51
|
Cabiati M, Federico G, Del Ry S. Importance of Studying Non-Coding RNA in Children and Adolescents with Type 1 Diabetes. Biomedicines 2024; 12:1988. [PMID: 39335501 PMCID: PMC11429055 DOI: 10.3390/biomedicines12091988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Type 1 diabetes (T1D) mellitus is a chronic illness in children and teens, with rising global incidence rates. It stems from an autoimmune attack on pancreatic β cells, leading to insufficient insulin production. Genetic susceptibility and environmental triggers initiate this process. Early detection is possible by identifying multiple autoantibodies, which aids in predicting future T1D development. A new staging system highlights T1D's onset with islet autoimmunity rather than symptoms. Family members of T1D patients face a significantly increased risk of T1D. Italy recently passed a law mandating national T1D screening for pediatric populations. Measurements of β cell function continue to be essential in assessing efficacy, and different models have been proposed, but more appropriate biomarkers are mandatory for both progression studies before the onset of diabetes and during therapeutic monitoring. Biomarkers like microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) play key roles in T1D pathogenesis by regulating gene expression. Understanding their roles offers insights into T1D mechanisms and potential therapeutic targets. In this review, we summarized recent progress in the roles of some non-coding RNAs (ncRNAs) in the pathogenesis of T1D, with particular attention to miRNAs, lncRNAs, and circRNAs.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Giovanni Federico
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
52
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
53
|
Lovett J, McColl RS, Durcan P, Vechetti I, Myburgh KH. Analysis of plasma-derived small extracellular vesicle characteristics and microRNA cargo following exercise-induced skeletal muscle damage in men. Physiol Rep 2024; 12:e70056. [PMID: 39304515 PMCID: PMC11415274 DOI: 10.14814/phy2.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Extracellular vesicle (EV) cargo is known to change in response to stimuli such as muscle damage. This study aimed to assess particle size, concentration and microRNA (miR) content within small EV-enriched separations prepared from human blood taken before and after unaccustomed eccentric-biased exercise-induced muscle damage. Nine male volunteers underwent plyometric jumping and downhill running, with blood samples taken at baseline, 2, and 24 h post-exercise. EVs were separated using size exclusion chromatography (SEC) and their characteristics evaluated by nanoparticle tracking. No changes in EV size or concentration were seen following the muscle-damaging exercise. Small RNA sequencing identified 240 miRs to be consistently present within the EVs. RT-qPCR analysis was performed: specifically, for known muscle-enriched/important miRs, including miR-1, -206, -133a, -133b, -31, -208b, -451a, -486 and - 499 and the immune-important miR-21, -146a and - 155. Notably, none of the immune-important miRs within the EVs tested changed in response to the muscle damage. Of the muscle-associated miRs tested, only the levels of miR-31-5p were seen to change with decreased levels at 24 h compared to baseline and 2 h, indicating involvement in the damage response. These findings shed light on the dynamic role of EV miRs in response to exercise-induced muscle damage.
Collapse
Affiliation(s)
- Jason Lovett
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Rhys S. McColl
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Peter Durcan
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Ivan Vechetti
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Kathryn H. Myburgh
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
54
|
González Á, López-Borrego S, Sandúa A, Vales-Gomez M, Alegre E. Extracellular vesicles in cancer: challenges and opportunities for clinical laboratories. Crit Rev Clin Lab Sci 2024; 61:435-457. [PMID: 38361287 DOI: 10.1080/10408363.2024.2309935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized particles secreted by most cells. They transport different types of biomolecules (nucleic acids, proteins, and lipids) characteristic of their tissue or cellular origin that can mediate long-distance intercellular communication. In the case of cancer, EVs participate in tumor progression by modifying the tumor microenvironment, favoring immune tolerance and metastasis development. Consequently, EVs have great potential in liquid biopsy for cancer diagnosis, prognosis and follow-up. In addition, EVs could have a role in cancer treatment as a targeted drug delivery system. The intense research in the EV field has resulted in hundreds of patents and the creation of biomedical companies. However, methodological issues and heterogeneity in EV composition have hampered the advancement of EV validation trials and the development of EV-based diagnostic and therapeutic products. Consequently, only a few EV biomarkers have moved from research to clinical laboratories, such as the ExoDx Prostate IntelliScore (EPI) test, a CLIA/FDA-approved EV prostate cancer diagnostic test. In addition, the number of large-scale multicenter studies that would clearly define biomarker performance is limited. In this review, we will critically describe the different types of EVs, the methods for their enrichment and characterization, and their biological role in cancer. Then, we will specially focus on the parameters to be considered for the translation of EV biology to the clinic laboratory, the advances already made in the field of EVs related to cancer diagnosis and treatment, and the issues still pending to be solved before EVs could be used as a routine tool in oncology.
Collapse
Affiliation(s)
- Álvaro González
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Silvia López-Borrego
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Amaia Sandúa
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Estibaliz Alegre
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
55
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
56
|
Leetanaporn K, Chiangjong W, Roytrakul S, Molika P, Janmunee N, Atjimakul T, Hanprasertpong J, Navakanitworakul R. Enhancing outcome prediction of concurrent chemoradiation treatment in patients with locally advanced cervical cancer through plasma extracellular vesicle proteomics. Heliyon 2024; 10:e36374. [PMID: 39262965 PMCID: PMC11388600 DOI: 10.1016/j.heliyon.2024.e36374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Most patients with locally advanced cervical cancer (LACC) are primarily treated using concurrent chemoradiation (CCRT); however, LACC lacks reliable predictive biomarkers. Extracellular vesicles (EVs) could define the dynamic biological response to CCRT. However, the relationship between EVs and the therapeutic response to LACC is unestablished. Thus, we aimed to determine the relationship of plasma EVs pre- and post-CCRT in 62 patients with LACC. For proteomic analyses, EVs were isolated using ultracentrifugation (UC) with size exclusion chromatography or UC alone. We found that plasma particle concentration was significantly increased post-treatment in non-responders. After CCRT, there was a decrease in proteins related to serine protease and fibrinogen, which contribute to tumor microenvironment alteration. This reduction also extended to proteins involved in innate immune and viral immune responses, correlating with reduced tumor burden. Sparse partial least squares discriminant analysis revealed 8, 13, and 19 proteins at diagnosis, one month, and three months, respectively, influencing the CCRT response. Among these, FIBG, TFR1, HBA, and FINC are prognostic markers according to The Cancer Genome Atlas tissue gene expression database. Our discriminant model demonstrated excellent specificity and negative predictive value, underscoring the model's reliability in determining responsiveness to CCRT and highlighting the potential clinical applicability of EVs in improving outcomes in LACC.
Collapse
Affiliation(s)
- K Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - W Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University Thailand
| | - S Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Thailand
| | - P Molika
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Thailand
| | - N Janmunee
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - T Atjimakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - J Hanprasertpong
- Department of Research and Medical Innovation, Faculty of Medicine Vajira Hospital, Navamindradhiraj University Thailand
| | - R Navakanitworakul
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Thailand
| |
Collapse
|
57
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
58
|
Verrillo CE, Quaglia F, Shields CD, Lin S, Kossenkov AV, Tang HY, Speicher D, Naranjo NM, Testa A, Kelly WK, Liu Q, Leiby B, Musante L, Sossey-Alaoui K, Dogra N, Chen TY, Altieri DC, Languino LR. Expression of the αVβ3 integrin affects prostate cancer sEV cargo and density and promotes sEV pro-tumorigenic activity in vivo through a GPI-anchored receptor, NgR2. J Extracell Vesicles 2024; 13:e12482. [PMID: 39105261 DOI: 10.1002/jev2.12482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
It is known that small extracellular vesicles (sEVs) are released from cancer cells and contribute to cancer progression via crosstalk with recipient cells. We have previously reported that sEVs expressing the αVβ3 integrin, a protein upregulated in aggressive neuroendocrine prostate cancer (NEPrCa), contribute to neuroendocrine differentiation (NED) in recipient cells. Here, we examine the impact of αVβ3 expression on sEV protein content, density and function. sEVs used in this study were isolated by iodixanol density gradients and characterized by nanoparticle tracking analysis, immunoblotting and single vesicle analysis. Our proteomic profile of sEVs containing αVβ3 shows downregulation of typical effectors involved in apoptosis and necrosis and an upregulation of tumour cell survival factors compared to control sEVs. We also show that the expression of αVβ3 in sEVs causes a distinct reposition of EV markers (Alix, CD81, CD9) to a low-density sEV subpopulation. This low-density reposition is independent of extracellular matrix (ECM) protein interactions with sEVs. This sEV subset contains αVβ3 and an αVβ3 downstream effector, NgR2, a novel marker for NEPrCa. We show that sEVs containing αVβ3 are loaded with higher amounts of NgR2 as compared to sEVs that do not express αVβ3. Mechanistically, we demonstrate that sEVs containing NgR2 do not affect the sEV marker profile, but when injected in vivo intratumorally, they promote tumour growth and induce NED. We show that sEVs expressing NgR2 increase the activation of focal adhesion kinase (FAK), a known promoter of cancer cell proliferation, in recipient cells. We also show that NgR2 mimics the effect of sEVs containing αVβ3 since it displays increased growth of NgR2 transfectants in vivo, as compared to control cells. Overall, our results describe the changes that occur in cargo, density and functions of cancer cell-derived sEVs containing the αVβ3 integrin and its effector, NgR2, without affecting the sEV tetraspanin profiles.
