51
|
Pagenkopp Lohan KM, Darling JA, Ruiz GM. International shipping as a potent vector for spreading marine parasites. DIVERS DISTRIB 2022; 28:1922-1933. [PMID: 38269301 PMCID: PMC10807284 DOI: 10.1111/ddi.13592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Aim The global shipping fleet, the primary means of transporting goods among countries, also serves as a major dispersal mechanism for marine invasive species. To date, researchers have primarily focussed on the role of ships in transferring marine macrofauna, often overlooking transfers of associated parasites, which can have larger impacts on naïve host individuals and populations. Here, we re-examine three previously published metabarcode datasets targeting zooplankton and protists in ships' ballast water to assess the diversity of parasites across life stages arriving to three major US ports. Location Port of Hampton Roads in the Chesapeake Bay, Virginia; Ports of Texas City, Houston and Bayport in Galveston Bay, Texas; and Port of Valdez in Prince William Sound, Alaska. Methods We selected all known parasitic taxa, using sequences generated from the small subunit gene (SSU) from ribosomal RNA (rRNA) amplified from (1) zooplankton collected from plankton tows (35 and 80 μm datasets) and (2) eukaryotes collected from samples of ships' ballast water (3 μm dataset). Results In all three datasets, we found a broad range of parasitic taxa, including many protistan and metazoan parasites, that infect a wide range of hosts, from teleost fish to dinoflagellates. Parasite richness was highest in the 3 μm dataset and relatively uniform across arrival regions. Several parasite taxa were found in high relative abundance (based on number of sequences recovered) either in ships entering a single or across multiple regions. Main Conclusions The ubiquity, diversity and relative abundance of parasites detected demonstrate ships are a potent vector for spreading marine parasites across the world's oceans, potentially contributing to reported increases in outbreaks of marine diseases. Future research is urgently needed to evaluate the fate of parasites upon arrival and the efficacy of ballast water treatment systems to reduce future transfers and colonization.
Collapse
Affiliation(s)
| | - John A. Darling
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Durham, North Carolina, USA
| | - Gregory M. Ruiz
- Marine Invasions Research Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| |
Collapse
|
52
|
Brown MJF. Complex networks of parasites and pollinators: moving towards a healthy balance. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210161. [PMID: 35491603 DOI: 10.1098/rstb.2021.0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Parasites are viewed as a major threat to wild pollinator health. While this may be true for epidemics driven by parasite spillover from managed or invasive species, the picture is more complex for endemic parasites. Wild pollinator species host and share a species-rich, generalist parasite community. In contrast to the negative health impacts that these parasites impose on individual hosts, at a community level they may act to reduce competition from common and abundant pollinator species. By providing rare species with space in which to exist, this will act to support and maintain a diverse and thus healthier pollinator community. At this level, and perhaps paraxodically, parasites may be good for pollinators. This stands in clear contrast to the obvious negative impacts of epidemic and spillover parasites on wild pollinator communities. Research into floral resources that control parasites could be best employed to help design landscapes that provide pollinators with the opportunity to moderate their parasite community, rather than attempting to eliminate specific parasites from wild pollinator communities. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
53
|
Abstract
Parasites are widespread in nature. Nevertheless, they have only recently been incorporated into food web studies and community ecology. Earlier studies revealed the large effects of parasites on food web network structures, suggesting that parasites affect food web dynamics and their stability. However, our understanding of the role of parasites in food web dynamics is limited to a few theoretical studies, which only assume parasite-induced mortality or virulence as a typical characteristic of parasites, without any large difference in terms of predation effects. Here, I present a food web model with parasites in which parasites change the mortality and interaction strengths of hosts by affecting host activity. The infected food web shows that virulence and infection rate have virtually no effect on food web stability without any difference in interaction strengths between susceptible and infected individuals. However, if predation rates are weakened through a restriction of the activity of infected individuals, virulence and infection rate can greatly influence stability: diseases with lower virulence and higher transmission rate tend to increase stability. The stabilization is stronger in cascade than random food webs. The present results suggest that parasites can greatly influence food web stability if parasite-induced diseases prevent host foraging activity. Parasite-induced infectious disease, by weaking species interactions, may play a key role in maintaining food webs.
Collapse
Affiliation(s)
- Akihiko Mougi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue, 690-8504, Japan.
| |
Collapse
|
54
|
Liu W, Chen H. Idea paper: Trophic transmission as a potential mechanism underlying the distribution of parasite diversity in food webs. Ecol Res 2022. [DOI: 10.1111/1440-1703.12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Wei‐Chung Liu
- Institute of Statistical Science Academia Sinica Taipei Taiwan
| | - Hsuan‐Wien Chen
- Department of Biological Resources National Chiayi University Chiayi City Taiwan
| |
Collapse
|
55
|
Context-dependent parasite infection affects trophic niche in populations of sympatric stickleback species. Parasitology 2022; 149:1164-1172. [PMID: 35570701 PMCID: PMC10090597 DOI: 10.1017/s0031182022000531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
How parasites alter host feeding ecology remains elusive in natural populations. A powerful approach to investigate the link between infection and feeding ecology is quantifying unique and shared responses to parasite infection in related host species within a common environment. Here, 9 pairs of sympatric populations of the three-spined and nine-spined stickleback fishes were sampled across a range of freshwater and brackish habitats to investigate how parasites alter host feeding ecology: (i) biotic and abiotic determinants of parasite community composition, and (ii) to what extent parasite infection correlates with trophic niche specialization of the 2 species, using stable isotope analyses (δ15N and δ13C). It was determined that parasite community composition and host parasite load varied among sites and species and were correlated with dissolved oxygen. It was also observed that the digenean Cyathocotyle sp.'s abundance, a common directly infecting parasite with a complex life cycle, correlated with host δ13C in a fish species-specific manner. In 6 sites, correlations were found between parasite abundance and their hosts' feeding ecology. These effects were location-specific and occasionally host species or host size-specific. Overall, the results suggest a relationship between parasite infection and host trophic niche which may be an important and largely overlooked ecological factor. The population specificity and variation in parasite communities also suggest this effect is multifarious and context-dependent.
Collapse
|
56
|
Titcomb GC, Pansu J, Hutchinson MC, Tombak KJ, Hansen CB, Baker CCM, Kartzinel TR, Young HS, Pringle RM. Large-herbivore nemabiomes: patterns of parasite diversity and sharing. Proc Biol Sci 2022; 289:20212702. [PMID: 35538775 PMCID: PMC9091847 DOI: 10.1098/rspb.2021.2702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Amidst global shifts in the distribution and abundance of wildlife and livestock, we have only a rudimentary understanding of ungulate parasite communities and parasite-sharing patterns. We used qPCR and DNA metabarcoding of fecal samples to characterize gastrointestinal nematode (Strongylida) community composition and sharing among 17 sympatric species of wild and domestic large mammalian herbivore in central Kenya. We tested a suite of hypothesis-driven predictions about the role of host traits and phylogenetic relatedness in describing parasite infections. Host species identity explained 27-53% of individual variation in parasite prevalence, richness, community composition and phylogenetic diversity. Host and parasite phylogenies were congruent, host gut morphology predicted parasite community composition and prevalence, and hosts with low evolutionary distinctiveness were centrally positioned in the parasite-sharing network. We found no evidence that host body size, social-group size or feeding height were correlated with parasite composition. Our results highlight the interwoven evolutionary and ecological histories of large herbivores and their gastrointestinal nematodes and suggest that host identity, phylogeny and gut architecture-a phylogenetically conserved trait related to parasite habitat-are the overriding influences on parasite communities. These findings have implications for wildlife management and conservation as wild herbivores are increasingly replaced by livestock.
Collapse
Affiliation(s)
- Georgia C. Titcomb
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA,Mpala Research Centre, Nanyuki, Kenya
| | - Johan Pansu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Matthew C. Hutchinson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Kaia J. Tombak
- Mpala Research Centre, Nanyuki, Kenya,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,Department of Anthropology, Hunter College of the City University of New York, New York, NY, USA
| | - Christina B. Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Christopher C. M. Baker
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,US Army ERDC Cold Regions Research and Engineering Laboratory, Hanover, NH, USA
| | - Tyler R. Kartzinel
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA,Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
| | - Hillary S. Young
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA,Mpala Research Centre, Nanyuki, Kenya
| | - Robert M. Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
57
|
Beer A, Burns E, Randhawa HS. Natural history collections: collaborative opportunities and important sources of information about helminth biodiversity in New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2022.2067190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Haseeb S. Randhawa
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
- South Atlantic Environmental Research Institute, Stanley, Falkland Islands
- New Brunswick Museum, Saint John, Canada
| |
Collapse
|
58
|
Kleindorfer S, Colombelli‐Négrel D, Common LK, O’Connor JA, Peters KJ, Katsis AC, Dudaniec RY, Sulloway FJ, Adreani NM. Functional traits and foraging behaviour: avian vampire fly larvae change the beak and fitness of their Darwin’s finch hosts. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sonia Kleindorfer
- College of Science and Engineering Flinders University Adelaide Australia
- Konrad Lorenz Research Center for Behavior and Cognition and Department of Behavioral and Cognitive Biology University of Vienna Vienna Austria
| | | | - Lauren K. Common
- College of Science and Engineering Flinders University Adelaide Australia
| | | | - Katharina J. Peters
- College of Science and Engineering Flinders University Adelaide Australia
- Evolutionary Genetics Group, Department of Anthropology University of Zurich Zurich Switzerland
- School of Earth and Environment Christchurch New Zealand
| | - Andrew C. Katsis
- College of Science and Engineering Flinders University Adelaide Australia
| | | | | | - Nicolas M. Adreani
- Konrad Lorenz Research Center for Behavior and Cognition and Department of Behavioral and Cognitive Biology University of Vienna Vienna Austria
| |
Collapse
|
59
|
Preisser WC, Welicky RL, Leslie KL, Mastick NC, Fiorenza EA, Maslenikov KP, Tornabene L, Kinsella JM, Wood CL. Parasite communities in English Sole ( Parophrys vetulus) have changed in composition but not richness in the Salish Sea, Washington, USA since 1930. Parasitology 2022; 149:1-51. [PMID: 35238289 PMCID: PMC10090603 DOI: 10.1017/s0031182022000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/06/2022]
Abstract
Earth is rapidly losing free-living species. Is the same true for parasitic species? To reveal temporal trends in biodiversity, historical data are needed, but often such data do not exist for parasites. Here, parasite communities of the past were reconstructed by identifying parasites in fluid-preserved specimens held in natural history collections. Approximately 2500 macroparasites were counted from 109 English Sole (Parophrys vetulus ) collected between 1930 and 2019 in the Salish Sea, Washington, USA. Alpha and beta diversity were measured to determine if and how diversity changed over time. Species richness of parasite infracommunities and community dispersion did not vary over time, but community composition of decadal component communities varied significantly over the study period. Community dissimilarity also varied: prior to the mid-20th century, parasites shifted in abundance in a seemingly stochastic manner and, after this time period, a canalization of community change was observed, where species' abundances began to shift in consistent directions. Further work is needed to elucidate potential drivers of these changes and to determine if these patterns are present in the parasite communities of other fishes of the Salish Sea.
