51
|
Ljungars A, Svensson C, Carlsson A, Birgersson E, Tornberg UC, Frendéus B, Ohlin M, Mattsson M. Deep Mining of Complex Antibody Phage Pools Generated by Cell Panning Enables Discovery of Rare Antibodies Binding New Targets and Epitopes. Front Pharmacol 2019; 10:847. [PMID: 31417405 PMCID: PMC6683657 DOI: 10.3389/fphar.2019.00847] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/02/2019] [Indexed: 01/11/2023] Open
Abstract
Phage display technology is a common approach for discovery of therapeutic antibodies. Drug candidates are typically isolated in two steps: First, a pool of antibodies is enriched through consecutive rounds of selection on a target antigen, and then individual clones are characterized in a screening procedure. When whole cells are used as targets, as in phenotypic discovery, the output phage pool typically contains thousands of antibodies, binding, in theory, hundreds of different cell surface receptors. Clonal expansion throughout the phage display enrichment process is affected by multiple factors resulting in extremely complex output phage pools where a few antibodies are highly abundant and the majority is very rare. This is a huge challenge in the screening where only a fraction of the antibodies can be tested using a conventional binding analysis, identifying mainly the most abundant clones typically binding only one or a few targets. As the expected number of antibodies and specificities in the pool is much higher, complementing methods, to reach deeper into the pool, are required, called deep mining methods. In this study, four deep mining methods were evaluated: 1) isolation of rare sub-pools of specific antibodies through selection on recombinant proteins predicted to be expressed on the target cells, 2) isolation of a sub-pool enriched for antibodies of unknown specificities through depletion of the primary phage pool on recombinant proteins corresponding to receptors known to generate many binders, 3) isolation of a sub-pool enriched for antibodies through selection on cells blocked with antibodies dominating the primary phage pool, and 4) next-generation sequencing-based analysis of isolated antibody pools followed by antibody gene synthesis and production of rare but enriched clones. We demonstrate that antibodies binding new targets and epitopes, not discovered through screening alone, can be discovered using described deep mining methods. Overall, we demonstrate the complexity of phage pools generated through selection on cells and show that a combination of conventional screening and deep mining methods are needed to fully utilize such pools. Deep mining will be important in future phenotypic antibody drug discovery efforts to increase the diversity of identified antibodies and targets.
Collapse
Affiliation(s)
- Anne Ljungars
- BioInvent International AB, Lund, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | | | | | | | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | |
Collapse
|
52
|
de Taeye SW, Rispens T, Vidarsson G. The Ligands for Human IgG and Their Effector Functions. Antibodies (Basel) 2019; 8:E30. [PMID: 31544836 PMCID: PMC6640714 DOI: 10.3390/antib8020030] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023] Open
Abstract
Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Steven W de Taeye
- Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
- Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| | - Theo Rispens
- Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| | - Gestur Vidarsson
- Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
53
|
Shi L, Liu T, Gross ML, Huang Y. Recognition of Human IgG1 by Fcγ Receptors: Structural Insights from Hydrogen-Deuterium Exchange and Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry. Biochemistry 2019; 58:1074-1080. [PMID: 30666863 DOI: 10.1021/acs.biochem.8b01048] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) is an effector function of immunoglobulins (IgGs) involved in the killing of target cells by a cytotoxic effector cell. Recognition of IgG by Fc receptors expressed on natural killer cells, mostly FcγIII receptors (FcγRIII), underpins the ADCC mechanism, thus motivating investigations of these interactions. In this paper, we describe the combination of hydrogen-deuterium exchange and fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry to study the interactions of the human IgG1/FcγRIII complex. Using these orthogonal approaches, we identified critical peptide regions and residues involved in the recognition of IgG1 by FcγRIII. The footprinting results are consistent with the previously published crystal structure of the IgG1 Fc/FcγRIII complex. Additionally, our FPOP results reveal the conformational changes in the Fab domain upon binding of the Fc domain to FcγRIII. These data demonstrate the value of footprinting as part of a comprehensive toolbox for identifying the changes in the higher-order structure of therapeutic antibodies in solution.
Collapse
Affiliation(s)
- Liuqing Shi
- Department of Chemistry , Washington University in St. Louis , Campus Box 1134, One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Tun Liu
- Bioproduct Research and Development, Lilly Research Laboratories , Eli Lilly and Company , Indianapolis , Indiana 46285 , United States
| | - Michael L Gross
- Department of Chemistry , Washington University in St. Louis , Campus Box 1134, One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Yining Huang
- Bioproduct Research and Development, Lilly Research Laboratories , Eli Lilly and Company , Indianapolis , Indiana 46285 , United States
| |
Collapse
|
54
|
Ip S, MacLaughlin CM, Joseph M, Mullaithilaga N, Yang G, Wang C, Walker GC. Dual-Mode Dark Field and Surface-Enhanced Raman Scattering Liposomes for Lymphoma and Leukemia Cell Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1534-1543. [PMID: 30350697 DOI: 10.1021/acs.langmuir.8b02313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multifunctional probes are needed to characterize individual cells simultaneously by different techniques to provide complementary information. A preparative method and an in vitro demonstration of function are presented for a dual-function dark field microscopy/surface-enhanced Raman scattering (SERS) liposome probe for cancer. Liposomes composed of zwitterionic lipids are valuable both to limit biofouling and to serve as a modular matrix to incorporate a variety of functional molecules and hence are used here as vehicles for SERS-active materials. Dark field microscopy and SERS represent new combined functionalities for targeted liposomal probes. Two methods of antibody conjugation to SERS liposomes are demonstrated: (i) direct conjugation to functional groups on the SERS liposome surface and (ii) postinsertion of lipid-functionalized antibody fragments (Fabs) into preformed SERS liposomes. In vitro experiments targeting both lymphoma cell line LY10 and primary human chronic lymphocytic leukemia (CLL) cells demonstrate the usefulness of these probes as optical contrast agents in both dark field and Raman microscopy.
Collapse
Affiliation(s)
- Shell Ip
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S3H6 , Canada
| | - Christina M MacLaughlin
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S3H6 , Canada
| | - Michelle Joseph
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S3H6 , Canada
| | - Nisa Mullaithilaga
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital and Faculty of Medicine, University of Toronto , 600 University Avenue , Toronto , Ontario M5G 1X5 , Canada
| | - Guisheng Yang
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital and Faculty of Medicine, University of Toronto , 600 University Avenue , Toronto , Ontario M5G 1X5 , Canada
| | - Chen Wang
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital and Faculty of Medicine, University of Toronto , 600 University Avenue , Toronto , Ontario M5G 1X5 , Canada
| | - Gilbert C Walker
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S3H6 , Canada
| |
Collapse
|
55
|
|
56
|
Chen X, Zhang Z, Yang S, Chen H, Wang D, Li J. All-trans retinoic acid-encapsulated, CD20 antibody-conjugated poly(lactic- co-glycolic acid) nanoparticles effectively target and eliminate melanoma-initiating cells in vitro. Onco Targets Ther 2018; 11:6177-6187. [PMID: 30288053 PMCID: PMC6163018 DOI: 10.2147/ott.s169957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose Melanoma, which is initiated from melanocytes, is the most fatal type of skin cancer. Melanoma-initiating cells significantly contribute to the initiation, metastasis, and recurrence of melanoma, and CD20 is a marker of melanoma-initiating cells. All-trans retinoic acid (ATRA) has been demonstrated to induce differentiation, inhibit proliferation, and promote the apoptosis of cancer cells and cancer-initiating cells (CICs). However, there has been no report on ATRA activity against melanoma-initiating cells. In this study, we examined the activity of ATRA against melanoma-initiating cells and developed ATRA-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles, which were conjugated with a CD20 antibody (ATRA-PNP-CD20) for targeted delivery of ATRA to CD20+ melanoma-initiating cells. Materials and methods The effects of ATRA and ATRA-PNP-CD20 against melanoma-initiating cells were investigated using a cytotoxicity assay, tumorsphere formation assay, and flow cytometry. Results ATRA-PNP-CD20 had a size of 126.9 nm and a negative zeta potential. The drug-loading capacity of ATRA-PNP-CD20 was 8.7%, and ATRA-PNP-CD20 displayed a sustained release of ATRA for 144 hours. The results showed that ATRA-PNP-CD20 could effectively and specifically deliver ATRA to CD20+ melanoma-initiating cells, achieving superior inhibitory effects against CD20+ melanoma-initiating cells compared with those of free ATRA and nontargeted nanoparticles. To the best of our knowledge, we report for the first time a potent activity of ATRA against CD20+ melanoma-initiating cells, targeted drug delivery of ATRA via nanoparticles to melanoma-initiating cells, and the achievement of a superior inhibitory effect against melanoma-initiating cells by using a CD20 antibody. Conclusion ATRA-PNP-CD20 represents a promising tool for eliminating melanoma-initiating cells and shows a potential for the therapy of melanoma.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Dermatology and Venerology, Shandong University School of Medicine, Jinan, Shandong, 250000, China, .,Department of Dermatology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China,
| | - Zhiyuan Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Shengfeng Yang
- Department of Medical Oncology, Qingdao Center Hospital, Qingdao, Shandong 266011, China
| | - Hairong Chen
- Department of Dermatology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China,
| | - Dan Wang
- Department of Ultrasound, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Jun Li
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China,
| |
Collapse
|
57
|
Casan JML, Wong J, Northcott MJ, Opat S. Anti-CD20 monoclonal antibodies: reviewing a revolution. Hum Vaccin Immunother 2018; 14:2820-2841. [PMID: 30096012 PMCID: PMC6343614 DOI: 10.1080/21645515.2018.1508624] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/14/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022] Open
Abstract
Since the inception of rituximab in the 1990s, anti-CD20 monoclonal antibodies have revolutionised the treatment of B cell hematological malignancies and have become a cornerstone of modern gold-standard practice. Additionally, the potent efficacy of these agents in depleting the B cell compartment has been used in the management of a broad array of autoimmune diseases. Multiple iterations of these agents have been investigated and are routinely used in clinical practice. In this review, we will discuss the physiology of CD20 and its attractiveness as a therapeutic target, as well as the pharmacology, pre-clinical and clinical data for the major anti-CD20 monoclonal antibodies: rituximab, obinutuzumab and ofatumumab.
