51
|
Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-drasekaran S, Palanisamy R, Robinson ER, Subbiah SK, Mok PL. Leptospiral Infection, Pathogenesis and Its Diagnosis-A Review. Pathogens 2021; 10:pathogens10020145. [PMID: 33535649 PMCID: PMC7912936 DOI: 10.3390/pathogens10020145] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
- Correspondence: (A.V.S.); (P.L.M.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
| | - Karanam Sai Bhavya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - SaiPriya Chan-drasekaran
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Raji Palanisamy
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Emilin Renitta Robinson
- Department of Food Processing Technology, Karunya Institute of Technology and Science, Coimbatore, Tamil Nadu 641 114, India;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Pooi Ling Mok
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Aljouf Province, Saudi Arabia
- Correspondence: (A.V.S.); (P.L.M.)
| |
Collapse
|
52
|
Botha J, Pugsley HR, Handberg A. Conventional, High-Resolution and Imaging Flow Cytometry: Benchmarking Performance in Characterisation of Extracellular Vesicles. Biomedicines 2021; 9:biomedicines9020124. [PMID: 33513846 PMCID: PMC7911094 DOI: 10.3390/biomedicines9020124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry remains a commonly used methodology due to its ability to characterise multiple parameters on single particles in a high-throughput manner. In order to address limitations with lacking sensitivity of conventional flow cytometry to characterise extracellular vesicles (EVs), novel, highly sensitive platforms, such as high-resolution and imaging flow cytometers, have been developed. We provided comparative benchmarks of a conventional FACS Aria III, a high-resolution Apogee A60 Micro-PLUS and the ImageStream X Mk II imaging flow cytometry platform. Nanospheres were used to systematically characterise the abilities of each platform to detect and quantify populations with different sizes, refractive indices and fluorescence properties, and the repeatability in concentration determinations was reported for each population. We evaluated the ability of the three platforms to detect different EV phenotypes in blood plasma and the intra-day, inter-day and global variabilities in determining EV concentrations. By applying this or similar methodology to characterise methods, researchers would be able to make informed decisions on choice of platforms and thereby be able to match suitable flow cytometry platforms with projects based on the needs of each individual project. This would greatly contribute to improving the robustness and reproducibility of EV studies.
Collapse
Affiliation(s)
- Jaco Botha
- Department of Clinical Biochemistry, Aalborg University Hospital, North Denmark Region, DK-9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark
- Correspondence:
| | | | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, North Denmark Region, DK-9000 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark
| |
Collapse
|
53
|
Nazari M, Javandoost E, Talebi M, Movassaghpour A, Soleimani M. Platelet Microparticle Controversial Role in Cancer. Adv Pharm Bull 2021; 11:39-55. [PMID: 33747851 PMCID: PMC7961228 DOI: 10.34172/apb.2021.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Platelet-derived microparticles (PMPs) are a group of micrometer-scale extracellular vesicles released by platelets upon activation that are responsible for the majority of microvesicles found in plasma. PMPs' physiological properties and functions have long been investigated by researchers. In this regard, a noticeable area of studies has been devoted to evaluating the potential roles and effects of PMPs on cancer progression. Clinical and experimental evidence conflictingly implicates supportive and suppressive functions for PMPs regarding cancer. Many of these functions could be deemed as a cornerstone for future considerations of PMPs usage in cancer targeted therapy. This review discusses what is currently known about PMPs and provides insights for new and possible research directions for further grasping the intricate interplay between PMPs and cancer.
Collapse
Affiliation(s)
- Mahnaz Nazari
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Javandoost
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. Introduction
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
54
|
Reddoch-Cardenas KM, Peltier GC, Chance TC, Nair PM, Meledeo MA, Ramasubramanian AK, Cap AP, Bynum JA. Cold storage of platelets in platelet additive solution maintains mitochondrial integrity by limiting initiation of apoptosis-mediated pathways. Transfusion 2020; 61:178-190. [PMID: 33294977 DOI: 10.1111/trf.16185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cold storage of platelets in plasma maintains hemostatic function and is an attractive alternative to room temperature platelets (RTPs). We have recently shown that functional differences between cold-stored platelets (CSPs) and RTPs after 5-day storage are associated with mitochondrial respiration and that CSPs in platelet (PLT) additive solution (PAS) can maintain hemostatic function for at least 15 days. STUDY DESIGN AND METHODS This study tested the hypothesis that cold storage in PAS preserves mitochondrial integrity by reducing PLT apoptosis. CSPs and RTPs in plasma or PAS were stored and assayed for up to 15 days for mitochondrial function and integrity, mitochondrial-associated mRNA transcript expression, apoptotic proteins, and apoptotic flow cytometry metrics. RESULTS CSP preserved mitochondria-associated mRNA comparable to baseline levels, improved mitochondrial respiration, and minimized depolarization to Day 15. Additionally, CSPs had minimal induction of caspases, preservation of plasma membrane integrity, and low expression of pro-apoptotic Bax. Storage in PAS appeared to be protective for RTPs in some parameters and enhanced the effects of CSPs. CONCLUSION Mitochondrial function and molecular analyses defined CSP priming as distinctly different from the well-documented RTP storage lesion. While current blood bank storage at room temperature is limited to 5 to 7 days, refrigeration and storage in PAS for up to 15 days may represent an opportunity to enhance inventories and access to PLT hemostatic support for bleeding patients.
Collapse
Affiliation(s)
| | - Grant C Peltier
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Sam Houston, Texas, USA
| | | | - Prajeeda M Nair
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Sam Houston, Texas, USA
| | - Michael A Meledeo
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Sam Houston, Texas, USA
| | | | - Andrew P Cap
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Sam Houston, Texas, USA
| | - James A Bynum
- US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Sam Houston, Texas, USA
| |
Collapse
|
55
|
Yang KS, Lin HY, Curley C, Welch MW, Wolpin B, Lee H, Weissleder R, Im H, Castro CM. Bead-Based Extracellular Vesicle Analysis Using Flow Cytometry. ADVANCED BIOSYSTEMS 2020; 4:e2000203. [PMID: 33103361 PMCID: PMC7718389 DOI: 10.1002/adbi.202000203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Indexed: 01/09/2023]
Abstract
Extracellular vesicles (EVs) represent promising circulating biomarkers for cancers, but their high-throughput analyses in clinical settings prove challenging due to lack of simple, fast, and robust EV assays. Here, a bead-based EV assay detected by flow cytometry is described, which integrates EV capture using microbeads with EV protein analyses by flow cytometry. The assay is fast (<4 h for 48 samples), robust, and compatible with conventional flow cytometry instruments for high-throughput EV analysis. With the method, a panel of pancreatic cancer biomarkers in EVs from plasma samples of pancreatic cancer patients is successfully analyzed. The assay is readily translatable to other biomarkers or cancer types and can be run with standard materials on conventional flow cytometers, making it highly flexible and adaptable to diverse research and clinical needs.
Collapse
Affiliation(s)
- Katherine S. Yang
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Hsing-Ying Lin
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caleigh Curley
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| |
Collapse
|
56
|
Zhang J, Zhu Y, Wu Y, Yan QG, Peng XY, Xiang XM, Xue MY, Li QH, Liu LM, Li T. Synergistic effects of EMPs and PMPs on pulmonary vascular leakage and lung injury after ischemia/reperfusion. Cell Commun Signal 2020; 18:184. [PMID: 33225929 PMCID: PMC7682096 DOI: 10.1186/s12964-020-00672-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
Background Vascular leakage is an important pathophysiological process of critical conditions such as shock and ischemia–reperfusion (I/R)-induced lung injury. Microparticles (MPs), including endothelial cell-derived microparticles (EMPs), platelet-derived microparticles (PMPs) and leukocyte-derived microparticles (LMPs), have been shown to participate in many diseases. Whether and which of these MPs take part in pulmonary vascular leakage and lung injury after I/R and whether these MPs have synergistic effect and the underlying mechanism are not known. Methods Using hemorrhage/transfusion (Hemo/Trans) and aorta abdominalis occlusion-induced I/R rat models, the role of EMPs, PMPs and LMPs and the mechanisms in pulmonary vascular leakage and lung injury were observed. Results The concentrations of EMPs, PMPs and LMPs were significantly increased after I/R. Intravenous administration of EMPs and PMPs but not LMPs induced pulmonary vascular leakage and lung injury. Furthermore, EMPs induced pulmonary sequestration of platelets and promoted more PMPs production, and played a synergistic effect on pulmonary vascular leakage. MiR-1, miR-155 and miR-542 in EMPs, and miR-126 and miR-29 in PMPs, were significantly increased after hypoxia/reoxygenation (H/R). Of which, inhibition of miR-155 in EMPs and miR-126 in PMPs alleviated the detrimental effects of EMPs and PMPs on vascular barrier function and lung injury. Overexpression of miR-155 in EMPs down-regulated the expression of tight junction related proteins such as ZO-1 and claudin-5, while overexpression of miR-126 up-regulated the expression of caveolin-1 (Cav-1), the trans-cellular transportation related protein such as caveolin-1 (Cav-1). Inhibiting EMPs and PMPs production with blebbistatin (BLE) and amitriptyline (AMI) alleviated I/R induced pulmonary vascular leakage and lung injury. Conclusions EMPs and PMPs contribute to the pulmonary vascular leakage and lung injury after I/R. EMPs mediate pulmonary sequestration of platelets, producing more PMPs to play synergistic effect. Mechanically, EMPs carrying miR-155 that down-regulates ZO-1 and claudin-5 and PMPs carrying miR-126 that up-regulates Cav-1, synergistically mediate pulmonary vascular leakage and lung injury after I/R. Graphic abstract ![]()
Video Abstract
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Qing-Guang Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Xiao-Yong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Xin-Ming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Ming-Ying Xue
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Qing-Hui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Liang-Ming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
57
|
Large Extracellular Vesicles Can be Characterised by Multiplex Labelling Using Imaging Flow Cytometry. Int J Mol Sci 2020; 21:ijms21228723. [PMID: 33218198 PMCID: PMC7699300 DOI: 10.3390/ijms21228723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous in size (30 nm–10 µm), content (lipid, RNA, DNA, protein), and potential function(s). Many isolation techniques routinely discard the large EVs at the early stages of small EV or exosome isolation protocols. We describe here a standardised method to isolate large EVs from medulloblastoma cells and examine EV marker expression and diameter using imaging flow cytometry. Our approach permits the characterisation of each large EVs as an individual event, decorated with multiple fluorescently conjugated markers with the added advantage of visualising each event to ensure robust gating strategies are applied. Methods: We describe step-wise isolation and characterisation of a subset of large EVs from the medulloblastoma cell line UW228-2 assessed by fluorescent light microscopy, transmission electron microscopy (TEM) and tunable resistance pulse sensing (TRPS). Viability of parent cells was assessed by Annexin V exposure by flow cytometry. Imaging flow cytometry (Imagestream Mark II) identified EVs by direct fluorescent membrane labelling with Cell Mask Orange (CMO) in conjunction with EV markers. A stringent gating algorithm based on side scatter and fluorescence intensity was applied and expression of EV markers CD63, CD9 and LAMP 1 assessed. Results: UW228-2 cells prolifically release EVs of up to 6 µm. We show that the Imagestream Mark II imaging flow cytometer allows robust and reproducible analysis of large EVs, including assessment of diameter. We also demonstrate a correlation between increasing EV size and co-expression of markers screened. Conclusions: We have developed a labelling and stringent gating strategy which is able to explore EV marker expression (CD63, CD9, and LAMP1) on individual EVs within a widely heterogeneous population. Taken together, data presented here strongly support the value of exploring large EVs in clinical samples for potential biomarkers, useful in diagnostic screening and disease monitoring.
Collapse
|
58
|
Jurj A, Pop-Bica C, Slaby O, Ştefan CD, Cho WC, Korban SS, Berindan-Neagoe I. Tiny Actors in the Big Cellular World: Extracellular Vesicles Playing Critical Roles in Cancer. Int J Mol Sci 2020; 21:7688. [PMID: 33080788 PMCID: PMC7589964 DOI: 10.3390/ijms21207688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Communications among cells can be achieved either via direct interactions or via secretion of soluble factors. The emergence of extracellular vesicles (EVs) as entities that play key roles in cell-to-cell communication offer opportunities in exploring their features for use in therapeutics; i.e., management and treatment of various pathologies, such as those used for cancer. The potential use of EVs as therapeutic agents is attributed not only for their cell membrane-bound components, but also for their cargos, mostly bioactive molecules, wherein the former regulate interactions with a recipient cell while the latter trigger cellular functions/molecular mechanisms of a recipient cell. In this article, we highlight the involvement of EVs in hallmarks of a cancer cell, particularly focusing on those molecular processes that are influenced by EV cargos. Moreover, we explored the roles of RNA species and proteins carried by EVs in eliciting drug resistance phenotypes. Interestingly, engineered EVs have been investigated and proposed as therapeutic agents in various in vivo and in vitro studies, as well as in several clinical trials.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.J.); (C.P.-B.)
| | - Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.J.); (C.P.-B.)
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Pathology, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Cristina D. Ştefan
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore;
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China;
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.J.); (C.P.-B.)