Collapse
Affiliation(s)
- Whitney C. Preisser
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Rachel L. Welicky
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Unit for Environmental Sciences and Management, North–West University, Potchefstroom, South Africa
| | - Katie L. Leslie
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Natalie C. Mastick
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Evan A. Fiorenza
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Katherine P. Maslenikov
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Burke Museum Ichthyology Collection, University of Washington, Seattle, WA, USA
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Burke Museum Ichthyology Collection, University of Washington, Seattle, WA, USA
| | | | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
60
|
Gupta A, Furrer R, Petchey OL. Simultaneously estimating food web connectance and structure with uncertainty. Ecol Evol 2022; 12:e8643. [PMID: 35342563 PMCID: PMC8928887 DOI: 10.1002/ece3.8643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
Food web models explain and predict the trophic interactions in a food web, and they can infer missing interactions among the organisms. The allometric diet breadth model (ADBM) is a food web model based on the foraging theory. In the ADBM, the foraging parameters are allometrically scaled to body sizes of predators and prey. In Petchey et al. (Proceedings of the National Academy of Sciences, 2008; 105: 4191), the parameterization of the ADBM had two limitations: (a) the model parameters were point estimates and (b) food web connectance was not estimated.The novelty of our current approach is: (a) We consider multiple predictions from the ADBM by parameterizing it with approximate Bayesian computation, to estimate parameter distributions and not point estimates. (b) Connectance emerges from the parameterization, by measuring model fit using the true skill statistic, which takes into account prediction of both the presences and absences of links.We fit the ADBM using approximate Bayesian computation to 12 observed food webs from a wide variety of ecosystems. Estimated connectance was consistently greater than previously found. In some of the food webs, considerable variation in estimated parameter distributions occurred and resulted in considerable variation (i.e., uncertainty) in predicted food web structure.These results lend weight to the possibility that the observed food web data is missing some trophic links that do actually occur. It also seems likely that the ADBM likely predicts some links that do not exist. The latter could be addressed by accounting in the ADBM for additional traits other than body size. Further work could also address the significance of uncertainty in parameter estimates for predicted food web responses to environmental change.
Collapse
Affiliation(s)
- Anubhav Gupta
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Reinhard Furrer
- Department of Mathematics and Department of Computational ScienceUniversity of ZurichZurichSwitzerland
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
61
|
Phillips JA, Vargas Soto JS, Pawar S, Koprivnikar J, Benesh DP, Molnár PK. The effects of phylogeny, habitat and host characteristics on the thermal sensitivity of helminth development. Proc Biol Sci 2022; 289:20211878. [PMID: 35135354 PMCID: PMC8825990 DOI: 10.1098/rspb.2021.1878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Helminth parasites are part of almost every ecosystem, with more than 300 000 species worldwide. Helminth infection dynamics are expected to be altered by climate change, but predicting future changes is difficult owing to lacking thermal sensitivity data for greater than 99.9% of helminth species. Here, we compiled the largest dataset to date on helminth temperature sensitivities and used the Metabolic Theory of Ecology to estimate activation energies (AEs) for parasite developmental rates. The median AE for 129 thermal performance curves was 0.67, similar to non-parasitic animals. Although exceptions existed, related species tended to have similar thermal sensitivities, suggesting some helminth taxa are inherently more affected by rising temperatures than others. Developmental rates were more temperature-sensitive for species from colder habitats than those from warmer habitats, and more temperature sensitive for species in terrestrial than aquatic habitats. AEs did not depend on whether helminth life stages were free-living or within hosts, whether the species infected plants or animals, or whether the species had an endotherm host in its life cycle. The phylogenetic conservatism of AE may facilitate predicting how temperature change affects the development of helminth species for which empirical data are lacking or difficult to obtain.
Collapse
Affiliation(s)
- Jessica Ann Phillips
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Zoology, Oxford University, Oxford, UK
| | - Juan S Vargas Soto
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Janet Koprivnikar
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Daniel P Benesh
- Molecular Parasitology, Humboldt University, Philippstr. 13, Haus 14, 10115 Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany
| | - Péter K Molnár
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
62
|
Honey bees and climate explain viral prevalence in wild bee communities on a continental scale. Sci Rep 2022; 12:1904. [PMID: 35115568 PMCID: PMC8814194 DOI: 10.1038/s41598-022-05603-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/23/2021] [Indexed: 01/10/2023] Open
Abstract
Viruses are omnipresent, yet the knowledge on drivers of viral prevalence in wild host populations is often limited. Biotic factors, such as sympatric managed host species, as well as abiotic factors, such as climatic variables, are likely to impact viral prevalence. Managed and wild bees, which harbor several multi-host viruses with a mostly fecal-oral between-species transmission route, provide an excellent system with which to test for the impact of biotic and abiotic factors on viral prevalence in wild host populations. Here we show on a continental scale that the prevalence of three broad host viruses: the AKI-complex (Acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus), Deformed wing virus, and Slow bee paralysis virus in wild bee populations (bumble bees and solitary bees) is positively related to viral prevalence of sympatric honey bees as well as being impacted by climatic variables. The former highlights the need for good beekeeping practices, including Varroa destructor management to reduce honey bee viral infection and hive placement. Furthermore, we found that viral prevalence in wild bees is at its lowest at the extreme ends of both temperature and precipitation ranges. Under predicted climate change, the frequency of extremes in precipitation and temperature will continue to increase and may hence impact viral prevalence in wild bee communities.
Collapse
|
63
|
Gagne RB, Crooks KR, Craft ME, Chiu ES, Fountain-Jones NM, Malmberg JL, Carver S, Funk WC, VandeWoude S. Parasites as conservation tools. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13719. [PMID: 33586245 DOI: 10.1111/cobi.13719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Parasite success typically depends on a close relationship with one or more hosts; therefore, attributes of parasitic infection have the potential to provide indirect details of host natural history and are biologically relevant to animal conservation. Characterization of parasite infections has been useful in delineating host populations and has served as a proxy for assessment of environmental quality. In other cases, the utility of parasites is just being explored, for example, as indicators of host connectivity. Innovative studies of parasite biology can provide information to manage major conservation threats by using parasite assemblage, prevalence, or genetic data to provide insights into the host. Overexploitation, habitat loss and fragmentation, invasive species, and climate change are major threats to animal conservation, and all of these can be informed by parasites.
Collapse
Affiliation(s)
- Roderick B Gagne
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Jennifer L Malmberg
- Department of Veterinary Sciences, Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, Wyoming, USA
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - W Chris Funk
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
64
|
Suter EA, Pachiadaki M, Taylor GT, Edgcomb VP. Eukaryotic Parasites Are Integral to a Productive Microbial Food Web in Oxygen-Depleted Waters. Front Microbiol 2022; 12:764605. [PMID: 35069470 PMCID: PMC8770914 DOI: 10.3389/fmicb.2021.764605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023] Open
Abstract
Oxygen-depleted water columns (ODWCs) host a diverse community of eukaryotic protists that change dramatically in composition over the oxic-anoxic gradient. In the permanently anoxic Cariaco Basin, peaks in eukaryotic diversity occurred in layers where dark microbial activity (chemoautotrophy and heterotrophy) were highest, suggesting a link between prokaryotic activity and trophic associations with protists. Using 18S rRNA gene sequencing, parasites and especially the obligate parasitic clade, Syndiniales, appear to be particularly abundant, suggesting parasitism is an important, but overlooked interaction in ODWC food webs. Syndiniales were also associated with certain prokaryotic groups that are often found in ODWCs, including Marinimicrobia and Marine Group II archaea, evocative of feedbacks between parasitic infection events, release of organic matter, and prokaryotic assimilative activity. In a network analysis that included all three domains of life, bacterial and archaeal taxa were putative bottleneck and hub species, while a large proportion of edges were connected to eukaryotic nodes. Inclusion of parasites resulted in a more complex network with longer path lengths between members. Together, these results suggest that protists, and especially protistan parasites, play an important role in maintaining microbial food web complexity, particularly in ODWCs, where protist diversity and microbial productivity are high, but energy resources are limited relative to euphotic waters.