Collapse
Affiliation(s)
- J. M. L. Casan
- Haematology Department, Monash Health, Melbourne Australia
| | - J. Wong
- Haematology Department, Monash Health, Melbourne Australia
| | - M. J. Northcott
- Rheumatology Department, Monash Health, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| | - S. Opat
- Haematology Department, Monash Health, Melbourne Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
58
|
Forsthuber TG, Cimbora DM, Ratchford JN, Katz E, Stüve O. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther Adv Neurol Disord 2018; 11:1756286418761697. [PMID: 29593838 PMCID: PMC5865455 DOI: 10.1177/1756286418761697] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
Increasing recognition of the role of B cells in the adaptive immune response makes B cells an important therapeutic target in autoimmunity. Numerous current and developmental immunotherapies target B cells for elimination through recognition of cell-surface proteins expressed specifically on B cells, in particular CD19 and CD20. Similarities and differences in the function and expression of these two molecules predict some shared, and some distinct, pharmacological effects of agents targeting CD19 versus CD20, potentially leading to differences in the clinical safety and efficacy of such agents. Here, we review current knowledge of CD19 and CD20 function and biology, survey current and developmental therapies that target these molecules, and discuss potential differences in elimination of B cells by drugs that target CD19 versus CD20, with particular focus on the central nervous system autoimmune diseases multiple sclerosis and neuromyelitis optica. The principles and mechanisms herein discussed might also be relevant to a variety of other nervous system autoimmune disorders, including NMDA (N-methyl-D-aspartate) receptor encephalitis, transverse myelitis and myasthenia gravis.
Collapse
Affiliation(s)
| | | | | | | | - Olaf Stüve
- Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA
| |
Collapse
|
59
|
Selection and Characterization of Single-Stranded DNA Aptamers Binding Human B-Cell Surface Protein CD20 by Cell-SELEX. Molecules 2018; 23:molecules23040715. [PMID: 29561802 PMCID: PMC6017093 DOI: 10.3390/molecules23040715] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/17/2022] Open
Abstract
The B-lymphocyte antigen (CD20) is a suitable target for single-stranded (ss) nucleic acid oligomer (aptamers). The aim of study was selection and characterization of a ssDNA aptamer against CD20 using Cell-Systematic Evolution of Ligands by Exponential Enrichment (Cell-SELEX). The cDNA clone of CD20 (pcDNA-CD20) was transfected to human embryonic kidney (HEK293T) cells. Ten rounds of Cell-SELEX was performed on recombinant HEK-CD20 cells. The final eluted ssDNA pool was amplified and ligated in T/A vector for cloning. The plasmids of positive clones were extracted, sequenced and the secondary structures of the aptamers predicted using DNAMAN® software. The sequencing results revealed 10 different types; three of them had the highest thermodynamic stability, named AP-1, AP-2 and AP-3. The AP-1 aptamer was the most thermodynamically stable one (ΔGAP-1 = −10.87 kcal/mol) with the highest binding affinity to CD20 (96.91 ± 4.5 nM). Since, the CD20 is a suitable target for recognition of B-Cell. The selected aptamers could be comparable to antibodies with many advantages. The AP-1, AP-2 and AP-3 could be candidate instead of antibodies for diagnostic and therapeutic applications in immune deficiency, autoimmune diseases, leukemia and lymphoma.
Collapse
|
60
|
Kim YM, Park JS, Kim SK, Jung KM, Hwang YS, Han M, Lee HJ, Seo HW, Suh JY, Han BK, Han JY. The transgenic chicken derived anti-CD20 monoclonal antibodies exhibits greater anti-cancer therapeutic potential with enhanced Fc effector functions. Biomaterials 2018; 167:58-68. [PMID: 29554481 DOI: 10.1016/j.biomaterials.2018.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 12/28/2022]
Abstract
Modern genetic techniques, enable the use of animal bioreactor systems for the production and functional enhancement of anti-cancer antibodies. Chicken is the most efficient animal bioreactor for the production of anti-cancer antibodies because of its relatively short generation time, plentiful reproductive capacity, and daily deposition in the egg white. Although several studies have focused on the production of anti-cancer antibodies in egg white, in-depth studies of the biological activity and physiological characteristics of transgenic chicken-derived anti-cancer antibodies have not been fully carried out. Here, we report the production of an anti-cancer monoclonal antibody against the CD20 protein from egg whites of transgenic hens, and validated the bio-functional activity of the protein in B-lymphoma and B-lymphoblast cells. Quantitative analysis showed that deposition of the chickenised CD20 monoclonal antibody (cCD20 mAb) from transgenic chickens increased in successive generations and with increasing transgene copy number. Ultra-performance liquid chromatography (UPLC) tandem mass spectrometry (LC/MS/MS) analysis showed that the cCD20 mAb exhibited 14 N-glycan patterns with high-mannose, afucosylation and terminal galactosylation. The cCD20 mAb did not exhibit significantly improved Fab-binding affinity, but showed markedly enhanced Fc-related functions, including complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) compared to commercial rituximab, a chimeric mAb against CD20. Our results suggest that the transgenic chicken bioreactor is an efficient system for producing anti-cancer therapeutic antibodies with enhanced Fc effector functions.
Collapse
Affiliation(s)
- Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sang Kyung Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Mookyoung Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hee Won Seo
- Samsung Bioepis Co., Ltd, 107, Cheomdan-daero, Yeonsu-gu, Incheon, 21987, South Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Beom Ku Han
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Cheongju-si, Chungcheongbku-do, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea; Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan.
| |
Collapse
|
61
|
Meyer S, Evers M, Jansen JHM, Buijs J, Broek B, Reitsma SE, Moerer P, Amini M, Kretschmer A, Ten Broeke T, den Hartog MT, Rijke M, Klein C, Valerius T, Boross P, Leusen JHW. New insights in Type I and II CD20 antibody mechanisms-of-action with a panel of novel CD20 antibodies. Br J Haematol 2018; 180:808-820. [PMID: 29468712 DOI: 10.1111/bjh.15132] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/23/2022]
Abstract
Based on their mechanisms-of-action, CD20 monoclonal antibodies (mAbs) are grouped into Type I [complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC)] and Type II [programmed cell death (PCD) and ADCC] mAbs. We generated 17 new hybridomas producing CD20 mAbs of different isotypes and determined unique heavy and light chain sequence pairs for 13 of them. We studied their epitope binding, binding kinetics and structural properties and investigated their predictive value for effector functions, i.e. PCD, CDC and ADCC. Peptide mapping and CD20 mutant screens revealed that 10 out of these 11 new mAbs have an overlapping epitope with the prototypic Type I mAb rituximab, albeit that distinct amino acids of the CD20 molecule contributed differently. Binding kinetics did not correlate with the striking differences in CDC activity among the mIgG2c mAbs. Interestingly, chimerization of mAb m1 resulted in a mAb displaying both Type I and II characteristics. PCD induction was lost upon introduction of a mutation in the framework of the heavy chain affecting the elbow angle, supporting that structural changes within this region can affect functional activities of CD20 mAbs. Together, these new CD20 mAbs provide further insights in the properties dictating the functional efficacy of CD20 mAbs.
