guérin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
86
|
Ranava D, Yang Y, Orenday-Tapia L, Rousset F, Turlan C, Morales V, Cui L, Moulin C, Froment C, Munoz G, Rech J, Marcoux J, Caumont-Sarcos A, Albenne C, Bikard D, Ieva R. Lipoprotein DolP supports proper folding of BamA in the bacterial outer membrane promoting fitness upon envelope stress. eLife 2021; 10:67817. [PMID: 33847565 PMCID: PMC8081527 DOI: 10.7554/elife.67817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/04/2021] [Indexed: 01/03/2023] Open
Abstract
In Proteobacteria, integral outer membrane proteins (OMPs) are crucial for the maintenance of the envelope permeability barrier to some antibiotics and detergents. In Enterobacteria, envelope stress caused by unfolded OMPs activates the sigmaE (σE) transcriptional response. σE upregulates OMP biogenesis factors, including the β-barrel assembly machinery (BAM) that catalyses OMP folding. Here we report that DolP (formerly YraP), a σE-upregulated and poorly understood outer membrane lipoprotein, is crucial for fitness in cells that undergo envelope stress. We demonstrate that DolP interacts with the BAM complex by associating with outer membrane-assembled BamA. We provide evidence that DolP is important for proper folding of BamA that overaccumulates in the outer membrane, thus supporting OMP biogenesis and envelope integrity. Notably, mid-cell recruitment of DolP had been linked to regulation of septal peptidoglycan remodelling by an unknown mechanism. We now reveal that, during envelope stress, DolP loses its association with the mid-cell, thereby suggesting a mechanistic link between envelope stress caused by impaired OMP biogenesis and the regulation of a late step of cell division.
Collapse
Affiliation(s)
- David Ranava
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yiying Yang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luis Orenday-Tapia
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - François Rousset
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - Catherine Turlan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Violette Morales
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lun Cui
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - Cyril Moulin
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gladys Munoz
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - David Bikard
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
87
|
Tang X, Chang S, Zhang K, Luo Q, Zhang Z, Wang T, Qiao W, Wang C, Shen C, Zhang Z, Zhu X, Wei X, Dong C, Zhang X, Dong H. Structural basis for bacterial lipoprotein relocation by the transporter LolCDE. Nat Struct Mol Biol 2021; 28:347-355. [PMID: 33782615 DOI: 10.1038/s41594-021-00573-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
Lipoproteins in the outer membrane of Gram-negative bacteria are involved in various vital physiological activities, including multidrug resistance. Synthesized in the cytoplasm and matured in the inner membrane, lipoproteins must be transported to the outer membrane through the Lol pathway mediated by the ATP-binding cassette transporter LolCDE in the inner membrane via an unknown mechanism. Here, we report cryo-EM structures of Escherichia coli LolCDE in apo, lipoprotein-bound, LolA-bound, ADP-bound and AMP-PNP-bound states at a resolution of 3.2-3.8 Å, covering the complete lipoprotein transport cycle. Mutagenesis and in vivo viability assays verify features of the structures and reveal functional residues and structural characteristics of LolCDE. The results provide insights into the mechanisms of sorting and transport of outer-membrane lipoproteins and may guide the development of novel therapies against multidrug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Xiaodi Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.,Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Ke Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qinghua Luo
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Zhengyu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ting Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Wen Qiao
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Chen Wang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.,Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Chongrong Shen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Zhibo Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Xiaofeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China.,College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Changjiang Dong
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China. .,Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China. .,Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China.
| |
Collapse
|
88
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
89
|
Doyle MT, Bernstein HD. BamA forms a translocation channel for polypeptide export across the bacterial outer membrane. Mol Cell 2021; 81:2000-2012.e3. [PMID: 33705710 DOI: 10.1016/j.molcel.2021.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/05/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
The β-barrel assembly machine (BAM) integrates β-barrel proteins into the outer membrane (OM) of Gram-negative bacteria. An essential BAM subunit (BamA) catalyzes integration by promoting the formation of a hybrid-barrel intermediate state between its own β-barrel domain and that of its client proteins. Here we show that in addition to catalyzing the integration of β-barrel proteins, BamA functions as a polypeptide export channel. In vivo structural mapping via intermolecular disulfide crosslinking showed that the extracellular "passenger" domain of a member of the "autotransporter" superfamily of virulence factors traverses the OM through the BamA β-barrel lumen. Furthermore, we demonstrate that a highly conserved residue within autotransporter β-barrels is required to position the passenger inside BamA to initiate translocation and that during translocation, the passenger stabilizes the hybrid-barrel state. Our results not only establish a new function for BamA but also unify the divergent functions of BamA and other "Omp85" superfamily transporters.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harris David Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
90
|
Upert G, Luther A, Obrecht D, Ermert P. Emerging peptide antibiotics with therapeutic potential. MEDICINE IN DRUG DISCOVERY 2021; 9:100078. [PMID: 33398258 PMCID: PMC7773004 DOI: 10.1016/j.medidd.2020.100078] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 02/09/2023] Open
Abstract
This review covers some of the recent progress in the field of peptide antibiotics with a focus on compounds with novel or established mode of action and with demonstrated efficacy in animal infection models. Novel drug discovery approaches, linear and macrocyclic peptide antibiotics, lipopeptides like the polymyxins as well as peptides addressing targets located in the plasma membrane or in the outer membrane of bacterial cells are discussed.