Collapse
Affiliation(s)
- Cecilia E Verrillo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Fabio Quaglia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher D Shields
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stephen Lin
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew V Kossenkov
- Bioinformatics Shared Resource, Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - David Speicher
- Proteomics and Metabolomics Shared Resource, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nicole M Naranjo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anna Testa
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - William K Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Luca Musante
- Extracellular Vesicle Core, PennVet, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, School of Medicine MetroHealth Medical Center Rammelkamp Center for Research, Cleveland, Ohio, USA
| | - Navneet Dogra
- Department of Pathology and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tzu-Yi Chen
- Department of Pathology and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
59
|
Dissanayake K, Godakumara K, Muhandiram S, Kodithuwakku S, Fazeli A. Do extracellular vesicles have specific target cells?; Extracellular vesicle mediated embryo maternal communication. Front Mol Biosci 2024; 11:1415909. [PMID: 39081929 PMCID: PMC11286576 DOI: 10.3389/fmolb.2024.1415909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
Extracellular vesicles (EVs) serve as messengers for intercellular communication, yet the precise mechanisms by which recipient cells interpret EV messages remain incompletely understood. In this study, we explored how the origin of EVs, their protein cargo, and the recipient cell type influence the cellular response to EVs within an embryo implantation model. We treated two types of EVs to 6 different recipient cell types and expression of zinc finger protein 81 (ZNF81) gene expression in the recipient cells were quantified using quantitative polymerase chain reaction (qPCR). The proteomic contents of the EV cargos were also analyzed. The results showed that downregulation of the ZNF81 gene was a specific cellular response of receptive endometrial epithelial cells to trophoblast derived EVs. Protein cargo analysis revealed that the proteomic profile of EVs depends on their cell of origin and therefore may affect the recipient cell response to EVs. Furthermore, trophoblastic EVs were found to be specifically enriched with transcription factors such as CTNNB1 (catenin beta-1), HDAC2 (histone deacetylase 2), and NOTCH1 (neurogenic locus notch homolog protein 1), which are known regulators of ZNF81 gene expression. The current study provided compelling evidence supporting the existence of EV specificity, where the characteristics of both the EVs and the recipient cell type collectively contribute to regulating EV target specificity. Additionally, EV protein cargo analysis suggested a potential association between transcription factors and the specific functionality of trophoblastic EVs. This in vitro embryo implantation model and ZNF81 read-out provides a unique platform to study EV specific functionality in natural cell-cell communication.
Collapse
Affiliation(s)
- Keerthie Dissanayake
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Kasun Godakumara
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Alireza Fazeli
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
60
|
Fekry B, Ugartemendia L, Esnaola NF, Goetzl L. Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2552. [PMID: 39061191 PMCID: PMC11274441 DOI: 10.3390/cancers16142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.
Collapse
Affiliation(s)
- Baharan Fekry
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Lierni Ugartemendia
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Nestor F. Esnaola
- Division of Surgical Oncology and Gastrointestinal Surgery, Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Laura Goetzl
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| |
Collapse
|
61
|
Van Es LJC, Possee RD, King LA. Characterisation of extracellular vesicles in baculovirus infection of Spodoptera frugiperda cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e163. [PMID: 38947876 PMCID: PMC11212295 DOI: 10.1002/jex2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an enveloped DNA virus of the Baculoviridae family. This baculovirus is widely exploited for the biological control of insect pest species and as an expression platform to produce recombinant proteins in insect cells. Extracellular vesicles (EVs) are secreted by all cells and are involved in key roles in many biological processes through their cargo consisting of proteins, RNA or DNA. In viral infections, EVs have been found to transfer both viral and cellular cargo that can elicit either a pro- or antiviral response in recipient cells. Here, small EVs (sEVs) released by Spodoptera frugiperda (Sf) insect cells were characterised for the first time. Using S. frugiperda (SfC1B5) cells stably expressing the baculovirus gp64, the viral envelope protein GP64 was shown to be incorporated into sEVs. Sf9 cells were also transfected with a bacmid AcMNPV genome lacking p6.9 (AcΔP6.9) to prevent budded virus production. The protein content of sEVs from both mock- and AcΔP6.9-transfected cells were analysed by mass spectrometry. In addition to GP64, viral proteins Ac-F, ME-53 and viral ubiquitin were identified, as well as many host proteins including TSG101-which may be useful as a protein marker for sEVs.
Collapse
Affiliation(s)
- Lex J. C. Van Es
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Oxford Expression Technologies LtdOxfordUK
| | | | - Linda A. King
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
62
|
Larey AM, Spoerer TM, Daga KR, Morfin MG, Hynds HM, Carpenter J, Hines KM, Marklein RA. High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia. Bioact Mater 2024; 37:153-171. [PMID: 38549769 PMCID: PMC10972802 DOI: 10.1016/j.bioactmat.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Due to their immunomodulatory function, mesenchymal stromal cells (MSCs) are a promising therapeutic with the potential to treat neuroinflammation associated with neurodegenerative diseases. This function is mediated by secreted extracellular vesicles (MSC-EVs). Despite established safety, MSC clinical translation has been unsuccessful due to inconsistent clinical outcomes resulting from functional heterogeneity. Current approaches to mitigate functional heterogeneity include 'priming' MSCs with inflammatory signals to enhance function. However, comprehensive evaluation of priming and its effects on MSC-EV function has not been performed. Furthermore, clinical translation of MSC-EV therapies requires significant manufacturing scale-up, yet few studies have investigated the effects of priming in bioreactors. As MSC morphology has been shown to predict their immunomodulatory function, we screened MSC morphological response to an array of priming signals and evaluated MSC-EV identity and potency in response to priming in flasks and bioreactors. We identified unique priming conditions corresponding to distinct morphologies. These conditions demonstrated a range of MSC-EV preparation quality and lipidome, allowing us to discover a novel MSC-EV manufacturing condition, as well as gain insight into potential mechanisms of MSC-EV microglia modulation. Our novel screening approach and application of priming to MSC-EV bioreactor manufacturing informs refinement of larger-scale manufacturing and enhancement of MSC-EV function.
Collapse
Affiliation(s)
- Andrew M. Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Thomas M. Spoerer
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Kanupriya R. Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G. Morfin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jana Carpenter
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Ross A. Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
63
|
Rai A, Claridge B, Lozano J, Greening DW. The Discovery of Extracellular Vesicles and Their Emergence as a Next-Generation Therapy. Circ Res 2024; 135:198-221. [PMID: 38900854 DOI: 10.1161/circresaha.123.323054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
From their humble discovery as cellular debris to cementing their natural capacity to transfer functional molecules between cells, the long-winded journey of extracellular vesicles (EVs) now stands at the precipice as a next-generation cell-free therapeutic tool to revolutionize modern-day medicine. This perspective provides a snapshot of the discovery of EVs to their emergence as a vibrant field of biology and the renaissance they usher in the field of biomedical sciences as therapeutic agents for cardiovascular pathologies. Rapid development of bioengineered EVs is providing innovative opportunities to overcome biological challenges of natural EVs such as potency, cargo loading and enhanced secretion, targeting and circulation half-life, localized and sustained delivery strategies, approaches to enhance systemic circulation, uptake and lysosomal escape, and logistical hurdles encompassing scalability, cost, and time. A multidisciplinary collaboration beyond the field of biology now extends to chemistry, physics, biomaterials, and nanotechnology, allowing rapid development of designer therapeutic EVs that are now entering late-stage human clinical trials.
Collapse
Affiliation(s)
- Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| | - Bethany Claridge
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
| | - Jonathan Lozano
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| |
Collapse
|
64
|
Chowdhury R, Eslami S, Pham CV, Rai A, Lin J, Hou Y, Greening DW, Duan W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. NANOSCALE 2024; 16:11457-11479. [PMID: 38856692 DOI: 10.1039/d4nr00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.
Collapse
Affiliation(s)
- Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Sadegh Eslami
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Cuong Viet Pham
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alin Rai
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - David W Greening
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
65
|
Liu Z, Ng M, Srivastava S, Li T, Liu J, Phu TA, Mateescu B, Wang YT, Tsai CF, Liu T, Raffai RL, Xie YH. Label-free single-vesicle based surface enhanced Raman spectroscopy: A robust approach for investigating the biomolecular composition of small extracellular vesicles. PLoS One 2024; 19:e0305418. [PMID: 38889139 PMCID: PMC11185487 DOI: 10.1371/journal.pone.0305418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Small extracellular vesicles (sEVs) are cell-released vesicles ranging from 30-150nm in size. They have garnered increasing attention because of their potential for both the diagnosis and treatment of disease. The diversity of sEVs derives from their biological composition and cargo content. Currently, the isolation of sEV subpopulations is primarily based on bio-physical and affinity-based approaches. Since a standardized definition for sEV subpopulations is yet to be fully established, it is important to further investigate the correlation between the biomolecular composition of sEVs and their physical properties. In this study, we employed a platform combining single-vesicle surface-enhanced Raman spectroscopy (SERS) and machine learning to examine individual sEVs isolated by size-exclusion chromatography (SEC). The biomolecular composition of each vesicle examined was reflected by its corresponding SERS spectral features (biomolecular "fingerprints"), with their roots in the composition of their collective Raman-active bonds. Origins of the SERS spectral features were validated through a comparative analysis between SERS and mass spectrometry (MS). SERS fingerprinting of individual vesicles was effective in overcoming the challenges posed by EV population averaging, allowing for the possibility of analyzing the variations in biomolecular composition between the vesicles of similar and/or different sizes. Using this approach, we uncovered that each of the size-based fractions of sEVs contained particles with predominantly similar SERS spectral features. Indeed, more than 84% of the vesicles residing within a particular group were clearly distinguishable from that of the other EV sub-populations, despite some spectral variations within each sub-population. Our results suggest the possibility that size-based EV fractionation methods produce samples where similarly eluted sEVs are correlated with their respective biochemical contents, as reflected by their SERS spectra. Our findings therefore highlight the possibility that the biogenesis and respective biological functionalities of the various sEV fractions may be inherently different.
Collapse
Affiliation(s)
- Zirui Liu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Martin Ng
- Northern California Institute for Research and Education, San Francisco, California, United States of America
| | - Siddharth Srivastava
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tieyi Li
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jun Liu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tuan Anh Phu
- Northern California Institute for Research and Education, San Francisco, California, United States of America
| | - Bogdan Mateescu
- Brain Research Institute, University of Zürich, Zürich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Robert L. Raffai
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, California, United States of America
| | - Ya-Hong Xie
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
66
|
Olson C, Ivanov K, Boyes D, Bengford D, Ku J, Flojo R, Zhang P, Lu B. Dual-Omics Approach Unveils Novel Perspective on the Quality Control of Genetically Engineered Exosomes. Pharmaceutics 2024; 16:824. [PMID: 38931944 PMCID: PMC11207238 DOI: 10.3390/pharmaceutics16060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Exosomes, nanoscale vesicles derived from human cells, offer great promise for targeted drug delivery. However, their inherent diversity and genetic modifications present challenges in terms of ensuring quality in clinical use. To explore solutions, we employed advanced gene fusion and transfection techniques in human 293T cells to generate two distinct sets of genetically engineered samples. We used dual-omics analysis, combining transcriptomics and proteomics, to comprehensively assess exosome quality by comparing with controls. Transcriptomic profiling showed increased levels of engineering scaffolds in the modified groups, confirming the success of genetic manipulation. Through transcriptomic analysis, we identified 15 RNA species, including 2008 miRNAs and 13,897 mRNAs, loaded onto exosomes, with no significant differences in miRNA or mRNA levels between the control and engineered exosomes. Proteomics analysis identified changes introduced through genetic engineering and over 1330 endogenous exosome-associated proteins, indicating the complex nature of the samples. Further pathway analysis showed enrichment in a small subset of cellular signaling pathways, aiding in our understanding of the potential biological impacts on recipient cells. Detection of over 100 cow proteins highlighted the effectiveness of LC-MS for identifying potential contaminants. Our findings establish a dual-omics framework for the quality control of engineered exosome products, facilitating their clinical translation and therapeutic applications in nanomedicine.