Collapse
Affiliation(s)
- Saskia Meyer
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Mitchell Evers
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Johannes H M Jansen
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jos Buijs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Blanca Broek
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Stephanie E Reitsma
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Petra Moerer
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Mojtaba Amini
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Anna Kretschmer
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Kiel, Germany
| | - Toine Ten Broeke
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center, Zurich, Switzerland
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University, Kiel, Germany
| | - Peter Boross
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
62
|
Soe ZN, Allsup D. The use of ofatumumab in the treatment of B-cell malignancies. Future Oncol 2017; 13:2611-2628. [DOI: 10.2217/fon-2017-0275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ofatumumab has been extensively studied in the treatment of B-cell malignancies. Currently, it has been approved for the treatment of chronic lymphocytic leukemia in a number of different situations. However, there is still no compelling evidence confirming the superiority of ofatumumab over rituximab in vivo. In this article, we summarize the currently available clinical data supporting the use of ofatumumab in the treatment of B-cell malignancies. The clinical studies were searched from clinicaltrials.gov with the key words ofatumumab, HuMax-CD20. Out of 115 trials available, studies for B-cell malignancies were selected, followed by selection of completed studies with results and active ongoing studies. The results from completed studies were thoroughly analyzed and active ongoing studies were listed in tables.
Collapse
Affiliation(s)
- Zar Ni Soe
- Department of Haematology, Hull & East Yorkshire Hospitals NHS Trust, Hull, East Yorkshire, England, UK
| | - David Allsup
- Department of Haematology, Hull & East Yorkshire Hospitals NHS Trust, Hull, East Yorkshire, England, UK
| |
Collapse
|
63
|
Sung AP, Tang JJJ, Guglielmo MJ, Redelman D, Smith-Gagen J, Bateman L, Hudig D. An improved method to quantify human NK cell-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) per IgG FcR-positive NK cell without purification of NK cells. J Immunol Methods 2017; 452:63-72. [PMID: 29113954 DOI: 10.1016/j.jim.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) lymphocyte ADCC supports anti-viral protection and monoclonal antibody (mAb) anti-tumor therapies. To predict in vivo ADCC therapeutic responses of different individuals, measurement of both ADCC cellular lytic capacity and their NK cellular receptor recognition of antibodies on 'target' cells are needed, using clinically available amounts of blood. Twenty ml of blood provides sufficient peripheral blood mononuclear cells (PBMCs) for the new assay for lytic capacity described here and for an antibody EC50 assay for Fc-receptor recognition. For the lytic capacity assay, we employed flow cytometry to quantify the CD16A IgG Fc-receptor positive NK effector cells from PBMCs to avoid loss of NKs during isolation. Targets were 51Cr-labeled Daudi B cells pretreated with excess obinutuzumab type 2 anti-CD20 mAb and washed; remaining free mAb was insufficient to convert B cells in the PBMCs into 'targets'. We calculated: the percentage Daudis killed at a 1:1 ratio of CD16A-positive NK cells to Daudis (CX1:1); lytic slopes; and ADCC50 lytic units. Among 27 donors, we detected wide ranges in CX1:1 (16-73% targets killed) and in lytic slopes. Slope variations prevented application of lytic units. We recommend CX1:1 to compare individuals' ADCC capacity. CX1:1 was similar for purified NK cells vs. PBMCs and independent of CD16A V & F genotypes and antibody EC50s. With high mAb bound onto targets and the high affinity of obinutuzumab Fc for CD16A, CX1:1 measurements discern ADCC lytic capacity rather than antibody recognition. This assay allows ADCC to be quantified without NK cell isolation and avoids distortion associated with lytic units.
Collapse
Affiliation(s)
- Alexander P Sung
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Jennifer J-J Tang
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Michael J Guglielmo
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Doug Redelman
- University of Nevada Reno School of Medicine, Department of Physiology and Cell Biology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Julie Smith-Gagen
- University of Nevada Reno School of Medicine, School of Community Health Sciences Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Lucinda Bateman
- Bateman Horne Center, Salt Lake City, UT 84102, United States
| | - Dorothy Hudig
- University of Nevada Reno School of Medicine, Department of Microbiology and Immunology Reno, Nevada, 1664 N. Virginia St., Reno, NV 89557, United States.
| |
Collapse
|
64
|
Sarraf Yazdy M, Cheson BD. Impact of obinutuzumab alone and in combination for follicular lymphoma. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2017; 7:73-83. [PMID: 31360086 PMCID: PMC6467363 DOI: 10.2147/blctt.s114173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although rituximab-based chemoimmunotherapy prolongs the survival of patients with follicular lymphoma (FL), this disease is considered incurable in most patients. Thus, new therapies are needed not only for those in the relapsed/refractory setting, but also for initial treatment. Obinutuzumab (G, GA101) is a third-generation, fully humanized type II glycoengineered, anti-CD20 monoclonal antibody that results in increased direct cell death and antibody-dependent, cell-mediated cytotoxicity/phagocytosis compared to rituximab. Obinutuzumab has significant antitumor activity when used alone or in combinations in untreated or relapsed refractory FL patients. Studies have demonstrated its ability to prolong progression-free survival and, in some cases, overall survival, and to eliminate minimal residual disease. Several ongoing trials are investigating combinations with chemotherapy, immunomodulators, targeted drugs, and immunotherapy agents. G is generally well tolerated, with associated adverse effects including infusion-related reactions, neutropenia, thrombocytopenia, and reactivation of hepatitis B virus. Future studies with this antibody should focus on identifying predictive markers and developing chemotherapy-free combinations that will improve the outcome of patients with FL.
Collapse
Affiliation(s)
- Maryam Sarraf Yazdy
- Division of Hematology-Oncology, Georgetown University Hospital, Lombardi Comprehensive Cancer Center, Washington, DC, USA,
| | - Bruce D Cheson
- Division of Hematology-Oncology, Georgetown University Hospital, Lombardi Comprehensive Cancer Center, Washington, DC, USA,
| |
Collapse
|
65
|
Marshall MJE, Stopforth RJ, Cragg MS. Therapeutic Antibodies: What Have We Learnt from Targeting CD20 and Where Are We Going? Front Immunol 2017; 8:1245. [PMID: 29046676 PMCID: PMC5632755 DOI: 10.3389/fimmu.2017.01245] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) have become one of the fastest growing classes of drugs in recent years and are approved for the treatment of a wide range of indications, from cancer to autoimmune disease. Perhaps the best studied target is the pan B-cell marker CD20. Indeed, the first mAb to receive approval by the Food and Drug Administration for use in cancer treatment was the CD20-targeting mAb rituximab (Rituxan®). Since its approval for relapsed/refractory non-Hodgkin's lymphoma in 1997, rituximab has been licensed for use in the treatment of numerous other B-cell malignancies, as well as autoimmune conditions, including rheumatoid arthritis. Despite having a significant impact on the treatment of these patients, the exact mechanisms of action of rituximab remain incompletely understood. Nevertheless, numerous second- and third-generation anti-CD20 mAbs have since been developed using various strategies to enhance specific effector functions thought to be key for efficacy. A plethora of knowledge has been gained during the development and testing of these mAbs, and this knowledge can now be applied to the design of novel mAbs directed to targets beyond CD20. As we enter the "post-rituximab" era, this review will focus on the lessons learned thus far through investigation of anti-CD20 mAb. Also discussed are current and future developments relating to enhanced effector function, such as the ability to form multimers on the target cell surface. These strategies have potential applications not only in oncology but also in the improved treatment of autoimmune disorders and infectious diseases. Finally, potential approaches to overcoming mechanisms of resistance to anti-CD20 therapy are discussed, chiefly involving the combination of anti-CD20 mAbs with various other agents to resensitize patients to treatment.
Collapse
Affiliation(s)
- Michael J. E. Marshall
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Richard J. Stopforth
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
66
|
Skopelja-Gardner S, Jones JD, Hamilton BJ, Danilov AV, Rigby WFC. Role for ZAP-70 Signaling in the Differential Effector Functions of Rituximab and Obinutuzumab (GA101) in Chronic Lymphocytic Leukemia B Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:1275-1282. [DOI: 10.4049/jimmunol.1602105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/16/2017] [Indexed: 11/19/2022]
|
67
|
How gene polymorphisms can influence clinical response and toxicity following R-CHOP therapy in patients with diffuse large B cell lymphoma. Blood Rev 2017; 31:235-249. [DOI: 10.1016/j.blre.2017.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
|
68
|
Emerging Role of the Spleen in the Pharmacokinetics of Monoclonal Antibodies, Nanoparticles and Exosomes. Int J Mol Sci 2017; 18:ijms18061249. [PMID: 28604595 PMCID: PMC5486072 DOI: 10.3390/ijms18061249] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 01/19/2023] Open
Abstract
After being absorbed, drugs distribute in the body in part to reach target tissues, in part to be disposed in tissues where they do not exert clinically-relevant effects. Therapeutically-relevant effects are usually terminated by drug metabolism and/or elimination. The role that has been traditionally ascribed to the spleen in these fundamental pharmacokinetic processes was definitely marginal. However, due to its high blood flow and to the characteristics of its microcirculation, this organ would be expected to be significantly exposed to large, new generation drugs that can hardly penetrate in other tissues with tight endothelial barriers. In the present review, we examine the involvement of the spleen in the disposition of monoclonal antibodies, nanoparticles and exosomes and the possible implications for their therapeutic efficacy and toxicity. The data that we will review lead to the conclusion that a new role is emerging for the spleen in the pharmacokinetics of new generation drugs, hence suggesting that this small, neglected organ will certainly deserve stronger attention by pharmacologists in the future.