Collapse
Key Words
- ADMET, absorption, distribution, metabolism and excretion – toxicity in pharmacokinetics
- AMP, antimicrobial peptide
- AMR, antimicrobial resistance
- ATCC, ATCC cell collection
- Antibiotic
- BAM, β-barrel assembly machinery
- CC50, cytotoxic concentration to kill 50% of cells
- CD, circular dichroism
- CFU, colony forming unit
- CLSI, clinical and laboratory standards institute
- CMS, colistin methane sulfonate
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine
- ESKAPE, acronym encompassing six bacterial pathogens (often carrying antibiotic resistance): Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp
- FDA, U. S. Food and Drug Administration
- HABP, hospital acquired bacterial pneumonia
- HDP, host-defense peptide
- HEK293, human embryonic kidney 293 cells
- HK-2, human kidney 2 cells (proximal tubular cell line)
- HepG2, human hepatocellular carcinoma cell line
- Hpg, 4-hydroxy-phenyl glycine
- ITC, isothermal titration calorimetry
- KPC, Klebsiella pneumoniae metallo-β-lactamase C resistant
- LPS, lipopolysaccharide
- LptA, lipopolysaccharide transport protein A
- LptC, lipopolysaccharide transport protein C
- LptD, lipopolysaccharide transport protein D
- MDR, multidrug-resistant
- MH-I, Müller-Hinton broth I
- MH-II, Müller-Hinton broth II (cation adjusted)
- MIC, minimal inhibitory concentration
- MRSA, methicilline-resistant S. aureus
- MSSA, methicilline-sensitive S. aureus
- MoA, mechanism (mode) of action
- NDM-1, New Delhi metallo-β-lactamase resistant
- NOAEL, no adverse effect level
- ODL, odilorhabdin
- OMPTA (outer membrane targeting antibiotic)
- OMPTA, outer membrane targeting antibiotic
- Omp, outer membrane protein
- PBMC, peripheral mononuclear blood cell
- PBP, penicillin-binding protein
- PBS, phosphate-buffered saline
- PK, pharmacokinetics
- POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- POPG, 2-oleoyl-1-palmitoyl-sn-glycero-3-phospho-(1-glycerol)
- PrAMPs, polyproline antimicrobial peptides
- RBC, red blood cell
- SAR, structure-activity relationship
- SPR, surface plasmon resonance
- SPase I, signal peptidase I
- VABP, ventilator associated bacterial pneumonia
- VIM-1, beta-lactamase 2 (K. pneumoniae)
- VISA, vancomycin-intermediate S. aureus
- VRE, vancomycin-resistant enterococcus
- WHO, World Health Organization
- WT, wild type
- WTA, wall teichoic acid
- XDR, extremely drug-resistant
- antimicrobial peptide
- antimicrobial resistance
- bid, bis in die (two times a day)
- i.p., intraperitoneal
- i.v., intravenous
- lipopeptide
- mITT population, minimal intend-to-treat population
- peptide antibiotic
- s.c., subcutaneous
Collapse
Affiliation(s)
- Gregory Upert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Anatol Luther
- Bachem AG, Hauptstrasse 114, 4416 Bubendorf, Switzerland
| | - Daniel Obrecht
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Philipp Ermert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| |
Collapse
|
91
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
92
|
Chen X, Ding Y, Bamert RS, Le Brun AP, Duff AP, Wu CM, Hsu HY, Shiota T, Lithgow T, Shen HH. Substrate-dependent arrangements of the subunits of the BAM complex determined by neutron reflectometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183587. [PMID: 33639106 DOI: 10.1016/j.bbamem.2021.183587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/22/2022]
Abstract
In Gram-negative bacteria, the β-barrel assembly machinery (BAM) complex catalyses the assembly of β-barrel proteins into the outer membrane, and is composed of five subunits: BamA, BamB, BamC, BamD and BamE. Once assembled, - β-barrel proteins can be involved in various functions including uptake of nutrients, export of toxins and mediating host-pathogen interactions, but the precise mechanism by which these ubiquitous and often essential β-barrel proteins are assembled is yet to be established. In order to determine the relative positions of BAM subunits in the membrane environment we reconstituted each subunit into a biomimetic membrane, characterizing their interaction and structural changes by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) and neutron reflectometry. Our results suggested that the binding of BamE, or a BamDE dimer, to BamA induced conformational changes in the polypeptide transported-associated (POTRA) domains of BamA, but that BamB or BamD alone did not promote any such changes. As monitored by neutron reflectometry, addition of an unfolded substrate protein extended the length of POTRA domains further away from the membrane interface as part of the mechanism whereby the substrate protein was folded into the membrane.