Collapse
Affiliation(s)
- Christopher Olson
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA; (C.O.); (K.I.); (D.B.); (J.K.); (R.F.)
| | - Konstantin Ivanov
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA; (C.O.); (K.I.); (D.B.); (J.K.); (R.F.)
| | - Darin Boyes
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA;
| | - David Bengford
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA; (C.O.); (K.I.); (D.B.); (J.K.); (R.F.)
| | - Joy Ku
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA; (C.O.); (K.I.); (D.B.); (J.K.); (R.F.)
| | - Renceh Flojo
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA; (C.O.); (K.I.); (D.B.); (J.K.); (R.F.)
| | - Pengyang Zhang
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA; (C.O.); (K.I.); (D.B.); (J.K.); (R.F.)
| | - Biao Lu
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA; (C.O.); (K.I.); (D.B.); (J.K.); (R.F.)
| |
Collapse
|
67
|
Couse AD, Cox-Vazquez SJ, Ghatak S, Trinidad JC, Clemmer DE. Delineating Bovine Milk Derived Microvesicles from Exosomes Using Proteomics. J Proteome Res 2024; 23:2288-2297. [PMID: 38805445 PMCID: PMC12161284 DOI: 10.1021/acs.jproteome.4c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In the work presented herein, a simple serial-pelleting purification strategy combined with a mass spectrometry-based proteomics analysis was developed as a means of discerning differences in extracellular vesicle (EV) populations found in bovine milk samples. A sequence of ultracentrifugation speeds was used to generate changes in the abundances of EV populations, allowing for the identification of associated proteins. A metric was developed to determine the relative abundances of proteins in large EVs (>200 nm) and small EVs (<200 nm). Of the 476 proteins consistently found in this study, 340 are associated with vesicular components. Of these, 156 were heavily enriched in large EVs, 155 shared between large and small EVs, and 29 heavily enriched in small EVs. Additionally, out of 68 proteins annotated as exosome proteins, 32 were enriched in large EVs, 27 shared between large and small EVs, 5 enriched in small EVs, and 7 were found to be nonvesicular contaminant proteins. The top correlated proteins in the small EV group were predominantly membrane-bound proteins, whereas the top correlated proteins in the large EV group were mostly cytosolic enzymes for molecular processing. This method provides a means of assessing the origins of vesicle components and provides new potential marker proteins within discrete vesicle populations.
Collapse
Affiliation(s)
- Andrew D. Couse
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Sarah J. Cox-Vazquez
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Subhadip Ghatak
- McGowan Institute of Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15219, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| |
Collapse
|
68
|
Kodali MC, Salim C, Ismael S, Lebovitz SG, Lin G, Liao FF. Characterization of exosome-mediated propagation of systemic inflammatory responses into the Central Nervous System. RESEARCH SQUARE 2024:rs.3.rs-4423565. [PMID: 38883721 PMCID: PMC11177953 DOI: 10.21203/rs.3.rs-4423565/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The mechanisms through which systemic inflammation exerts its effect on the CNS are still not completely understood. Exosomes are small (30 to 100 nanometers) membrane-bound extracellular vesicles released by most of the mammalian cells. Exosomes play a vital role in cell-to-cell communication. This includes regulation of inflammatory responses by shuttling mRNAs, miRNAs, and cytokines both locally and systemically to the neighboring as well as distant cells to further modulate their transcriptional and/or translational states and affect the functional phenotype of those cells that have taken up these exosomes. The role of circulating blood exosomes leading to neuroinflammation during systemic inflammatory conditions was further characterized. Serum-derived exosomes from LPS-challenged mice (SDEL) were freshly isolated from the sera of the mice that were earlier treated with LPS and used to study SDEL effects on neuroinflammation. Exosomes isolated from the sera of the mice injected with saline were used as a control. In-vitro studies showed that the SDEL upregulate pro-inflammatory cytokine gene expression in the murine cell lines of microglia (BV-2), astrocytes (C8-D1A), and cerebral microvascular endothelial cells (bEnd.3). To further study their effects in-vivo, SDEL were intravenously injected into normal adult mice. Elevated mRNA expression of pro-inflammatory cytokines was observed in the brains of SDEL recipient mice. Proteomic analysis of the SDEL confirmed the increased expression of inflammatory cytokines in them. Together, these results further demonstrate and strengthen the novel role of peripheral circulating exosomes in causing neuroinflammation during systemic inflammatory conditions.
Collapse
Affiliation(s)
| | | | | | - Sarah Grace Lebovitz
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine
| | - Geng Lin
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine
| | - Francesca-Fang Liao
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine
| |
Collapse
|
69
|
Suwakulsiri W, Xu R, Rai A, Shafiq A, Chen M, Greening DW, Simpson RJ. Comparative proteomic analysis of three major extracellular vesicle classes secreted from human primary and metastatic colorectal cancer cells: Exosomes, microparticles, and shed midbody remnants. Proteomics 2024; 24:e2300057. [PMID: 37507836 DOI: 10.1002/pmic.202300057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Cell-derived extracellular vesicles (EVs) are evolutionary-conserved secretory organelles that, based on their molecular composition, are important intercellular signaling regulators. At least three classes of circulating EVs are known based on mechanism of biogenesis: exosomes (sEVs/Exos), microparticles (lEVs/MPs), and shed midbody remnants (lEVs/sMB-Rs). sEVs/Exos are of endosomal pathway origin, microparticles (lEVs/MPs) from plasma membrane blebbing and shed midbody remnants (lEVs/sMB-Rs) arise from symmetric cytokinetic abscission. Here, we isolate sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs secreted from human isogenic primary (SW480) and metastatic (SW620) colorectal cancer (CRC) cell lines in milligram quantities for label-free MS/MS-based proteomic profiling. Purified EVs revealed selective composition packaging of exosomal protein markers in SW480/SW620-sEVs/Exos, metabolic enzymes in SW480/SW620-lEVs/MPs, while centralspindlin complex proteins, nucleoproteins, splicing factors, RNA granule proteins, translation-initiation factors, and mitochondrial proteins selectively traffic to SW480/SW620- lEVs/sMB-Rs. Collectively, we identify 39 human cancer-associated genes in EVs; 17 associated with SW480-EVs, 22 with SW620-EVs. We highlight oncogenic receptors/transporters selectively enriched in sEVs/Exos (EGFR/FAS in SW480-sEVs/Exos and MET, TGFBR2, ABCB1 in SW620-sEVs/Exos). Interestingly, MDK, STAT1, and TGM2 are selectively enriched in SW480-lEVs/sMB-Rs, and ADAM15 to SW620-lEVs/sMB-Rs. Our study reveals sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs have distinct protein signatures that open potential diagnostic avenues of distinct types of EVs for clinical utility.
Collapse
Affiliation(s)
- Wittaya Suwakulsiri
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Rong Xu
- Nanobiotechnology Laboratory, Centre Clinical, Australia Centre for Blood Diseases, School, Monash University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Adnan Shafiq
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
70
|
Abyadeh M, Mirshahvaladi S, Kashani SA, Paulo JA, Amirkhani A, Mehryab F, Seydi H, Moradpour N, Jodeiryjabarzade S, Mirzaei M, Gupta V, Shekari F, Salekdeh GH. Proteomic profiling of mesenchymal stem cell-derived extracellular vesicles: Impact of isolation methods on protein cargo. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e159. [PMID: 38947171 PMCID: PMC11212298 DOI: 10.1002/jex2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are secreted by cells and play a critical role in cell-to-cell communication. Despite the promising reports regarding their diagnostic and therapeutic potential, the utilization of EVs in the clinical setting is limited due to insufficient information about their cargo and a lack of standardization in isolation and analysis methods. Considering protein cargos in EVs as key contributors to their therapeutic potency, we conducted a tandem mass tag (TMT) quantitative proteomics analysis of three subpopulations of mesenchymal stem cell (MSC)-derived EVs obtained through three different isolation techniques: ultracentrifugation (UC), high-speed centrifugation (HS), and ultracentrifugation on sucrose cushion (SU). Subsequently, we checked EV marker expression, size distribution, and morphological characterization, followed by bioinformatic analysis. The bioinformatic analysis of the proteome results revealed that these subpopulations exhibit distinct molecular and functional characteristics. The choice of isolation method impacts the proteome of isolated EVs by isolating different subpopulations of EVs. Specifically, EVs isolated through the high-speed centrifugation (HS) method exhibited a higher abundance of ribosomal and mitochondrial proteins. Functional apoptosis assays comparing isolated mitochondria with EVs isolated through different methods revealed that HS-EVs, but not other EVs, induced early apoptosis in cancer cells. On the other hand, EVs isolated using the sucrose cushion (SU) and ultracentrifugation (UC) methods demonstrated a higher abundance of proteins primarily involved in the immune response, cell-cell interactions and extracellular matrix interactions. Our analyses unveil notable disparities in proteins and associated biological functions among EV subpopulations, underscoring the importance of meticulously selecting isolation methods and resultant EV subpopulations based on the intended application.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Shahab Mirshahvaladi
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Sara Assar Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNew South WalesAustralia
| | - Fatemeh Mehryab
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Homeyra Seydi
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of BiologyUniversity of Science and CultureTehranIran
| | | | | | - Mehdi Mirzaei
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vivek Gupta
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | |
Collapse
|
71
|
Rust R, Holm MM, Egger M, Weinmann O, van Rossum D, Walter FR, Santa-Maria AR, Grönnert L, Maurer MA, Kraler S, Akhmedov A, Cideciyan R, Lüscher TF, Deli MA, Herrmann IK, Schwab ME. Nogo-A is secreted in extracellular vesicles, occurs in blood and can influence vascular permeability. J Cereb Blood Flow Metab 2024; 44:938-954. [PMID: 38000040 PMCID: PMC11318402 DOI: 10.1177/0271678x231216270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023]
Abstract
Nogo-A is a transmembrane protein with multiple functions in the central nervous system (CNS), including restriction of neurite growth and synaptic plasticity. Thus far, Nogo-A has been predominantly considered a cell contact-dependent ligand signaling via cell surface receptors. Here, we show that Nogo-A can be secreted by cultured cells of neuronal and glial origin in association with extracellular vesicles (EVs). Neuron- and oligodendrocyte-derived Nogo-A containing EVs inhibited fibroblast spreading, and this effect was partially reversed by Nogo-A receptor S1PR2 blockage. EVs purified from HEK cells only inhibited fibroblast spreading upon Nogo-A over-expression. Nogo-A-containing EVs were found in vivo in the blood of healthy mice and rats, as well as in human plasma. Blood Nogo-A concentrations were elevated after acute stroke lesions in mice and rats. Nogo-A active peptides decreased barrier integrity in an in vitro blood-brain barrier model. Stroked mice showed increased dye permeability in peripheral organs when tested 2 weeks after injury. In the Miles assay, an in vivo test to assess leakage of the skin vasculature, a Nogo-A active peptide increased dye permeability. These findings suggest that blood borne, possibly EV-associated Nogo-A could exert long-range regulatory actions on vascular permeability.