Collapse
|
69
|
de Winde CM, Elfrink S, van Spriel AB. Novel Insights into Membrane Targeting of B Cell Lymphoma. Trends Cancer 2017; 3:442-453. [DOI: 10.1016/j.trecan.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/28/2022]
|
70
|
Kashyap MK, Amaya-Chanaga CI, Kumar D, Simmons B, Huser N, Gu Y, Hallin M, Lindquist K, Yafawi R, Choi MY, Amine AA, Rassenti LZ, Zhang C, Liu SH, Smeal T, Fantin VR, Kipps TJ, Pernasetti F, Castro JE. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia. J Hematol Oncol 2017. [PMID: 28526063 DOI: 10.1186/s13045-017-0435-x,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CXCR4-CXCL12 axis plays an important role in the chronic lymphocytic leukemia (CLL)-microenvironment interaction. Overexpression of CXCR4 has been reported in different hematological malignancies including CLL. Binding of the pro-survival chemokine CXCL12 with its cognate receptor CXCR4 induces cell migration. CXCL12/CXCR4 signaling axis promotes cell survival and proliferation and may contribute to the tropism of leukemia cells towards lymphoid tissues and bone marrow. Therefore, we hypothesized that targeting CXCR4 with an IgG1 antibody, PF-06747143, may constitute an effective therapeutic approach for CLL. METHODS Patient-derived primary CLL-B cells were assessed for cytotoxicity in an in vitro model of CLL microenvironment. PF-06747143 was analyzed for cell death induction and for its potential to interfere with the chemokine CXCL12-induced mechanisms, including migration and F-actin polymerization. PF-06747143 in vivo efficacy was determined in a CLL murine xenograft tumor model. RESULTS PF-06747143, a novel-humanized IgG1 CXCR4 antagonist antibody, induced cell death of patient-derived primary CLL-B cells, in presence or absence of stromal cells. Moreover, cell death induction by the antibody was independent of CLL high-risk prognostic markers. The cell death mechanism was dependent on CXCR4 expression, required antibody bivalency, involved reactive oxygen species production, and did not require caspase activation, all characteristics reminiscent of programmed cell death (PCD). PF-06747143 also induced potent B-CLL cytotoxicity via Fc-driven antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity activity (CDC). PF-06747143 had significant combinatorial effect with standard of care (SOC) agents in B-CLL treatment, including rituximab, fludarabine (F-ara-A), ibrutinib, and bendamustine. In a CLL xenograft model, PF-06747143 decreased tumor burden and improved survival as a monotherapy, and in combination with bendamustine. CONCLUSIONS We show evidence that PF-06747143 has biological activity in CLL primary cells, supporting a rationale for evaluation of PF-06747143 for the treatment of CLL patients.
Collapse
Affiliation(s)
- Manoj K Kashyap
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Carlos I Amaya-Chanaga
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Deepak Kumar
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Brett Simmons
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Nanni Huser
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Yin Gu
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Max Hallin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.,Present Address: Mirati Therapeutics, San Diego, CA, USA
| | - Kevin Lindquist
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Rolla Yafawi
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, La Jolla, CA, USA
| | - Michael Y Choi
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ale-Ali Amine
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cathy Zhang
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Shu-Hui Liu
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Tod Smeal
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.,Present Address: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Valeria R Fantin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.,Present Address: ORIC Pharmaceuticals, South San Francisco, CA, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Flavia Pernasetti
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.
| | - Januario E Castro
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA. .,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
71
|
Kashyap MK, Amaya-Chanaga CI, Kumar D, Simmons B, Huser N, Gu Y, Hallin M, Lindquist K, Yafawi R, Choi MY, Amine AA, Rassenti LZ, Zhang C, Liu SH, Smeal T, Fantin VR, Kipps TJ, Pernasetti F, Castro JE. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia. J Hematol Oncol 2017; 10:112. [PMID: 28526063 PMCID: PMC5438492 DOI: 10.1186/s13045-017-0435-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The CXCR4-CXCL12 axis plays an important role in the chronic lymphocytic leukemia (CLL)-microenvironment interaction. Overexpression of CXCR4 has been reported in different hematological malignancies including CLL. Binding of the pro-survival chemokine CXCL12 with its cognate receptor CXCR4 induces cell migration. CXCL12/CXCR4 signaling axis promotes cell survival and proliferation and may contribute to the tropism of leukemia cells towards lymphoid tissues and bone marrow. Therefore, we hypothesized that targeting CXCR4 with an IgG1 antibody, PF-06747143, may constitute an effective therapeutic approach for CLL. METHODS Patient-derived primary CLL-B cells were assessed for cytotoxicity in an in vitro model of CLL microenvironment. PF-06747143 was analyzed for cell death induction and for its potential to interfere with the chemokine CXCL12-induced mechanisms, including migration and F-actin polymerization. PF-06747143 in vivo efficacy was determined in a CLL murine xenograft tumor model. RESULTS PF-06747143, a novel-humanized IgG1 CXCR4 antagonist antibody, induced cell death of patient-derived primary CLL-B cells, in presence or absence of stromal cells. Moreover, cell death induction by the antibody was independent of CLL high-risk prognostic markers. The cell death mechanism was dependent on CXCR4 expression, required antibody bivalency, involved reactive oxygen species production, and did not require caspase activation, all characteristics reminiscent of programmed cell death (PCD). PF-06747143 also induced potent B-CLL cytotoxicity via Fc-driven antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity activity (CDC). PF-06747143 had significant combinatorial effect with standard of care (SOC) agents in B-CLL treatment, including rituximab, fludarabine (F-ara-A), ibrutinib, and bendamustine. In a CLL xenograft model, PF-06747143 decreased tumor burden and improved survival as a monotherapy, and in combination with bendamustine. CONCLUSIONS We show evidence that PF-06747143 has biological activity in CLL primary cells, supporting a rationale for evaluation of PF-06747143 for the treatment of CLL patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- CHO Cells
- Cell Death/drug effects
- Cricetulus
- Female
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice, Inbred BALB C
- Mice, SCID
- Reactive Oxygen Species/immunology
- Receptors, CXCR4/analysis
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/immunology
- Signal Transduction/drug effects
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Manoj K Kashyap
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Carlos I Amaya-Chanaga
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Deepak Kumar
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Brett Simmons
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Nanni Huser
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Yin Gu
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Max Hallin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
- Present Address: Mirati Therapeutics, San Diego, CA, USA
| | - Kevin Lindquist
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Rolla Yafawi
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, La Jolla, CA, USA
| | - Michael Y Choi
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ale-Ali Amine
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cathy Zhang
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Shu-Hui Liu
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Tod Smeal
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
- Present Address: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Valeria R Fantin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
- Present Address: ORIC Pharmaceuticals, South San Francisco, CA, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Flavia Pernasetti
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.