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Materials Science & Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yue Ding
- Department of Materials Science & Engineering, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Rebecca S Bamert
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Anthony P Duff
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Chun-Ming Wu
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, PR China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, PR China
| | - Takuya Shiota
- Institute for Tenure Track Promotion, Organization for Promotion of Career Management, University of Miyazaki, Miyazaki, Japan
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Hsin-Hui Shen
- Department of Materials Science & Engineering, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
93
|
Tomasek D, Kahne D. The assembly of β-barrel outer membrane proteins. Curr Opin Microbiol 2021; 60:16-23. [PMID: 33561734 DOI: 10.1016/j.mib.2021.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
The outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts contain β-barrel integral membrane proteins. In bacteria, the five-protein β-barrel assembly machine (Bam) accelerates the folding and membrane integration of these proteins. The central component of the machine, BamA, contains a β-barrel domain that can adopt a lateral-open state with its N-terminal and C-terminal β-strands unpaired. Recently, strategies have been developed to capture β-barrel folding intermediates on the Bam complex. Biochemical and structural studies provide support for a model in which substrates assemble at the lateral opening of BamA. In this model, the N-terminal β-strand of BamA captures the C-terminal β-strand of substrates by hydrogen bonding to allow their directional folding and subsequent release into the membrane.
Collapse
Affiliation(s)
- David Tomasek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel Kahne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
94
|
Takeda H, Tsutsumi A, Nishizawa T, Lindau C, Busto JV, Wenz LS, Ellenrieder L, Imai K, Straub SP, Mossmann W, Qiu J, Yamamori Y, Tomii K, Suzuki J, Murata T, Ogasawara S, Nureki O, Becker T, Pfanner N, Wiedemann N, Kikkawa M, Endo T. Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature 2021; 590:163-169. [PMID: 33408415 DOI: 10.1038/s41586-020-03113-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
The mitochondrial outer membrane contains so-called β-barrel proteins, which allow communication between the cytosol and the mitochondrial interior1-3. Insertion of β-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB)4-6. Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.8-3.2 Å. The dimeric complex contains two copies of the β-barrel channel protein Sam50-Sam50a and Sam50b-with partially open lateral gates. The peripheral membrane proteins Sam35 and Sam37 cap the Sam50 channels from the cytosolic side, and are crucial for the structural and functional integrity of the dimeric complex. In the second complex, Sam50b is replaced by the β-barrel protein Mdm10. In cooperation with Sam50a, Sam37 recruits and traps Mdm10 by penetrating the interior of its laterally closed β-barrel from the cytosolic side. The substrate-loaded SAM complex contains one each of Sam50, Sam35 and Sam37, but neither Mdm10 nor a second Sam50, suggesting that Mdm10 and Sam50b function as placeholders for a β-barrel substrate released from Sam50a. Our proposed mechanism for dynamic switching of β-barrel subunits and substrate explains how entire precursor proteins can fold in association with the mitochondrial machinery for β-barrel assembly.