- Department of Functional Genomics and Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
59
|
Bissinger R, Petkova-Kirova P, Mykhailova O, Oldenborg PA, Novikova E, Donkor DA, Dietz T, Bhuyan AAM, Sheffield WP, Grau M, Artunc F, Kaestner L, Acker JP, Qadri SM. Thrombospondin-1/CD47 signaling modulates transmembrane cation conductance, survival, and deformability of human red blood cells. Cell Commun Signal 2020; 18:155. [PMID: 32948210 PMCID: PMC7502024 DOI: 10.1186/s12964-020-00651-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Thrombospondin-1 (TSP-1), a Ca2+-binding trimeric glycoprotein secreted by multiple cell types, has been implicated in the pathophysiology of several clinical conditions. Signaling involving TSP-1, through its cognate receptor CD47, orchestrates a wide array of cellular functions including cytoskeletal organization, migration, cell-cell interaction, cell proliferation, autophagy, and apoptosis. In the present study, we investigated the impact of TSP-1/CD47 signaling on Ca2+ dynamics, survival, and deformability of human red blood cells (RBCs). METHODS Whole-cell patch-clamp was employed to examine transmembrane cation conductance. RBC intracellular Ca2+ levels and multiple indices of RBC cell death were determined using cytofluorometry analysis. RBC morphology and microvesiculation were examined using imaging flow cytometry. RBC deformability was measured using laser-assisted optical rotational cell analyzer. RESULTS Exposure of RBCs to recombinant human TSP-1 significantly increased RBC intracellular Ca2+ levels. As judged by electrophysiology experiments, TSP-1 treatment elicited an amiloride-sensitive inward current alluding to a possible Ca2+ influx via non-selective cation channels. Exogenous TSP-1 promoted microparticle shedding as well as enhancing Ca2+- and nitric oxide-mediated RBC cell death. Monoclonal (mouse IgG1) antibody-mediated CD47 ligation using 1F7 recapitulated the cell death-inducing effects of TSP-1. Furthermore, TSP-1 treatment altered RBC cell shape and stiffness (maximum elongation index). CONCLUSIONS Taken together, our data unravel a new role for TSP-1/CD47 signaling in mediating Ca2+ influx into RBCs, a mechanism potentially contributing to their dysfunction in a variety of systemic diseases. Video abstract.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Olga Mykhailova
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Elena Novikova
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - David A Donkor
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Thomas Dietz
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | | | - William P Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Marijke Grau
- Institute of Molecular and Cellular Sports Medicine, German Sport University of Cologne, Köln, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Universitätsklinikum Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at Eberhard-Karls University, Tübingen, Germany.,German Center for Diabetes Research (DZD), Eberhard-Karls University, Tübingen, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Jason P Acker
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Syed M Qadri
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada. .,Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada.
| |
Collapse
|
60
|
Direct suppression of human islet dedifferentiation, progenitor genes, but not epithelial to mesenchymal transition by liraglutide. Heliyon 2020; 6:e04951. [PMID: 32995630 PMCID: PMC7501427 DOI: 10.1016/j.heliyon.2020.e04951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/03/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
β-cell dedifferentiation has been accounted as one of the major mechanisms for β-cell failure; thus, is a cause to diabetes. We study direct impacts of liraglutide treatment on ex vivo human dedifferentiated islets, and its effects on genes important in endocrine function, progenitor states, and epithelial mesenchymal transition (EMT). Human islets from non-diabetic donors, were purified and incubated until day 1 and day 4, and were determined insulin contents, numbers of insulin (INS+) and glucagon (GCG+) cells. The islets from day 3 to day 7 were treated with diabetic drugs, the long acting GLP-1 receptor agonist, liraglutide. As observed in pancreatic islets of type 2 diabetic patients, ex vivo dedifferentiated islets showed more than 50% reduced insulin contents while number of glucagon increased from 10% to about 20%. β-cell specific genes: PDX1, MAFA, as well as β-cell functional markers: GLUT1 and SUR1, were significantly depleted more than 40%. Notably, we found increased levels of glucagon regulator, ARX and pre-glucagon transcripts, and remarkably upregulated progenitor expressions: NEUROG3 and ALDH1A identified as β-cell dysfunction markers in diabetic models. Hyperglucagonemia was often observed in type 2 patients that could lead to over production of gluconeogenesis by the liver. Liraglutide treatments resulted in decreased number of GCG+ cells, increased numbers of GLP-1 positive cells but did not alter elevated levels of EMT marker genes: ACTA2, CDH-2, SNAIL2, and VIM. These effects of liraglutide were blunted when FOXO1 transcripts were depleted. This work illustrates that ex vivo human isolated islets can be used as a tool to study different aspects of β-cell dedifferentiation. Our novel finding suggests a role of GLP-1 pathway in beta-cell maintenance in FOXO1-dependent manner. Importantly, dedifferentiated islets ex vivo is a useful model that can be utilized to verify the actions of potential drugs to diabetic β-cell failure.
Collapse
|
61
|
Assessment of extracellular vesicles using IFC for application in transfusion medicine. Transfus Apher Sci 2020; 59:102942. [PMID: 32943325 DOI: 10.1016/j.transci.2020.102942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) have been shown to be involved in various physiological and pathophysiological processes. With respect to Transfusion Medicine, the accumulation of EVs in blood products during hypothermic storage is an indicator of the storage lesion and reportedly correlates with adverse effects after transfusion, including but not limited to immunomodulation, activation of coagulation, endothelial activation, and others. To optimally reduce such an impact on blood product quality degradation and improve post-transfusion outcomes, better methods for detection, enumeration, characterisation by size and phenotype, and functional involvement of EVs in different pathophysiological and physiological processes are required. Currently, Imaging Flow Cytometry (IFC) technology provides the most comprehensive assessment of EV subsets in different body fluids. The unique ability of IFC to detect EVs of 20 nm size by registration of a single pixel of fluorescence signal makes this approach highly promising for comprehensive studies of EVs. In this review, we will focus on the recent breakthrough and advantages of using the ImageStreamX MKII IFC platform for the detection and characterisation of EVs and its future prospects for routine application of IFC in Transfusion Medicine.
Collapse
|
62
|
孟 婉, 李 灵, 朱 桂. [Prospects and challenges of exosomes as drug delivery systems]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:714-720. [PMID: 32840090 PMCID: PMC10319532 DOI: 10.7507/1001-5515.201810027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 11/03/2022]
Abstract
Exosomes are nanoscale vectors with a diameter of 30~100 nm secreted by living cells, and they are important media for intercellular communication. Recent studies have demonstrated that exosomes can not only serve as biomarkers for diagnosis, but also have great potential as natural drug delivery vectors. Exosomes can be loaded with therapeutic cargos, including small molecules, proteins, and oligonucleotides. Meanwhile, the unique biological compatibility, high stability, and tumor targeting of exosomes make them attractive in future tumor therapy. Though exosomes can effectively deliver bioactive materials to receptor cells, there is a wide gap between our current understanding of exosomes and their application as ideal drug delivery systems. In this review, we will briefly introduce the function and composition of exosomes, and mainly summarize the potential advantages and challenges of exosomes as drug carriers. Finally, this review is expected to provide new ideas for the development of exosome-based drug delivery systems.
Collapse
Affiliation(s)
- 婉蓉 孟
- 电子科技大学 医学院附属肿瘤医院 四川省肿瘤医院(研究所)四川省癌症防治中心 四川省放射肿瘤学重点实验室(成都 610041)Sichuan Cancer Hospital& Institute, Sichuan Cancer Center, Sichuan Key Laboratory of Radiation Oncology School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, P.R. China
| | - 灵 李
- 电子科技大学 医学院附属肿瘤医院 四川省肿瘤医院(研究所)四川省癌症防治中心 四川省放射肿瘤学重点实验室(成都 610041)Sichuan Cancer Hospital& Institute, Sichuan Cancer Center, Sichuan Key Laboratory of Radiation Oncology School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, P.R. China
| | - 桂全 朱
- 电子科技大学 医学院附属肿瘤医院 四川省肿瘤医院(研究所)四川省癌症防治中心 四川省放射肿瘤学重点实验室(成都 610041)Sichuan Cancer Hospital& Institute, Sichuan Cancer Center, Sichuan Key Laboratory of Radiation Oncology School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, P.R. China
| |
Collapse
|
63
|
Holman NS, Church RJ, Nautiyal M, Rose KA, Thacker SE, Otieno MA, Wolf KK, LeCluyse E, Watkins PB, Mosedale M. Hepatocyte-Derived Exosomes Promote Liver Immune Tolerance: Possible Implications for Idiosyncratic Drug-Induced Liver Injury. Toxicol Sci 2020; 170:499-508. [PMID: 31093666 DOI: 10.1093/toxsci/kfz112] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most idiosyncratic drug-induced liver injury appears to result from an adaptive immune attack on the liver. Recent evidence suggests that the T-cell response may be facilitated by the loss of immune tolerance. In this study, we explored the hypothesis that constitutively released hepatocyte-derived exosomes (HDE) are important for maintaining normal liver immune tolerance. Exosomes were isolated from the conditioned medium of primary human hepatocytes via polymer precipitation. Mock controls were prepared by processing fresh medium that was not hepatocyte exposed with precipitation reagent. THP-1 monocytes were then treated with HDE or an equivalent volume of mock control for 24 h, followed by a 6-h stimulation with LPS. HDE exposure resulted in a significant decrease in the LPS-induced media levels of interleukin-1β and interleukin-8. Gene expression profiling performed in THP-1 cells just prior to LPS-induced stimulation identified a significant decrease among genes associated with innate immune response. MicroRNA (miRNA) profiling was performed on the HDE to identify exosome contents that may drive immune suppression. Many of the predicted mRNA target genes for the most abundant microRNAs in HDE were among the differentially expressed genes in THP-1 cells. Taken together, our data suggest that HDE play a role in maintaining normal liver immune tolerance. Future experiments will explore the possibility that drugs causing idiosyncratic liver injury promote the loss of homeostatic HDE signaling.
Collapse
Affiliation(s)
- Natalie S Holman
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Rachel J Church
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Manisha Nautiyal
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Kelly A Rose
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Sarah E Thacker
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Monicah A Otieno
- Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, Pennsylvania 19477
| | - Kristina K Wolf
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Edward LeCluyse
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Merrie Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| |
Collapse
|
64
|
Kranich J, Chlis NK, Rausch L, Latha A, Schifferer M, Kurz T, Foltyn-Arfa Kia A, Simons M, Theis FJ, Brocker T. In vivo identification of apoptotic and extracellular vesicle-bound live cells using image-based deep learning. J Extracell Vesicles 2020; 9:1792683. [PMID: 32944180 PMCID: PMC7480589 DOI: 10.1080/20013078.2020.1792683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The in vivo detection of dead cells remains a major challenge due to technical hurdles. Here, we present a novel method, where injection of fluorescent milk fat globule-EGF factor 8 protein (MFG-E8) in vivo combined with imaging flow cytometry and deep learning allows the identification of dead cells based on their surface exposure of phosphatidylserine (PS) and other image parameters. A convolutional autoencoder (CAE) was trained on defined pictures and successfully used to identify apoptotic cells in vivo. However, unexpectedly, these analyses also revealed that the great majority of PS+ cells were not apoptotic, but rather live cells associated with PS+ extracellular vesicles (EVs). During acute viral infection apoptotic cells increased slightly, while up to 30% of lymphocytes were decorated with PS+ EVs of antigen-presenting cell (APC) exosomal origin. The combination of recombinant fluorescent MFG-E8 and the CAE-method will greatly facilitate analyses of cell death and EVs in vivo.
Collapse
Affiliation(s)
- Jan Kranich
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | - Nikolaos-Kosmas Chlis
- Institute of Computational Biology, Neuherberg, Germany.,Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Lisa Rausch
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | - Ashretha Latha
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Tilman Kurz
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| | | | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (Synergy), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Neuherberg, Germany.,Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Thomas Brocker
- Faculty of Medicine, Institute for Immunology, Munich, Germany
| |
Collapse
|
65
|
Deak P, Kimani F, Cassaidy B, Esser-Kahn A. Determining Whether Agonist Density or Agonist Number Is More Important for Immune Activation via Micoparticle Based Assay. Front Immunol 2020; 11:642. [PMID: 32328073 PMCID: PMC7161694 DOI: 10.3389/fimmu.2020.00642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/20/2020] [Indexed: 11/26/2022] Open
Abstract
It is unknown if surface bound toll-like-receptor (TLR) agonists activate cells via density or total molecular number. To answer this question, we developed a TLR agonist surface conjugated polystyrene microparticle (MP) system. Using a library of MPs with varying TLR agonist density and number, we simultaneously observed innate immune cell MP uptake and TNFα expression using ImageStream flow cytometry on a cell by cell basis. The data shows that total TLR number and not density drives cellular activation with a threshold of approximately 105-106 TLR agonists. We believe that this information will be crucial for the design of particulate vaccine formulations.
Collapse
Affiliation(s)
| | | | | | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
66
|
Yan W, Jiang S. Immune Cell-Derived Exosomes in the Cancer-Immunity Cycle. Trends Cancer 2020; 6:506-517. [PMID: 32460004 DOI: 10.1016/j.trecan.2020.02.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Cells can communicate through extracellular vesicle (EV) secretion and uptake. Exosomes are lipid bilayer-enclosed EVs of 30-150 nm in diameter, which can transfer RNA, functional proteins, lipids, and metabolites to recipient cells in vivo. Most cell types, including immune cells, can secrete and uptake exosomes. Biogenesis, secretion, and uptake of immune cell-derived exosomes are regulated by intracellular proteins and extracellular stimuli. Immune cell-derived exosomes can mediate crosstalk between innate and adaptive immunity and regulate cancer progression and metastasis. The dichotomous roles of immune cell-derived exosomes towards tumor cells can induce suppressive or active immune responses. Hence, immune cell-secreted exosomes may have applications in cancer diagnosis and immunotherapy and could potentially be developed for vaccination and chemotherapy drug transportation.
Collapse
Affiliation(s)
- Wei Yan
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
67
|
Probst C. Characterization of Protein Aggregates, Silicone Oil Droplets, and Protein-Silicone Interactions Using Imaging Flow Cytometry. J Pharm Sci 2020; 109:364-374. [DOI: 10.1016/j.xphs.2019.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
|
68
|
Taus F, Meneguzzi A, Castelli M, Minuz P. Platelet-Derived Extracellular Vesicles as Target of Antiplatelet Agents. What Is the Evidence? Front Pharmacol 2019; 10:1256. [PMID: 31780927 PMCID: PMC6857039 DOI: 10.3389/fphar.2019.01256] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived large extracellular vesicles (often referred to as microparticles in the field of cardiovascular disease) have been identified as effector in the atherothrombotic process, therefore representing a target of pharmacological intervention of potential interest. Despite that, limited evidence is so far available concerning the effects of antiplatelet agents on the release of platelet-derived extracellular vesicles. In the present narrative review, the mechanisms leading to vesiculation in platelets and the pathophysiological processes implicated will be discussed. This will be followed by a summary of the present evidence concerning the effects of antiplatelet agents under experimental conditions and in clinical settings.
Collapse
Affiliation(s)
- Francesco Taus
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Alessandra Meneguzzi
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Marco Castelli
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| | - Pietro Minuz
- Department of Medicine, Section of Internal Medicine C, University of Verona, Verona, Italy
| |
Collapse
|
69
|
Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods. Respir Res 2019; 20:240. [PMID: 31666080 PMCID: PMC6822481 DOI: 10.1186/s12931-019-1210-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membranous vesicles secreted by cells into the extracellular space, which play a role in cell to cell communication. EVs are categorized into 3 groups depending on their size, surface marker, and method of release from the host cell. Recently, EVs have become of interest in the study of multiple disease etiologies and are believed to be potential biomarkers for many diseases. Multiple different methods have been developed to isolate EVs from different samples such as cell culture medium, serum, blood, and urine. Once isolated, EVs can be characterized by technology such as nanotracking analysis, dynamic light scattering, and nanoscale flow cytometry. In this review, we summarize the current methods of EV isolation, provide details into the three methods of EV characterization, and provide insight into which isolation approaches are most suitable for EV isolation from bronchoalveolar lavage fluid (BALF).