Collapse
Affiliation(s)
- Elizabeth A Suter
- Biology, Chemistry & Environmental Studies Department, Center for Environmental Research and Coastal Oceans Monitoring, Molloy College, Rockville Centre, NY, United States.,School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Maria Pachiadaki
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Virginia P Edgcomb
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
65
|
Itoïz S, Metz S, Derelle E, Reñé A, Garcés E, Bass D, Soudant P, Chambouvet A. Emerging Parasitic Protists: The Case of Perkinsea. Front Microbiol 2022; 12:735815. [PMID: 35095782 PMCID: PMC8792838 DOI: 10.3389/fmicb.2021.735815] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The last century has witnessed an increasing rate of new disease emergence across the world leading to permanent loss of biodiversity. Perkinsea is a microeukaryotic parasitic phylum composed of four main lineages of parasitic protists with broad host ranges. Some of them represent major ecological and economical threats because of their geographically invasive ability and pathogenicity (leading to mortality events). In marine environments, three lineages are currently described, the Parviluciferaceae, the Perkinsidae, and the Xcellidae, infecting, respectively, dinoflagellates, mollusks, and fish. In contrast, only one lineage is officially described in freshwater environments: the severe Perkinsea infectious agent infecting frog tadpoles. The advent of high-throughput sequencing methods, mainly based on 18S rRNA assays, showed that Perkinsea is far more diverse than the previously four described lineages especially in freshwater environments. Indeed, some lineages could be parasites of green microalgae, but a formal nature of the interaction needs to be explored. Hence, to date, most of the newly described aquatic clusters are only defined by their environmental sequences and are still not (yet) associated with any host. The unveiling of this microbial black box presents a multitude of research challenges to understand their ecological roles and ultimately to prevent their most negative impacts. This review summarizes the biological and ecological traits of Perkinsea-their diversity, life cycle, host preferences, pathogenicity, and highlights their diversity and ubiquity in association with a wide range of hosts.
Collapse
Affiliation(s)
- Sarah Itoïz
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
| | | | | | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta, Barcelona, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta, Barcelona, Spain
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- Biosciences, University of Exeter, Exeter, United Kingdom
| | | | - Aurélie Chambouvet
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
- Sorbonne Université, CNRS, UMR 7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Roscoff, France
| |
Collapse
|
66
|
Morton DN, Lafferty KD. Parasites in kelp‐forest food webs increase food‐chain length, complexity, and specialization, but reduce connectance. ECOL MONOGR 2022; 92:e1506. [PMID: 35865510 PMCID: PMC9286845 DOI: 10.1002/ecm.1506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Dana N. Morton
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California USA
- Marine Science Institute University of California Santa Barbara California USA
| | - Kevin D. Lafferty
- U.S. Geological Survey, Western Ecological Research Center, at Marine Science Institute University of California Santa Barbara California USA
| |
Collapse
|
67
|
Grunberg RL, Anderson DM. Host Energetics Explain Variation in Parasite Productivity across Hosts and Ecosystems. Am Nat 2021; 199:266-276. [DOI: 10.1086/717430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rita L. Grunberg
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901
| | - David M. Anderson
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
68
|
Brandell EE, Becker DJ, Sampson L, Forbes KM. Demography, education, and research trends in the interdisciplinary field of disease ecology. Ecol Evol 2021; 11:17581-17592. [PMID: 35003624 PMCID: PMC8717357 DOI: 10.1002/ece3.8466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/06/2022] Open
Abstract
Micro- and macroparasites are a leading cause of mortality for humans, animals, and plants, and there is great need to understand their origins, transmission dynamics, and impacts. Disease ecology formed as an interdisciplinary field in the 1970s to fill this need and has recently rapidly grown in size and influence. Because interdisciplinary fields integrate diverse scientific expertise and training experiences, understanding their composition and research priorities is often difficult. Here, for the first time, we quantify the composition and educational experiences of a subset of disease ecology practitioners and identify topical trends in published research. We combined a large survey of self-declared disease ecologists with a literature synthesis involving machine-learning topic detection of over 18,500 disease ecology research articles. The number of graduate degrees earned by disease ecology practitioners has grown dramatically since the early 2000s. Similar to other science fields, we show that practitioners in disease ecology have diversified in the last decade in terms of gender identity and institution, with weaker diversification in race and ethnicity. Topic detection analysis revealed how the frequency of publications on certain topics has declined (e.g., HIV, serology), increased (e.g., the dilution effect, infectious disease in bats), remained relatively common (e.g., malaria ecology, influenza, vaccine research and development), or have consistently remained relatively infrequent (e.g., theoretical models, field experiments). Other topics, such as climate change, superspreading, emerging infectious diseases, and network analyses, have recently come to prominence. This study helps identify the major themes of disease ecology and demonstrates how publication frequency corresponds to emergent health and environmental threats. More broadly, our approach provides a framework to examine the composition and publication trends of other major research fields that cross traditional disciplinary boundaries.
Collapse
Affiliation(s)
- Ellen E. Brandell
- Department of BiologyCenter for Infectious Disease DynamicsHuck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Laura Sampson
- Department of BiologyCenter for Infectious Disease DynamicsHuck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Kristian M. Forbes
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
69
|
Abstract
In digital evolution, populations of computational organisms evolve via the same principles that govern natural selection in nature. These platforms have been used to great effect as a controlled system in which to conduct evolutionary experiments and develop novel evolutionary theory. In addition to their complex evolutionary dynamics, many digital evolution systems also produce rich ecological communities. As a result, digital evolution is also a powerful tool for research on eco-evolutionary dynamics. Here, we review the research to date in which digital evolution platforms have been used to address eco-evolutionary (and in some cases purely ecological) questions. This work has spanned a wide range of topics, including competition, facilitation, parasitism, predation, and macroecological scaling laws. We argue for the value of further ecological research in digital evolution systems and present some particularly promising directions for further research.
Collapse
|
70
|
Hoy SR, Vucetich LM, Peterson RO, Vucetich JA. Winter Tick Burdens for Moose Are Positively Associated With Warmer Summers and Higher Predation Rates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.758374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate change is expected to modify host-parasite interactions which is concerning because parasites are involved in most food-web links, and parasites have important influences on the structure, productivity and stability of communities and ecosystems. However, the impact of climate change on host–parasite interactions and any cascading effects on other ecosystem processes has received relatively little empirical attention. We assessed host-parasite dynamics for moose (Alces alces) and winter ticks (Dermacentor albipictus) in Isle Royale National Park over a 19-year period. Specifically, we monitored annual tick burdens for moose (estimated from hair loss) and assessed how it covaried with several aspects of seasonal climate, and non-climatic factors, such as moose density, predation on hosts by wolves (Canis lupus) and wolf abundance. Summer temperatures explained half the interannual variance in tick burden with tick burden being greater following hotter summers, presumably because warmer temperatures accelerate the development of tick eggs and increase egg survival. That finding is consistent with the general expectation that warmer temperatures may promote higher parasite burdens. However, summer temperatures are warming less rapidly than other seasons across most regions of North America. Therefore, tick burdens seem to be primarily associated with an aspect of climate that is currently exhibiting a lower rate of change. Tick burdens were also positively correlated with predation rate, which could be due to moose exhibiting risk-sensitive habitat selection (in years when predation risk is high) in such a manner as to increases the encounter rate with questing tick larvae in autumn. However, that positive correlation could also arise if high parasite burdens make moose more vulnerable to predators or because of some other density-dependent process (given that predation rate and moose density are highly correlated). Overall, these results provide valuable insights about interrelationships among climate, parasites, host/prey, and predators.
Collapse
|
71
|
Albuixech-Martí S, Lynch SA, Culloty SC. Connectivity dynamics in Irish mudflats between microorganisms including Vibrio spp., common cockles Cerastoderma edule, and shorebirds. Sci Rep 2021; 11:22159. [PMID: 34773053 PMCID: PMC8589998 DOI: 10.1038/s41598-021-01610-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Shellfish, including the key species the common cockle Cerastoderma edule, living and feeding in waters contaminated by infectious agents can accumulate them within their tissues. It is unknown if microbial pathogens and microparasites can subsequently be transmitted via concomitant predation to their consumers, including shorebirds. The objective of this study was to assess if pathogens associated with C. edule could be detected seasonally in the faeces of shorebirds that feed on C. edule and in the physical environment (sediment) in which C. edule reside, along the Irish and Celtic Seas. Two potentially pathogenic global groups, Vibrio and Haplosporidia, were detected in C. edule. Although Haplosporidia were not detected in the bird faeces nor in the sediment, identical strains of Vibrio splendidus were detected in C. edule and bird faecal samples at sites where the oystercatcher Haematopus ostralegus and other waders were observed to be feeding on cockles. Vibrio spp. prevalence was seasonal and increased in C. edule and bird faecal samples during the warmer months, possibly due to higher seawater temperatures that promote the replication of this bacteria. The sediment samples showed an overall higher prevalence of Vibrio spp. than the bird faecal and C. edule samples, and its detection remained consistently high through the sites and throughout the seasons, which further supports the role of the sediment as a Vibrio reservoir. Our findings shed light on the fact that not all pathogen groups are transmitted from prey to predator via feeding but bacteria such as V. splendidus can be. As most of the wading birds observed in this study are migratory, the results also indicate the potential for this bacterium to be dispersed over greater geographic distances, which will have consequences for areas where it may be introduced.