Collapse
Affiliation(s)
- Hironori Takeda
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jon V Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena-Sophie Wenz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Sanofi Deutschland GmbH, Frankfurt am Main, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Novartis Pharma AG, Basel, Switzerland
| | - Kenichiro Imai
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Sanofi-Aventis (Suisse) ag, Vernier, Switzerland
| | - Waltraut Mossmann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jian Qiu
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Junko Suzuki
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan.
| |
Collapse
|
95
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
96
|
Qi YL, Guo L, Chen LL, Yuan DD, Wang HR, Cao YY, Yang YS, Zhu HL. Two birds with one stone: a NIR fluorescent probe for mitochondrial protein imaging and its application in photodynamic therapy. J Mater Chem B 2021; 9:6068-6075. [PMID: 34286809 DOI: 10.1039/d1tb00881a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial proteins, most of which are encoded in the nucleus and the rest of which are regulated by the mitochondrial genome, play pivotal roles in essential cellular functions. However, fluorescent probes that can be used for monitoring mitochondrial proteins have not yet been widely developed, thereby severely limiting the exploration of the functions of proteins in mitochondria. Towards this end, here we propose a near-infrared (NIR) fluorescence probe MPP to effectively illuminate the dynamic changes in mitochondrial proteins in live cells under oxidative stress, with excellent temporal and spatial resolution. Of particular importance, MPP extends the study of the pharmacology involved in apoptosis induced by anti-cancer drugs (hydroxycamptothecin (HCPT), epirubicin (Epi) and cyclophosphamide (CPA)) for the first time. Furthermore, employing a protein-activatable strategy, this probe could serve as an excellent phototherapeutic agent in photodynamic therapy (PDT). Finally, in vivo experiments suggest that this versatile probe can be used to image tumors in HeLa tumor-bearing mice for 24 h, which demonstrates that our probe could play a dual role as a robust phototherapeutic and imaging agent.
Collapse
Affiliation(s)
- Ya-Lin Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Long Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Li-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Dan-Dan Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Yu-Yao Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
97
|
Lundquist K, Billings E, Bi M, Wellnitz J, Noinaj N. The assembly of β-barrel membrane proteins by BAM and SAM. Mol Microbiol 2020; 115:425-435. [PMID: 33314350 DOI: 10.1111/mmi.14666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Gram-negative bacteria, mitochondria, and chloroplasts all possess an outer membrane populated with a host of β-barrel outer-membrane proteins (βOMPs). These βOMPs play crucial roles in maintaining viability of their hosts, and therefore, it is essential to understand the biogenesis of this class of membrane proteins. In recent years, significant structural and functional advancements have been made toward elucidating this process, which is mediated by the β-barrel assembly machinery (BAM) in Gram-negative bacteria, and by the sorting and assembly machinery (SAM) in mitochondria. Structures of both BAM and SAM have now been reported, allowing a comparison and dissection of the two machineries, with other studies reporting on functional aspects of each. Together, these new insights provide compelling support for the proposed budding mechanism, where each nascent βOMP forms a hybrid-barrel intermediate with BAM/SAM in route to its biogenesis into the membrane. Here, we will review these recent studies and highlight their contributions toward understanding βOMP biogenesis in Gram-negative bacteria and in mitochondria. We will also weigh the evidence supporting each of the two leading mechanistic models for how BAM/SAM function, and offer an outlook on future studies within the field.
Collapse
Affiliation(s)
- Karl Lundquist
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Evan Billings
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Maxine Bi
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - James Wellnitz
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
98
|
Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide. Nat Chem Biol 2020; 17:187-195. [PMID: 33199913 DOI: 10.1038/s41589-020-00694-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023]
Abstract
Lipopolysaccharide (LPS) transport to the outer membrane (OM) is a crucial step in the biogenesis of microbial surface defenses. Although many features of the translocation mechanism have been elucidated, molecular details of LPS insertion via the LPS transport (Lpt) OM protein LptDE remain elusive. Here, we integrate native MS with hydrogen-deuterium exchange MS and molecular dynamics simulations to investigate the influence of substrate and peptide binding on the conformational dynamics of LptDE. Our data reveal that LPS induces opening of the LptD β-taco domain, coupled with conformational changes on β-strands adjacent to the putative lateral exit gate. Conversely, an antimicrobial peptide, thanatin, stabilizes the β-taco, thereby preventing LPS transport. Our results illustrate that LPS insertion into the OM relies on concerted opening movements of both the β-barrel and β-taco domains of LptD, and suggest a means for developing antimicrobial therapeutics targeting this essential process in Gram-negative ESKAPE pathogens.