| | - Januario E Castro
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
72
|
Loo SK, Ch'ng ES, Md Salleh MS, Banham AH, Pedersen LM, Møller MB, Green TM, Wong KK. TRPM4 expression is associated with activated B cell subtype and poor survival in diffuse large B cell lymphoma. Histopathology 2017; 71:98-111. [DOI: 10.1111/his.13204] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Suet K Loo
- Department of Immunology; School of Medical Sciences; Universiti Sains Malaysia; Kelantan Malaysia
| | - Ewe S Ch'ng
- Advanced Medical and Dental Institute; Universiti Sains Malaysia; Bertam Malaysia
| | - Md Salzihan Md Salleh
- Department of Pathology; School of Medical Sciences; Universiti Sains Malaysia; Kelantan Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences; Radcliffe Department of Medicine; University of Oxford; John Radcliffe Hospital; Oxford UK
| | - Lars M Pedersen
- Department of Haematology; Herlev University Hospital; Copenhagen Denmark
| | - Michael B Møller
- Department of Pathology; Odense University Hospital; Odense Denmark
| | - Tina M Green
- Department of Pathology; Odense University Hospital; Odense Denmark
| | - Kah K Wong
- Department of Immunology; School of Medical Sciences; Universiti Sains Malaysia; Kelantan Malaysia
| |
Collapse
|
73
|
Tomita A. Genetic and Epigenetic Modulation of CD20 Expression in B-Cell Malignancies: Molecular Mechanisms and Significance to Rituximab Resistance. J Clin Exp Hematop 2017; 56:89-99. [PMID: 27980307 DOI: 10.3960/jslrt.56.89] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CD20 is a differentiation related cell surface phosphoprotein that is expressed during early pre-B cell stages until plasma cell differentiation, and is a suitable molecular target for B-cell malignancies by monoclonal antibodies such as rituximab, ofatumumab, obinutuzumab and others. CD20 expression is confirmed in most B-cell malignancies; however, the protein expression level varies in each patient, even in de novo tumors, and down-modulation of CD20 expression after chemoimmunotherapy with rituximab, resulting in rituximab resistance, has been recognized in the clinical setting. Recent reports suggest that genetic and epigenetic mechanisms are correlated with aberrantly low CD20 expression in de novo tumors and relapsed/refractory disease after using rituximab. Furthermore, some targeting drugs, such as lenalidomide, bortezomib and ibrutinib, directly or indirectly affect CD20 protein expression. CD20-negative phenotypically-changed DLBCL after rituximab use tends to show an aggressive clinical course and poor outcome with resistance to not only rituximab, but also conventional salvage chemo-regimens. Understanding of the mechanisms of CD20-negative phenotype may contribute to establish strategies for overcoming chemo-refractory B-cell malignancies. In this manuscript, recent progress of research on molecular and clinical features of CD20 protein and CD20-negative B-cell malignancies was reviewed.
Collapse
Affiliation(s)
- Akihiro Tomita
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine
| |
Collapse
|
74
|
Sanyal R, Polyak MJ, Zuccolo J, Puri M, Deng L, Roberts L, Zuba A, Storek J, Luider JM, Sundberg EM, Mansoor A, Baigorri E, Chu MP, Belch AR, Pilarski LM, Deans JP. MS4A4A: a novel cell surface marker for M2 macrophages and plasma cells. Immunol Cell Biol 2017; 95:611-619. [PMID: 28303902 DOI: 10.1038/icb.2017.18] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
Abstract
MS4A4A is a member of the membrane-spanning, four domain family, subfamily A (MS4A) that includes CD20 (MS4A1), FcRβ (MS4A2) and Htm4 (MS4A3). Like the first three members of this family, transcription of MS4A4A appears to be limited to hematopoietic cells. To evaluate expression of the MS4A4A protein in hematopoietic cell lineages and subsets we generated monoclonal antibodies against extracellular epitopes for use in flow cytometry. In human peripheral blood we found that MS4A4A is expressed at the plasma membrane in monocytes but not in granulocytes or lymphocytes. In vitro differentiation of monocytes demonstrated that MS4A4A is expressed in immature but not activated dendritic cells, and in macrophages generated in the presence of interleukin-4 ('alternatively activated' or M2 macrophages) but not by interferon-γ and lipopolysaccharide ('classically' activated or M1 macrophages). MS4A4A was expressed in the U937 monocytic cell line only after differentiation. In normal bone marrow, MS4A4A was expressed in mature monocytes but was undetected, or detected at only a low level, in myeloid/monocytic precursors, as well as their malignant counterparts in patients with various subtypes of myeloid leukemia. Although MS4A4A was not expressed in healthy B lymphocytes, it was highly expressed in normal plasma cells, CD138+ cells from multiple myeloma patients, and bone marrow B cells from a patient with mantle cell lymphoma. These findings suggest immunotherapeutic potential for MS4A4A antibodies in targeting alternatively activated macrophages such as tumor-associated macrophages, and in the treatment of multiple myeloma and mantle cell lymphoma.
Collapse
Affiliation(s)
- Ratna Sanyal
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Maria J Polyak
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan Zuccolo
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Mandip Puri
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Lili Deng
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Luc Roberts
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ania Zuba
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jan Storek
- Departments of Medicine and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Joanne M Luider
- Calgary Laboratory Services, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Ellen M Sundberg
- Calgary Laboratory Services, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Adnan Mansoor
- Calgary Laboratory Services, Foothills Medical Centre, Calgary, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eva Baigorri
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Michael P Chu
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Andrew R Belch
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Linda M Pilarski
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Julie P Deans
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
75
|
Ku M, Chong G, Hawkes EA. Tumour cell surface antigen targeted therapies in B-cell lymphomas: Beyond rituximab. Blood Rev 2017; 31:23-35. [DOI: 10.1016/j.blre.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/26/2016] [Accepted: 08/02/2016] [Indexed: 01/16/2023]
|
76
|
Affiliation(s)
- Shawn Shetty
- Center for Blistering Diseases and the Department of Dermatology, Tufts University School of Medicine, Boston, MA, USA
| | - A. Razzaque Ahmed
- Center for Blistering Diseases and the Department of Dermatology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
77
|
Korycka-Wołowiec A, Wołowiec D, Robak T. The safety profile of monoclonal antibodies for chronic lymphocytic leukemia. Expert Opin Drug Saf 2016; 16:185-201. [PMID: 27880061 DOI: 10.1080/14740338.2017.1264387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Monoclonal antibodies (MoAbs), non-chemotherapeutic agents targeting the antigens present on chronic lymphocytic leukemia (CLL) lymphocytes, are being implemented increasingly more often as treatment options. Areas covered: This article reviews the similarities and differences in the structure, mechanism of action, efficacy and safety profile of commercially-available MoAbs and prevents new agents potentially useful for CLL treatment. Publications in English before June 2016 were surveyed on the MEDLINE database for articles. Proceedings of the American Society of Hematology held during the last five years were also included. Expert opinion: MoAbs, especially those targeting CD20, are highly effective biological options for first-line and salvage treatment of CLL, particularly in chemoimmunotherapy, and possibly also as maintenance therapy. Treatment with MoAbs is associated with reduced risk of such adverse events as cytopenias, infections and secondary neoplasias and is generally well tolerated. Depending on antibody type, the most common adverse events are usually transient and limited to grade 1 and 2 infusion-related reactions. In addition to commercially available MoAbs, several other antibodies exist which are targeted against different antigens studied in the clinical trials.
Collapse
Affiliation(s)
| | - Dariusz Wołowiec
- b Department of Hematology , Medical University of Wroclaw , Wroclaw , Poland
| | - Tadeusz Robak
- a Department of Hematology Medical , University of Lodz , Lodz , Poland
| |
Collapse
|
78
|
Moreno Torres I, García-Merino A. Anti-CD20 monoclonal antibodies in multiple sclerosis. Expert Rev Neurother 2016; 17:359-371. [DOI: 10.1080/14737175.2017.1245616] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Irene Moreno Torres
- Neuroimmunology unit, Neurology department, Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology unit, Neurology department, Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain
| |
Collapse
|
79
|
Li M, Xiao X, Liu L, Xi N, Wang Y. Nanoscale Quantifying the Effects of Targeted Drug on Chemotherapy in Lymphoma Treatment Using Atomic Force Microscopy. IEEE Trans Biomed Eng 2016; 63:2187-99. [DOI: 10.1109/tbme.2015.2512924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
80
|
Liu B, Kong L, Han K, Hong H, Marcus WD, Chen X, Jeng EK, Alter S, Zhu X, Rubinstein MP, Shi S, Rhode PR, Cai W, Wong HC. A Novel Fusion of ALT-803 (Interleukin (IL)-15 Superagonist) with an Antibody Demonstrates Antigen-specific Antitumor Responses. J Biol Chem 2016; 291:23869-23881. [PMID: 27650494 PMCID: PMC5104912 DOI: 10.1074/jbc.m116.733600] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/12/2016] [Indexed: 11/06/2022] Open
Abstract
IL-15 and its receptor α (IL-15Rα) are co-expressed on antigen-presenting cells, allowing transpresentation of IL-15 to immune cells bearing IL-2RβγC and stimulation of effector immune responses. We reported previously that the high-affinity interactions between an IL-15 superagonist (IL-15N72D) and the extracellular IL-15Rα sushi domain (IL-15RαSu) could be exploited to create a functional scaffold for the design of multivalent disease-targeted complexes. The IL-15N72D·IL-15RαSuFc complex, also known as ALT-803, is a multimeric complex constructed by fusing IL-15N72D·IL-15RαSu to the Fc domain of IgG1. ALT-803 is an IL-15 superagonist complex that has been developed as a potent antitumor immunotherapeutic agent and is in clinical trials. Here we describe the creation of a novel fusion molecule, 2B8T2M, using the ALT-803 scaffold fused to four single chains of the tumor-targeting monoclonal antibody rituximab. This molecule displays trispecific binding activity through its recognition of the CD20 molecule on tumor cells, stimulation via IL-2RβγC displayed on immune effector cells, and binding to Fcγ receptors on natural killer cells and macrophages. 2B8T2M activates natural killer cells to enhance antibody-dependent cellular cytotoxicity, mediates complement-dependent cytotoxicity, and induces apoptosis of B-lymphoma cells. Compared with rituximab, 2B8T2M exhibits significantly stronger antitumor activity in a xenograft SCID mouse model and depletes B cells in cynomolgus monkeys more efficiently. Thus, ALT-803 can be modified as a functional scaffold for creating multispecific, targeted IL-15-based immunotherapeutic agents and may serve as a novel platform to improve the antitumor activity and clinical efficacy of therapeutic antibodies.