Collapse
Affiliation(s)
- Ruslan Rust
- Brain Research Institute, University of Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Switzerland
| | - Mea M Holm
- Brain Research Institute, University of Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
| | - Matteo Egger
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
| | | | | | - Fruzsina R Walter
- Biological Barriers Research Group, ELKH Biological Research Centre, Szeged, Hungary
| | | | - Lisa Grönnert
- Brain Research Institute, University of Zürich, Switzerland
| | | | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Switzerland
| | | | - Rose Cideciyan
- Center for Molecular Cardiology, University of Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Maria A Deli
- Biological Barriers Research Group, ELKH Biological Research Centre, Szeged, Hungary
| | - Inge K Herrmann
- Particles Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Switzerland
| |
Collapse
|
72
|
Useckaite Z, Newman LA, Hopkins AM, Klebe S, Colella AD, Chegeni N, Williams R, Sorich MJ, Rodrigues AD, Chataway TK, Rowland A. Proteomic profiling of paired human liver homogenate and tissue derived extracellular vesicles. Proteomics 2024; 24:e2300025. [PMID: 38037300 DOI: 10.1002/pmic.202300025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Advances in technologies to isolate extracellular vesicles (EVs) and detect/quantify their cargo underpin the novel potential of these circulating particles as a liquid biopsy to understand physiology and disease. One organ of particular interest in terms of utilizing EVs as a liquid biopsy is the liver. The extent to which EVs originating from the liver reflect the functional status of this organ remains unknown. This is an important knowledge gap that underpins the utility of circulating liver derived EVs as a liquid biopsy. The primary objective of this study was to characterize the proteomic profile of EVs isolated from the extracellular space of liver tissue (LEV) and compare this profile to that of paired tissue (LH). LCMS analyses detected 2892 proteins in LEV and 2673 in LH. Of the 2673 proteins detected in LH, 1547 (58%) were also detected in LEV. Bioinformatic analyses demonstrated comparable representation of proteins in terms of biological functions and cellular compartments. Although, enriched representation of membrane proteins and associated functions was observed in LEV, while representation of nuclear proteins and associated functions was depleted in LEV. These data support the potential use of circulating liver derived EVs as a liquid biopsy for this organ.
Collapse
Affiliation(s)
- Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Sonja Klebe
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Alex D Colella
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Nusha Chegeni
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Ruth Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - A David Rodrigues
- Pharmacokinetics & Drug Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Tim K Chataway
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
73
|
Mohammadi A, Shabani R, Bashiri Z, Rafiei S, Asgari H, Koruji M. Therapeutic potential of exosomes in spermatogenesis regulation and male infertility. Biol Cell 2024; 116:e2300127. [PMID: 38593304 DOI: 10.1111/boc.202300127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Spermatogenesis is a fundamental process crucial for male reproductive health and fertility. Exosomes, small membranous vesicles released by various cell types, have recently garnered attention for their role in intercellular communication. OBJECTIVE This review aims to comprehensively explore the role of exosomes in regulating spermatogenesis, focusing on their involvement in testicular development and cell-to-cell communication. METHODS A systematic examination of literature was conducted to gather relevant studies elucidating the biogenesis, composition, and functions of exosomes in the context of spermatogenesis. RESULTS Exosomes play a pivotal role in orchestrating the complex signaling networks required for proper spermatogenesis. They facilitate the transfer of key regulatory molecules between different cell populations within the testes, including Sertoli cells, Leydig cells, and germ cells. CONCLUSION The emerging understanding of exosome-mediated communication sheds light on novel mechanisms underlying spermatogenesis regulation. Further research in this area holds promise for insights into male reproductive health and potential therapeutic interventions.
Collapse
Affiliation(s)
- Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Sara Rafiei
- Department of Botany and Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
74
|
Liu M, Zhang Y, He J, Liu W, Li Z, Zhang Y, Gu A, Zhao M, Liu M, Liu X. Fusion with ARRDC1 or CD63: A Strategy to Enhance p53 Loading into Extracellular Vesicles for Tumor Suppression. Biomolecules 2024; 14:591. [PMID: 38785998 PMCID: PMC11118238 DOI: 10.3390/biom14050591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Small extracellular vesicles (sEVs) have emerged as promising therapeutic agents and drug delivery vehicles. Targeted modification of sEVs and their contents using genetic modification strategies is one of the most popular methods. This study investigated the effects of p53 fusion with arrestin domain-containing protein 1 (ARRDC1) and CD63 on the generation of sEVs, p53 loading efficiency, and therapeutic efficacy. Overexpression of either ARRDC1-p53 (ARP) or CD63-p53 (CDP) significantly elevated p53 mRNA and protein levels. The incorporation of ARRDC1 and CD63 significantly enhanced HEK293T-sEV biogenesis, evidenced by significant increases in sEV-associated proteins TSG101 and LAMP1, resulting in a boost in sEV production. Importantly, fusion with ARRDC1 or CD63 substantially increased the efficiency of loading both p53 fusion proteins and its mRNA into sEVs. sEVs equipped with ARP or CDP significantly enhanced the enrichment of p53 fusion proteins and mRNA in p53-null H1299 cells, resulting in a marked increase in apoptosis and a reduction in cell proliferation, with ARP-sEVs demonstrating greater effectiveness than CDP-sEVs. These findings underscore the enhanced functionality of ARRDC1- and CD63-modified sEVs, emphasizing the potential of genetic modifications in sEV-based therapies for targeted cancer treatment.
Collapse
Affiliation(s)
- Min Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (M.L.); (Y.Z.); (J.H.); (W.L.); (Z.L.); (Y.Z.); (A.G.); (M.Z.)
| | - Yu Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (M.L.); (Y.Z.); (J.H.); (W.L.); (Z.L.); (Y.Z.); (A.G.); (M.Z.)
| | - Jianfeng He
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (M.L.); (Y.Z.); (J.H.); (W.L.); (Z.L.); (Y.Z.); (A.G.); (M.Z.)
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Wanxi Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (M.L.); (Y.Z.); (J.H.); (W.L.); (Z.L.); (Y.Z.); (A.G.); (M.Z.)
| | - Zhexuan Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (M.L.); (Y.Z.); (J.H.); (W.L.); (Z.L.); (Y.Z.); (A.G.); (M.Z.)
| | - Yiti Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (M.L.); (Y.Z.); (J.H.); (W.L.); (Z.L.); (Y.Z.); (A.G.); (M.Z.)
| | - Ao Gu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (M.L.); (Y.Z.); (J.H.); (W.L.); (Z.L.); (Y.Z.); (A.G.); (M.Z.)
| | - Mingri Zhao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (M.L.); (Y.Z.); (J.H.); (W.L.); (Z.L.); (Y.Z.); (A.G.); (M.Z.)
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410078, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (M.L.); (Y.Z.); (J.H.); (W.L.); (Z.L.); (Y.Z.); (A.G.); (M.Z.)
- Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410078, China
| |
Collapse
|
75
|
Guerra F, Ponziani FR, Cardone F, Bucci C, Marzetti E, Picca A. Mitochondria-Derived Vesicles, Sterile Inflammation, and Pyroptosis in Liver Cancer: Partners in Crime or Innocent Bystanders? Int J Mol Sci 2024; 25:4783. [PMID: 38732000 PMCID: PMC11084658 DOI: 10.3390/ijms25094783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in cellular signaling, chronic inflammation, and tissue remodeling contribute to hepatocellular carcinoma (HCC) development. The release of damage-associated molecular patterns (DAMPs) upon tissue injury and the ensuing sterile inflammation have also been attributed a role in HCC pathogenesis. Cargoes of extracellular vesicles (EVs) and/or EVs themselves have been listed among circulating DAMPs but only partially investigated in HCC. Mitochondria-derived vesicles (MDVs), a subpopulation of EVs, are another missing link in the comprehension of the molecular mechanisms underlying the onset and progression of HCC biology. EVs have been involved in HCC growth, dissemination, angiogenesis, and immunosurveillance escape. The contribution of MDVs to these processes is presently unclear. Pyroptosis triggers systemic inflammation through caspase-dependent apoptotic cell death and is implicated in tumor immunity. The analysis of this process, together with MDV characterization, may help capture the relationship among HCC development, mitochondrial quality control, and inflammation. The combination of immune checkpoint inhibitors (i.e., atezolizumab and bevacizumab) has been approved as a synergistic first-line systemic treatment for unresectable or advanced HCC. The lack of biomarkers that may allow prediction of treatment response and, therefore, patient selection, is a major unmet need. Herein, we overview the molecular mechanisms linking mitochondrial dysfunction, inflammation, and pyroptosis, and discuss how immunotherapy targets, at least partly, these routes.
Collapse
Affiliation(s)
- Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Via Provinciale Lecce–Moteroni 165, 73100 Lecce, Italy;
| | - Francesca Romana Ponziani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (F.R.P.); (F.C.); (E.M.)
| | - Ferdinando Cardone
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (F.R.P.); (F.C.); (E.M.)
| | - Cecilia Bucci
- Department of Experimental Medicine, Università del Salento, Via Provinciale Lecce–Moteroni 165, 73100 Lecce, Italy;
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (F.R.P.); (F.C.); (E.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (F.R.P.); (F.C.); (E.M.)