Collapse
|
70
|
Kim H, Kim D, Nam H, Moon S, Kwon YJ, Lee JB. Engineered extracellular vesicles and their mimetics for clinical translation. Methods 2019; 177:80-94. [PMID: 31626895 DOI: 10.1016/j.ymeth.2019.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cells secrete extracellular vesicles (EVs) to external environments to achieve cellular homeostasis and cell-to-cell communication. Their therapeutic potential has been constantly spotlighted since they mirror both cytoplasmic and membranous components of parental cells. Meanwhile, growing evidence suggests that EV engineering could further promote EVs with a maximized capacity. In this review, a range of engineering techniques as well as upscaling approaches to exploit EVs and their mimetics are introduced. By laying out the pros and cons of each technique from different perspectives, we sought to provide an overview potentially helpful for understanding the current state of the art EV engineering and a guideline for choosing a suitable technique for engineering EVs. Furthermore, we envision that the advances in each technique will give rise to the combinatorial engineering of EVs, taking us a step closer to a clinical translation of EV-based therapeutics.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Hyangsu Nam
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Young Jik Kwon
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States.
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea.
| |
Collapse
|
71
|
Jones PS, Yekula A, Lansbury E, Small JL, Ayinon C, Mordecai S, Hochberg FH, Tigges J, Delcuze B, Charest A, Ghiran I, Balaj L, Carter BS. Characterization of plasma-derived protoporphyrin-IX-positive extracellular vesicles following 5-ALA use in patients with malignant glioma. EBioMedicine 2019; 48:23-35. [PMID: 31628025 PMCID: PMC6838454 DOI: 10.1016/j.ebiom.2019.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Malignant gliomas are rapidly progressive brain tumors with high mortality. Fluorescence guided surgery (FGS) with 5-aminolevulinic acid (5-ALA) provides fluorescent delineation of malignant tissue, which helps achieve maximum safe resection. 5-ALA-based fluorescence is due to preferential accumulation of the fluorophore protoporphyrin-IX (PpIX) in malignant glioma tissue. Additionally, gliomas cells release extracellular vesicles (EVs) which carry biomarkers of disease. Herein, we performed animal and human studies to investigate whether 5-ALA dosed glioma cells, in vitro and in vivo, release PpIX positive EVs in circulation which can be captured and analyzed. METHODS We used imaging flow cytometry (IFC) to characterize PpIX-positive EVs released from 5-ALA-dosed glioma cells, glioma-bearing xenograft models, as well as patients with malignant glioma undergoing FGS. FINDINGS We first show that glioma cells dosed with 5-ALA release 247-fold higher PpIX positive EVs compared to mock dosed glioma cells. Second, we demonstrate that the plasma of glioma-bearing mice (n = 2) dosed with 5-ALA contain significantly higher levels of circulating PpIX-positive EVs than their pre-dosing background (p = 0.004). Lastly, we also show that the plasma of patients with avidly fluorescent tumors (n = 4) undergoing FGS contain circulating PpIX-positive EVs at levels significantly higher than their pre-dosing background (p = 0.00009) and this rise in signal correlates with enhancing tumor volumes (r 2 = 0.888). INTERPRETATION Our findings highlight the potential of plasma-derived PpIX-positive EV-based diagnostics for malignant gliomas, offering a novel liquid biopsy platform for confirming and monitoring tumor status.
Collapse
Affiliation(s)
- Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Elizabeth Lansbury
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Julia L Small
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Caroline Ayinon
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Scott Mordecai
- Department of Pathology, Flow Cytometry Core, Massachusetts General Hospital, Boston, MA, United States
| | | | - John Tigges
- Flow Cytometry Core, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Bethany Delcuze
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Alain Charest
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ionita Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
72
|
Cytomorphological Characterization of Individual Metastatic Tumor Cells from Gastrointestinal Cancer Patient Lymph Nodes with Imaging Flow Cytometry. GASTROINTESTINAL DISORDERS 2019. [DOI: 10.3390/gidisord1040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The presence or absence of tumor cells within patient lymph nodes is an important prognostic indicator in a number of cancer types and an essential element of the staging process. However, patients with the same pathological stage will not necessarily have the same outcome. Therefore, additional factors may aid in identifying patients at a greater risk of developing metastasis. In this proof of principle study, initially, spiked tumor cells in rat lymph nodes were used to mimic a node with a small cancer deposit. Next, human lymph nodes were obtained from cancer patients for morphological characterization. Nodes were dissociated with a manual tissue homogenizer and stained with fluorescent antibodies against CD45 and Pan-Cytokeratin and then imaging flow cytometry (AMNIS ImageStreamX Mark II) was performed. We show here that imaging flow cytometry can be used for the detection and characterization of small numbers of cancer cells in lymph nodes and we also demonstrate the phenotypical and morphological characterization of cancer cells in gastrointestinal cancer patient lymph nodes. When used in addition to conventional histological techniques, this high throughput detection of tumor cells in lymph nodes may offer additional information assisting in the staging process with therapeutic and prognostic applications.
Collapse
|
73
|
Development and validation of an alternative parameter for quantification of signals emitted by fluorescently labelled bacteria in microscopic images. J Microbiol Methods 2019; 166:105717. [PMID: 31505168 DOI: 10.1016/j.mimet.2019.105717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 11/21/2022]
Abstract
In this study, an alternative parameter for quantifying the signals of fluorescently labelled bacteria (e.g. propidium iodide, Cyanine 3, etc.) in microscopic images was investigated. Three common parameters (mean grey value (MGV), mean grey value which is corrected for the background (MGVcwB) and the signal to background ratio (SBR) per bacterial cell) are used as reference parameters. As an alternative, the coefficient of variation (CV) is defined as the ratio of the logarithm of the standard deviation and the logarithm of the mean grey value of a bacterial cell in a microscopic image. The actual fluorescence value was safeguarded by measuring commercially available fluorescence latex microspheres at regular time intervals within our study. The precision and the correlation of the respective values of MGV, MGVcwB, SBR and CV taken from identical images were measured and subsequently normalized in order to enhance the inter-parameter comparability. The average precision of CV was the highest (89% ± 14) with decreasing numbers for MGVcwB, SBR, and MGV (78% ± 25, 71% ± 32, and, 52% ± 22, respectively). Changes in operational parameters, e.g., microscope settings, protocol steps, etc., yielded good results for the CV but less precise results for MGV, MGVcwB, and SBR in the analyses of identical images. In conclusion, using the alternative parameter CV, changes in the composition of microbial ecosystems may thus be investigated at the highest precision level.
Collapse
|
74
|
Armitage J, Tan D, Cha L, Clark M, Gray E, Fuller K, Moodley Y. A standardised protocol for the evaluation of small extracellular vesicles in plasma by imaging flow cytometry. J Immunol Methods 2019; 468:61-66. [DOI: 10.1016/j.jim.2019.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/05/2019] [Accepted: 03/14/2019] [Indexed: 11/27/2022]
|
75
|
Ricklefs FL, Maire CL, Reimer R, Dührsen L, Kolbe K, Holz M, Schneider E, Rissiek A, Babayan A, Hille C, Pantel K, Krasemann S, Glatzel M, Heiland DH, Flitsch J, Martens T, Schmidt NO, Peine S, Breakefield XO, Lawler S, Chiocca EA, Fehse B, Giebel B, Görgens A, Westphal M, Lamszus K. Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. J Extracell Vesicles 2019; 8:1588555. [PMID: 30949309 PMCID: PMC6442086 DOI: 10.1080/20013078.2019.1588555] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 01/08/2023] Open
Abstract
Cells release heterogeneous nano-sized vesicles either as exosomes, being derived from endosomal compartments, or through budding from the plasma membrane as so-called microvesicles, commonly referred to as extracellular vesicles (EVs). EVs are known for their important roles in mammalian physiology and disease pathogenesis and provide a potential biomarker source in cancer patients. EVs are generally often analysed in bulk using Western blotting or by bead-based flow-cytometry or, with limited parameters, through nanoparticle tracking analysis. Due to their small size, single EV analysis is technically highly challenging. Here we demonstrate imaging flow cytometry (IFCM) to be a robust, multiparametric technique that allows analysis of single EVs and the discrimination of distinct EV subpopulations. We used IFCM to analyse the tetraspanin (CD9, CD63, CD81) surface profiles on EVs from human and murine cell cultures as well as plasma samples. The presence of EV subpopulations with specific tetraspanin profiles suggests that EV-mediated cellular responses are tightly regulated and dependent on cell environment. We further demonstrate that EVs with double positive tetraspanin expression (CD63+/CD81+) are enriched in cancer cell lines and patient plasma samples. In addition, we used IFCM to detect tumour-specific GFP-labelled EVs in the blood of mice bearing syngeneic intracerebral gliomas, indicating that this technique allows unprecedented disease modelling. In summary, our study highlights the heterogeneous and adaptable nature of EVs according to their marker profile and demonstrates that IFCM facilitates multiparametric phenotyping of EVs not only in vitro but also in patient plasma at a single EV level, with the potential for future functional studies and clinically relevant applications. Abbreviation: EDTA = ethylenediamine tetraacetic acid.
Collapse
Affiliation(s)
- Franz L. Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L. Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolph Reimer
- Leibnitz Institute for Experimental Virology, Heinrich-Pette-Institut, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Kolbe
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Holz
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Enja Schneider
- Institute for Diagnostics and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rissiek
- Institute for Diagnostics and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Babayan
- Department for Tumour Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hille
- Department for Tumour Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department for Tumour Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Jörg Flitsch
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Martens
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xandra O. Breakefield
- Molecular Neurogenetics Unit, Massachusetts General Hospital-East, Harvard Medical School, Boston, USA
| | - Sean Lawler
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - E. Antonio. Chiocca
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Gemany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Evox Therapeutics Limited, Oxford, UK
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
76
|
Görgens A, Bremer M, Ferrer-Tur R, Murke F, Tertel T, Horn PA, Thalmann S, Welsh JA, Probst C, Guerin C, Boulanger CM, Jones JC, Hanenberg H, Erdbrügger U, Lannigan J, Ricklefs FL, El-Andaloussi S, Giebel B. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J Extracell Vesicles 2019; 8:1587567. [PMID: 30949308 PMCID: PMC6442110 DOI: 10.1080/20013078.2019.1587567] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) mediate targeted cellular interactions in normal and pathophysiological conditions and are increasingly recognised as potential biomarkers, therapeutic agents and drug delivery vehicles. Based on their size and biogenesis, EVs are classified as exosomes, microvesicles and apoptotic bodies. Due to overlapping size ranges and the lack of specific markers, these classes cannot yet be distinguished experimentally. Currently, it is a major challenge in the field to define robust and sensitive technological platforms being suitable to resolve EV heterogeneity, especially for small EVs (sEVs) with diameters below 200 nm, i.e. smaller microvesicles and exosomes. Most conventional flow cytometers are not suitable for the detection of particles being smaller than 300 nm, and the poor availability of defined reference materials hampers the validation of sEV analysis protocols. Following initial reports that imaging flow cytometry (IFCM) can be used for the characterisation of larger EVs, we aimed to investigate its usability for the characterisation of sEVs. This study set out to identify optimal sample preparation and instrument settings that would demonstrate the utility of this technology for the detection of single sEVs. By using CD63eGFP-labelled sEVs as a biological reference material, we were able to define and optimise IFCM acquisition and analysis parameters on an Amnis ImageStreamX MkII instrument for the detection of single sEVs. In addition, using antibody-labelling approaches, we show that IFCM facilitates robust detection of different EV and sEV subpopulations in isolated EVs, as well as unprocessed EV-containing samples. Our results indicate that fluorescently labelled sEVs as biological reference material are highly useful for the optimisation of fluorescence-based methods for sEV analysis. Finally, we propose that IFCM will help to significantly increase our ability to assess EV heterogeneity in a rigorous and reproducible manner, and facilitate the identification of specific subsets of sEVs as useful biomarkers in various diseases.
Collapse
Affiliation(s)
- André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Evox Therapeutics Limited, Oxford, UK
| | - Michel Bremer
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rita Ferrer-Tur
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Coralié Guerin
- Paris Descartes University, Paris, France
- Institut Curie, cytometry core, PSL University, Paris, France
| | - Chantal M. Boulanger
- Paris Descartes University, Paris, France
- INSERM, U970, Paris Cardiovascular Research Center—PARCC, Paris, France
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children’s Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Uta Erdbrügger
- Department of Medicine, Nephrology Division, University of Virginia, Charlottesville, VA, USA
| | - Joanne Lannigan
- Flow Cytometry Core, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Franz L. Ricklefs
- Department of Neurological Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Samir El-Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Evox Therapeutics Limited, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
77
|
Extracellular vesicles for personalized medicine: The input of physically triggered production, loading and theranostic properties. Adv Drug Deliv Rev 2019; 138:247-258. [PMID: 30553953 DOI: 10.1016/j.addr.2018.12.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
Emerging advances in extracellular vesicle (EV) research brings along new promises for tailoring clinical treatments in order to meet specific disease features of each patient in a personalized medicine concept. EVs may act as regenerative effectors conveying endogenous therapeutic factors from parent cells or constitute a bio-camouflaged delivery system for exogenous therapeutic agents. Physical stimulation may be an important tool in the field of EVs for personalized therapy by powering EV production, loading and therapeutic properties. Physically-triggered EV production is inspired by naturally occurring EV release by shear stress in blood vessels. Bioinspired physically-triggered EV production technologies may bring along high yield advantages combined to scalability assets. Physical stimulation may also provide new prospects for high-efficient EV loading. Additionally, physically-triggered EV theranostic properties brings new hopes for spatio-temporal controlled therapy combined to tracking. Technological considerations related to EV-based personalized medicine and the input of physical stimulation on EV production, loading and theranostic properties will be overviewed herein.
Collapse
|
78
|
Bu H, He D, He X, Wang K. Exosomes: Isolation, Analysis, and Applications in Cancer Detection and Therapy. Chembiochem 2018; 20:451-461. [PMID: 30371016 DOI: 10.1002/cbic.201800470] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/25/2018] [Indexed: 12/17/2022]
Abstract
Exosomes are cell-derived small extracellular vesicles that are naturally secreted by all types of cells and widely distributed in various biofluids. They carry a variety of key bioactive molecules (e.g., nucleic acids, proteins, growth factors, cytokines) from their parent cells and convey them to neighboring or even distant cells through circulation. In recent years, tumor-derived exosomes have attracted great interest from investigators because they actively participate in nearly all aspects of tumor development and facilitate both tumor growth and metastasis through exosome-mediated intercellular communication. The vesicular contents are increasingly considered potential biomarkers for tumor diagnoses and prognosis. With the progress made in isolation and analytical technologies, the functions of exosomes and their contents in tumor development are also becoming clearer. In this review article we describe the recent developments in exosome isolation techniques and analysis of exosomal contents. We also address their applications in cancer detection and therapy.