Collapse
Affiliation(s)
- Sara Albuixech-Martí
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland.
| | - Sharon A Lynch
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland
- Aquaculture and Fisheries Development Centre, University College Cork, Cork, VGV5+95, Ireland
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland
- Aquaculture and Fisheries Development Centre, University College Cork, Cork, VGV5+95, Ireland
- MaREI Centre for Climate, Energy and Marine, Environmental Research Institute, University College Cork, Cork, VGV5+95, Ireland
| |
Collapse
|
72
|
Interaction networks between solitary hymenopterans and their natural enemies in different restoration areas. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe diversity of species and their interactions have been positively related with environmental complexity. Therefore, highly anthropized environments have their integrity under serious threat. These effects may last for years compromising the dynamics of natural communities, such as antagonistic and mutualistic interactions, including host-natural enemy interactions. To investigate these effects, trap nest methodology was used to assess the diversity of solitary bees, wasps and their natural enemies in three fragmented environments with different degree of anthropic perturbation, composed of a Eucalyptus plantation (considered here as higher perturbation), a Cerrado area (medium perturbation) and a Riparian forest (lesser perturbation). Then, host-natural enemies associations were analysed to verify the size, specialization degree and modularity of interaction network. The gradient from highest to lowest degree of anthropic perturbation was evidenced in the species diversity index, the size of the interaction network and the specialization indexes of the host-natural enemy network. The environment with Eucalyptus plantation showed higher values of diversity of natural enemies, greater number of species in the interaction network, lesser degree of specialization in the interaction and lesser modularity, than Cerrado and Riparian forest environments, respectively. The low degree of nestedness and lack of significance of this index to all sampled areas are indicative of a specialized pattern of networks. The results corroborate the notion that human impact may affect interaction networks, this being an important tool for checking the degree of anthropic alteration.
Collapse
|
73
|
Smart carnivores think twice: Red fox delays scavenging on conspecific carcasses to reduce parasite risk. Appl Anim Behav Sci 2021; 243:105462. [PMID: 34602687 PMCID: PMC8464160 DOI: 10.1016/j.applanim.2021.105462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023]
Abstract
The recent SARS-CoV-2 epidemic has highlighted the need to prevent emerging and re-emerging diseases, which means that we must approach the study of diseases from a One Health perspective. The study of pathogen transmission in wildlife is challenging, but it is unquestionably key to understand how epidemiological interactions occur at the wildlife-domestic-human interface. In this context, studying parasite avoidance behaviours may provide essential insights on parasite transmission, host-parasite coevolution, and energy flow through food-webs. However, the strategies of avoiding trophically transmitted parasites in mammalian carnivores have received little scientific attention. Here, we explore the behaviour of red foxes (Vulpes vulpes) and other mammalian carnivores at conspecific and heterospecific carnivore carcasses using videos recorded by camera traps. We aim to determine 1) the factors influencing the probability of foxes to practice cannibalism, and 2) whether the scavenging behaviour of foxes differ when facing conspecific vs. heterospecific carcasses. We found that red foxes were generally reluctant to consume mesocarnivore carrion, especially of conspecifics. When recorded, consumption by foxes was delayed several days (heterospecific carcasses) or weeks (conspecific carcasses) after carcass detection. Other mammalian scavengers showed a similar pattern. Also, meat-borne parasite transmission from wild carnivore carcasses to domestic dogs and cats was highly unlikely. Our findings challenge the widespread assumption that cannibalistic or intra-specific scavenging is a major transmission route for Trichinella spp. and other meat-borne parasites, especially for the red fox. Overall, our results suggest that the feeding decisions of scavengers are probably shaped by two main contrasting forces, namely the nutritional reward provided by carrion of phylogenetically similar species and the risk of acquiring meat-borne parasites shared with these species. This study illustrates how the detailed monitoring of carnivore behaviour is essential to assess the epidemiological role of these hosts in the maintenance and dispersion of parasites of public and animal health relevance.
Collapse
|
74
|
Fleischer SR, Bolnick DI, Schreiber SJ. Sick of eating: Eco-evo-immuno dynamics of predators and their trophically acquired parasites. Evolution 2021; 75:2842-2856. [PMID: 34562317 PMCID: PMC8985590 DOI: 10.1111/evo.14353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
When predators consume prey, they risk becoming infected with their prey's parasites, which can then establish the predator as a secondary host. A predator population's diet therefore influences what parasites it is exposed to, as has been repeatedly shown in many species such as threespine stickleback (Gasterosteus aculeatus) (more benthic‐feeding individuals obtain nematodes from oligocheate prey, whereas limnetic‐feeding individuals catch cestodes from copepod prey). These differing parasite encounters, in turn, determine how natural selection acts on the predator's immune system. We might therefore expect that ecoevolutionary dynamics of a predator's diet (as determined by its ecomorphology) should drive correlated evolution of its immune traits. Conversely, the predator's immunity to certain parasites might alter the relative costs and benefits of different prey, driving evolution of its ecomorphology. To evaluate the potential for ecological morphology to drive evolution of immunity, and vice versa, we use a quantitative genetics framework coupled with an ecological model of a predator and two prey species (the diet options). Our analysis reveals fundamental asymmetries in the evolution of ecomorphology and immunity. When ecomorphology rapidly evolves, it determines how immunity evolves, but not vice versa. Weak trade‐offs in ecological morphology select for diet generalists despite strong immunological trade‐offs, but not vice versa. Only weak immunological trade‐offs can explain negative diet‐infection correlations across populations. The analysis also reveals that eco‐evo‐immuno feedbacks destabilize population dynamics when trade‐offs are sufficiently weak and heritability is sufficiently high. Collectively, these results highlight the delicate interplay between multivariate trait evolution and the dynamics of ecological communities.
Collapse
Affiliation(s)
- Samuel R Fleischer
- Graduate Group in Applied Mathematics, University of California, Davis, Davis, California 95616
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Sebastian J Schreiber
- Department of Evolution and Ecology, University of California, Davis, Davis, California 95616
| |
Collapse
|
75
|
Hobart BK, Moss WE, McDevitt-Galles T, Stewart Merrill TE, Johnson PTJ. It's a worm-eat-worm world: Consumption of parasite free-living stages protects hosts and benefits predators. J Anim Ecol 2021; 91:35-45. [PMID: 34543447 DOI: 10.1111/1365-2656.13591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Predation on parasites is a common interaction with multiple, concurrent outcomes. Free-living stages of parasites can comprise a large portion of some predators' diets and may be important resources for population growth. Predation can also reduce the density of infectious agents in an ecosystem, with resultant decreases in infection rates. While predator-parasite interactions likely vary with parasite transmission strategy, few studies have examined how variation in transmission mode influences contact rates with predators and the associated changes in consumption risk. To understand how transmission mode mediates predator-parasite interactions, we examined associations between an oligochaete predator Chaetogaster limnaei that lives commensally on freshwater snails and nine trematode taxa that infect snails. Chaetogaster is hypothesized to consume active (i.e. mobile), free-living stages of trematodes that infect snails (miracidia), but not the passive infectious stages (eggs); it could thus differentially affect transmission and infection prevalence of parasites, including those with medical or veterinary importance. Alternatively, when infection does occur, Chaetogaster can consume and respond numerically to free-living trematode stages released from infected snails (cercariae). These two processes lead to contrasting predictions about whether Chaetogaster and trematode infection of snails correlate negatively ('protective predation') or positively ('predator augmentation'). Here, we tested how parasite transmission mode affected Chaetogaster-trematode relationships using data from 20,759 snails collected across 4 years from natural ponds in California. Based on generalized linear mixed modelling, snails with more Chaetogaster were less likely to be infected by trematodes that rely on active transmission. Conversely, infections by trematodes with passive infectious stages were positively associated with per-snail Chaetogaster abundance. Our results suggest that trematode transmission mode mediates the net outcome of predation on parasites. For trematodes with active infectious stages, predatory Chaetogaster limited the risk of snail infection and its subsequent pathology (i.e. castration). For taxa with passive infectious stages, no such protective effect was observed. Rather, infected snails were associated with higher Chaetogaster abundance, likely owing to the resource subsidy provided by cercariae. These findings highlight the ecological and epidemiological importance of predation on free-living stages while underscoring the influence of parasite life history in shaping such interactions.
Collapse
Affiliation(s)
- Brendan K Hobart
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Wynne E Moss
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Travis McDevitt-Galles
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Tara E Stewart Merrill
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
76
|
Kaitala V, Koivu-Jolma M, Laakso J. Infective prey leads to a partial role reversal in a predator-prey interaction. PLoS One 2021; 16:e0249156. [PMID: 34534219 PMCID: PMC8448379 DOI: 10.1371/journal.pone.0249156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
An infective prey has the potential to infect, kill and consume its predator. Such a prey-predator relationship fundamentally differs from the predator-prey interaction because the prey can directly profit from the predator as a growth resource. Here we present a population dynamics model of partial role reversal in the predator-prey interaction of two species, the bottom dwelling marine deposit feeder sea cucumber Apostichopus japonicus and an important food source for the sea cucumber but potentially infective bacterium Vibrio splendidus. We analyse the effects of different parameters, e.g. infectivity and grazing rate, on the population sizes. We show that relative population sizes of the sea cucumber and V. Splendidus may switch with increasing infectivity. We also show that in the partial role reversal interaction the infective prey may benefit from the presence of the predator such that the population size may exceed the value of the carrying capacity of the prey in the absence of the predator. We also analysed the conditions for species extinction. The extinction of the prey, V. splendidus, may occur when its growth rate is low, or in the absence of infectivity. The extinction of the predator, A. japonicus, may follow if either the infectivity of the prey is high or a moderately infective prey is abundant. We conclude that partial role reversal is an undervalued subject in predator-prey studies.