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
76
|
Gao Y, Kim H, Kitata RB, Lin TT, Swensen AC, Shi T, Liu T. Multiplexed quantitative proteomics in prostate cancer biomarker development. Adv Cancer Res 2024; 161:31-69. [PMID: 39032952 PMCID: PMC11987045 DOI: 10.1016/bs.acr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PCa) is the most common non-skin cancer among men in the United States. However, the widely used protein biomarker in PCa, prostate-specific antigen (PSA), while useful for initial detection, its use alone cannot detect aggressive PCa and can lead to overtreatment. This chapter provides an overview of PCa protein biomarker development. It reviews the state-of-the-art liquid chromatography-mass spectrometry-based proteomics technologies for PCa biomarker development, such as enhancing the detection sensitivity of low-abundance proteins through antibody-based or antibody-independent protein/peptide enrichment, enriching post-translational modifications such as glycosylation as well as information-rich extracellular vesicles, and increasing accuracy and throughput using advanced data acquisition methodologies. This chapter also summarizes recent PCa biomarker validation studies that applied those techniques in diverse specimen types, including cell lines, tissues, proximal fluids, urine, and blood, developing novel protein biomarkers for various clinical applications, including early detection and diagnosis, prognosis, and therapeutic intervention of PCa.
Collapse
Affiliation(s)
- Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Hyeyoon Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.
| |
Collapse
|
77
|
Poinsot V, Pizzinat N, Ong-Meang V. Engineered and Mimicked Extracellular Nanovesicles for Therapeutic Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:639. [PMID: 38607173 PMCID: PMC11013861 DOI: 10.3390/nano14070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Exosomes are spherical extracellular nanovesicles with an endosomal origin and unilamellar lipid-bilayer structure with sizes ranging from 30 to 100 nm. They contain a large range of proteins, lipids, and nucleic acid species, depending on the state and origin of the extracellular vesicle (EV)-secreting cell. EVs' function is to encapsulate part of the EV-producing cell content, to transport it through biological fluids to a targeted recipient, and to deliver their cargos specifically within the aimed recipient cells. Therefore, exosomes are considered to be potential biological drug-delivery systems that can stably deliver their cargo into targeted cells. Various cell-derived exosomes are produced for medical issues, but their use for therapeutic purposes still faces several problems. Some of these difficulties can be avoided by resorting to hemisynthetic approaches. We highlight here the uses of alternative exosome-mimes involving cell-membrane coatings on artificial nanocarriers or the hybridization between exosomes and liposomes. We also detail the drug-loading strategies deployed to make them drug-carrier systems and summarize the ongoing clinical trials involving exosomes or exosome-like structures. Finally, we summarize the open questions before considering exosome-like disposals for confident therapeutic delivery.
Collapse
Affiliation(s)
- Verena Poinsot
- Inserm, CNRS, Faculté de Santé, Université Toulouse III—Paul Sabatier, I2MC U1297, 31432 Toulouse, France; (N.P.); (V.O.-M.)
| | | | | |
Collapse
|
78
|
Kankaanpää S, Nurmi M, Lampimäki M, Leskinen H, Nieminen A, Samoylenko A, Vainio SJ, Mäkinen S, Ahonen L, Kangasluoma J, Petäjä T, Viitala S. Comparative analysis of the effects of different purification methods on the yield and purity of cow milk extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e149. [PMID: 38938848 PMCID: PMC11080921 DOI: 10.1002/jex2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/21/2024] [Accepted: 03/29/2024] [Indexed: 06/29/2024]
Abstract
Isolation of extracellular vesicles (EV) has been developing rapidly in parallel with the interest in EVs. However, commonly utilized protocols may not suit more challenging sample matrixes and could potentially yield suboptimal results. Knowing and assessing the pitfalls of isolation procedure to be used, should be involved to some extent for EV analytics. EVs in cow milk are of great interest due to their abundancy and large-scale availability as well as their cross-species bioavailability and possible use as drug carriers. However, the characteristics of milk EVs overlap with those of other milk components. This makes it difficult to isolate and study EVs individually. There exists also a lack of consensus for isolation methods. In this study, we demonstrated the differences between various differential centrifugation-based approaches for isolation of large quantities of EVs from cow milk. Samples were further purified with gradient centrifugation and size exclusion chromatography (SEC) and differences were analyzed. Quality measurements were conducted on multiple independent platforms. Particle analysis, electron microscopy and RNA analysis were used, to comprehensively characterize the isolated samples and to identify the limitations and possible sources of contamination in the EV isolation protocols. Vesicle concentration to protein ratio and RNA to protein ratios were observed to increase as samples were purified, suggesting co-isolation with major milk proteins in direct differential centrifugation protocols. We demonstrated a novel size assessment of vesicles using a particle mobility analyzer that matched the sizing using electron microscopy in contrast to commonly utilized nanoparticle tracking analysis. Based on the standards of the International Society for Extracellular Vesicles and the quick checklist of EV-Track.org for EV isolation, we emphasize the need for complete characterization and validation of the isolation protocol with all EV-related work to ensure the accuracy of results and allow further analytics and experiments.
Collapse
Affiliation(s)
| | - Markus Nurmi
- Natural Resources Institute FinlandJokioinenFinland
| | - Markus Lampimäki
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | | | - Anni Nieminen
- Metabolomics Unit, Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Anatoliy Samoylenko
- University of Oulu, Kvantum Institute, Infotech Oulu, Faculty of Biochemistry and Molecular Medicine, Disease Networks Research UnitOulu UniversityOuluFinland
| | - Seppo J. Vainio
- University of Oulu, Kvantum Institute, Infotech Oulu, Faculty of Biochemistry and Molecular Medicine, Disease Networks Research UnitOulu UniversityOuluFinland
| | - Sari Mäkinen
- Natural Resources Institute FinlandJokioinenFinland
| | - Lauri Ahonen
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | - Juha Kangasluoma
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | | |
Collapse
|
79
|
Groß R, Reßin H, von Maltitz P, Albers D, Schneider L, Bley H, Hoffmann M, Cortese M, Gupta D, Deniz M, Choi JY, Jansen J, Preußer C, Seehafer K, Pöhlmann S, Voelker DR, Goffinet C, Pogge-von Strandmann E, Bunz U, Bartenschlager R, El Andaloussi S, Sparrer KMJ, Herker E, Becker S, Kirchhoff F, Münch J, Müller JA. Phosphatidylserine-exposing extracellular vesicles in body fluids are an innate defence against apoptotic mimicry viral pathogens. Nat Microbiol 2024; 9:905-921. [PMID: 38528146 PMCID: PMC10994849 DOI: 10.1038/s41564-024-01637-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Hanna Reßin
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dan Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Laura Schneider
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Hanna Bley
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Dhanu Gupta
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Miriam Deniz
- Clinic for Gynecology and Obstetrics, Ulm University Medical Center, Ulm, Germany
| | - Jae-Yeon Choi
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Jenny Jansen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Preußer
- Core Facility Extracellular Vesicles, Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
| | | | - Christine Goffinet
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elke Pogge-von Strandmann
- Core Facility Extracellular Vesicles, Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Uwe Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Samir El Andaloussi
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva Herker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
- Institute of Virology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
80
|
Wang W, Yong J, Marciano P, O’Hare Doig R, Mao G, Clark J. The Translation of Nanomedicines in the Contexts of Spinal Cord Injury and Repair. Cells 2024; 13:569. [PMID: 38607008 PMCID: PMC11011097 DOI: 10.3390/cells13070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE OF THIS REVIEW Manipulating or re-engineering the damaged human spinal cord to achieve neuro-recovery is one of the foremost challenges of modern science. Addressing the restricted permission of neural cells and topographically organised neural tissue for self-renewal and spontaneous regeneration, respectively, is not straightforward, as exemplified by rare instances of translational success. This review assembles an understanding of advances in nanomedicine for spinal cord injury (SCI) and related clinical indications of relevance to attempts to design, engineer, and target nanotechnologies to multiple molecular networks. RECENT FINDINGS Recent research provides a new understanding of the health benefits and regulatory landscape of nanomedicines based on a background of advances in mRNA-based nanocarrier vaccines and quantum dot-based optical imaging. In relation to spinal cord pathology, the extant literature details promising advances in nanoneuropharmacology and regenerative medicine that inform the present understanding of the nanoparticle (NP) biocompatibility-neurotoxicity relationship. In this review, the conceptual bases of nanotechnology and nanomaterial chemistry covering organic and inorganic particles of sizes generally less than 100 nm in diameter will be addressed. Regarding the centrally active nanotechnologies selected for this review, attention is paid to NP physico-chemistry, functionalisation, delivery, biocompatibility, biodistribution, toxicology, and key molecular targets and biological effects intrinsic to and beyond the spinal cord parenchyma. SUMMARY The advance of nanotechnologies for the treatment of refractory spinal cord pathologies requires an in-depth understanding of neurobiological and topographical principles and a consideration of additional complexities involving the research's translational and regulatory landscapes.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Joel Yong
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Paul Marciano
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Ryan O’Hare Doig
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Jillian Clark
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
81
|
Liang W, Najor RH, Gustafsson ÅB. Protocol to separate small and large extracellular vesicles from mouse and human cardiac tissues. STAR Protoc 2024; 5:102914. [PMID: 38386549 PMCID: PMC10897917 DOI: 10.1016/j.xpro.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted by cells under various conditions and can contribute to the disease progression in tissues. Here, we present a protocol to separate small and large EVs from mouse hearts and cardiac tissues collected from patients. We describe steps for utilizing enzymatic digestion for release of EVs from interstitial space followed by differential centrifugation and immunoaffinity purification. The isolated EVs can be used for various experiments to gain insight into their in vivo functions. For complete details on the use and execution of this protocol, please refer to Liang et al. (2023).1.