Collapse
Affiliation(s)
- Hongchang Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
79
|
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman MLD, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DRF, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FAW, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TAP, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, EL Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, et alThéry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman MLD, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DRF, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FAW, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TAP, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, EL Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DCI, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AGE, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ, Kornek M, Kosanović MM, Kovács ÁF, Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li ITS, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SLN, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen ENM, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BCH, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IKH, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KMA, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PRM, Silva AM, Skowronek A, Snyder OL, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BWM, van der Grein SG, Van Deun J, van Herwijnen MJC, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MHM, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7:1535750. [PMID: 30637094 PMCID: PMC6322352 DOI: 10.1080/20013078.2018.1535750] [Show More Authors] [Citation(s) in RCA: 7458] [Impact Index Per Article: 1065.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/04/2022] Open
Abstract
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
Collapse
Affiliation(s)
- Clotilde Théry
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Kenneth W Witwer
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
- The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Elena Aikawa
- Brigham and Women’s Hospital, Center for Interdisciplinary Cardiovascular Sciences, Boston, MA, USA
- Harvard Medical School, Cardiovascular Medicine, Boston, MA, USA
| | - Maria Jose Alcaraz
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Valencia, Spain
| | | | | | - Anna Antoniou
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University Hospital Bonn (UKB), Bonn, Germany
| | - Tanina Arab
- Université de Lille, INSERM, U-1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse - PRISM, Lille, France
| | - Fabienne Archer
- University of Lyon, INRA, EPHE, UMR754 Viral Infections and Comparative Pathology, Lyon, France
| | - Georgia K Atkin-Smith
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - D Craig Ayre
- Atlantic Cancer Research Institute, Moncton, Canada
- Mount Allison University, Department of Chemistry and Biochemistry, Sackville, Canada
| | - Jean-Marie Bach
- Université Bretagne Loire, Oniris, INRA, IECM, Nantes, France
| | - Daniel Bachurski
- University of Cologne, Department of Internal Medicine I, Cologne, Germany
| | - Hossein Baharvand
- Royan Institute for Stem Cell Biology and Technology, ACECR, Cell Science Research Center, Department of Stem Cells and Developmental Biology, Tehran, Iran
- University of Science and Culture, ACECR, Department of Developmental Biology, Tehran, Iran
| | - Leonora Balaj
- Massachusetts General Hospital, Department of Neurosurgery, Boston, MA, USA
| | | | - Natalie N Bauer
- University of South Alabama, Department of Pharmacology, Center for Lung Biology, Mobile, AL, USA
| | - Amy A Baxter
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Mary Bebawy
- University of Technology Sydney, Discipline of Pharmacy, Graduate School of Health, Sydney, Australia
| | | | - Apolonija Bedina Zavec
- National Institute of Chemistry, Department of Molecular Biology and Nanobiotechnology, Ljubljana, Slovenia
| | - Abderrahim Benmoussa
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | | | - Paolo Bergese
- CSGI - Research Center for Colloids and Nanoscience, Florence, Italy
- INSTM - National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Ewa Bielska
- University of Birmingham, Institute of Microbiology and Infection, Birmingham, UK
| | | | - Sylwia Bobis-Wozowicz
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Kraków, Poland
| | - Eric Boilard
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | - Wilfrid Boireau
- FEMTO-ST Institute, UBFC, CNRS, ENSMM, UTBM, Besançon, France
| | - Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR) of Italy, Palermo, Italy
| | - Francesc E Borràs
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, REMAR-IVECAT Group, Badalona, Spain
- Germans Trias i Pujol University Hospital, Nephrology Service, Badalona, Spain
- Universitat Autònoma de Barcelona, Department of Cell Biology, Physiology & Immunology, Barcelona, Spain
| | - Steffi Bosch
- Université Bretagne Loire, Oniris, INRA, IECM, Nantes, France
| | - Chantal M Boulanger
- INSERM UMR-S 970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Xandra Breakefield
- Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Department of Neurology and Radiology, Boston, MA, USA
| | - Andrew M Breglio
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Meadhbh Á Brennan
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Boston, MA, USA
- Université de Nantes, INSERM UMR 1238, Bone Sarcoma and Remodeling of Calcified Tissues, PhyOS, Nantes, France
| | - David R Brigstock
- Nationwide Children’s Hospital, Columbus, OH, USA
- The Ohio State University, Columbus, OH, USA
| | - Alain Brisson
- UMR-CBMN, CNRS-Université de Bordeaux, Bordeaux, France
| | - Marike LD Broekman
- Haaglanden Medical Center, Department of Neurosurgery, The Hague, The Netherlands
- Leiden University Medical Center, Department of Neurosurgery, Leiden, The Netherlands
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Jacqueline F Bromberg
- Memorial Sloan Kettering Cancer Center, Department of Medicine, New York City, NY, USA
- Weill Cornell Medicine, Department of Medicine, New York City, NY, USA
| | | | - Shilpa Buch
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Amy H Buck
- University of Edinburgh, Institute of Immunology & Infection Research, Edinburgh, UK
| | - Dylan Burger
- Kidney Research Centre, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Sara Busatto
- Mayo Clinic, Department of Transplantation, Jacksonville, FL, USA
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Dominik Buschmann
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Benedetta Bussolati
- University of Torino, Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | - Edit I Buzás
- MTA-SE Immuno-Proteogenomics Research Groups, Budapest, Hungary
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - James Bryan Byrd
- University of Michigan, Department of Medicine, Ann Arbor, MI, USA
| | - Giovanni Camussi
- University of Torino, Department of Medical Sciences, Torino, Italy
| | - David RF Carter
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - Sarah Caruso
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Lawrence W Chamley
- University of Auckland, Department of Obstetrics and Gynaecology, Auckland, New Zealand
| | - Yu-Ting Chang
- National Taiwan University Hospital, Department of Internal Medicine, Taipei, Taiwan
| | - Chihchen Chen
- National Tsing Hua University, Department of Power Mechanical Engineering, Hsinchu, Taiwan
- National Tsing Hua University, Institute of Nanoengineering and Microsystems, Hsinchu, Taiwan
| | - Shuai Chen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Reproductive Biology, Dummerstorf, Germany
| | - Lesley Cheng
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | | | - Aled Clayton
- Cardiff University, School of Medicine, Cardiff, UK
| | | | - Alex Cocks
- Cardiff University, School of Medicine, Cardiff, UK
| | - Emanuele Cocucci
- The Ohio State University, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, Columbus, OH, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Robert J Coffey
- Vanderbilt University Medical Center, Epithelial Biology Center, Department of Medicine, Nashville, TN, USA
| | | | - Yvonne Couch
- University of Oxford, Radcliffe Department of Medicine, Acute Stroke Programme - Investigative Medicine, Oxford, UK
| | - Frank AW Coumans
- Academic Medical Centre of the University of Amsterdam, Department of Clinical Chemistry and Vesicle Observation Centre, Amsterdam, The Netherlands
| | - Beth Coyle
- The University of Nottingham, School of Medicine, Children’s Brain Tumour Research Centre, Nottingham, UK
| | - Rossella Crescitelli
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | | | | | - Saumya Das
- Massachusetts General Hospital, Boston, MA, USA
| | - Amrita Datta Chaudhuri
- The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | | | - Eliezer F De Santana
- The Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, Brazil
| | - Olivier De Wever
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Hernando A del Portillo
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institut d’Investigació Germans Trias i Pujol (IGTP), PVREX group, Badalona, Spain
- ISGlobal, Hospital Clínic - Universitat de Barcelona, PVREX Group, Barcelona, Spain
| | - Tanguy Demaret
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Sarah Deville
- Universiteit Hasselt, Diepenbeek, Belgium
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Andrew Devitt
- Aston University, School of Life & Health Sciences, Birmingham, UK
| | - Bert Dhondt
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University Hospital, Department of Urology, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | | | | | - Vincenza Dolo
- University of L’Aquila, Department of Life, Health and Environmental Sciences, L’Aquila, Italy
| | - Ana Paula Dominguez Rubio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - Massimo Dominici
- TPM of Mirandola, Mirandola, Italy
- University of Modena and Reggio Emilia, Division of Oncology, Modena, Italy
| | - Mauricio R Dourado
- University of Campinas, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, Brazil
- University of Oulu, Faculty of Medicine, Cancer and Translational Medicine Research Unit, Oulu, Finland
| | - Tom AP Driedonks
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | | | - Heather M Duncan
- McGill University, Division of Experimental Medicine, Montreal, Canada
- McGill University, The Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, Canada
| | - Ramon M Eichenberger
- James Cook University, Australian Institute of Tropical Health and Medicine, Centre for Biodiscovery and Molecular Development of Therapeutics, Cairns, Australia
| | - Karin Ekström
- University of Gothenburg, Institute of Clinical Sciences at Sahlgrenska Academy, Department of Biomaterials, Gothenburg, Sweden
| | - Samir EL Andaloussi
- Evox Therapeutics Limited, Oxford, UK
- Karolinska Institute, Stockholm, Sweden
| | | | - Uta Erdbrügger
- University of Virginia Health System, Department of Medicine, Division of Nephrology, Charlottesville, VA, USA
| | - Juan M Falcón-Pérez
- CIC bioGUNE, CIBERehd, Exosomes Laboratory & Metabolomics Platform, Derio, Spain
- IKERBASQUE Research Science Foundation, Bilbao, Spain
| | - Farah Fatima
- University of São Paulo, Ribeirão Preto Medical School, Department of Pathology and Forensic Medicine, Ribeirão Preto, Brazil
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Miguel Flores-Bellver
- University of Colorado, School of Medicine, Department of Ophthalmology, Cell Sight-Ocular Stem Cell and Regeneration Program, Aurora, CO, USA
| | - András Försönits
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | | | - Fabia Fricke
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Applied Tumor Biology, Heidelberg, Germany
- University Hospital Heidelberg, Institute of Pathology, Applied Tumor Biology, Heidelberg, Germany
| | - Gregor Fuhrmann
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Susanne Gabrielsson
- Karolinska Institute, Department of Medicine Solna, Division for Immunology and Allergy, Stockholm, Sweden
| | - Ana Gámez-Valero
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, REMAR-IVECAT Group, Badalona, Spain
- Universitat Autònoma de Barcelona, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Department of Pathology, Barcelona, Spain
| | | | - Kathrin Gärtner
- Helmholtz Center Munich German Research Center for Environmental Health, Research Unit Gene Vectors, Munich, Germany
| | - Raphael Gaudin
- INSERM U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Yong Song Gho
- POSTECH (Pohang University of Science and Technology), Department of Life Sciences, Pohang, South Korea
| | - Bernd Giebel
- University Hospital Essen, University Duisburg-Essen, Institute for Transfusion Medicine, Essen, Germany
| | - Caroline Gilbert
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | - Mario Gimona
- Paracelsus Medical University, GMP Unit, Salzburg, Austria
| | - Ilaria Giusti
- University of L’Aquila, Department of Life, Health and Environmental Sciences, L’Aquila, Italy
| | - Deborah CI Goberdhan
- University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, UK
| | - André Görgens
- Evox Therapeutics Limited, Oxford, UK
- Karolinska Institute, Clinical Research Center, Department of Laboratory Medicine, Stockholm, Sweden
- University Hospital Essen, University Duisburg-Essen, Institute for Transfusion Medicine, Essen, Germany
| | - Sharon M Gorski
- BC Cancer, Canada’s Michael Smith Genome Sciences Centre, Vancouver, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, Canada
| | - David W Greening
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Julia Christina Gross
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Milan, Italy
| | - Gopal N Gupta
- Loyola University Chicago, Department of Urology, Maywood, IL, USA
| | - Dakota Gustafson
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Aase Handberg
- Aalborg University Hospital, Department of Clinical Biochemistry, Aalborg, Denmark
- Aalborg University, Clinical Institute, Aalborg, Denmark
| | - Reka A Haraszti
- University of Massachusetts Medical School, RNA Therapeutics Institute, Worcester, MA, USA
| | | | - Hargita Hegyesi
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - An Hendrix
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Andrew F Hill
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Fred H Hochberg
- Scintillon Institute, La Jolla, CA, USA
- University of California, San Diego, Department of Neurosurgery, La Jolla, CA, USA
| | - Karl F Hoffmann
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth, United Kingdom
| | - Beth Holder
- Imperial College London, London, UK
- MRC The Gambia, Fajara, The Gambia
| | | | - Baharak Hosseinkhani
- Hasselt University, Biomedical Research Institute (BIOMED), Department of Medicine and Life Sciences, Hasselt, Belgium
| | - Guoku Hu
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Yiyao Huang
- Nanfang Hospital, Southern Medical University, Department of Clinical Laboratory Medicine, Guangzhou, China
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Veronica Huber
- Fondazione IRCCS Istituto Nazionale dei Tumori, Unit of Immunotherapy of Human Tumors, Milan, Italy
| | | | | | - Tsuneya Ikezu
- Boston University School of Medicine, Boston, MA, USA
| | - Jameel M Inal
- University of Hertfordshire, School of Life and Medical Sciences, Biosciences Research Group, Hatfield, UK
| | - Mustafa Isin
- Istanbul University Oncology Institute, Basic Oncology Department, Istanbul, Turkey
| | - Alena Ivanova
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg, Germany
| | - Hannah K Jackson
- The University of Nottingham, School of Medicine, Children’s Brain Tumour Research Centre, Nottingham, UK
| | - Soren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Section 4242 - Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Institute of Clinical Medicine, Copenhagen, Denmark
| | - Steven M Jay
- University of Maryland, Fischell Department of Bioengineering, College Park, MD, USA
| | - Muthuvel Jayachandran
- Mayo Clinic, College of Medicine, Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | | | - Lanzhou Jiang
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Suzanne M Johnson
- University of Manchester, Division of Cancer Sciences, Manchester Cancer Research Centre, Manchester, UK
| | - Jennifer C Jones
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Ambrose Jong
- Children’s Hospital of Los Angeles, Los Angeles, CA, USA