Collapse
Affiliation(s)
- Veijo Kaitala
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland
| | - Mikko Koivu-Jolma
- Department of Physics, Faculty of Science, Helsinki University, Helsinki, Finland
| | - Jouni Laakso
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland
| |
Collapse
|
77
|
Hasegawa R, Koizumi I. Relative importance of host‐dependent versus physical environmental characteristics affecting the distribution of an ectoparasitic copepod infecting the mouth cavity of stream salmonid. Ecol Res 2021. [DOI: 10.1111/1440-1703.12262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryota Hasegawa
- Graduate School of Environmental Science Hokkaido University Sapporo Japan
| | - Itsuro Koizumi
- Graduate School of Environmental Science Hokkaido University Sapporo Japan
- Faculty of Environmental Earth Science Hokkaido University Sapporo Japan
| |
Collapse
|
78
|
Dudczak AC, DE LA Torre GM, Euclydes L, Campião KM. The roles of anurans in antagonistic networks are explained by life-habit and body-size. Integr Zool 2021; 17:530-542. [PMID: 34498374 DOI: 10.1111/1749-4877.12586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Interactions among living beings are the structuring basis of ecosystems, and studies of networks allow us to identify the patterns and consistency of such interactions. Antagonistic networks reflect the energy flow of communities, and identifying network structure and the biological aspects that influence its stability is crucial to understanding ecosystem functioning. We used antagonistic anuran interactions-predator-prey and host-parasite-to assess structural patterns and to identify the key anuran species structuring these networks. We tested whether anuran body-size and life-habit are related to their roles in these networks. We collected individuals of 9 species of anurans from an area of the Atlantic Forest in Brazil and identified their prey and helminth parasites. We used network (modularity, specialization, and nestedness) and centrality metrics (degree, closeness, and betweenness) to identify the role of anuran species in both networks. We then evaluated whether anuran body-size or life-habit were related to anuran centrality using generalized linear mixed models. The networks formed specialized interactions in compartments composed by key species from different habits. In our networks, anurans with rheophilic and cryptozoic habit are central in predator-prey networks, and those with larger body size and arboreal and cryptozoic habit in the host-parasite network. This study represents a step towards a better understanding of the influential factors that affect the structure of anuran antagonist networks, as well as to recognize the functioning roles of anuran species.
Collapse
Affiliation(s)
- Amanda Caroline Dudczak
- Department of Zoology, Federal University of Paraná, Curitiba, Brazil.,Postgraduate Program in Zoology, Federal University of Paraná, Curitiba, Brazil
| | - Gabriel Massaccesi DE LA Torre
- Department of Zoology, Federal University of Paraná, Curitiba, Brazil.,Postgraduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | - Lorena Euclydes
- Department of Zoology, Federal University of Paraná, Curitiba, Brazil.,Postgraduate Program in Zoology, Federal University of Paraná, Curitiba, Brazil
| | | |
Collapse
|
79
|
Mirzanejad-Asl H, Karimi A, Babaei Pouya N, Moradi-Asl E. Spatio-temporal analysis and determination of the ecological niche model of Giardia Lamblia (Lambl, 1859) in Ardabil province, northwestern Iran. J Parasit Dis 2021; 45:706-714. [PMID: 34475652 DOI: 10.1007/s12639-020-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022] Open
Abstract
Intestinal parasites have a serious health problem and frequently infect children in poor urban areas in developing countries. Some types of Cryptosporidium, Entamoeba and Giardia are amongst the most prevalent ones. The aim of this study was explore the distribution pattern of intestinal parasites and the ecological niche of Giardia lamblia in Ardabil Province. This was retrospective cross-sectional study, the officially registered statistics of health centers and hospitals in Ardabil University of Medical Sciences from January 2017 to December 2019 were used. The Kriging interpolation analysis was run to detect the high-risk areas of the disease in the province (P < 0.05) by ArcGIS10.4.1 and to construct the ecological niche model of the G.lamblia parasite, analyzed by Maxent3.3 software. Totally of 238 cases of intestinal parasite were reported during the study period, 77.7% of which were males and 22.3% females. Seven types of intestinal parasites were prevalent with G.lamblia species (79.4%) being the most and Entamoeba histolytica species (4%) the least prevalent one. There was one hotspot in the province in the center with an incidence risk of 41-45.5%. The most important climate and environmental factors affecting the ecological niche of G.lamblia are Bio16, Bio3, and the NDVI. G.lamblia is the most prevalent intestinal parasite in Ardabil Province; moreover, one important hotspots was also detected in the province that can provide useful information regarding the management and control of this parasite.
Collapse
Affiliation(s)
- Hafez Mirzanejad-Asl
- Department of Medical Parasitology, Ardabil University of Medical Science, Ardabil, Iran
| | - Afshin Karimi
- Department of Medical Parasitology, Ardabil University of Medical Science, Ardabil, Iran
| | - Navid Babaei Pouya
- Nir County Health Centre, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Eslam Moradi-Asl
- Department of Public Health, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
80
|
Hemprich-Bennett DR, Kemp VA, Blackman J, Struebig MJ, Lewis OT, Rossiter SJ, Clare EL. Altered structure of bat-prey interaction networks in logged tropical forests revealed by metabarcoding. Mol Ecol 2021; 30:5844-5857. [PMID: 34437745 DOI: 10.1111/mec.16153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
Habitat degradation is pervasive across the tropics and is particularly acute in Southeast Asia, with major implications for biodiversity. Much research has addressed the impact of degradation on species diversity; however, little is known about how ecological interactions are altered, including those that constitute important ecosystem functions such as consumption of herbivores. To examine how rainforest degradation alters trophic interaction networks, we applied DNA metabarcoding to construct interaction networks linking forest-dwelling insectivorous bat species and their prey, comparing old-growth forest and forest degraded by logging in Sabah, Borneo. Individual bats in logged rainforest consumed a lower richness of prey than those in old-growth forest. As a result, interaction networks in logged forests had a less nested structure. These network structures were associated with reduced network redundancy and thus increased vulnerability to perturbations in logged forests. Our results show how ecological interactions change between old-growth and logged forests, with potentially negative implications for ecosystem function and network stability.
Collapse
Affiliation(s)
- David R Hemprich-Bennett
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Victoria A Kemp
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Joshua Blackman
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Matthew J Struebig
- Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, UK
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, UK
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.,Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
81
|
McDevitt-Galles T, Carpenter SA, Koprivnikar J, Johnson PTJ. How predator and parasite size interact to determine consumption of infectious stages. Oecologia 2021; 197:551-564. [PMID: 34405300 DOI: 10.1007/s00442-021-05010-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/02/2021] [Indexed: 01/02/2023]
Abstract
Parasites are important players in ecological communities that can shape community structure and influence ecosystem energy flow. Yet beyond their effects on hosts, parasites can also function as an important prey resource for predators. Predators that consume infectious stages in the environment can benefit from a nutrient-rich prey item while concurrently reducing transmission to downstream hosts, highlighting the broad importance of this interaction. Less clear, however, are the specific characteristics of parasites and predators that increase the likelihood of consumption. Here, we determine what combination(s) of predator and parasite morphological traits lead to high parasite consumption. We exposed the infectious stages (cercariae) of five trematode (fluke) taxa to aquatic insect predators with varying foraging strategies and morphologies. Across the 19 predator-parasite combinations tested, damselfly predators in the family Coenagrionidae were, on average, the most effective predators of cercariae, consuming between 13 and 55% of administered cercariae. Large-bodied cercariae of Ribeiroia ondatrae had the highest average vulnerability to predation, with 37-48% of cercariae consumed. The interaction between predator head width and cercariae tail size strongly influenced the probability of consumption: small-bodied predators were the most effective consumers, particularly for larger tailed parasites. Thus, the likelihood of parasite consumption depended strongly on the relative size between predator and parasite. Our study helps establish that predation on free-living parasites largely follows a broader predator-prey framework. This will help to identify which predator and parasite combinations will likely have high consumptive interactions, potentially reducing parasite transmission in natural populations.
Collapse
Affiliation(s)
| | - Sara A Carpenter
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Janet Koprivnikar
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
82
|
The rise of ecological parasitology: twelve landmark advances that changed its history. Int J Parasitol 2021; 51:1073-1084. [PMID: 34390744 DOI: 10.1016/j.ijpara.2021.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
In the five decades since the first publication of the International Journal for Parasitology, ecological parasitology has grown from modest beginnings to become a modern discipline with a strong theoretical foundation, a diverse toolkit, and a multidisciplinary approach. In this review, I highlight 12 advances in the field that have spurred its growth over the past 50 years. Where relevant, I identify pivotal contributions that have altered the course of research, as well as the influence of developments in other fields such as mainstream ecology and molecular biology. The 12 key advances discussed are in areas including parasite population dynamics and community assembly, the regulation of host population abundance and food web structure, parasites as agents of natural selection, the impacts of biodiversity and anthropogenic changes on host-parasite interactions, the biogeography of parasite diversity, and the evolutionary genetics of parasites. I conclude by identifying some challenges and opportunities lying ahead, which need to be met for the future growth of ecological research on host-parasite interactions.