Collapse
Affiliation(s)
- Wenjing Liang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Rita H Najor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
82
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
83
|
Liu J, Dou G, Zhao W, Hu J, Jiang Z, Wang W, Wang H, Liu S, Jin Y, Zhao Y, Chen Q, Li B. Exosomes derived from impaired liver aggravate alveolar bone loss via shuttle of Fasn in type 2 diabetes mellitus. Bioact Mater 2024; 33:85-99. [PMID: 38024229 PMCID: PMC10658186 DOI: 10.1016/j.bioactmat.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) exacerbates irreversible bone loss in periodontitis, but the mechanism of impaired bone regeneration caused by the abnormal metabolic process of T2DM remains unclear. Exosomes are regarded as the critical mediator in diabetic impairment of regeneration via organ or tissue communication. Here, we find that abnormally elevated exosomes derived from metabolically impaired liver in T2DM are significantly enriched in the periodontal region and induced pyroptosis of periodontal ligament cells (PDLCs). Mechanistically, fatty acid synthase (Fasn), the main differentially expressed molecule in diabetic exosomes results in ectopic fatty acid synthesis in PDLCs and activates the cleavage of gasdermin D. Depletion of liver Fasn effectively mitigates pyroptosis of PDLCs and alleviates bone loss. Our findings elucidate the mechanism of exacerbated bone loss in diabetic periodontitis and reveal the exosome-mediated organ communication in the "liver-bone" axis, which shed light on the prevention and treatment of diabetic bone disorders in the future.
Collapse
Affiliation(s)
- Jiani Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Geng Dou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wanmin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji'an Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Wenzhe Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hanzhe Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yimin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Bei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
84
|
Bu Y, Wang J, Ni S, Lu Z, Guo Y, Yobas L. High-Performance Gel-Free and Label-Free Size Fractionation of Extracellular Vesicles with Two-Dimensional Electrophoresis in a Microfluidic Artificial Sieve. Anal Chem 2024; 96:3508-3516. [PMID: 38364051 DOI: 10.1021/acs.analchem.3c05290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived particles that exhibit diverse sizes, molecular contents, and clinical implications for various diseases depending on their specific subpopulations. However, fractionation of EV subpopulations with high resolution, efficiency, purity, and yield remains an elusive goal due to their diminutive sizes. In this study, we introduce a novel strategy that effectively separates EV subpopulations in a gel-free and label-free manner, using two-dimensional (2D) electrophoresis in a microfluidic artificial sieve. The microfabricated artificial sieve consists of periodically arranged micro-slit-well structures in a 2D array and generates an anisotropic electric field pattern to size fractionate EVs into discrete streams and steer the subpopulations into designated outlets for collection within a minute. Along with fractionating EV subpopulations, contaminants such as free proteins and short nucleic acids can be simultaneously directed to waste outlets, thus accomplishing both size fractionation and purification of EVs with high performance. Our platform offers a simple, rapid, and versatile solution for EV subpopulation isolation, which can potentially facilitate the discovery of biomarkers for specific EV subtypes and the development of EV-based therapeutics.
Collapse
Affiliation(s)
- Yang Bu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| | - Jinhui Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| | - Sheng Ni
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| | - Zechen Lu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| | - Yusong Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| | - Levent Yobas
- Department of Electronic and Computer Engineering, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
85
|
Sacchetti S, Puricelli C, Mennuni M, Zanotti V, Giacomini L, Giordano M, Dianzani U, Patti G, Rolla R. Research into New Molecular Mechanisms in Thrombotic Diseases Paves the Way for Innovative Therapeutic Approaches. Int J Mol Sci 2024; 25:2523. [PMID: 38473772 DOI: 10.3390/ijms25052523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Thrombosis is a multifaceted process involving various molecular components, including the coagulation cascade, platelet activation, platelet-endothelial interaction, anticoagulant signaling pathways, inflammatory mediators, genetic factors and the involvement of various cells such as endothelial cells, platelets and leukocytes. A comprehensive understanding of the molecular signaling pathways and cell interactions that play a role in thrombosis is essential for the development of precise therapeutic strategies for the treatment and prevention of thrombotic diseases. Ongoing research in this field is constantly uncovering new molecular players and pathways that offer opportunities for more precise interventions in the clinical setting. These molecular insights into thrombosis form the basis for the development of targeted therapeutic approaches for the treatment and prevention of thrombotic disease. The aim of this review is to provide an overview of the pathogenesis of thrombosis and to explore new therapeutic options.
Collapse
Affiliation(s)
- Sara Sacchetti
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Chiara Puricelli
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Marco Mennuni
- Division of Cardiology, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Valentina Zanotti
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Luca Giacomini
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Mara Giordano
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Umberto Dianzani
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Giuseppe Patti
- Division of Cardiology, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Roberta Rolla
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| |
Collapse
|
86
|
Chanda D, Del Rivero T, Ghimire R, More S, Mitrani MI, Bellio MA, Channappanavar R. Acellular Human Amniotic Fluid-Derived Extracellular Vesicles as Novel Anti-Inflammatory Therapeutics against SARS-CoV-2 Infection. Viruses 2024; 16:273. [PMID: 38400048 PMCID: PMC10892347 DOI: 10.3390/v16020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 is associated with acute respiratory distress syndrome (ARDS) and fatal pneumonia. Excessive inflammation caused by SARS-CoV-2 is the key driver of ARDS and lethal disease. Several FDA-approved drugs that suppress virus replication are in clinical use. However, despite strong evidence for the role of virus-induced inflammation in severe COVID-19, no effective anti-inflammatory drug is available to control fatal inflammation as well as efficiently clear the virus. Therefore, there is an urgent need to identify biologically derived immunomodulators that suppress inflammation and promote antiviral immunity. In this study, we evaluated acellular human amniotic fluid (acAF) containing extracellular vesicles (hAF-EVs) as a potential non-toxic and safe biologic for immunomodulation during COVID-19. Our in vitro results showed that acAF significantly reduced inflammatory cytokine production in TLR2/4/7 and SARS-CoV-2 structural protein-stimulated mouse macrophages. Importantly, an intraperitoneal administration of acAF reduced morbidity and mortality in SARS-CoV-2-infected mice. A detailed examination of SARS-CoV-2-infected lungs revealed that the increased protection in acAF-treated mice was associated with reduced viral titers and levels of inflammatory myeloid cell infiltration. Collectively, our results identify a novel biologic that has potential to suppress excessive inflammation and enhance survival following SARS-CoV-2 infection, highlighting the translational potential of acAF against COVID-19.
Collapse
Affiliation(s)
- Debarati Chanda
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Tania Del Rivero
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Maria Ines Mitrani
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Michael A. Bellio
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| |
Collapse
|
87
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
88
|
Du Y, Zhang Y, Luo W, Gan F, Yang M, Gong P, Yao Y. The influence of radiation-induced bystander effect in osteoblasts mediated by plasma-derived extracellular vesicles (EVs). Biochem Biophys Res Commun 2024; 695:149425. [PMID: 38211533 DOI: 10.1016/j.bbrc.2023.149425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVES Head and neck tumor patients may develop post-radiotherapy diseases after radiotherapy treatment. And radiotherapy can elicit radiation-induced bystander effect, wherein extracellular vesicles (EVs) play a crucial role. For normal parts of the body that have not been directly irradiated, the effect of EVs on them needs to be further explored. This study aims to investigate the functions of plasma-derived EVs in regulating normal osteoblasts during radiation-induced bystander effects. METHODS AND MATERIALS Rat plasma-derived EVs were isolated and identified firstly, followed by an evaluation of their intracellular biological effects on normal osteoblasts in vitro. Transcriptome sequencing analysis and confirmations were performed to identify potential mechanisms. RESULTS Irradiated plasma-derived EVs were found to enhance osteoblast proliferation, migration, and cell cycle progression, concurrently suppressing the expression of osteogenesis-related genes and proteins. Furthermore, these EVs attenuated the expression of osteogenesis and oxidative stress resistance related genes, while upregulating the PI3K-AKT pathway and intracellular reactive oxygen species in osteoblasts. CONCLUSIONS Irradiated plasma-derived EVs could alter the biological effects in osteoblasts, which is closely associated with the levels of GPX1 and the PI3K-AKT signaling pathway. This suggests that plasma-derived EVs serve as a crucial factor contributing to radiation-induced bystander effect in osteoblasts.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, China.
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.
| | - Wenqiong Luo
- Department of Stomatology, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Sichuan province, China.
| | - Feihong Gan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, China.
| | - Mao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, China.
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, China.
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
89
|
Paul N, Maiti K, Sultana Z, Fisher JJ, Zhang H, Cole N, Morgan T, Smith R. Human placenta releases extracellular vesicles carrying corticotrophin releasing hormone mRNA into the maternal blood. Placenta 2024; 146:71-78. [PMID: 38190772 DOI: 10.1016/j.placenta.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The human placenta releases diverse extracellular vesicles (EVs), including microvesicles (100-1000 nm) and exosomes (30-150 nm), into the maternal blood for feto-maternal communication. Exosomes and microvesicles contribute to normal pregnancy physiology and major pregnancy pathologies. Differences in miRNA expressions and protein content in placental exosomes have been reported in complicated pregnancies. During human pregnancy, Corticotropin-Releasing Hormone (CRH) is produced and released by the placenta into the maternal blood. CRH is involved in regulating gestational length and the initiation of labour. CRH mRNA levels in the maternal plasma rise with gestation. High levels of CRH mRNA are reported to be associated with preeclamptic and preterm pregnancies. However, the underlying mechanism of placental CRH mRNA secretion remains to be elucidated. We hypothesise that the placenta releases CRH mRNA packaged within extracellular vesicles (EVs) into the maternal blood. In this study, placental EVs (microvesicles and exosomes) were isolated from human term healthy placentas via villus washes and from explant culture media by differential centrifugation and purified by density gradient ultracentrifugation using a continuous sucrose gradient (0.25-2.5 M). Western blotting using placenta- and exosome-specific markers and electron microscopy confirmed exosomes and microvesicles in the placental wash and explant media samples. Real-time quantitative RT-PCR data detected CRH mRNA in placenta-derived EVs from placental washes and explants. We also sorted placenta-secreted EVs in maternal plasma samples (≥37 weeks) by high-resolution flow cytometry using a fluorescent-labelled PLAP antibody. CRH mRNA was demonstrated in placental EVs obtained from maternal blood plasma. We therefore show that human placental EVs carry CRH mRNA into the maternal blood. Our study implies that measuring CRH mRNA in placental EVs in the maternal plasma could beused for monitoring pregnancy.