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Tijana Jovanovic-Talisman
- City of Hope Comprehensive Cancer Center, Beckman Research Institute, Department of Molecular Medicine, Duarte, CA, USA
| | - Stephanie Jung
- German Research Center for Environmental Health, Institute for Virology, Munich, Germany
| | - Raghu Kalluri
- University of Texas MD Anderson Cancer Center, Department of Cancer Biology, Metastasis Research Center, Houston, TX, USA
| | - Shin-ichi Kano
- The Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - Sukhbir Kaur
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology, Bethesda, MD, USA
| | - Yumi Kawamura
- National Cancer Center Research Institute, Tokyo, Japan
- University of Tsukuba, Tsukuba, Japan
| | - Evan T Keller
- University of Michigan, Biointerfaces Institute, Ann Arbor, MI, USA
- University of Michigan, Department of Urology, Ann Arbor, MI, USA
| | - Delaram Khamari
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Elena Khomyakova
- École normale supérieure, Paris, France
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Anastasia Khvorova
- University of Massachusetts Medical School, RNA Therapeutics Institute, Worcester, MA, USA
| | - Peter Kierulf
- Oslo University Hospital, Department of Medical Biochemistry, Blood Cell Research Group, Oslo, Norway
| | - Kwang Pyo Kim
- Kyung Hee University, Department of Applied Chemistry, Yongin, Korea
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Toronto, Department of Medical Biophysics, Toronto, Canada
| | | | - David J Klinke
- West Virginia University, Department of Chemical and Biomedical Engineering and WVU Cancer Institute, Morgantown, WV, USA
- West Virginia University, Department of Microbiology Immunology and Cell Biology, Morgantown, WV, USA
| | - Miroslaw Kornek
- German Armed Forces Central Hospital, Department of General, Visceral and Thoracic Surgery, Koblenz, Germany
- Saarland University Medical Center, Department of Medicine II, Homburg, Germany
| | - Maja M Kosanović
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | - Árpád Ferenc Kovács
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | | | - Susanne Krasemann
- University Medical Center Hamburg-Eppendorf, Institute of Neuropathology, Hamburg, Germany
| | - Mirja Krause
- Hudson Institute of Medical Research, Melbourne, Australia
| | | | - Gina D Kusuma
- Hudson Institute of Medical Research, Melbourne, Australia
- Monash University, Melbourne, Australia
| | - Sören Kuypers
- Hasselt University, Biomedical Research Institute (BIOMED), Hasselt, Belgium
| | - Saara Laitinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Scott M Langevin
- Cincinnati Cancer Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lucia R Languino
- Thomas Jefferson University, Sidney Kimmel Medical School, Department of Cancer Biology, Philadelphia, PA, USA
| | - Joanne Lannigan
- University of Virginia, Flow Cytometry Core, School of Medicine, Charlottesville, VA, USA
| | - Cecilia Lässer
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Louise C Laurent
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, La Jolla, CA, USA
| | - Gregory Lavieu
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | | | - Soazig Le Lay
- INSERM U1063, Université d’Angers, CHU d’Angers, Angers, France
| | - Myung-Shin Lee
- Eulji University, School of Medicine, Daejeon, South Korea
| | | | - Debora S Lemos
- Federal University of Paraná, Department of Genetics, Human Molecular Genetics Laboratory, Curitiba, Brazil
| | - Metka Lenassi
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Ljubljana, Slovenia
| | | | - Isaac TS Li
- University of British Columbia Okanagan, Kelowna, Canada
| | - Ke Liao
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Sten F Libregts
- University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Department of Medicine, Cambridge NIHR BRC Cell Phenotyping Hub, Cambridge, UK
| | - Erzsebet Ligeti
- Semmelweis University, Department of Physiology, Budapest, Hungary
| | - Rebecca Lim
- Hudson Institute of Medical Research, Melbourne, Australia
- Monash University, Melbourne, Australia
| | - Sai Kiang Lim
- Institute of Medical Biology (IMB), Agency for Science and Technology (A*STAR), Singapore
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Karen Linnemannstöns
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Alicia Llorente
- Oslo University Hospital-The Norwegian Radium Hospital, Institute for Cancer Research, Department of Molecular Cell Biology, Oslo, Norway
| | - Catherine A Lombard
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Magdalena J Lorenowicz
- Utrecht University, University Medical Center Utrecht, Center for Molecular Medicine & Regenerative Medicine Center, Utrecht, The Netherlands
| | - Ákos M Lörincz
- Semmelweis University, Department of Physiology, Budapest, Hungary
| | - Jan Lötvall
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Jason Lovett
- Stellenbosch University, Department of Physiological Sciences, Stellenbosch, South Africa
| | - Michelle C Lowry
- Trinity College Dublin, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute & Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Xavier Loyer
- INSERM UMR-S 970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Quan Lu
- Harvard University, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Barbara Lukomska
- Mossakowski Medical Research Centre, NeuroRepair Department, Warsaw, Poland
| | - Taral R Lunavat
- K.G. Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sybren LN Maas
- Utrecht University, University Medical Center Utrecht, Department of Neurosurgery, Brain Center Rudolf Magnus, Institute of Neurosciences, Utrecht, The Netherlands
- Utrecht University, University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | | | - Antonio Marcilla
- Universitat de València, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Àrea de Parasitologia, Valencia, Spain
- Universitat de València, Health Research Institute La Fe, Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Valencia, Spain
| | - Jacopo Mariani
- Università degli Studi di Milano, Department of Clinical Sciences and Community Health, EPIGET LAB, Milan, Italy
| | | | | | | | | | | | - Mathilde Mathieu
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Suresh Mathivanan
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Marco Maugeri
- University of Gothenburg, Sahlgrenska Academy, Department of Rheumatology and Inflammation Research, Gothenburg, Sweden
| | | | - Mark J McVey
- SickKids Hospital, Department of Anesthesia and Pain Medicine, Toronto, Canada
- University of Toronto, Department of Anesthesia, Toronto, Canada
| | - David G Meckes
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL, USA
| | - Katie L Meehan
- The School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Inge Mertens
- University of Antwerp, Centre for Proteomics, Antwerp, Belgium
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Valentina R Minciacchi
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Andreas Möller
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Malene Møller Jørgensen
- Aalborg University Hospital, Department of Clinical Immunology, Aalborg, Denmark
- EVSEARCH.DK, Denmark
| | - Aizea Morales-Kastresana
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | | | - François Mullier
- Namur Thrombosis and Hemostasis Center (NTHC), NARILIS, Namur, Belgium
- Université Catholique de Louvain, CHU UCL Namur, Hematology-Hemostasis Laboratory, Yvoir, Belgium
| | - Maurizio Muraca
- University of Padova, Department of Women’s and Children’s Health, Padova, Italy
| | - Luca Musante
- University of Virginia Health System, Department of Medicine, Division of Nephrology, Charlottesville, VA, USA
| | - Veronika Mussack
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Dillon C Muth
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Kathryn H Myburgh
- Stellenbosch University, Department of Physiological Sciences, Stellenbosch, South Africa
| | - Tanbir Najrana
- Brown University, Women and Infants Hospital, Providence, RI, USA
| | - Muhammad Nawaz
- University of Gothenburg, Sahlgrenska Academy, Department of Rheumatology and Inflammation Research, Gothenburg, Sweden
| | - Irina Nazarenko
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Institute for Infection Prevention and Hospital Epidemiology, Freiburg, Germany
| | - Peter Nejsum
- Aarhus University, Department of Clinical Medicine, Aarhus, Denmark
| | - Christian Neri
- Sorbonne Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative and Aging (Brain-C), Paris, France
| | - Tommaso Neri
- University of Pisa, Centro Dipartimentale di Biologia Cellulare Cardio-Respiratoria, Pisa, Italy
| | - Rienk Nieuwland
- Academic Medical Centre of the University of Amsterdam, Department of Clinical Chemistry and Vesicle Observation Centre, Amsterdam, The Netherlands
| | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia, Rio de Janeiro, Brazil
| | | | - Esther NM Nolte-’t Hoen
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Nicole Noren Hooten
- National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | - Lorraine O’Driscoll
- Trinity College Dublin, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute & Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Tina O’Grady
- University of Liège, GIGA-R(MBD), PSI Laboratory, Liège, Belgium
| | - Ana O’Loghlen
- Queen Mary University of London, Blizard Institute, Epigenetics & Cellular Senescence Group, London, UK
| | - Takahiro Ochiya
- National Cancer Center Research Institute, Division of Molecular and Cellular Medicine, Tokyo, Japan
| | - Martin Olivier
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz-UAM, Department of Nephrology and Hypertension, Madrid, Spain
- Spanish Kidney Research Network, REDINREN, Madrid, Spain
- Universidad Autónoma de Madrid, School of Medicine, Department of Medicine, Madrid, Spain
| | - Luis A Ortiz
- Graduate School of Public Health at the University of Pittsburgh, Division of Occupational and Environmental Medicine, Pittsburgh, PA, USA
| | | | - Ole Østergaard
- Statens Serum Institut, Department of Autoimmunology and Biomarkers, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Matias Ostrowski
- University of Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Jaesung Park
- POSTECH (Pohang University of Science and Technology), Department of Life Sciences, Pohang, South Korea
| | - D. Michiel Pegtel
- Amsterdam University Medical Centers, Department of Pathology, Amsterdam, The Netherlands
| | - Hector Peinado
- Spanish National Cancer Research Center (CNIO), Molecular Oncology Programme, Microenvironment and Metastasis Laboratory, Madrid, Spain
| | - Francesca Perut
- IRCCS - Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Bologna, Italy
| | - Michael W Pfaffl
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Donald G Phinney
- The Scripps Research Institute-Scripps Florida, Department of Molecular Medicine, Jupiter, FL, USA
| | - Bartijn CH Pieters
- Radboud University Medical Center, Department of Rheumatology, Nijmegen, The Netherlands
| | - Ryan C Pink
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - David S Pisetsky
- Duke University Medical Center, Departments of Medicine and Immunology, Durham, NC, USA
- Durham VAMC, Medical Research Service, Durham, NC, USA
| | | | - Iva Polakovicova
- Pontificia Universidad Católica de Chile, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Pontificia Universidad Católica de Chile, Faculty of Medicine, Department of Hematology-Oncology, Santiago, Chile
| | - Ivan KH Poon
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Bonita H Powell
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | | | - Lynn Pulliam
- University of California, San Francisco, CA, USA
- Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Peter Quesenberry
- The Warren Alpert Medical School of Brown University, Department of Medicine, Providence, RI, USA
| | - Annalisa Radeghieri
- CSGI - Research Center for Colloids and Nanoscience, Florence, Italy
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Robert L Raffai
- Department of Veterans Affairs, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Stefania Raimondo
- University of Palermo, Department of Biopathology and Medical Biotechnologies, Palermo, Italy
| | - Janusz Rak
- McGill University, Montreal, Canada
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Marcel I Ramirez
- Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
- Universidade Federal de Paraná, Paraná, Brazil
| | - Graça Raposo
- Institut Curie, CNRS UMR144, PSL Research University, Paris, France
| | - Morsi S Rayyan
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Neta Regev-Rudzki
- Weizmann Institute of Science, Department of Biomolecular Sciences, Rehovot, Israel
| | - Franz L Ricklefs
- University Medical Center Hamburg-Eppendorf, Department of Neurosurgery, Hamburg, Germany
| | - Paul D Robbins
- University of Minnesota Medical School, Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, MN, USA
| | - David D Roberts
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology, Bethesda, MD, USA
| | | | - Eva Rohde
- Paracelsus Medical University, Department of Transfusion Medicine, Salzburg, Austria
- Paracelsus Medical University, GMP Unit, Salzburg, Austria
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
| | - Sophie Rome
- University of Lyon, Lyon-Sud Faculty of Medicine, CarMeN Laboratory (UMR INSERM 1060-INRA 1397), Pierre-Bénite, France
| | - Kasper MA Rouschop
- Maastricht University, GROW, School for Oncology and Developmental Biology, Maastricht Radiation Oncology (MaastRO) Lab, Maastricht, The Netherlands
| | - Aurelia Rughetti
- Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy
| | | | - Paula Saá
- American Red Cross, Scientific Affairs, Gaithersburg, MD, USA
| | - Susmita Sahoo
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Cardiology, New York City, NY, USA
| | - Edison Salas-Huenuleo
- Advanced Center for Chronic Diseases, Santiago, Chile
- University of Chile, Faculty of Chemical and Pharmaceutical Science, Laboratory of Nanobiotechnology and Nanotoxicology, Santiago, Chile
| | - Catherine Sánchez
- Clínica las Condes, Extracellular Vesicles in Personalized Medicine Group, Santiago, Chile
| | - Julie A Saugstad
- Oregon Health & Science University, Department of Anesthesiology & Perioperative Medicine, Portland, OR, USA
| | - Meike J Saul
- Technische Universität Darmstadt, Department of Biology, Darmstadt, Germany
| | - Raymond M Schiffelers
- University Medical Center Utrecht, Laboratory for Clinical Chemistry & Hematology, Utrecht, The Netherlands
| | - Raphael Schneider
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
- University of Toronto, Department of Medicine, Division of Neurology, Toronto, Canada
| | - Tine Hiorth Schøyen
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | | | - Eriomina Shahaj
- Fondazione IRCCS Istituto Nazionale dei Tumori, Unit of Immunotherapy of Human Tumors, Milan, Italy
| | - Shivani Sharma
- University of California, Los Angeles, California NanoSystems Institute, Los Angeles, CA, USA
- University of California, Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Olga Shatnyeva
- AstraZeneca, Discovery Sciences, IMED Biotech Unit, Gothenburg, Sweden
| | - Faezeh Shekari
- Royan Institute for Stem Cell Biology and Technology, ACECR, Cell Science Research Center, Department of Stem Cells and Developmental Biology, Tehran, Iran
| | - Ganesh Vilas Shelke
- University of Gothenburg, Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Cancer Center, Gothenburg, Sweden
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Ashok K Shetty
- Research Service, Olin E. Teague Veterans’ Medical Center, Temple, TX, USA
- Texas A&M University College of Medicine, Institute for Regenerative Medicine and Department of Molecular and Cellular Medicine, College Station, TX, USA
| | | | - Pia R-M Siljander
- University of Helsinki, EV Core Facility, Helsinki, Finland
- University of Helsinki, Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, EV group, Helsinki, Finland
| | - Andreia M Silva
- INEB - Instituto de Engenharia Biomédica, Porto, Portugal
- University of Porto, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- University of Porto, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Agata Skowronek
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Orman L Snyder
- Kansas State University, College of Veterinary Medicine, Manhattan, KS, USA
| | | | - Barbara W Sódar
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Carolina Soekmadji
- QIMR Berghofer Medical Research Institute, Herston, Australia
- The University of Queensland, Brisbane, Australia