Collapse
|
99
|
Liu J, Gumbart JC. Membrane thinning and lateral gating are consistent features of BamA across multiple species. PLoS Comput Biol 2020; 16:e1008355. [PMID: 33112853 PMCID: PMC7652284 DOI: 10.1371/journal.pcbi.1008355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
In Gram-negative bacteria, the folding and insertion of β-barrel outer membrane proteins (OMPs) to the outer membrane are mediated by the β-barrel assembly machinery (BAM) complex. Two leading models of this process have been put forth: the hybrid barrel model, which claims that a lateral gate in BamA’s β-barrel can serve as a template for incoming OMPs, and the passive model, which claims that a thinned membrane near the lateral gate of BamA accelerates spontaneous OMP insertion. To examine the key elements of these two models, we have carried out 45.5 μs of equilibrium molecular dynamics simulations of BamA with and without POTRA domains from Escherichia coli, Salmonella enterica, Haemophilus ducreyi and Neisseria gonorrhoeae, together with BamA’s homolog, TamA from E. coli, in their native, species-specific outer membranes. In these equilibrium simulations, we consistently observe membrane thinning near the lateral gate for all proteins. We also see occasional spontaneous lateral gate opening and sliding of the β-strands at the gate interface for N. gonorrhoeae, indicating that the gate is dynamic. An additional 14 μs of free-energy calculations shows that the energy necessary to open the lateral gate in BamA/TamA varies by species, but is always lower than the Omp85 homolog, FhaC. Our combined results suggest OMP insertion utilizes aspects of both the hybrid barrel and passive models. Gram-negative bacteria such as Escherichia coli have a second, outer membrane surrounding them. This outer membrane provides an additional layer of protection, but also presents an additional challenge in its construction, exacerbated by the lack of chemical energy in this region of the bacterial cell. For example, proteins in the outer membrane are inserted via BamA, itself an integral membrane protein. The precise mechanisms by which BamA assists in the insertion process are still unclear. Here, we use extensive simulations in atomistic detail of BamA from multiple species in its native outer membrane environment to shed light on this process. We find that the lateral gate of BamA, a proposed pathway into the membrane, is dynamic, although to a degree varying by species. On the other hand, thinning of the outer membrane near BamA’s lateral gate is observed consistently across all simulations. We conclude that multiple features of BamA contribute to protein insertion into the outer membrane.
Collapse
Affiliation(s)
- Jinchan Liu
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Tang Aoqing Honors Program in Science, College of Chemistry, Jilin University, Changchun, Jilin Province, China
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
100
|
Functions of the BamBCDE Lipoproteins Revealed by Bypass Mutations in BamA. J Bacteriol 2020; 202:JB.00401-20. [PMID: 32817097 DOI: 10.1128/jb.00401-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022] Open
Abstract
The heteropentomeric β-barrel assembly machine (BAM complex) is responsible for folding and inserting a diverse array of β-barrel outer membrane proteins (OMPs) into the outer membrane (OM) of Gram-negative bacteria. The BAM complex contains two essential proteins, the β-barrel OMP BamA and a lipoprotein BamD, whereas the auxiliary lipoproteins BamBCE are individually nonessential. Here, we identify and characterize three bamA mutations, the E-to-K change at position 470 (bamAE470K ), the A-to-P change at position 496 (bamAA496P ), and the A-to-S change at position 499 (bamAA499S ), that suppress the otherwise lethal ΔbamD, ΔbamB ΔbamC ΔbamE, and ΔbamC ΔbamD ΔbamE mutations. The viability of cells lacking different combinations of BAM complex lipoproteins provides the opportunity to examine the role of the individual proteins in OMP assembly. Results show that, in wild-type cells, BamBCE share a redundant function; at least one of these lipoproteins must be present to allow BamD to coordinate productively with BamA. Besides BamA regulation, BamD shares an additional essential function that is redundant with a second function of BamB. Remarkably, bamAE470K suppresses both, allowing the construction of a BAM complex composed solely of BamAE470K that is able to assemble OMPs in the absence of BamBCDE. This work demonstrates that the BAM complex lipoproteins do not participate in the catalytic folding of OMP substrates but rather function to increase the efficiency of the assembly process by coordinating and regulating the assembly of diverse OMP substrates.IMPORTANCE The folding and insertion of β-barrel outer membrane proteins (OMPs) are conserved processes in mitochondria, chloroplasts, and Gram-negative bacteria. In Gram-negative bacteria, OMPs are assembled into the outer membrane (OM) by the heteropentomeric β-barrel assembly machine (BAM complex). In this study, we probe the function of the individual BAM proteins and how they coordinate assembly of a diverse family of OMPs. Furthermore, we identify a gain-of-function bamA mutant capable of assembling OMPs independently of all four other BAM proteins. This work advances our understanding of OMP assembly and sheds light on how this process is distinct in Gram-negative bacteria.
Collapse
|