Collapse
|
83
|
Shamsi S. The occurrence of Anisakis spp. in Australian waters: past, present, and future trends. Parasitol Res 2021; 120:3007-3033. [PMID: 34341859 DOI: 10.1007/s00436-021-07243-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
As one of the world's megadiverse countries, Australian biodiversity is vital for global biodiversity. Nematodes belonging to the genus Anisakis (family Anisakidae) are an important part of this biodiversity due to their ability to be repeatedly transmitted among their intermediate hosts before reaching the top of the food pyramid. Therefore, they have a significant impact on the community structures of various ecosystems. In addition, globally, they are known to be of medical and veterinary significance. The aim of this article is to provide an update on the current knowledge about these important parasites in Australia. Since 1916, a total of 234 records of Anisakis spp. from various hosts and localities have been found in Australia. It is estimated that the occurrence of Anisakis spp. and their health impacts in at least 84, 98.5, and 95% of Australian marine mammals, fish, and water birds, respectively, have not been documented yet. The results of this study suggest Australia is perhaps home to the most diverse Anisakis fauna. Available information is dominated by reports of these parasites in fish hosts, many of them among edible fish. Given the popularity of seafood in Australia and the occurrence of infectious stages of Anisakis spp. in edible fish, all stakeholders should be made aware of the occurrence, prevalence, and survival of Anisakis spp. in seafood. Also, as more pet owners feed their pets with a variety of fish and seafood products, it is important for veterinarians to be aware of seafood transmitted Anisakis spp. in pet animals. This study also highlights several important knowledge gaps: (i) The detailed life cycle of Anisakis spp. in Australia is not known. Detecting their first intermediate hosts is important for better management of crustacean zooplankton populations in our waters. (ii) Research on Anisakis spp. in Australia has been restricted to limited taxonomical studies and should extend to other aspects of these important parasites. (iii) The capacity to identify parasite taxa to species is especially important for resolving biological diversity around Australia; however, opportunities to formally train in parasite taxonomy are rare and diminishing. There is a need to train researchers with taxonomy skills. (iv) Given the vast range of biodiversity in Australia and the broad host-specificity of Anisakis spp., particularly in the larval stages, the full range of their intermediate hosts remains unknown. (v) The health impacts of the infection of the intermediate/definitive hosts with Anisakis spp. are not fully understood. Thus, one of the important areas for future studies is investigating the pathogenicity of Anisakis spp. in affected animals. This is a crucial yet unknown factor for the conservation of some endangered species in Australia.
Collapse
Affiliation(s)
- Shokoofeh Shamsi
- School of Animal and Veterinary Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Estella, New South Wales, 2678, Australia.
| |
Collapse
|
84
|
Paulson EL, Chaudoin A, Martin AP. Ecological divergence of a habitat constructed to harbor an endangered species. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
85
|
Function of cofactor Akirin2 in the regulation of gene expression in model human Caucasian neutrophil-like HL60 cells. Biosci Rep 2021; 41:229302. [PMID: 34291801 PMCID: PMC8298264 DOI: 10.1042/bsr20211120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
The Akirin family of transcription cofactors are involved throughout the metazoan in the regulation of different biological processes (BPs) such as immunity, interdigital regression, muscle and neural development. Akirin do not have catalytic or DNA-binding capability and exert its regulatory function primarily through interacting proteins such as transcription factors, chromatin remodelers, and RNA-associated proteins. In the present study, we focused on the human Akirin2 regulome and interactome in neutrophil-like model human Caucasian promyelocytic leukemia HL60 cells. Our hypothesis is that metazoan evolved to have Akirin2 functional complements and different Akirin2-mediated mechanisms for the regulation of gene expression. To address this hypothesis, experiments were conducted using transcriptomics, proteomics and systems biology approaches in akirin2 knockdown and wildtype (WT) HL60 cells to characterize Akirin2 gene/protein targets, functional complements and to provide evidence of different mechanisms that may be involved in Akirin2-mediated regulation of gene expression. The results revealed Akirin2 gene/protein targets in multiple BPs with higher representation of immunity and identified immune response genes as candidate Akirin2 functional complements. In addition to linking chromatin remodelers with transcriptional activation, Akirin2 also interacts with histone H3.1 for regulation of gene expression.
Collapse
|
86
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
87
|
Dubuffet A, Chauvet M, Moné A, Debroas D, Lepère C. A phylogenetic framework to investigate the microsporidian communities through metabarcoding and its application to lake ecosystems. Environ Microbiol 2021; 23:4344-4359. [PMID: 34081807 DOI: 10.1111/1462-2920.15618] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/29/2022]
Abstract
Microsporidia are obligate intracellular eukaryotic parasites known to parasitize many species of the animal kingdom as well as some protists. However, their diversity is underestimated, in part as a consequence of the failure of 'universal' primers to detect them in metabarcoding studies. Besides, due to the inconsistency between taxonomy and phylogenetic data, available databases may assign incorrectly sequences obtained with high-throughput sequencing. In this work, we developed a comprehensive reference database which positions microsporidian SSU rRNA gene sequences within a coherent ranked phylogenetic framework. We used this phylogenetic framework to study the microsporidian diversity in lacustrine ecosystems, focusing on < 150 μm planktonic size fractions. Our analysis shows a high diversity of Microsporidia, with the identification of 1531 OTUs distributed within seven clades, of which 76% were affiliated to clade IV2 and 20% to clade I (nomenclature presented hereby). About a quarter of the obtained sequences shared less than 85% identity to the closest known species, which might represent undescribed genera or families infecting small hosts. Variations in the abundance of Microsporidia were recorded between the two lakes sampled and across the sampling period, which might be explained by spatio-temporal variations of their potential hosts such as microeukaryotes and metazooplankton.
Collapse
Affiliation(s)
- Aurore Dubuffet
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Marina Chauvet
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Anne Moné
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Didier Debroas
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Cécile Lepère
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| |
Collapse
|
88
|
Klawonn I, Van den Wyngaert S, Parada AE, Arandia-Gorostidi N, Whitehouse MJ, Grossart HP, Dekas AE. Characterizing the "fungal shunt": Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc Natl Acad Sci U S A 2021; 118:e2102225118. [PMID: 34074785 PMCID: PMC8201943 DOI: 10.1073/pnas.2102225118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial interactions in aquatic environments profoundly affect global biogeochemical cycles, but the role of microparasites has been largely overlooked. Using a model pathosystem, we studied hitherto cryptic interactions between microparasitic fungi (chytrid Rhizophydiales), their diatom host Asterionella, and cell-associated and free-living bacteria. We analyzed the effect of fungal infections on microbial abundances, bacterial taxonomy, cell-to-cell carbon transfer, and cell-specific nitrate-based growth using microscopy (e.g., fluorescence in situ hybridization), 16S rRNA gene amplicon sequencing, and secondary ion mass spectrometry. Bacterial abundances were 2 to 4 times higher on individual fungal-infected diatoms compared to healthy diatoms, particularly involving Burkholderiales. Furthermore, taxonomic compositions of both diatom-associated and free-living bacteria were significantly different between noninfected and fungal-infected cocultures. The fungal microparasite, including diatom-associated sporangia and free-swimming zoospores, derived ∼100% of their carbon content from the diatom. By comparison, transfer efficiencies of photosynthetic carbon were lower to diatom-associated bacteria (67 to 98%), with a high cell-to-cell variability, and even lower to free-living bacteria (32%). Likewise, nitrate-based growth for the diatom and fungi was synchronized and faster than for diatom-associated and free-living bacteria. In a natural lacustrine system, where infection prevalence reached 54%, we calculated that 20% of the total diatom-derived photosynthetic carbon was shunted to the parasitic fungi, which can be grazed by zooplankton, thereby accelerating carbon transfer to higher trophic levels and bypassing the microbial loop. The herein termed "fungal shunt" can thus significantly modify the fate of photosynthetic carbon and the nature of phytoplankton-bacteria interactions, with implications for diverse pelagic food webs and global biogeochemical cycles.
Collapse
Affiliation(s)
- Isabell Klawonn
- Department of Earth System Science, Stanford University, Stanford, CA 94305;
| | - Silke Van den Wyngaert
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, CA 94305
| | | | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA 94305;
| |
Collapse
|
89
|
Kiene F, Andriatsitohaina B, Ramsay MS, Rakotondravony R, Strube C, Radespiel U. Habitat fragmentation and vegetation structure impact gastrointestinal parasites of small mammalian hosts in Madagascar. Ecol Evol 2021; 11:6766-6788. [PMID: 34141255 PMCID: PMC8207415 DOI: 10.1002/ece3.7526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Deleterious effects of habitat loss and fragmentation on biodiversity have been demonstrated in numerous taxa. Although parasites represent a large part of worldwide biodiversity, they are mostly neglected in this context. We investigated the effects of various anthropogenic environmental changes on gastrointestinal parasite infections in four small mammal hosts inhabiting two landscapes of fragmented dry forest in northwestern Madagascar. Coproscopical examinations were performed on 1,418 fecal samples from 903 individuals of two mouse lemur species, Microcebus murinus (n = 199) and M. ravelobensis (n = 421), and two rodent species, the native Eliurus myoxinus (n = 102) and the invasive Rattus rattus (n = 181). Overall, sixteen parasite morphotypes were detected and significant prevalence differences between host species regarding the most common five parasites may be explained by parasite-host specificity or host behavior, diet, and socioecology. Ten host- and habitat-related ecological variables were evaluated by generalized linear mixed modeling for significant impacts on the prevalence of the most abundant gastrointestinal parasites and on gastrointestinal parasite species richness (GPSR). Forest maturation affected homoxenous parasites (direct life cycle) by increasing Lemuricola, but decreasing Enterobiinae gen. sp. prevalence, while habitat fragmentation and vegetation clearance negatively affected the prevalence of parasites with heterogenic environment (i.e., Strongyloides spp.) or heteroxenous (indirect cycle with intermediate host) cycles, and consequently reduced GPSR. Forest edges and forest degradation likely change abiotic conditions which may reduce habitat suitability for soil-transmitted helminths or required intermediate hosts. The fragility of complex parasite life cycles suggests understudied and potentially severe effects of decreasing habitat quality by fragmentation and degradation on hidden ecological networks that involve parasites. Since parasites can provide indispensable ecological services and ensure stability of ecosystems by modulating animal population dynamics and nutrient pathways, our study underlines the importance of habitat quality and integrity as key aspects of conservation.