Collapse
Affiliation(s)
- Nilanjana Paul
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia; Department of Genetic Engineering and Biotechnology, The University of Dhaka, Bangladesh
| | - Kaushik Maiti
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia
| | - Zakia Sultana
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia
| | - Joshua J Fisher
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia
| | - Huiming Zhang
- Research and Innovation Division, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Nicole Cole
- Research and Innovation Division, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Terry Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| |
Collapse
|
90
|
Arya SB, Collie SP, Parent CA. The ins-and-outs of exosome biogenesis, secretion, and internalization. Trends Cell Biol 2024; 34:90-108. [PMID: 37507251 PMCID: PMC10811273 DOI: 10.1016/j.tcb.2023.06.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Exosomes are specialized cargo delivery vesicles secreted from cells by fusion of multivesicular bodies (MVBs) with the plasma membrane (PM). While the function of exosomes during physiological and pathological events has been extensively reported, there remains a lack of understanding of the mechanisms that regulate exosome biogenesis, secretion, and internalization. Recent technological and methodological advances now provide details about MVB/exosome structure as well as the pathways of exosome biogenesis, secretion, and uptake. In this review, we outline our current understanding of these processes and highlight outstanding questions following on recent discoveries in the field.
Collapse
Affiliation(s)
- Subhash B Arya
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Samuel P Collie
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Carole A Parent
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
91
|
Cinar MU, Oliveira RD, Hadfield TS, Lichtenwalner A, Brzozowski RJ, Settlemire CT, Schoenian SG, Parker C, Neibergs HL, Cockett NE, White SN. Genome-wide association with footrot in hair and wool sheep. Front Genet 2024; 14:1297444. [PMID: 38288162 PMCID: PMC10822918 DOI: 10.3389/fgene.2023.1297444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/31/2023] [Indexed: 01/31/2024] Open
Abstract
Ovine footrot is an infectious disease with important contributions from Dichelobacter nodosus and Fusobacterium necrophorum. Footrot is characterized by separation of the hoof from underlying tissue, and this causes severe lameness that negatively impacts animal wellbeing, growth, and profitability. Large economic losses result from lost production as well as treatment costs, and improved genetic tools to address footrot are a valuable long-term goal. Prior genetic studies had examined European wool sheep, but hair sheep breeds such as Katahdin and Blackbelly have been reported to have increased resistance to footrot, as well as to intestinal parasites. Thus, footrot condition scores were collected from 251 U.S. sheep including Katahdin, Blackbelly, and European-influenced crossbred sheep with direct and imputed genotypes at OvineHD array (>500,000 single nucleotide polymorphism) density. Genome-wide association was performed with a mixed model accounting for farm and principal components derived from animal genotypes, as well as a random term for the genomic relationship matrix. We identified three genome-wide significant associations, including SNPs in or near GBP6 and TCHH. We also identified 33 additional associated SNPs with genome-wide suggestive evidence, including a cluster of 6 SNPs in a peak near the genome-wide significance threshold located near the glutamine transporter gene SLC38A1. These findings suggest genetic susceptibility to footrot may be influenced by genes involved in divergent biological processes such as immune responses, nutrient availability, and hoof growth and integrity. This is the first genome-wide study to investigate susceptibility to footrot by including hair sheep and also the first study of any kind to identify multiple genome-wide significant associations with ovine footrot. These results provide a foundation for developing genetic tests for marker-assisted selection to improve resistance to ovine footrot once additional steps like fine mapping and validation are complete.
Collapse
Affiliation(s)
- Mehmet Ulas Cinar
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkiye
| | - Ryan D. Oliveira
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Tracy S. Hadfield
- Department of Animal, Agricultural Experiment Station, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Anne Lichtenwalner
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- Cooperative Extension, University of Maine, Orono, ME, United States
| | | | | | - Susan G. Schoenian
- Western Maryland Research and Education Center, University of Maryland, College Park, MD, United States
| | - Charles Parker
- Department of Animal Sciences, Professor Emeritus, The Ohio State University, Columbus, OH, United States
| | - Holly L. Neibergs
- Department of Animal Science, Washington State University, Pullman, WA, United States
| | - Noelle E. Cockett
- Department of Animal, Agricultural Experiment Station, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Stephen N. White
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
92
|
Akbari-Gharalari N, Khodakarimi S, Nezhadshahmohammad F, Karimipour M, Ebrahimi-Kalan A, Wu J. Exosomes in neuron-glia communication: A review on neurodegeneration. BIOIMPACTS : BI 2024; 14:30153. [PMID: 39296798 PMCID: PMC11406431 DOI: 10.34172/bi.2023.30153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 01/02/2024] [Indexed: 09/21/2024]
Abstract
Introduction Exosomes, a subset of extracellular vesicles (EVs), are crucial for intercellular communication in various contexts. Despite their small size, they carry diverse cargo, including RNA, proteins, and lipids. Internalization by recipient cells raises concerns about potential disruptions to cellular functions. Notably, the ability of exosomes to traverse the blood-brain barrier (BBB) has significant implications. Methods To conduct a thorough investigation into the existing academic literature on exosomes within the framework of neuron-glia communication, a comprehensive search strategy was implemented across the PubMed, Google Scholar, and Science Direct databases. Multiple iterations of the keywords "exosome," "neuron-glia communication," and "neurological disorders" were employed to systematically identify relevant publications. Furthermore, an exploration of the Clinicaltrials.gov database was undertaken to identify clinical trials related to cellular signaling, utilizing analogous terminology. Results Although the immediate practical applications of exosomes are somewhat limited, their potential as carriers of pathogenic attributes offers promising opportunities for the development of precisely targeted therapeutic strategies for neurological disorders. This review presents a comprehensive overview of contemporary insights into the pivotal roles played by exosomes as agents mediating communication between neurons and glial cells within the central nervous system (CNS). Conclusion By delving into the intricate dynamics of exosomal communication in the CNS, this review contributes to a deeper understanding of the roles of exosomes in both physiological and pathological processes, thereby paving the way for potential therapeutic advancements in the field of neurological disorders.
Collapse
Affiliation(s)
- Naeimeh Akbari-Gharalari
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Khodakarimi
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jiagian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
93
|
Saffari N, Rahgozar S, Faraji E, Sahin F. Plasma-derived exosomal miR-326, a prognostic biomarker and novel candidate for treatment of drug resistant pediatric acute lymphoblastic leukemia. Sci Rep 2024; 14:691. [PMID: 38184700 DOI: 10.1038/s41598-023-50628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a cancer with high incidence rate in pediatrics and drug resistance is a major clinical concern for ALL treatment. The current study was designed to evaluate the role of exosomal miR-326 in diagnosis and treatment of children with B-ALL. Exosomes were isolated from plasma samples of 30 patients and B-ALL cell lines followed by characterization, using nanoparticle tracking analysis, immunoblotting assay and electron microscopy. qPCR showed significantly increased levels of miR-326 in patients exosomes compared with non-cancer controls (P < 0.05, AUC = 0.7500). Moreover, a comparison between the sensitive and drug resistant patients revealed a prognostic value for the exosomal miR326 (P < 0.05, AUC = 0.7755). Co-culture studies on drug resistant patient primary cells and B-ALL cell lines suggested that exosomes with high miR-326 level act as vehicles for reducing cells viability. B-ALL cell line transfection with naked miR-326 mimic confirmed the results, and fluorescence microscopy validated uptake and internalization of exosomes by target cells. The novel introduced features of the exosomal miR-326 address a non-invasive way of diagnosing primary drug resistance in pediatric ALL and advocates a novel therapeutic strategy for this cancer.
Collapse
Affiliation(s)
- Neda Saffari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran.
| | - Elaheh Faraji
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, 34755, Istanbul, Turkey
| |
Collapse
|
94
|
Du Y, Zhu S, Zeng H, Wang Z, Huang Y, Zhou Y, Zhang W, Zhu J, Yang C. Research Progress on the Effect of Autophagy and Exosomes on Liver Fibrosis. Curr Stem Cell Res Ther 2024; 19:785-797. [PMID: 37102476 DOI: 10.2174/1574888x18666230427112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 04/28/2023]
Abstract
Chronic liver disease is a known risk factor for the development of liver cancer, and the development of microRNA (miRNA) liver therapies has been hampered by the difficulty of delivering miRNA to damaged tissues. In recent years, numerous studies have shown that hepatic stellate cell (HSC) autophagy and exosomes play an important role in maintaining liver homeostasis and ameliorating liver fibrosis. In addition, the interaction between HSC autophagy and exosomes also affects the progression of liver fibrosis. In this paper, we review the research progress of mesenchymal stem cell-derived exosomes (MSC-EVs) loaded with specific miRNA and autophagy, and their related signaling pathways in liver fibrosis, which will provide a more reliable basis for the use of MSC-EVs for therapeutic delivery of miRNAs targeting the chronic liver disease.
Collapse
Grants
- 2021A1515011580, 2021B1515140012, 2023A1515010083, 2022A1515011696 Natural Science Foundation of Guangdong Province
- 20211800905342, 20221800905572 Dongguan Science and Technology of Social Development Program
- 20211216 Administration of Traditional Chinese Medicine of Guangdong Province
- A2020096, B2021330 Medical Scientific Research Foundation of Guangdong Province
- k202005 Research and Development Fund of Dongguan People's Hospital
- pdjh2021b0224 Special Funds for the Cultivation of Guangdong College Students' Scientific and Technological Innovation (Climbing Program Special Funds)
- 2020ZZDS002, 2020ZYDS005, 2021ZZDS006, 2021ZCDS003, ZYDS003 Guangdong Medical University Students' Innovation Experiment Program
- GDMU2020010, GDMU2020078, GDMU2021003, GDMU2021049 Guangdong Medical University Students' Innovation and Entrepreneurship Training Program
- 202110571010, S202110571078, 202210571008, S202210571075 Provincial and National College Students' Innovation and Entrepreneurship Training Program
- 4SG23033G Guangdong Medical University-Southern Medical University Twinning Research Team Project
- GDMUZ2020009 Scientific Research Fund of Guangdong Medical University
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
| | - Silin Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Haojie Zeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Zhenjie Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Yixing Huang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Yuqi Zhou
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Weichui Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523716, China
| |
Collapse
|
95
|
Teles RHG, Engelmayr D, Meybohm P, Burek M. Isolation of Extracellular Vesicles Using Formulas to Adapt Centrifugation to Different Centrifuges. Methods Mol Biol 2024; 2761:39-48. [PMID: 38427227 DOI: 10.1007/978-1-0716-3662-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer vesicles released by cells to facilitate cell-to-cell communication. To study their biological roles and functions, they need to be isolated and purified, which can be achieved through a variety of methods. Here, we describe different methods for isolating and purifying EVs, with a focus on calculating the required g-force and centrifugation time with different centrifuges and rotors. We have compiled key formulas and tested predicted parameters for EV acquisitions to provide a comprehensive guide for EV isolation.