| | - Javier Sotillo
- James Cook University, Australian Institute of Tropical Health and Medicine, Centre for Biodiscovery and Molecular Development of Therapeutics, Cairns, Australia
| | | | - Willem Stoorvogel
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Shannon L Stott
- Harvard Medical School, Department of Medicine, Boston, MA, USA
- Massachusetts General Cancer Center, Boston, MA, USA
| | - Erwin F Strasser
- FAU Erlangen-Nuremberg, Transfusion and Haemostaseology Department, Erlangen, Germany
| | - Simon Swift
- University of Auckland, Department of Molecular Medicine and Pathology, Auckland, New Zealand
| | - Hidetoshi Tahara
- Hiroshima University, Institute of Biomedical & Health Sciences, Department of Cellular and Molecular Biology, Hiroshima, Japan
| | - Muneesh Tewari
- University of Michigan, Biointerfaces Institute, Ann Arbor, MI, USA
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA
- University of Michigan, Department of Internal Medicine - Hematology/Oncology Division, Ann Arbor, MI, USA
| | - Kate Timms
- University of Manchester, Manchester, UK
| | - Swasti Tiwari
- Georgetown University, Department of Medicine, Washington, DC, USA
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Molecular Medicine & Biotechnology, Lucknow, India
| | - Rochelle Tixeira
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Mercedes Tkach
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Wei Seong Toh
- National University of Singapore, Faculty of Dentistry, Singapore
| | - Richard Tomasini
- INSERM U1068, Aix Marseille University, CNRS UMR7258, Marseille, France
| | | | - Juan Pablo Tosar
- Institut Pasteur de Montevideo, Functional Genomics Unit, Montevideo, Uruguay
- Universidad de la República, Faculty of Science, Nuclear Research Center, Analytical Biochemistry Unit, Montevideo, Uruguay
| | | | - Lorena Urbanelli
- University of Perugia, Department of Chemistry, Biology and Biotechnology, Perugia, Italy
| | - Pieter Vader
- University Medical Center Utrecht, Laboratory for Clinical Chemistry & Hematology, Utrecht, The Netherlands
| | - Bas WM van Balkom
- University Medical Center Utrecht, Department of Nephrology and Hypertension, Utrecht, The Netherlands
| | - Susanne G van der Grein
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Jan Van Deun
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Martijn JC van Herwijnen
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | | | | | - Martin E van Royen
- Department of Pathology, Erasmus MC, Erasmus Optical Imaging Centre, Rotterdam, The Netherlands
| | | | - M Helena Vasconcelos
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- University of Porto, Faculty of Pharmacy (FFUP), Porto, Portugal
- University of Porto, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Ivan J Vechetti
- University of Kentucky, College of Medicine, Department of Physiology, Lexington, KY, USA
| | - Tiago D Veit
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, Brazil
| | - Laura J Vella
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- The University of Melbourne, The Department of Medicine, Melbourne, Australia
| | - Émilie Velot
- UMR 7365 CNRS-Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Beate Vestad
- Oslo University Hospital Rikshospitalet, Research Institute of Internal Medicine, Oslo, Norway
- Regional Research Network on Extracellular Vesicles, RRNEV, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Jose L Viñas
- Kidney Research Centre, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Tamás Visnovitz
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Krisztina V Vukman
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Jessica Wahlgren
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal, Sweden
| | - Dionysios C Watson
- Case Western Reserve University, Department of Medicine, Cleveland, OH, USA
- University Hospitals Cleveland Medical Center, Department of Medicine, Cleveland, OH, USA
| | - Marca HM Wauben
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Alissa Weaver
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN, USA
| | | | - Viktoria Weber
- Danube University Krems, Department for Biomedical Research and Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Krems an der Donau, Austria
| | - Ann M Wehman
- University of Würzburg, Rudolf Virchow Center, Würzburg, Germany
| | - Daniel J Weiss
- The University of Vermont Medical Center, Department of Medicine, Burlington, VT, USA
| | - Joshua A Welsh
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Sebastian Wendt
- University Hospital RWTH Aachen, Department of Thoracic and Cardiovascular Surgery, Aachen, Germany
| | - Asa M Wheelock
- Karolinska Institute, Department of Medicine and Center for Molecular Medicine, Respiratory Medicine Unit, Stockholm, Sweden
| | - Zoltán Wiener
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Leonie Witte
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Joy Wolfram
- Chinese Academy of Sciences, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China
- Houston Methodist Research Institute, Department of Nanomedicine, Houston, TX, USA
- Mayo Clinic, Department of Transplantation Medicine/Department of Physiology and Biomedical Engineering, Jacksonville, FL, USA
| | - Angeliki Xagorari
- George Papanicolaou Hospital, Public Cord Blood Bank, Department of Haematology - BMT Unit, Thessaloniki, Greece
| | - Patricia Xander
- Universidade Federal de São Paulo Campus Diadema, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, São Paulo, Brazil
| | - Jing Xu
- BC Cancer, Canada’s Michael Smith Genome Sciences Centre, Vancouver, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, Canada
| | - Xiaomei Yan
- Xiamen University, Department of Chemical Biology, Xiamen, China
| | - María Yáñez-Mó
- Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Madrid, Spain
| | - Hang Yin
- Tsinghua University, School of Pharmaceutical Sciences, Beijing, China
| | - Yuana Yuana
- Technical University Eindhoven, Faculty Biomedical Technology, Eindhoven, The Netherlands
| | - Valentina Zappulli
- University of Padova, Department of Comparative Biomedicine and Food Science, Padova, Italy
| | - Jana Zarubova
- Institute of Physiology CAS, Department of Biomaterials and Tissue Engineering, BIOCEV, Vestec, Czech Republic
- Institute of Physiology CAS, Department of Biomaterials and Tissue Engineering, Prague, Czech Republic
- University of California, Los Angeles, Department of Bioengineering, Los Angeles, CA, USA
| | - Vytautas Žėkas
- Vilnius University, Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Vilnius, Lithuania
| | - Jian-ye Zhang
- Guangzhou Medical University, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou, China
| | - Zezhou Zhao
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Lei Zheng
- Nanfang Hospital, Southern Medical University, Department of Clinical Laboratory Medicine, Guangzhou, China
| | | | - Antje M Zickler
- Karolinska Institute, Clinical Research Center, Unit for Molecular Cell and Gene Therapy Science, Stockholm, Sweden
| | - Pascale Zimmermann
- Aix-Marseille Université, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- KU Leuven (Leuven University), Department of Human Genetics, Leuven, Belgium
| | - Angela M Zivkovic
- University of California, Davis, Department of Nutrition, Davis, CA, USA
| | | | - Ewa K Zuba-Surma
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Kraków, Poland
| |
Collapse
|
80
|
Wilhelm EN, Mourot L, Rakobowchuk M. Exercise-Derived Microvesicles: A Review of the Literature. Sports Med 2018; 48:2025-2039. [PMID: 29868992 DOI: 10.1007/s40279-018-0943-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Initially suggested as simple cell debris, cell-derived microvesicles (MVs) have now gained acceptance as recognized players in cellular communication and physiology. Shed by most, and perhaps all, human cells, these tiny lipid-membrane vesicles carry bioactive agents, such as proteins, lipids and microRNA from their cell source, and are produced under orchestrated events in response to a myriad of stimuli. Physical exercise introduces systemic physiological challenges capable of acutely disrupting cell homeostasis and stimulating the release of MVs into the circulation. The novel and promising field of exercise-derived MVs is expanding quickly, and the following work provides a review of the influence of exercise on circulating MVs, considering both acute and chronic aspects of exercise and training. Potential effects of the MV response to exercise are highlighted and future directions suggested as exercise and sports sciences extend the realm of extracellular vesicles.
Collapse
Affiliation(s)
- Eurico N Wilhelm
- School of Physical Education, UFPel, Rua Luís de Camões, 625, Três Vendas, Pelotas, RS, 96055-630, Brazil.
| | - Laurent Mourot
- EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, (Exercise Performance Health Innovation-EPHI), University of Bourgogne Franche-Comté, 25000, Besançon, France.,Tomsk Polytechnic University, Tomsk, Russia
| | - Mark Rakobowchuk
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| |
Collapse
|
81
|
Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol 2018; 16:e2006872. [PMID: 30296253 PMCID: PMC6209495 DOI: 10.1371/journal.pbio.2006872] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/31/2018] [Accepted: 09/25/2018] [Indexed: 11/23/2022] Open
Abstract
Cells from all kingdoms of life produce extracellular vesicles (EVs). Their cargo is protected from the environment by the surrounding lipid bilayer. EVs from many organisms have been shown to function in cell–cell communication, relaying signals that impact metazoan development, microbial quorum sensing, and pathogenic host–microbe interactions. Here, we have investigated the production and functional activities of EVs in a surface-associated microbial community or biofilm of the fungal pathogen Candida albicans. Crowded communities like biofilms are a context in which EVs are likely to function. Biofilms are noteworthy because they are encased in an extracellular polymeric matrix and because biofilm cells exhibit extreme tolerance to antimicrobial compounds. We found that biofilm EVs are distinct from those produced by free-living planktonic cells and display strong parallels in composition to biofilm matrix material. The functions of biofilm EVs were delineated with a panel of mutants defective in orthologs of endosomal sorting complexes required for transport (ESCRT) subunits, which are required for normal EV production in diverse eukaryotes. Most ESCRT-defective mutations caused reduced biofilm EV production, reduced matrix polysaccharide levels, and greatly increased sensitivity to the antifungal drug fluconazole. Matrix accumulation and drug hypersensitivity of ESCRT mutants were reversed by addition of wild-type (WT) biofilm EVs. Vesicle complementation showed that biofilm EV function derives from specific cargo proteins. Our studies indicate that C. albicans biofilm EVs have a pivotal role in matrix production and biofilm drug resistance. Biofilm matrix synthesis is a community enterprise; prior studies of mixed cell biofilms have demonstrated extracellular complementation. Therefore, EVs function not only in cell–cell communication but also in the sharing of microbial community resources. Candida albicans—the most common fungal pathogen in humans—often grows as a biofilm, resulting in an infection that is difficult to treat. These adherent communities tolerate extraordinarily high concentrations of antifungals due in large part to the protective extracellular matrix. The present study identifies extracellular vesicles (EVs) that are distinct to biofilms. These EVs deliver the functional extracellular matrix and are essential for resistance to antifungals. Our findings not only reveal a coordinated mechanism by which the defining trait of the biofilm lifestyle arises but also identify a number of potential therapeutic targets.
Collapse
|
82
|
Reddy EC, Wang H, Christensen H, McMillan‐Ward E, Israels SJ, Bang KWA, Rand ML. Analysis of procoagulant phosphatidylserine-exposing platelets by imaging flow cytometry. Res Pract Thromb Haemost 2018; 2:736-750. [PMID: 30349893 PMCID: PMC6178738 DOI: 10.1002/rth2.12144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/24/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Upon platelet activation, a subpopulation of procoagulant platelets is formed, characterized by the exposure of the anionic aminophospholipid phosphatidylserine (PS) on the surface membrane. OBJECTIVE To evaluate procoagulant PS-exposing platelets by imaging flow cytometry. METHODS Platelet ultrastructure was examined by transmission electron microscopy, and a comprehensive analysis of procoagulant platelets was performed using imaging flow cytometry; platelets were fluorescently labeled for the markers glycoprotein (GP)IX, activated integrin αIIbβ3, CD62P, and PS exposure. RESULTS A subpopulation of platelets stimulated in suspension by the physiological agonists thrombin+collagen, and all platelets stimulated by the calcium ionophore A23187, had a distinct round morphology. These platelets were PS-exposing, larger in size, had an increased circularity index, and had reduced internal complexity compared with non-PS-exposing platelets. They expressed CD62P and αIIbβ3 in an inactive conformation on the surface, and demonstrated depolarized inner mitochondrial membranes. For the first time, using imaging flow cytometry, a large proportion of PS-exposing platelets possessing platelet-associated extracellular vesicles (EVs) was observed, which demonstrated heterogeneous platelet marker expression that was different from free released EVs. CONCLUSIONS Innovative imaging flow cytometry allowed detailed fluorescence-based, quantitative morphometric analysis of PS-exposing platelets; in becoming procoagulant, platelets undergo remarkable morphological changes, transforming into spherical "balloons," almost devoid of their normal internal architecture. Almost all PS-exposing platelets have associated EVs that are not detectable by traditional flow cytometry. While their functions have yet to be fully elucidated, the heterogeneity of platelet-associated and released EVs suggests that they may contribute to different aspects of hemostasis and of thrombosis.
Collapse
Affiliation(s)
- Emily C. Reddy
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
| | - Hong Wang
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
| | - Hilary Christensen
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
| | | | - Sara J. Israels
- Department of Pediatrics and Child HealthUniversity of ManitobaWinnipegCanada
| | - K. W. Annie Bang
- Lunenfeld‐Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
| | - Margaret L. Rand
- Translational MedicineResearch InstituteThe Hospital for Sick ChildrenTorontoCanada
- Division of Haematology/OncologyThe Hospital for Sick ChildrenTorontoCanada
- Departments of Laboratory Medicine and Pathobiology, Biochemistry, and PaediatricsUniversity of TorontoTorontoCanada
| |
Collapse
|
83
|
Thulin Å, Yan J, Åberg M, Christersson C, Kamali-Moghaddam M, Siegbahn A. Sensitive and Specific Detection of Platelet-Derived and Tissue Factor-Positive Extracellular Vesicles in Plasma Using Solid-Phase Proximity Ligation Assay. TH OPEN 2018; 2:e250-e260. [PMID: 31276087 PMCID: PMC6602879 DOI: 10.1055/s-0038-1667204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) derived from blood cells are promising biomarkers for various diseases. However, they are difficult to measure accurately in plasma due to their small size. Here, we demonstrate that platelet-derived EVs in plasma can be measured using solid-phase proximity ligation assay with high sensitivity and specificity using very small sample volume of biological materials. The results correlate well with high-sensitivity flow cytometry with the difference that the smallest EVs are detected. Briefly, the EVs are first captured on a solid phase, using lactadherin binding, and detection requires recognition with two antibodies followed by qPCR. The assay, using cholera toxin subunit-B or lactadherin as capture agents, also allowed detection of the more rare population of tissue factor (TF)-positive EVs at a concentration similar to sensitive TF activity assays. Thus, this assay can detect different types of EVs with high specificity and sensitivity, and has the potential to be an attractive alternative to flow cytometric analysis of preclinical and clinical samples. Improved techniques for measuring EVs in plasma will hopefully contribute to the understanding of their role in several diseases.