Collapse
Affiliation(s)
- Bai Liu
- From the Altor BioScience Corp., Miramar, Florida 33025
| | - Lin Kong
- From the Altor BioScience Corp., Miramar, Florida 33025
| | - Kaiping Han
- From the Altor BioScience Corp., Miramar, Florida 33025
| | - Hao Hong
- the Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wisconsin 53706, and
| | | | - Xiaoyue Chen
- From the Altor BioScience Corp., Miramar, Florida 33025
| | - Emily K Jeng
- From the Altor BioScience Corp., Miramar, Florida 33025
| | - Sarah Alter
- From the Altor BioScience Corp., Miramar, Florida 33025
| | - Xiaoyun Zhu
- From the Altor BioScience Corp., Miramar, Florida 33025
| | - Mark P Rubinstein
- the Departments of Surgery and Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sixiang Shi
- the Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Peter R Rhode
- From the Altor BioScience Corp., Miramar, Florida 33025
| | - Weibo Cai
- the Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Hing C Wong
- From the Altor BioScience Corp., Miramar, Florida 33025,
| |
Collapse
|
81
|
In silico designing, cloning, and heterologous expression of novel chimeric human B lymphocyte CD20 extra loop. Tumour Biol 2016; 37:12547-12553. [DOI: 10.1007/s13277-016-5105-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/09/2016] [Indexed: 01/10/2023] Open
|
82
|
Piccione EC, Juarez S, Liu J, Tseng S, Ryan CE, Narayanan C, Wang L, Weiskopf K, Majeti R. A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. MAbs 2016; 7:946-56. [PMID: 26083076 DOI: 10.1080/19420862.2015.1062192] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Agents that block the anti-phagocytic signal CD47 can synergize with pro-phagocytic anti-tumor antigen antibodies to potently eliminate tumors. While CD47 is overexpressed on cancer cells, its expression in many normal tissues may create an 'antigen sink' that could minimize the therapeutic efficacy of CD47 blocking agents. Here, we report development of bispecific antibodies (BsAbs) that co-target CD47 and CD20, a therapeutic target for non-Hodgkin lymphoma (NHL), that have reduced affinity for CD47 relative to the parental antibody, but retain strong binding to CD20. These characteristics facilitate selective binding of BsAbs to tumor cells, leading to phagocytosis. Treatment of human NHL-engrafted mice with BsAbs reduced lymphoma burden and extended survival while recapitulating the synergistic efficacy of anti-CD47 and anti-CD20 combination therapy. These findings serve as proof of principle for BsAb targeting of CD47 with tumor-associated antigens as a viable strategy to induce selective phagocytosis of tumor cells and recapitulate the synergy of combination antibody therapy. This approach may be broadly applied to cancer to add a CD47 blocking component to existing antibody therapies.
Collapse
Affiliation(s)
- Emily C Piccione
- a Department of Medicine; Division of Hematology, Cancer Institute; and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University , Stanford , CA , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Vitale C, Burger JA. Chronic lymphocytic leukemia therapy: new targeted therapies on the way. Expert Opin Pharmacother 2016; 17:1077-89. [PMID: 26988407 PMCID: PMC4955400 DOI: 10.1517/14656566.2016.1168401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/10/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The critical role of the tissue microenvironment and B-cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL) pathogenesis, and the clinical success of targeted agents that disrupt BCR signaling are currently changing the CLL landscape. Three new drugs were recently approved for CLL therapy, and other agents are in late development. AREAS COVERED In this review, we summarize data on promising new targeted drugs for CLL. The heterogeneous mechanisms of actions of these molecules are described, such as the inhibition of BCR signaling, direct targeting of CD20 molecules on the CLL cell surface, and BCL-2 inhibition. We present preclinical and clinical data from phase I to III studies in order to describe efficacy and side effect profile of these new drugs. Data are derived from peer-reviewed articles indexed in PubMed and from abstracts presented at major international meetings. EXPERT OPINION Ibrutinib and idelalisib are challenging the role of chemo-immunotherapy in CLL therapy in the frontline and relapsed disease settings. High-risk CLL patients particularly benefit from these new agents. Venetoclax and obinutuzumab are other effective agents added to our therapeutic armamentarium. Studies to better define the optimal use of these drugs, alone, or rather in combination or sequenced are underway.
Collapse
Affiliation(s)
- Candida Vitale
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jan A Burger
- a Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
84
|
Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye. J Immunol Methods 2016; 431:11-21. [DOI: 10.1016/j.jim.2016.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/21/2022]
|
85
|
Reda G, Orofino N, Cassin R, Sciumè M, Fattizzo B, Cortelezzi A. Treating chronic lymphocytic leukemia with obinutuzumab: safety and efficacy considerations. Expert Opin Drug Saf 2016; 15:865-73. [PMID: 26967902 DOI: 10.1517/14740338.2016.1165665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Obinutuzumab is a novel glycoengineered type II anti-CD20 monoclonal antibody (MoAb) with a higher affinity for CD20 epitope. It was approved by the United States Food and Drug Administration (FDA) in November 2013 for use in combination with chlorambucil for previously untreated chronic lymphocytic leukemia (CLL). AREAS COVERED This article evaluates the safety of obinutuzumab in CLL patients, also addressing pharmacokinetics/pharmacodynamics (PK/PD), clinical use and efficacy. Moreover, a comparison with other anti-CD20 MoAb is performed. The principal available studies on obinutuzumab are reviewed, focusing on CLL. A PubMed literature search (August 2002 to September 2015) was conducted using the terms obinutuzumab, GA101, anti-CD20 antibody, and CLL. EXPERT OPINION Obinutuzumab, a third-generation anti-CD20 MoAb, is a safe and effective treatment for elderly patients who are un-fit for fludarabine-based regimen. Its use, proven in the CLL11 study and the results of many ongoing trials evaluating other obinutuzumab-based regimen can lead obinutuzumab to be a candidate to replace rituximab as the first-line treatment option.
Collapse
Affiliation(s)
- G Reda
- a Oncohematology Department , Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan , Milano , Italy
| | - N Orofino
- a Oncohematology Department , Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan , Milano , Italy
| | - R Cassin
- a Oncohematology Department , Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan , Milano , Italy
| | - M Sciumè
- a Oncohematology Department , Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan , Milano , Italy
| | - B Fattizzo
- a Oncohematology Department , Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan , Milano , Italy
| | - A Cortelezzi
- a Oncohematology Department , Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan , Milano , Italy
| |
Collapse
|
86
|
Ryan JM, Wasser JS, Adler AJ, Vella AT. Enhancing the safety of antibody-based immunomodulatory cancer therapy without compromising therapeutic benefit: Can we have our cake and eat it too? Expert Opin Biol Ther 2016; 16:655-74. [PMID: 26855028 DOI: 10.1517/14712598.2016.1152256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) targeting checkpoint inhibitors have demonstrated clinical benefit in treating patients with cancer and have paved the way for additional immune-modulating mAbs such as those targeting costimulatory receptors. The full clinical utility of these agents, however, is hampered by immune-related adverse events (irAEs) that can occur during therapy. AREAS COVERED We first provide a general overview of tumor immunity, followed by a review of the two major classes of immunomodulatory mAbs being developed as cancer therapeutics: checkpoint inhibitors and costimulatory receptor agonists. We then discuss therapy-associated adverse events. Finally, we describe in detail the mechanisms driving their therapeutic activity, with an emphasis on interactions between antibody fragment crystallizable (Fc) domains and Fc receptors (FcR). EXPERT OPINION Given that Fc-FcR interactions appear critical in facilitating the ability of immunomodulatory mAbs to elicit both therapeutically useful as well as adverse effects, the engineering of mAbs that can effectively engage their targets while limiting interaction with FcRs might represent a promising future avenue for developing the next generation of immune-enhancing tumoricidal agents with increased safety and retention of efficacy.