Collapse
Affiliation(s)
- Frederik Kiene
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
- Centre for Infection MedicineInstitute for ParasitologyUniversity of Veterinary Medicine HannoverHanoverGermany
| | - Bertrand Andriatsitohaina
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
- Ecole Doctorale Ecosystèmes Naturels (EDEN)University of MahajangaMahajangaMadagascar
| | - Malcolm S. Ramsay
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
- Department of AnthropologyUniversity of TorontoTorontoCanada
| | - Romule Rakotondravony
- Ecole Doctorale Ecosystèmes Naturels (EDEN)University of MahajangaMahajangaMadagascar
- Faculté des Sciences, de Technologies et de l’EnvironnementUniversity of MahajangaMahajangaMadagascar
| | - Christina Strube
- Centre for Infection MedicineInstitute for ParasitologyUniversity of Veterinary Medicine HannoverHanoverGermany
| | - Ute Radespiel
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
| |
Collapse
|
90
|
Hood GR, Blankinship D, Doellman MM, Feder JL. Temporal resource partitioning mitigates interspecific competition and promotes coexistence among insect parasites. Biol Rev Camb Philos Soc 2021; 96:1969-1988. [PMID: 34041840 DOI: 10.1111/brv.12735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
A key to understanding life's great diversity is discerning how competing organisms divide limiting resources to coexist in diverse communities. While temporal resource partitioning has long been hypothesized to reduce the negative effects of interspecific competition, empirical evidence suggests that time may not often be an axis along which animal species routinely subdivide resources. Here, we present evidence to the contrary in the world's most biodiverse group of animals: insect parasites (parasitoids). Specifically, we conducted a meta-analysis of 64 studies from 41 publications to determine if temporal resource partitioning via variation in the timing of a key life-history trait, egg deposition (oviposition), mitigates interspecific competition between species pairs sharing the same insect host. When competing species were manipulated to oviposit at (or near) the same time in or on a single host in the laboratory, competition was common, and one species was typically inherently superior (i.e. survived to adulthood a greater proportion of the time). In most cases, however, the inferior competitor could gain a survivorship advantage by ovipositing earlier (or in a smaller number of cases later) into shared hosts. Moreover, this positive (or in a few cases negative) priority advantage gained by the inferior competitor increased as the interval between oviposition times became greater. The results from manipulative experiments were also correlated with patterns of life-history timing and demography in nature: the more inherently competitively inferior a species was in the laboratory, the greater the interval between oviposition times of taxa in co-occurring populations. Additionally, the larger the interval between oviposition times of competing taxa, the more abundant the inferior species was in populations where competitors were known to coexist. Overall, our findings suggest that temporal resource partitioning via variation in oviposition timing may help to facilitate species coexistence and structures diverse insect communities by altering demographic measures of species success. We argue that the lack of evidence for a more prominent role of temporal resource partitioning in promoting species coexistence may reflect taxonomic differences, with a bias towards larger-sized animals. For smaller species like parasitic insects that are specialized to attack one or a group of closely related hosts, have short adult lifespans and discrete generation times, compete directly for limited resources in small, closed arenas and have life histories constrained by host phenology, temporal resource subdivision via variation in life history may play a critical role in allowing species to coexist by alleviating the negative effects of interspecific competition.
Collapse
Affiliation(s)
- Glen Ray Hood
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences Center, Notre Dame, IN, 46556, U.S.A.,Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, U.S.A
| | - Devin Blankinship
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences Center, Notre Dame, IN, 46556, U.S.A
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences Center, Notre Dame, IN, 46556, U.S.A
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences Center, Notre Dame, IN, 46556, U.S.A
| |
Collapse
|
91
|
Schampera C, Wolinska J, Bachelier JB, de Souza Machado AA, Rosal R, González-Pleiter M, Agha R. Exposure to nanoplastics affects the outcome of infectious disease in phytoplankton. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116781. [PMID: 33652181 DOI: 10.1016/j.envpol.2021.116781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Infectious diseases of humans and wildlife are increasing globally but the contribution of novel artificial anthropogenic entities such as nano-sized plastics to disease dynamics remains unknown. Despite mounting evidence for the adverse effects of nanoplastics (NPs) on single organisms, it is unclear whether and how they affect the interaction between species and thereby lead to ecological harm. In order to incorporate the impact of NP pollution into host-parasite-environment interactions captured in the "disease triangle", we evaluated disease outcomes in the presence of polystyrene NP using an ecologically-relevant host-parasite system consisting of a common planktonic cyanobacterium and its fungal parasite. NP at high concentrations formed hetero-aggregates with phytoplankton and inhibited their growth. This coincided with a significant reduction in infection prevalence, highlighting the close interdependency of host and parasite fitness. Lower intensity of infection in the presence of NP indicates that reduced disease transmission results from the parasite's diminished ability to establish new infections as NP formed aggregates around phytoplankton cells. We propose that NP aggregation on the host's surface acts as a physical barrier to infection and, by reducing host light harvesting, may also hamper parasite chemotaxis. These results demonstrate that the consequences of NP pollution go well beyond toxic effects at the individual level and modulate the intensity of species interactions, thereby potentially eliciting diverse cascading effects on ecosystem functioning.
Collapse
Affiliation(s)
- Charlotte Schampera
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Justyna Wolinska
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität (FU) Berlin, Germany
| | - Julien B Bachelier
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität (FU) Berlin, Germany
| | | | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Miguel González-Pleiter
- Departamento de Ingeniería Química, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | - Ramsy Agha
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
| |
Collapse
|
92
|
Langer JAF, Sharma R, Nam B, Hanic L, Boersma M, Schwenk K, Thines M. Cox2 community barcoding at Prince Edward Island reveals long-distance dispersal of a downy mildew species and potentially marine members of the Saprolegniaceae. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractMarine oomycetes are highly diverse, globally distributed, and play key roles in marine food webs as decomposers, food source, and parasites. Despite their potential importance in global ocean ecosystems, marine oomycetes are comparatively little studied. Here, we tested if the primer pair cox2F_Hud and cox2-RC4, which is already well-established for phylogenetic investigations of terrestrial oomycetes, can also be used for high-throughput community barcoding. Community barcoding of a plankton sample from Brudenell River (Prince Edward Island, Canada), revealed six distinct oomycete OTU clusters. Two of these clusters corresponded to members of the Peronosporaceae—one could be assigned to Peronospora verna, an obligate biotrophic pathogen of the terrestrial plant Veronica serpyllifolia and related species, the other was closely related to Globisporangium rostratum. While the detection of the former in the sample is likely due to long-distance dispersal from the island, the latter might be a bona fide marine species, as several cultivable species of the Peronosporaceae are known to withstand high salt concentrations. Two OTU lineages could be assigned to the Saprolegniaceae. While these might represent marine species of the otherwise terrestrial genus, it is also conceivable that they were introduced on detritus from the island. Two additional OTU clusters were grouped with the early-diverging oomycete lineages but could not be assigned to a specific family. This reflects the current underrepresentation of cox2 sequence data which will hopefully improve with the increasing interest in marine oomycetes.
Collapse
|
93
|
Frias L, Hasegawa H, Chua TH, Sipangkui S, Stark DJ, Salgado-Lynn M, Goossens B, Keuk K, Okamoto M, MacIntosh AJJ. Parasite community structure in sympatric Bornean primates. Int J Parasitol 2021; 51:925-933. [PMID: 33862059 DOI: 10.1016/j.ijpara.2021.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/26/2022]
Abstract
Parasites are important components of ecosystems, influencing trophic networks, competitive interactions and biodiversity patterns. Nonetheless, we are not nearly close to disentangling their complex roles in natural systems. Southeast Asia falls within global areas targeted as most likely to source parasites with zoonotic potential, where high rates of land conversion and fragmentation have altered the circulation of wildlife species and their parasites, potentially resulting in altered host-parasite systems. Although the overall biodiversity in the region predicts equally high, or even higher, parasite diversity, we know surprisingly little about wild primate parasites, even though this constitutes the first step towards a more comprehensive understanding of parasite transmission processes. Here, we characterise the gastrointestinal helminth parasite assemblages of a community of Bornean primates living along the Kinabatangan floodplain in Sabah (Malaysian Borneo), including two species endemic to the island. Through parasitological analyses, and by using several measures of parasite infection as proxies for parasite diversity and distribution, we show that (i) most parasite taxonomic groups are not limited to a single host, suggesting a greater flexibility for habitat disturbance, (ii) parasite infracommunities of nocturnal primates differ from their diurnal counterparts, reflecting both phylogenetic and ecological constraints, and (iii) soil-transmitted helminths such as whipworm, threadworm and nodule worm are widespread across the primate community. This study also provides new parasite records for southern pig-tailed macaques (Macaca nemestrina), silvered langurs (Trachypithecus cristatus) and Western tarsiers (Cephalopachus bancanus) in the wild, while adding to the limited records for the other primate species in the community. Given the information gap regarding primate-parasite associations in the region, the information presented here should prove relevant for future studies of parasite biodiversity and infectious disease ecology in Asia and elsewhere.