Collapse
Affiliation(s)
- Åsa Thulin
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Junhong Yan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
84
|
Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS NANO 2018; 12:6830-6842. [PMID: 29975503 DOI: 10.1021/acsnano.8b02053] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) are recognized as nature's own carriers to transport macromolecules throughout the body. Hijacking this endogenous communication system represents an attractive strategy for advanced drug delivery. However, efficient and reproducible loading of EVs with therapeutic or imaging agents still represents a bottleneck for their use as a drug delivery system. Here, we developed a method for modifying cell-derived EVs through their fusion with liposomes containing both membrane and soluble cargoes. The fusion of EVs with functionalized liposomes was triggered by polyethylene glycol (PEG) to create smart biosynthetic hybrid vectors. This versatile method proved to be efficient to enrich EVs with exogenous lipophilic or hydrophilic compounds, while preserving their intrinsic content and biological properties. Hybrid EVs improved cellular delivery efficiency of a chemotherapeutic compound by a factor of 3-4, as compared to the free drug or the drug-loaded liposome precursor. On one side, this method allows the biocamouflage of liposomes by enriching their lipid bilayer and inner compartment with biogenic molecules. On the other side, the proposed fusion strategy enables efficient EV loading, and the pharmaceutical development of EVs with adaptable activity and drug delivery property.
Collapse
Affiliation(s)
- Max Piffoux
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - Amanda K A Silva
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - David Tareste
- Institut Jacques Monod , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7592, F-75013 Paris , France
- Centre de Psychiatrie et Neurosciences , Université Paris Descartes, Sorbonne Paris Cité , INSERM UMR 894, F-75014 Paris , France
- Membrane Traffic in Health and Disease , Université Paris Descartes, Sorbonne Paris Cité , INSERM ERL U950, F-75014 Paris , France
| |
Collapse
|
85
|
Unbiased classification of mosquito blood cells by single-cell genomics and high-content imaging. Proc Natl Acad Sci U S A 2018; 115:E7568-E7577. [PMID: 30038005 PMCID: PMC6094101 DOI: 10.1073/pnas.1803062115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mosquito blood cells are immune cells that help control infection by vector-borne pathogens. Despite their importance, little is known about mosquito blood cell biology beyond morphological and functional criteria used for their classification. Here, we combined the power of single-cell RNA sequencing, high-content imaging flow cytometry, and single-molecule RNA hybridization to analyze a subset of blood cells of the malaria mosquito Anopheles gambiae By demonstrating that blood cells express nearly half of the mosquito transcriptome, our dataset represents an unprecedented view into their transcriptional program. Analyses of differentially expressed genes identified transcriptional signatures of two cell types and provide insights into the current classification of these cells. We further demonstrate the active transfer of a cellular marker between blood cells that may confound their identification. We propose that cell-to-cell exchange may contribute to cellular diversity and functional plasticity seen across biological systems.
Collapse
|
86
|
Mastoridis S, Bertolino GM, Whitehouse G, Dazzi F, Sanchez-Fueyo A, Martinez-Llordella M. Multiparametric Analysis of Circulating Exosomes and Other Small Extracellular Vesicles by Advanced Imaging Flow Cytometry. Front Immunol 2018; 9:1583. [PMID: 30034401 PMCID: PMC6043651 DOI: 10.3389/fimmu.2018.01583] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) are responsible for a multitude of physiological functions, including immunomodulation. A heterogenous mixture of small EV (sEV) subsets, including putative exosomes, is derived when commonly used "exosome" isolation techniques are employed. Subset diversity relates in part to their different intracellular origins, and can be associated with distinct functional properties. Recent progress in the EV field has enabled the categorization of such subsets based on their surface composition. For the first time, we combine such emerging subset-specific markers with advanced imaging flow cytometry (iFCM) to perform high-throughput, multiparametric, vesicle-by-vesicle characterization, and functional assessment of specific small EV subsets, and exosomes in particular. The approach allows researchers to address three important applications. First, it is known that different isolation techniques result in the divergent recovery of particular vesicle subsets. Taking three commonly used "exosome" isolation techniques as test cases (ultracentrifugation, size-exclusion chromatography, and polymer-based precipitation), the capacity for convenient and accurate isolate compositional analysis by iFCM is demonstrated. The approach was able to corroborate and to quantify the known skewing of subtype recovery among different isolation approaches. Second, exosomes are a particularly widely studied EV subset. Applying exosome-specific markers to samples collected from an optimal clinical transplantation model, we verify the capacity for iFCM to detect exosomes in circulation, to establish their tissue of origin, and to provide insights as to their functional immunological potential. Finally, we describe a technique for establishing whether the transfer of a molecule of interest to a target cell is exosomally mediated. In so doing, we highlight the approach's utility in assessing the functional impact of circulating exosomes and in identifying their targets. In conclusion, we set out a new methodological approach by which small extracellular vesicle subsets, exosomes in particular, can be conveniently and comprehensively investigated, thereby offering novel phenotypic and functional insights.
Collapse
Affiliation(s)
- Sotiris Mastoridis
- MRC Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Giuliana Minani Bertolino
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London, United Kingdom
| | - Gavin Whitehouse
- MRC Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Francesco Dazzi
- Regenerative Medicine, Division of Cancer Studies and Cancer Research UK King's Health Partners, King's College London, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- MRC Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Marc Martinez-Llordella
- MRC Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| |
Collapse
|
87
|
Wilhelm EN, González-Alonso J, Chiesa ST, Trangmar SJ, Kalsi KK, Rakobowchuk M. Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress. Physiol Rep 2018; 5:5/21/e13496. [PMID: 29122961 PMCID: PMC5688785 DOI: 10.14814/phy2.13496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 01/02/2023] Open
Abstract
Intense, large muscle mass exercise increases circulating microvesicles, but our understanding of microvesicle dynamics and mechanisms inducing their release remains limited. However, increased vascular shear stress is generally thought to be involved. Here, we manipulated exercise‐independent and exercise‐dependent shear stress using systemic heat stress with localized single‐leg cooling (low shear) followed by single‐leg knee extensor exercise with the cooled or heated leg (Study 1, n = 8) and whole‐body passive heat stress followed by cycling (Study 2, n = 8). We quantified femoral artery shear rates (SRs) and arterial and venous platelet microvesicles (PMV–CD41+) and endothelial microvesicles (EMV–CD62E+). In Study 1, mild passive heat stress while one leg remained cooled did not affect [microvesicle] (P ≥ 0.05). Single‐leg knee extensor exercise increased active leg SRs by ~12‐fold and increased arterial and venous [PMVs] by two‐ to threefold, even in the nonexercising contralateral leg (P < 0.05). In Study 2, moderate whole‐body passive heat stress increased arterial [PMV] compared with baseline (mean±SE, from 19.9 ± 1.5 to 35.5 ± 5.4 PMV.μL−1.103, P < 0.05), and cycling with heat stress increased [PMV] further in the venous circulation (from 27.5 ± 2.2 at baseline to 57.5 ± 7.2 PMV.μL−1.103 during cycling with heat stress, P < 0.05), with a tendency for increased appearance of PMV across exercising limbs. Taken together, these findings demonstrate that whole‐body heat stress may increase arterial [PMV], and intense exercise engaging either large or small muscle mass promote PMV formation locally and systemically, with no influence upon [EMV]. Local shear stress, however, does not appear to be the major stimulus modulating PMV formation in healthy humans.
Collapse
Affiliation(s)
- Eurico N Wilhelm
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Scott T Chiesa
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Steven J Trangmar
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Kameljit K Kalsi
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Mark Rakobowchuk
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom .,Faculty of Science, Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| |
Collapse
|
88
|
Wiklander OPB, Bostancioglu RB, Welsh JA, Zickler AM, Murke F, Corso G, Felldin U, Hagey DW, Evertsson B, Liang XM, Gustafsson MO, Mohammad DK, Wiek C, Hanenberg H, Bremer M, Gupta D, Björnstedt M, Giebel B, Nordin JZ, Jones JC, El Andaloussi S, Görgens A. Systematic Methodological Evaluation of a Multiplex Bead-Based Flow Cytometry Assay for Detection of Extracellular Vesicle Surface Signatures. Front Immunol 2018; 9:1326. [PMID: 29951064 PMCID: PMC6008374 DOI: 10.3389/fimmu.2018.01326] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell’s activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.
Collapse
Affiliation(s)
- Oscar P B Wiklander
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom
| | - R Beklem Bostancioglu
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joshua A Welsh
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Antje M Zickler
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Pathology F56, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Giulia Corso
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Felldin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel W Hagey
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Björn Evertsson
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Xiu-Ming Liang
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuela O Gustafsson
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dara K Mohammad
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Constanze Wiek
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Department of Pediatrics III, University Children's Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Michel Bremer
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dhanu Gupta
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Björnstedt
- Division of Pathology F56, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joel Z Nordin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom
| | - Jennifer C Jones
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Samir El Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - André Görgens
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom.,Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
89
|
Ofir-Birin Y, Abou Karam P, Rudik A, Giladi T, Porat Z, Regev-Rudzki N. Monitoring Extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry. Front Immunol 2018; 9:1011. [PMID: 29881375 PMCID: PMC5976745 DOI: 10.3389/fimmu.2018.01011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/23/2018] [Indexed: 01/10/2023] Open
Abstract
Extracellular vesicles are essential for long distance cell–cell communication. They function as carriers of different compounds, including proteins, lipids and nucleic acids. Pathogens, like malaria parasites (Plasmodium falciparum, Pf), excel in employing vesicle release to mediate cell communication in diverse processes, particularly in manipulating the host response. Establishing research tools to study the interface between pathogen-derived vesicles and their host recipient cells will greatly benefit the scientific community. Here, we present an imaging flow cytometry (IFC) method for monitoring the uptake of malaria-derived vesicles by host immune cells. By staining different cargo components, we were able to directly track the cargo’s internalization over time and measure the kinetics of its delivery. Impressively, we demonstrate that this method can be used to specifically monitor the translocation of a specific protein within the cellular milieu upon internalization of parasitic cargo; namely, we were able to visually observe how uptaken parasitic Pf-DNA cargo leads to translocation of transcription factor IRF3 from the cytosol to the nucleus within the recipient immune cell. Our findings demonstrate that our method can be used to study cellular dynamics upon vesicle uptake in different host–pathogen and pathogen–pathogen systems.
Collapse
Affiliation(s)
- Yifat Ofir-Birin
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Paula Abou Karam
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ariel Rudik
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Giladi
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
90
|
Almizraq RJ, Holovati JL, Acker JP. Characteristics of Extracellular Vesicles in Red Blood Concentrates Change with Storage Time and Blood Manufacturing Method. Transfus Med Hemother 2018; 45:185-193. [PMID: 29928174 DOI: 10.1159/000486137] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/30/2017] [Indexed: 01/04/2023] Open
Abstract
Background Extracellular vesicles (EVs) in blood products are potential effectors of inflammation and coagulation after transfusion. The aim of this study was to assess the impact of different blood manufacturing methods and duration of hypothermic storage on the EV subpopulations in relation to other in vitro quality parameters of red blood cell concentrate (RCC) products. Methods RCCs were produced using whole blood filtration (WBF) or red cell filtration (RCF) (n = 12/method), refrigerated for 43 days, and evaluated for EV size profile and concentration, red cell deformability, ATP and 2,3-DPG, hemolysis, and hematological indices. Results The total number of EVs increased significantly with storage in both methods, and WBF-RCCs contained the higher numbers of EVs compared to RCF-RCCs. The concentration of small EVs was greater in WBF-RCCs versus RCF-RCCs, with difference between the two methods observed on day 43 of storage (p = 0.001). Throughout storage, significant decreases were identified in ATP, 2,3-DPG, and EImax, while an increase in hemolysis was observed in both RCC products. Conclusion The dynamic shift in the size and concentration of the EV subpopulations is dependent on the blood manufacturing method and length of storage. Better understanding of the potential clinical implications of these heterogeneous populations of EVs are needed.
Collapse
Affiliation(s)
- Ruqayyah J Almizraq
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Jelena L Holovati
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.,Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada
| | - Jason P Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.,Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada
| |
Collapse
|
91
|
Pieper IL, Radley G, Christen A, Ali S, Bodger O, Thornton CA. Ovine Leukocyte Microparticles Generated by the CentriMag Ventricular Assist Device In Vitro. Artif Organs 2018; 42:E78-E89. [PMID: 29512167 DOI: 10.1111/aor.13068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022]
Abstract
Ventricular assist devices (VADs) are a life-saving form of mechanical circulatory support in heart failure patients. However, VADs have not yet reached their full potential due to the associated side effects (thrombosis, bleeding, infection) related to the activation and damage of blood cells and proteins caused by mechanical stress and foreign materials. Studies of the effects of VADs on leukocytes are limited, yet leukocyte activation and damage including microparticle generation can influence both thrombosis and infection rates. Therefore, the aim was to develop a multicolor flow cytometry assessment of leukocyte microparticles (LMPs) using ovine blood and the CentriMag VAD as a model for shear stress. Ovine blood was pumped for 6 h in the CentriMag and regular samples analyzed for hemolysis, complete blood counts and LMP by flow cytometry during three different pump operating conditions (low flow, standard, high speed). The high speed condition caused significant increases in plasma-free hemoglobin; decreases in total leukocytes, granulocytes, monocytes, and platelets; increases in CD45+ LMPs as well as two novel LMP populations: CD11bbright /HLA-DR- and CD11bdull /HLA-DR+ , both of which were CD14- /CD21- . CD11bbright /HLA-DR- LMPs appeared to respond to an increase in shear magnitude whereas the CD11bdull /HLA-DR+ LMPs significantly increased in all pumping conditions. We propose that these two populations are released from granulocytes and T cells, respectively, but further research is needed to better characterize these two populations.