Collapse
Affiliation(s)
- Joseph M Ryan
- a Department of Immunology , UConn Health , Farmington , CT , USA
| | | | - Adam J Adler
- a Department of Immunology , UConn Health , Farmington , CT , USA
| | - Anthony T Vella
- a Department of Immunology , UConn Health , Farmington , CT , USA
| |
Collapse
|
87
|
Erker C, Harker-Murray P, Burke MJ. Emerging immunotherapy in pediatric lymphoma. Future Oncol 2015; 12:257-70. [PMID: 26616565 DOI: 10.2217/fon.15.282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hodgkin and non-Hodgkin lymphoma collectively are the third most common cancer diagnosed in children each year. For children who relapse or have refractory disease, outcomes remain poor. Immunotherapy has recently emerged as a novel approach to treat hematologic malignancies. The field has been rapidly expanding over the past few years broadening its armamentarium which now includes monoclonal antibodies, antibody-drug conjugates and cellular therapies including bispecific T-cell engagers and chimeric antigen receptor-engineered T cells. Many of these agents are in their infancy stages and only beginning to make their mark on lymphoma treatment while others have begun to show promising efficacy in relapsed disease. In this review, the authors provide an overview of current and emerging immunotherapies in the field of pediatric lymphoma.
Collapse
Affiliation(s)
- Craig Erker
- Division of Pediatric Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paul Harker-Murray
- Division of Pediatric Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael J Burke
- Division of Pediatric Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
88
|
Tutt AL, James S, Laversin SA, Tipton TRW, Ashton-Key M, French RR, Hussain K, Vaughan AT, Dou L, Earley A, Dahal LN, Lu C, Dunscombe M, Chan HTC, Penfold CA, Kim JH, Potter EA, Mockridge CI, Roghanian A, Oldham RJ, Cox KL, Lim SH, Teige I, Frendéus B, Glennie MJ, Beers SA, Cragg MS. Development and Characterization of Monoclonal Antibodies Specific for Mouse and Human Fcγ Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5503-16. [PMID: 26512139 DOI: 10.4049/jimmunol.1402988] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/30/2015] [Indexed: 11/19/2022]
Abstract
FcγRs are key regulators of the immune response, capable of binding to the Fc portion of IgG Abs and manipulating the behavior of numerous cell types. Through a variety of receptors, isoforms, and cellular expression patterns, they are able to fine-tune and direct appropriate responses. Furthermore, they are key determinants of mAb immunotherapy, with mAb isotype and FcγR interaction governing therapeutic efficacy. Critical to understanding the biology of this complex family of receptors are reagents that are robust and highly specific for each receptor. In this study, we describe the development and characterization of mAb panels specific for both mouse and human FcγR for use in flow cytometry, immunofluorescence, and immunocytochemistry. We highlight key differences in expression between the two species and also patterns of expression that will likely impact on immunotherapeutic efficacy and translation of therapeutic agents from mouse to clinic.
Collapse
Affiliation(s)
- Alison L Tutt
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Sonya James
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Stéphanie A Laversin
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Thomas R W Tipton
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Margaret Ashton-Key
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Ruth R French
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Khiyam Hussain
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Andrew T Vaughan
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Lang Dou
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Alexander Earley
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Lekh N Dahal
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Chen Lu
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Melanie Dunscombe
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - H T Claude Chan
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Christine A Penfold
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Jinny H Kim
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Elizabeth A Potter
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - C Ian Mockridge
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Ali Roghanian
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Robert J Oldham
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Kerry L Cox
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Sean H Lim
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | | | | | - Martin J Glennie
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Stephen A Beers
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, Hampshire SO16 6YD, United Kingdom; and
| |
Collapse
|
89
|
Korycka-Wołowiec A, Wołowiec D, Robak T. Ofatumumab for treating chronic lymphocytic leukemia: a safety profile. Expert Opin Drug Saf 2015; 14:1945-59. [DOI: 10.1517/14740338.2015.1113253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
90
|
Singh V, Gupta D, Almasan A. Development of Novel Anti-Cd20 Monoclonal Antibodies and Modulation in Cd20 Levels on Cell Surface: Looking to Improve Immunotherapy Response. JOURNAL OF CANCER SCIENCE & THERAPY 2015; 7:347-358. [PMID: 27413424 PMCID: PMC4939752 DOI: 10.4172/1948-5956.1000373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rituximab has been revolutionized and validated CD20 targeting monoclonal antibody. Although, it is widely used for lymphoma therapy and many patients have been benefited. However significant numbers of patients are refractory or developed resistance to current therapies due to low level of CD20 expression and/or availability on cells surface. Thus development of novel anti-CD20 mAbs with great cell killing ability and enhance CD20 levels on cell surface can potentially exploit lymphoma therapy. In this scenario, we are summarizing the recently developed mAbs against CD20 and compounds that have ability to induce CD20 expression at significant level. We also are providing information regarding combination strategy for use of radiation and anti-CD20 mAbs in vitro. However, it will need to be determined by rigorous at pre-clinical and clinic testing. We hope this review will be beneficial for current research in the area of immunotherapy or radio-immunotherapy.
Collapse
Affiliation(s)
- Vijay Singh
- Metabolic Cell Signaling Research, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Damodar Gupta
- Metabolic Cell Signaling Research, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Alexandru Almasan
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
91
|
Abstract
Monoclonal antibody (mAb) immunotherapy is currently experiencing an unprecedented amount of success, delivering blockbuster sales for the pharmaceutical industry. Having experienced several false dawns and overcoming technical issues which limited progress, we are now entering a golden period where mAbs are becoming a mainstay of treatment regimes for diseases ranging from cancer to autoimmunity. In this review, we discuss how these mAbs are most likely working and focus in particular on the key receptors that they interact with to precipitate their therapeutic effects. Although their targets may vary, their engagement with Fcγ receptors (FcγRs) on numerous immune effector cells is almost universal, and here we review their roles in delivering successful immunotherapy.
Collapse
Affiliation(s)
- Lekh N Dahal
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| | - Ali Roghanian
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| |
Collapse
|
92
|
A molecular perspective on rituximab: A monoclonal antibody for B cell non Hodgkin lymphoma and other affections. Crit Rev Oncol Hematol 2015; 97:275-90. [PMID: 26443686 DOI: 10.1016/j.critrevonc.2015.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/04/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022] Open
Abstract
Rituximab (a chimeric anti-CD20 monoclonal antibody) is the first Food and Drug Administration approved anti-tumor antibody. Immunotherapy by rituximab, especially in combination-therapy, is a mainstay for a vast variety of B-cell malignancies therapy. Its therapeutic value is unquestionable, yet the mechanisms of action responsible for anti-tumor activity of rituximab and rituximab resistance mechanisms are not completely understood. Investigation of the mechanisms of action that contribute to the rituximab activity have eventually directed to a suite of novel combinations and novel treatment schedules, and also have resulted new generations of antibodies with more desired effects. Although, further investigations are needed to define the mechanisms of rituximab resistance and prominent effector activity of the altered next generation anti-CD20 to improve their efficacies and develop new anti-CD20 monoclonal antibodies in NHL treatment. This article focuses on the properties of CD20 which led scientists to select it as an effective therapeutic target and the molecular details of mechanisms of rituximab action and resistance. We also discuss about the impact of rituximab in monotherapy and in combination with chemotherapy regimens. Finally, we comparatively summarize the next generations of anti CD20 monoclonal antibodies to highlight their advantages relative to their ancestor: Rituximab.
Collapse
|
93
|
Hill BT, Kalaycio M. Profile of obinutuzumab for the treatment of patients with previously untreated chronic lymphocytic leukemia. Onco Targets Ther 2015; 8:2391-7. [PMID: 26366093 PMCID: PMC4562745 DOI: 10.2147/ott.s68770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a hematologic malignancy derived from a clonal population of mature B-lymphocytes characterized by relatively low CD20 antigen expression. Although the disease often takes an indolent course, the majority of patients will eventually require therapy. Standard treatment for medically fit patients includes purine analogs and/or alkylating agents in addition to the type I anti-CD20 monoclonal antibody, rituximab. This therapy is inherently myelosuppressive and can result in significant morbidity and even mortality in patients with impaired performance status due to age and/or medical comorbidities. Historically, treatment options for the elderly or frail patient population were limited to mono-therapy with the oral alkylating agent, chlorambucil, rituximab, or another type I anti-CD20 monoclonal antibody ofatumumab. Recently, a newer-generation anti-CD20 monoclonal antibody, obinutuzumab, was developed for patients with CLL. Obinutuzumab is a humanized type II monoclonal antibody that appears to have more direct antibody-dependent cell-mediated cytotoxicity (ADCC) and possibly more direct cytotoxicity in vitro than previously available type I antibodies. A large Phase III prospective randomized clinical trial for older patients with impaired renal function and/or significant medical comorbidities demonstrated that when compared to conventionally-dosed rituximab and chlorambucil, the combination of chlorambucil and obinutuzumab administered at a dose and schedule involving early loading doses improved response rates and progression-free survival without significantly increasing toxicity. Results of this pivotal trial led to the FDA (US Food and Drug Administration) approval of obinutuzumab in combination with chlorambucil for frontline treatment of CLL. Obinutuzumab expands the armamentarium of active and less-toxic targeted agents in the evolving treatment landscape of CLL, providing physicians and patients with an additional therapeutic option.