Collapse
Affiliation(s)
- Ramon Handerson Gomes Teles
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, Sao Paulo, Brazil
- Graduate School of Life Sciences, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Daniela Engelmayr
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
96
|
Al-Humiari MA, Yu L, Liu LP, Nouri MZ, Tuna KM, Denslow ND, Alli AA. Extracellular vesicles from BALF of pediatric cystic fibrosis and asthma patients increase epithelial sodium channel activity in small airway epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184219. [PMID: 37634857 PMCID: PMC11632644 DOI: 10.1016/j.bbamem.2023.184219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Extracellular Vesicles (EVs) are nanosized vesicles derived from all cell types. EV cargo allows for intercellular communication, intracellular signaling, and regulation of proteins in recipient cells. We tested the hypothesis that EVs isolated from the bronchoalveolar-lavage fluid (BALF) of pediatric cystic fibrosis (CF) or pediatric asthma patients increase epithelial sodium channel (ENaC) activity in normal human small airway epithelial cells (SAECs) and the mechanism involves specific EV lipids. We characterized EVs from BALF of pediatric CF and pediatric asthma patients by nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. The CF and asthma pediatric groups were similar in BALF electrolytes concentration and cell count, except for neutrophils, which were higher in the CF group. Lipidomic analyses for each group of EVs were performed using targeted mass spectrometry. Phosphatidylethanolamine, sphingomyelins, and triacylglycerol were enriched in both groups, but phosphatidylcholine and phosphatidylinositol concentrations were greater in the CF group compared to the asthma group, and the opposite trend was found for phosphatidylserine. Endogenous ENaC activity, measured by the single-channel patch-clamp technique, increased in normal human SAECs after challenging SAEC with EVs from either the CF or asthma groups compared to control EVs. In conclusion, EVs isolated from BALF of pediatric patients with CF or asthma have unique lipid profiles. Despite the differences, both types of EVs increase ENaC activity in normal human SAECs compared to control EVs isolated from the conditioned media of these cells.
Collapse
Affiliation(s)
- Mohammed A Al-Humiari
- Department of Pediatrics, Pediatric Pulmonology, University of Florida, Gainesville, FL, United States of America
| | - Ling Yu
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States of America
| | - Lauren P Liu
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States of America
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States of America
| | - Kubra M Tuna
- Department of Endocrinology, University of Florida, Gainesville, FL, United States of America
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States of America
| | - Abdel A Alli
- Department of Pediatrics, Pediatric Pulmonology, University of Florida, Gainesville, FL, United States of America; Department of Physiology and Aging, University of Florida, Gainesville, FL, United States of America; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
97
|
van de Wakker SI, Bauzá‐Martinez J, Ríos Arceo C, Manjikian H, Snijders Blok CJB, Roefs MT, Willms E, Maas RGC, Pronker MF, de Jong OG, Wu W, Görgens A, El Andaloussi S, Sluijter JPG, Vader P. Size matters: Functional differences of small extracellular vesicle subpopulations in cardiac repair responses. J Extracell Vesicles 2024; 13:e12396. [PMID: 38179654 PMCID: PMC10767609 DOI: 10.1002/jev2.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Cardiac progenitor cell (CPC)-derived small extracellular vesicles (sEVs) exhibit great potential to stimulate cardiac repair. However, the multifaceted nature of sEV heterogeneity presents a challenge in understanding the distinct mechanisms underlying their regenerative abilities. Here, a dual-step multimodal flowthrough and size-exclusion chromatography method was applied to isolate and separate CPC-derived sEV subpopulations to study the functional differences related to cardiac repair responses. Three distinct sEV subpopulations were identified with unique protein profiles. Functional cell assays for cardiac repair-related processes demonstrated that the middle-sized and smallest-sized sEV subpopulations exhibited the highest pro-angiogenic and anti-fibrotic activities. Proteasome activity was uniquely seen in the smallest-sized subpopulation. The largest-sized subpopulation showed no effect in any of the functional assays. This research uncovers the existence of sEV subpopulations, each characterized by a distinct composition and biological function. Enhancing our understanding of sEV heterogeneity will provide valuable insights into sEV mechanisms of action, ultimately accelerating the translation of sEV therapeutics.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Julia Bauzá‐Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Carla Ríos Arceo
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Herak Manjikian
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Christian Jamie Bernard Snijders Blok
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Marieke Theodora Roefs
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Eduard Willms
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia
| | - Renee Goverdina Catharina Maas
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Matti Feije Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Olivier Gerrit de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUtrechtThe Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Singapore Immunology Network (SIgN), Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| | - André Görgens
- Department of Laboratory MedicineKarolinska InstituteStockholm, HuddingeSweden
- Institute for Transfusion Medicine, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Samir El Andaloussi
- Department of Laboratory MedicineKarolinska InstituteStockholm, HuddingeSweden
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Pieter Vader
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
98
|
Anyika T, Hong I, Ndukaife JC. Mirror-Enhanced Plasmonic Nanoaperture for Ultrahigh Optical Force Generation with Minimal Heat Generation. NANO LETTERS 2023; 23:11416-11423. [PMID: 37987748 PMCID: PMC11271985 DOI: 10.1021/acs.nanolett.3c02543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Double Nanohole Plasmonic Tweezers (DNH) have emerged as a powerful approach for confining light to sub-wavelength volume, enabling the trapping of nanoscale particles much smaller than the wavelength of light. However, to circumvent plasmonic heating effects, DNH tweezers are typically operated off-resonance, resulting in reduced optical forces and field enhancements. In this study, we introduce a novel DNH design with a reflector layer, enabling on-resonance illumination while minimizing plasmonic heating. This design efficiently dissipates heat and redistributes the electromagnetic hotspots, making them more accessible for trapping nanoscale particles and enhancing light-matter interactions. We also demonstrate low-power trapping and release of small extracellular vesicles. Our work opens new possibilities for trapping-assisted Surface Enhanced Raman Spectroscopy (SERS), plasmon-enhanced imaging, and single photon emission applications that demand strong light-matter interactions.
Collapse
Affiliation(s)
- Theodore Anyika
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, United States
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, United States
| | - Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, United States
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
99
|
Gentile E, Hahn AW, Song JH, Hoang A, Shepherd PDA, Ramachandran S, Navone NM, Efstathiou E, Titus M, Corn PG, Lin SH, Logothetis CJ, Panaretakis T. Monitoring Glucocorticoid Receptor in Plasma-derived Extracellular Vesicles as a Marker of Resistance to Androgen Receptor Signaling Inhibition in Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:2531-2543. [PMID: 37930121 PMCID: PMC10718063 DOI: 10.1158/2767-9764.crc-23-0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Disease progression following androgen ablation was shown to be associated with upregulation of the glucocorticoid receptor (GR). Longitudinal monitoring of GR expression in circulating extracellular vesicles (EV) may reflect changes in the tumor cell and facilitates detection of acquired resistance. We utilized LNCaP, LREX cells and a patient-derived xenograft, MDA PDX 322-2-6a, for in vitro and in vivo experiments. Plasma-derived EVs were isolated from patients with localized high-risk prostate cancer undergoing androgen ablation. The mRNA levels of GR in EVs and their responsive genes were detected by transcriptome analysis, qRT-PCR and the protein levels by Western blot analysis. We detected changes in GR expression at mRNA and protein levels in EVs derived from LNCaP and LREX cells in in vitro studies. In in vivo experiments, LNCaP and the PDX MDA 322-2-6a-bearing mice were treated with enzalutamide. GR levels in plasma-derived EVs were increased only in those tumors that did not respond to enzalutamide. Treatment of mice bearing enzalutamide-resistant tumors with a GR inhibitor in combination with enzalutamide led to a transient pause in tumor growth in a subset of tumors and decreased GR levels intracellular and in plasma-derived EVs. In a subgroup of patients with high-risk localized prostate cancer treated with androgen signaling inhibition, GR was found upregulated in matching tissue and plasma EVs. These analyses showed that GR levels in plasma-derived EVs may be used for monitoring the transition of GR expression allowing for early detection of resistance to androgen ablation treatment. SIGNIFICANCE Longitudinal monitoring of GR expression in plasma-derived EVs from patients with prostate cancer treated with androgen signaling inhibitors facilitates early detection of acquisition of resistance to androgen receptor signaling inhibition in individual patients.
Collapse
Affiliation(s)
- Emanuela Gentile
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Andrew W Hahn
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Jian H Song
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Anh Hoang
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Peter D A Shepherd
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | | | - Nora M Navone
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Eleni Efstathiou
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Mark Titus
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Paul G Corn
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Sue-Hwa Lin
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
100
|
Vahabi M, Comandatore A, Centra C, Blandino G, Morelli L, Giovannetti E. Thinking small to win big? A critical review on the potential application of extracellular vesicles for biomarker discovery and new therapeutic approaches in pancreatic cancer. Semin Cancer Biol 2023; 97:50-67. [PMID: 37956937 DOI: 10.1016/j.semcancer.2023.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely deadly form of cancer, with limited progress in 5-year survival rates despite significant research efforts. The main challenges in treating PDAC include difficulties in early detection, and resistance to current therapeutic approaches due to aggressive molecular and microenvironment features. These challenges emphasize the importance of identifying clinically validated biomarkers for early detection and clinical management. Extracellular vesicles (EVs), particularly exosomes, have emerged as crucial mediators of intercellular communication by transporting molecular cargo. Recent research has unveiled their role in initiation, metastasis, and chemoresistance of PDAC. Consequently, utilizing EVs in liquid biopsies holds promise for the identification of biomarkers for early detection, prognosis, and monitoring of drug efficacy. However, numerous limitations, including challenges in isolation and characterization of homogeneous EVs populations, as well as the absence of standardized protocols, can affect the reliability of studies involving EVs as biomarkers, underscoring the necessity for a prudent approach. EVs have also garnered considerable attention as a promising drug delivery system and novel therapy for tumors. The loading of biomolecules or chemical drugs into exosomes and their subsequent delivery to target cells can effectively impede tumor progression. Nevertheless, there are obstacles that must be overcome to ensure the accuracy and efficacy of therapies relying on EVs for the treatment of tumors. In this review, we examine both recent advancements and remaining obstacles, exploring the potential of utilizing EVs in biomarker discovery as well as for the development of drug delivery vehicles.
Collapse
Affiliation(s)
- Mahrou Vahabi
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Annalisa Comandatore
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands; General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Centra
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, Rome, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy.
| |
Collapse
|