Collapse
Affiliation(s)
- Ina Laura Pieper
- Institute of Life Science, Swansea University Medical School, Swansea, UK.,Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, UK
| | - Gemma Radley
- Institute of Life Science, Swansea University Medical School, Swansea, UK.,Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, UK
| | - Abigail Christen
- Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, UK
| | - Sabrina Ali
- Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, UK
| | - Owen Bodger
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
92
|
Rhys HI, Dell'Accio F, Pitzalis C, Moore A, Norling LV, Perretti M. Neutrophil Microvesicles from Healthy Control and Rheumatoid Arthritis Patients Prevent the Inflammatory Activation of Macrophages. EBioMedicine 2018; 29:60-69. [PMID: 29449195 PMCID: PMC5925578 DOI: 10.1016/j.ebiom.2018.02.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Microvesicles (MVs) are emerging as a novel means to enact cell-to-cell communication in inflammation. Here, we aimed to ascertain the ability of neutrophil-derived MVs to modulate target cell behaviour, the focus being the macrophage. MVs were generated in response to tumour necrosis factor-α, from healthy control neutrophils or those from rheumatoid arthritis patients. MVs were used to stimulate human monocyte-derived macrophages in vitro, or administered intra-articularly in the K/BxN mouse model of arthritis. A macrophage/fibroblast-like synoviocyte co-culture system was used to study the effects of vesicles on the crosstalk between these cells. We demonstrate a direct role for phosphatidylserine and annexin-A1 exposed by the MVs to counteract classical activation of the macrophages, and promote the release of transforming growth factor-β, respectively. Classically-activated macrophages exposed to neutrophil MVs no longer activated fibroblast-like synoviocytes in subsequent co-culture settings. Finally, intra-articular administration of neutrophil MVs from rheumatoid arthritis patients in arthritic mice affected the phenotype of joint macrophages. Altogether these data, with the identification of specific MV determinants, open new opportunities to modulate on-going inflammation in the synovia - mainly by affecting macrophage polarization and potentially also fibroblast-like synoviocytes - through the delivery of autologous or heterologous MVs produced from neutrophils.
Collapse
Affiliation(s)
- Hefin I Rhys
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Francesco Dell'Accio
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Centre for inflammation and therapeutic innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Costantino Pitzalis
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Centre for inflammation and therapeutic innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Adrian Moore
- Centre for inflammation and therapeutic innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; UCB Pharma, Bath Road, Slough, United Kingdom
| | - Lucy V Norling
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Centre for inflammation and therapeutic innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Centre for inflammation and therapeutic innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| |
Collapse
|
93
|
Kailashiya J. Platelet-derived microparticles analysis: Techniques, challenges and recommendations. Anal Biochem 2018; 546:78-85. [PMID: 29408673 DOI: 10.1016/j.ab.2018.01.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Platelet-derived microparticles (PMP) are nano size fragments (100-1000 nm) released from platelets under various physiological and pathological conditions. PMP are the most abundant microparticles present in human blood. In recent past years PMP have caught attention of many clinicians as well as researchers for being associated with many diseases like cardio-vascular diseases, infections etc; and have emerged as potential biomarkers. Owing to their small size and diverse phenotype, structure and functions, microparticles including PMP render many challenges during sample handling, estimation and characterization. PMP can be analyzed for many parameters like absolute count, size distribution, functions, content, surface proteins and other phenotypic characteristics. Many techniques have been invented to analyze PMP and other extracellular vesicles for these parameters, but none of them is capable of examining all parameters alone. Apart from it, every technique has its own advantages, limitations and sets of recommendations while using it. This often leads to applying multiple techniques in combination for accurately measuring various parameters and user has to decide cautiously which technique has to be used for their selected parameter testing. This review compiles various methods, techniques, challenges during PMP analysis and recommendations based on previous studies, aimed at guiding users for selecting the most suitable techniques for their experiments with PMP.
Collapse
Affiliation(s)
- Jyotsna Kailashiya
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
94
|
Simeoli R, Montague K, Jones HR, Castaldi L, Chambers D, Kelleher JH, Vacca V, Pitcher T, Grist J, Al-Ahdal H, Wong LF, Perretti M, Lai J, Mouritzen P, Heppenstall P, Malcangio M. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma. Nat Commun 2017; 8:1778. [PMID: 29176651 PMCID: PMC5701122 DOI: 10.1038/s41467-017-01841-5] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 10/20/2017] [Indexed: 12/03/2022] Open
Abstract
Following peripheral axon injury, dysregulation of non-coding microRNAs (miRs) occurs in dorsal root ganglia (DRG) sensory neurons. Here we show that DRG neuron cell bodies release extracellular vesicles, including exosomes containing miRs, upon activity. We demonstrate that miR-21-5p is released in the exosomal fraction of cultured DRG following capsaicin activation of TRPV1 receptors. Pure sensory neuron-derived exosomes released by capsaicin are readily phagocytosed by macrophages in which an increase in miR-21-5p expression promotes a pro-inflammatory phenotype. After nerve injury in mice, miR-21-5p is upregulated in DRG neurons and both intrathecal delivery of a miR-21-5p antagomir and conditional deletion of miR-21 in sensory neurons reduce neuropathic hypersensitivity as well as the extent of inflammatory macrophage recruitment in the DRG. We suggest that upregulation and release of miR-21 contribute to sensory neuron–macrophage communication after damage to the peripheral nerve. Exosomes are known to contain microRNAs (miRs). Here the authors show that dorsal root ganglion neurons release exosomes containing miR-21-5p, which contributes to inflammatory cell recruitment following peripheral nerve injury.
Collapse
Affiliation(s)
- Raffaele Simeoli
- Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, UK
| | - Karli Montague
- Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, UK
| | - Hefin R Jones
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Laura Castaldi
- EMBL Monterotondo, Via Ramarini 32, 00016, Monterotondo, Italy
| | - David Chambers
- Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, UK
| | - Jayne H Kelleher
- Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, UK
| | - Valentina Vacca
- Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, UK.,Institute of Cell Biology and Neurobiology, National Research Council and IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Thomas Pitcher
- Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, UK
| | - John Grist
- Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, UK
| | - Hadil Al-Ahdal
- School of Clinical Sciences, Medical Science Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Liang-Fong Wong
- School of Clinical Sciences, Medical Science Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | | | | | | | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
95
|
Zaldivia MTK, McFadyen JD, Lim B, Wang X, Peter K. Platelet-Derived Microvesicles in Cardiovascular Diseases. Front Cardiovasc Med 2017; 4:74. [PMID: 29209618 PMCID: PMC5702324 DOI: 10.3389/fcvm.2017.00074] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022] Open
Abstract
Microvesicles (MVs) circulating in the blood are small vesicles (100–1,000 nm in diameter) derived from membrane blebs of cells such as activated platelets, endothelial cells, and leukocytes. A growing body of evidence now supports the concept that platelet-derived microvesicles (PMVs), the most abundant MVs in the circulation, are important regulators of hemostasis, inflammation, and angiogenesis. Compared with healthy individuals, a large increase of circulating PMVs has been observed, particularly in patients with cardiovascular diseases. As observed in MVs from other parent cells, PMVs exert their biological effects in multiple ways, such as triggering various intercellular signaling cascades and by participating in transcellular communication by the transfer of their “cargo” of cytoplasmic components and surface receptors to other cell types. This review describes our current understanding of the potential role of PMVs in mediating hemostasis, inflammation, and angiogenesis and their consequences on the pathogenesis of cardiovascular diseases, such as atherosclerosis, myocardial infarction, and venous thrombosis. Furthermore, new developments of the therapeutic potential of PMVs for the treatment of cardiovascular diseases will be discussed.
Collapse
Affiliation(s)
- Maria T K Zaldivia
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - James D McFadyen
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,Department of Haematology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Bock Lim
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,Heart Centre, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
96
|
Hong X, Schouest B, Xu H. Effects of exosome on the activation of CD4+ T cells in rhesus macaques: a potential application for HIV latency reactivation. Sci Rep 2017; 7:15611. [PMID: 29142313 PMCID: PMC5688118 DOI: 10.1038/s41598-017-15961-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
Exosomes are small extracellular vesicles (EVs), released by a wide variety of cell types, carry donor origin-proteins, cytokines, and nucleic acids, transport these cargos to adjacent or distant specific recipient cells, and thereby regulate gene expression and activation of target cells. In this study, we isolated and identified exosomes in rhesus macaques, and investigated their effects on cell tropism and activation, especially their potential to reactivate HIV latency. The results indicated that plasma-derived exosomes preferentially fuse to TCR-activated T cells and autologous parent cells. Importantly, the uptake of exosomes, derived from IL-2 stimulated CD4+ T cells, effectively promoted reactivation of resting CD4+ T-cell, as indicated by an increased viral transcription rate in these cells. These findings provide premise for the potential application of exosome in the reactivation of HIV latency, in combination its use as functional delivery vehicles with antiretroviral therapy (ART).
Collapse
Affiliation(s)
- Xiaowu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Blake Schouest
- Tulane National Primate Research Center, Pathology and Laboratory Medicine, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Pathology and Laboratory Medicine, Tulane University School of Medicine, Covington, LA, 70433, USA.
| |
Collapse
|
97
|
Mo M, Zhou Y, Li S, Wu Y. Three-Dimensional Culture Reduces Cell Size By Increasing Vesicle Excretion. Stem Cells 2017; 36:286-292. [DOI: 10.1002/stem.2729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/15/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Miaohua Mo
- School of Life Sciences, Tsinghua University; Beijing People's Republic of China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University; Shenzhen People's Republic of China
| | - Ying Zhou
- School of Life Sciences, Tsinghua University; Beijing People's Republic of China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University; Shenzhen People's Republic of China
| | - Sen Li
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University; Shenzhen People's Republic of China
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University; Shenzhen People's Republic of China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University; Shenzhen People's Republic of China
| |
Collapse
|
98
|
Galbo PM, Ciesielski MJ, Figel S, Maguire O, Qiu J, Wiltsie L, Minderman H, Fenstermaker RA. Circulating CD9+/GFAP+/survivin+ exosomes in malignant glioma patients following survivin vaccination. Oncotarget 2017; 8:114722-114735. [PMID: 29383115 PMCID: PMC5777727 DOI: 10.18632/oncotarget.21773] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
Abstract
Glioma cells release exosomes in culture and into the extracellular matrix in vivo. These nanobodies transport an array of biomolecules and are capable of mediating cell-cell communication. Circulating exosomes in cancer patients may be indicative of disease status and response to therapy. The inhibitor of apoptosis protein (IAP) survivin (SVN) promotes cancer cell proliferation, local immune suppression and resistance to chemotherapy and it is a potential cancer biomarker. We used imaging flow cytometry to perform quantitative measurements of circulating SVN+ exosomes in the serum of malignant glioma patients undergoing investigational treatment with an anti-survivin vaccine (SurVaxM). Serum from glioma patients contained abundant CD9+ exosomes with both SVN and glial fibrillary acidic protein (GFAP) on their surface. Survivin and GFAP were evaluated both independently and together as possible tumor markers on CD9+ exosomes. Patients with longer time to tumor progression generally exhibited a decrease in circulating CD9+/SVN+ and CD9+/GFAP+/SVN+ exosomes immediately following survivin vaccination; whereas, those with early tumor progression had an increase in exosomes, despite anti-survivin immunotherapy. Serum from non-cancer healthy control individuals had very few detectable CD9+/GFAP+/SVN+ exosomes, although CD9+/GFAP+ exosomes were detectable in small numbers. This study demonstrates that patients with malignant gliomas have CD9+/GFAP+/SVN+ and CD9+/SVN+ exosomes that are released into the circulation and that early reductions in their numbers following anti-survivin immunotherapy might be associated with longer progression-free survival.
Collapse
Affiliation(s)
- Phillip M Galbo
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Michael J Ciesielski
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, 14214 USA
| | - Sheila Figel
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Orla Maguire
- Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Jingxin Qiu
- Pathology, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Laura Wiltsie
- Pediatrics, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, 14214 USA
| | - Hans Minderman
- Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA
| | - Robert A Fenstermaker
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, 14263 USA.,Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, 14214 USA
| |
Collapse
|
99
|
Cheng KT, Xiong S, Ye Z, Hong Z, Di A, Tsang KM, Gao X, An S, Mittal M, Vogel SM, Miao EA, Rehman J, Malik AB. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest 2017; 127:4124-4135. [PMID: 28990935 DOI: 10.1172/jci94495] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022] Open
Abstract
Acute lung injury is a leading cause of death in bacterial sepsis due to the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of proinflammatory leukocytes, and intractable hypoxemia. Pyroptosis is a form of programmed lytic cell death that is triggered by inflammatory caspases, but little is known about its role in EC death and acute lung injury. Here, we show that systemic exposure to the bacterial endotoxin lipopolysaccharide (LPS) causes severe endothelial pyroptosis that is mediated by the inflammatory caspases, human caspases 4/5 in human ECs, or the murine homolog caspase-11 in mice in vivo. In caspase-11-deficient mice, BM transplantation with WT hematopoietic cells did not abrogate endotoxemia-induced acute lung injury, indicating a central role for nonhematopoietic caspase-11 in endotoxemia. Additionally, conditional deletion of caspase-11 in ECs reduced endotoxemia-induced lung edema, neutrophil accumulation, and death. These results establish the requisite role of endothelial pyroptosis in endotoxemic tissue injury and suggest that endothelial inflammatory caspases are an important therapeutic target for acute lung injury.
Collapse
Affiliation(s)
- Kwong Tai Cheng
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Shiqin Xiong
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Zhiming Ye
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA.,Division of Nephrology, Guangdong General Hospital, Guangzhou, China
| | - Zhigang Hong
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Anke Di
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Kit Man Tsang
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Xiaopei Gao
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Shejuan An
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Manish Mittal
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Stephen M Vogel
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jalees Rehman
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA.,Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Asrar B Malik
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
100
|
Lawson C, Kovacs D, Finding E, Ulfelder E, Luis-Fuentes V. Extracellular Vesicles: Evolutionarily Conserved Mediators of Intercellular Communication. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:481-491. [PMID: 28955186 PMCID: PMC5612190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extracellular vesicles (EV) are sub-micron circulating vesicles found in all bodily fluids and in all species so far tested. They have also recently been identified in seawater and it has further been shown that they are released from microorganisms and may participate in interspecies communication in the gut. EV are typically composed of a lipid bilayer formed from the plasma membrane and which encases a cargo that can include genetic material, proteins, and lipids. At least two different processes of formation and release have been described in mammalian cells. The exosome population (50 to 150nm size) are produced via a lyso-endosomal pathway, while microvesicles (100 to 1000nm) are formed by budding of the plasma membrane in a calcium dependent process. Both pathways are highly regulated and appear to be conserved amongst different species. EV release has been shown to be upregulated in a number of human chronic diseases including cardiovascular disease, metabolic disorders, obesity, and cancer; evaluation of their presence in veterinary samples may aid diagnosis in the future. This review will provide insight into the formation of EV and their detection in bodily fluids from different veterinary species and how they may provide a novel addition to the veterinary toolkit of the future.
Collapse
Affiliation(s)
- Charlotte Lawson
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK,To whom all correspondence should be addressed: Charlotte Lawson, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK, Tel: +44 (0)20 74681216,
| | - Dory Kovacs
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Elizabeth Finding
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK,Clinical Sciences and Services, Royal Veterinary College, North Mymms, Herts, UK
| | - Emily Ulfelder
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK,Clinical Sciences and Services, Royal Veterinary College, North Mymms, Herts, UK
| | | |
Collapse
|