Collapse
Affiliation(s)
- Brian T Hill
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matt Kalaycio
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
94
|
A review of monoclonal antibody therapies in lymphoma. Crit Rev Oncol Hematol 2015; 97:72-84. [PMID: 26318093 DOI: 10.1016/j.critrevonc.2015.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/03/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022] Open
Abstract
Monoclonal antibodies (moAb) represent a novel way of delivering therapy through specific target antigens expressed on lymphoma cells and minimizes the collateral damage that is common with conventional chemotherapy. The paradigm of this approach is the targeting of CD20 by rituximab. Since its FDA approval in 1997, rituximab has become the standard of care in almost every line of therapy in most B-cell lymphomas. This review will briefly highlight some of the key rituximab trials while looking more closely at the evidence that is bringing other antibodies, including next generation anti-CD20 moAbs, and anti-CD30 moAbs, among others to the forefront of lymphoma therapy.
Collapse
|
95
|
Wong SW, Comenzo RL. CD38 Monoclonal Antibody Therapies for Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:635-45. [PMID: 26443328 DOI: 10.1016/j.clml.2015.07.642] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 11/27/2022]
Abstract
The goal of this review is to provide historical, recent preclinical, and current clinical summaries of efforts to understand the CD38 molecule and to develop monoclonal antibodies that target it. We focus particularly on efforts involving multiple myeloma, a malignancy of terminally differentiated B cells that remains incurable despite many advances. An era of anti-CD38 monoclonal antibody therapy for myeloma is approaching, one that, we hope, will enable patients to live longer and better lives.
Collapse
Affiliation(s)
- Sandy W Wong
- Departments of Medicine and Pathology and the Division of Hematology-Oncology, Tufts Medical Center, Boston, MA.
| | - Raymond L Comenzo
- Departments of Medicine and Pathology and the Division of Hematology-Oncology, Tufts Medical Center, Boston, MA
| |
Collapse
|
96
|
Capuano C, Romanelli M, Pighi C, Cimino G, Rago A, Molfetta R, Paolini R, Santoni A, Galandrini R. Anti-CD20 Therapy Acts via FcγRIIIA to Diminish Responsiveness of Human Natural Killer Cells. Cancer Res 2015; 75:4097-108. [DOI: 10.1158/0008-5472.can-15-0781] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/21/2015] [Indexed: 11/16/2022]
|
97
|
Morabito F, Gentile M, Seymour JF, Polliack A. Ibrutinib, idelalisib and obinutuzumab for the treatment of patients with chronic lymphocytic leukemia: three new arrows aiming at the target. Leuk Lymphoma 2015; 56:3250-6. [DOI: 10.3109/10428194.2015.1061193] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
98
|
Repetto-Llamazares AHV, Larsen RH, Patzke S, Fleten KG, Didierlaurent D, Pichard A, Pouget JP, Dahle J. Targeted Cancer Therapy with a Novel Anti-CD37 Beta-Particle Emitting Radioimmunoconjugate for Treatment of Non-Hodgkin Lymphoma. PLoS One 2015; 10:e0128816. [PMID: 26066655 PMCID: PMC4466226 DOI: 10.1371/journal.pone.0128816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
177Lu-DOTA-HH1 (177Lu-HH1) is a novel anti-CD37 radioimmunoconjugate developed to treat non-Hodgkin lymphoma. Mice with subcutaneous Ramos xenografts were treated with different activities of 177Lu-HH1, 177Lu-DOTA-rituximab (177Lu-rituximab) and non-specific 177Lu-DOTA-IgG1 (177Lu-IgG1) and therapeutic effect and toxicity of the treatment were monitored. Significant tumor growth delay and increased survival of mice were observed in mice treated with 530 MBq/kg 177Lu-HH1 as compared with mice treated with similar activities of 177Lu-rituximab or non-specific 177Lu-IgG1, 0.9% NaCl or unlabeled HH1. All mice injected with 530 MBq/kg of 177Lu-HH1 tolerated the treatment well. In contrast, 6 out of 10 mice treated with 530 MBq/kg 177Lu-rituximab experienced severe radiation toxicity. The retention of 177Lu-rituximab in organs of the mononuclear phagocyte system was longer than for 177Lu-HH1, which explains the higher toxicity observed in mice treated with 177Lu-rituximab. In vitro internalization studies showed that 177Lu-HH1 internalizes faster and to a higher extent than 177Lu-rituximab which might be the reason for the better therapeutic effect of 177Lu-HH1.
Collapse
MESH Headings
- Animals
- Antibodies/chemistry
- Antibodies/immunology
- Antigen-Antibody Reactions
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Beta Particles
- Cell Line, Tumor
- Disease Models, Animal
- Humans
- Immunoconjugates/chemistry
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/therapeutic use
- Iodine Radioisotopes/chemistry
- Lutetium/chemistry
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/mortality
- Lymphoma, Non-Hodgkin/pathology
- Mice
- Mice, Nude
- Radioisotopes
- Radiopharmaceuticals/chemistry
- Radiopharmaceuticals/pharmacokinetics
- Radiopharmaceuticals/therapeutic use
- Rituximab/chemistry
- Rituximab/immunology
- Tetraspanins/chemistry
- Tetraspanins/immunology
- Tetraspanins/metabolism
- Tissue Distribution
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Ada H. V. Repetto-Llamazares
- Nordic Nanovector ASA, Kjelsåsveien 168, 0884, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310, Oslo, Norway
- * E-mail:
| | | | - Sebastian Patzke
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - Karianne G. Fleten
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310, Oslo, Norway
| | - David Didierlaurent
- UMR 1037 INSERM/UPS, Centre de Recherche en Cancérologie de Toulouse, Toulouse, F-31062, France
| | - Alexandre Pichard
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale, U896, Université Montpellier, Montpellier, France
| | - Jean Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale, U896, Université Montpellier, Montpellier, France
| | - Jostein Dahle
- Nordic Nanovector ASA, Kjelsåsveien 168, 0884, Oslo, Norway
| |
Collapse
|
99
|
Abstract
The therapeutic potential of the immune system in the context of hematologic malignancies has long been appreciated particularly due to the curative impact of allogeneic hematopoietic stem cell transplantation (SCT). The role of immune system in shaping the biology and evolution of these tumors is now well recognized. While the contribution of the immune system in anti-tumor effects of certain therapies such as immune-modulatory drugs and monoclonal antibodies active in hematologic malignancies is quite evident, the immune system has also been implicated in anti-tumor effects of other targeted therapies. The horizon of immune-based therapies in hematologic malignancies is rapidly expanding with promising results from immune-modulatory drugs, immune-checkpoint blockade, and adoptive cellular therapies, including genetically-modified T cells. Hematologic malignancies present distinct issues (relative to solid tumors) for the application of immune therapies due to differences in cell of origin/developmental niche of tumor cells, and patterns of involvement such as common systemic involvement of secondary lymphoid tissues. This article discusses the rapidly changing landscape of immune modulation in hematologic malignancies and emphasizes areas wherein hematologic malignancies present distinct opportunities for immunologic approaches to prevent or treat cancer.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Departments of Internal Medicine (Hematology); Immunobiology, Yale University, New Haven, CT; Yale Cancer Center, Yale University, New Haven, CT.
| | - Kavita M Dhodapkar
- Pediatrics (Hematology-Oncology); Yale Cancer Center, Yale University, New Haven, CT
| |
Collapse
|
100
|
Dahal LN, Cragg MS. Rehabilitation or the death penalty: autoimmune B cells in the dock. Eur J Immunol 2015; 45:687-91. [PMID: 25639261 DOI: 10.1002/eji.201545464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 01/24/2015] [Accepted: 01/29/2015] [Indexed: 12/19/2022]
Abstract
CD20-based monoclonal antibodies have become established as treatments for lymphoma, rheumatoid arthritis, systemic lupus erythematosus, vasculitis and dermatomyositis, with the principle therapeutic mechanism relating to B-cell depletion through effector cell engagement. An article by Brühl et al. in this issue of the European Journal of Immunology [Eur. J. Immunol. 2015. 45: 705-715] reveals a fundamentally distinct mechanism of silencing autoimmune B-cell responses. Rather than B-cell depletion, the authors use anti-CD79b antibodies to induce B-cell tolerance and suppress humoral immune responses against collagen to prevent the development of arthritis in mice. Here we highlight the differences in the mechanisms used by anti-CD20 and anti-CD79b Ab therapy and discuss why depletion of B cells may not be required to treat autoimmune arthritis and other B-cell-associated pathologies.
Collapse
Affiliation(s)
- Lekh N Dahal
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton, UK
| | | |
Collapse
|