Collapse
Affiliation(s)
- Liesbeth Frias
- Asian School of the Environment, Nanyang Technological University, Singapore; Primate Research Institute, Kyoto University, Inuyama, Japan; Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia.
| | - Hideo Hasegawa
- Department of Biomedicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Tock H Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | - Danica J Stark
- Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia; Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Milena Salgado-Lynn
- Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia; Cardiff School of Biosciences, Cardiff University, Cardiff, UK; Wildlife Health, Genetic and Forensic Laboratory, Kota Kinabalu, Sabah, Malaysia; Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Benoit Goossens
- Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia; Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia; Cardiff School of Biosciences, Cardiff University, Cardiff, UK; Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Kenneth Keuk
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | | | - Andrew J J MacIntosh
- Primate Research Institute, Kyoto University, Inuyama, Japan; Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
94
|
Morton DN, Antonino CY, Broughton FJ, Dykman LN, Kuris AM, Lafferty KD. A food web including parasites for kelp forests of the Santa Barbara Channel, California. Sci Data 2021; 8:99. [PMID: 33833244 PMCID: PMC8032823 DOI: 10.1038/s41597-021-00880-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/19/2021] [Indexed: 11/28/2022] Open
Abstract
We built a high-resolution topological food web for the kelp forests of the Santa Barbara Channel, California, USA that includes parasites and significantly improves resolution compared to previous webs. The 1,098 nodes and 21,956 links in the web describe an economically, socially, and ecologically vital system. Nodes are broken into life-stages, with 549 free-living life-stages (492 species from 21 Phyla) and 549 parasitic life-stages (450 species from 10 Phyla). Links represent three kinds of trophic interactions, with 9,352 predator-prey links, 2,733 parasite-host links and 9,871 predator-parasite links. All decisions for including nodes and links are documented, and extensive metadata in the node list allows users to filter the node list to suit their research questions. The kelp-forest food web is more species-rich than any other published food web with parasites, and it has the largest proportion of parasites. Our food web may be used to predict how kelp forests may respond to change, will advance our understanding of parasites in ecosystems, and fosters development of theory that incorporates large networks.
Collapse
Affiliation(s)
- Dana N Morton
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106-6150, USA.
- Marine Science Institute, University of California, Santa Barbara, CA, 93106-9610, USA.
| | - Cristiana Y Antonino
- College of Creative Studies, University of California, Santa Barbara, CA, 93106-6150, USA
| | - Farallon J Broughton
- College of Creative Studies, University of California, Santa Barbara, CA, 93106-6150, USA
| | - Lauren N Dykman
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106-6150, USA
| | - Armand M Kuris
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106-6150, USA
- Marine Science Institute, University of California, Santa Barbara, CA, 93106-9610, USA
| | - Kevin D Lafferty
- Western Ecological Research Center, U.S. Geological Survey, at Marine Science Institute, University of California, Santa Barbara, CA, 93106-9610, USA
| |
Collapse
|
95
|
David GM, López-García P, Moreira D, Alric B, Deschamps P, Bertolino P, Restoux G, Rochelle-Newall E, Thébault E, Simon M, Jardillier L. Small freshwater ecosystems with dissimilar microbial communities exhibit similar temporal patterns. Mol Ecol 2021; 30:2162-2177. [PMID: 33639035 DOI: 10.1111/mec.15864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022]
Abstract
Despite small freshwater ecosystems being biodiversity reservoirs and contributing significantly to greenhouse fluxes, their microbial communities remain largely understudied. Yet, microorganisms intervene in biogeochemical cycling and impact water quality. Because of their small size, these ecosystems are in principle more sensitive to disturbances, seasonal variation and pluri-annual climate change. However, how microbial community composition varies over space and time, and whether archaeal, bacterial and microbial eukaryote communities behave similarly remain unanswered. Here, we aim to unravel the composition and intra/interannual temporal dynamic patterns for archaea, bacteria and microbial eukaryotes in a set of small freshwater ecosystems. We monitored archaeal and bacterial community composition during 24 consecutive months in four ponds and one brook from northwestern France by 16S rRNA gene amplicon sequencing (microbial eukaryotes were previously investigated for the same systems). Unexpectedly for oxic environments, bacterial Candidate Phyla Radiation (CPR) were highly diverse and locally abundant. Our results suggest that microbial community structure is mainly driven by environmental conditions acting over space (ecosystems) and time (seasons). A low proportion of operational taxonomic units (OTUs) (<1%) was shared by the five ecosystems despite their geographical proximity (2-9 km away), making microbial communities almost unique in each ecosystem and highlighting the strong selective influence of local environmental conditions. Marked and similar seasonality patterns were observed for archaea, bacteria and microbial eukaryotes in all ecosystems despite strong turnovers of rare OTUs. Over the 2-year survey, microbial community composition varied despite relatively stable environmental parameters. This suggests that biotic associations play an important role in interannual community assembly.
Collapse
Affiliation(s)
- Gwendoline M David
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | | | - David Moreira
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Benjamin Alric
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Philippe Deschamps
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Paola Bertolino
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Gwendal Restoux
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Emma Rochelle-Newall
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute d'Ecologie de des Sciences de l'Environnement de Paris, iEES-Paris, Paris, France
| | - Elisa Thébault
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute d'Ecologie de des Sciences de l'Environnement de Paris, iEES-Paris, Paris, France
| | - Marianne Simon
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Ludwig Jardillier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
96
|
Dobson A. Plant ecology: Macroparasitism in plant communities. Curr Biol 2021; 31:R287-R289. [PMID: 33756139 DOI: 10.1016/j.cub.2021.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mistletoes, lianas, vines, and epiphytes fulfill many of the population dynamic criteria of animal macroparasites. A new study illustrates elegant ways to quantify cost to the host and how this impacts competition between mistletoe species. It opens the door to a much fuller consideration of plant parasites as macroparasites.
Collapse
Affiliation(s)
- Andy Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
97
|
Abstract
Parasites display a wide range of behaviours that are frequently overlooked in favour of host responses. Understanding these behaviours can improve parasite control through a more precise application or development of new behaviour-based strategies. In aquaculture fish lice are an ongoing problem, infections reduce fishery production and control options are limited. Fish lice are distinct in their ability to survive and swim off hosts, allowing the transmission to multiple fish hosts across their lifespan. Here we assessed the off-host behaviour of Argulus foliaceus (a freshwater fish louse) and observed a diurnal rhythmical pattern in their behaviour. This pattern was lost when lice were exposed to constant darkness, indicating that the behaviour is not endogenously driven. Males were consistently active in light with reduced activity in darkness. In contrast, females were active during light and dark phases with peak activity at the start of dark periods. A. foliaceus was also strongly attracted to a light stimulus, preferring white- and blue-coloured lights over green- or red-coloured lights. Light is a strong driver of fish louse activity and could be used to trap parasites. Aquaculture light regimes could also be altered to reduce parasite attraction and activity.
Collapse
|
98
|
Do latitudinal and bioclimatic gradients drive parasitism in Odonata? Int J Parasitol 2021; 51:463-470. [PMID: 33610523 DOI: 10.1016/j.ijpara.2020.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022]
Abstract
Prevalence of parasites in wild animals may follow ecogeographic patterns, under the influence of climatic factors and macroecological features. One of the largest scale biological patterns on Earth is the latitudinal diversity gradient; however, latitudinal gradients may also exist regarding the frequency of interspecific interactions such as the prevalence of parasitism in host populations. Dragonflies and damselflies (order Odonata) are hosts of a wide range of ecto- and endoparasites, interactions that can be affected by environmental factors that shape their occurrence and distribution, such as climatic variation, ultraviolet radiation and vegetation structure. Here, we retrieved data from the literature on parasites of Odonata, represented by 90 populations infected by ectoparasites (water mites) and 117 populations infected by endoparasites (intestinal gregarines). To test whether there is a latitudinal and bioclimatic gradient in the prevalence of water mites and gregarines parasitizing Odonata, we applied Bayesian phylogenetic comparative models. We found that prevalence of ectoparasites was partially associated with latitude, showing the opposite pattern from our expectations - prevalence was reduced at lower latitudes. Prevalence of endoparasites was not affected by latitude. While prevalence of water mites was also positively associated with vegetation biomass and climatic stability, we found no evidence of the effect of bioclimatic variables on the prevalence of gregarines. Our study suggests that infection by ectoparasites of dragonflies and damselflies is driven by latitudinal and bioclimatic variables. We add evidence of the role of global-scale biological patterns in shaping biodiversity, suggesting that parasitic organisms may prove reliable sources of information about climate change and its impact on ecological interactions.
Collapse
|
99
|
Runghen R, Poulin R, Monlleó-Borrull C, Llopis-Belenguer C. Network Analysis: Ten Years Shining Light on Host-Parasite Interactions. Trends Parasitol 2021; 37:445-455. [PMID: 33558197 DOI: 10.1016/j.pt.2021.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/24/2022]
Abstract
Biological interactions are key drivers of ecological and evolutionary processes. The complexity of such interactions hinders our understanding of ecological systems and our ability to make effective predictions in changing environments. However, network analysis allows us to better tackle the complexity of ecosystems because it extracts the properties of an ecological system according to the number and distribution of links among interacting entities. The number of studies using network analysis to solve ecological and evolutionary questions in parasitology has increased over the past decade. Here, we synthesise the contribution of network analysis toward disentangling host-parasite processes. Furthermore, we identify current trends in mainstream ecology and novel applications of network analysis that present opportunities for research on host-parasite interactions.
Collapse
Affiliation(s)
- Rogini Runghen
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, 8140 Christchurch, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King Street, 9054 Dunedin, New Zealand
| | - Clara Monlleó-Borrull
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071, Valencia, Spain
| | - Cristina Llopis-Belenguer
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071, Valencia, Spain.
| |
Collapse
|
100
|
Bangal P, Sridhar H, Shanker K. Phenotypic Clumping Decreases With Flock Richness in Mixed-Species Bird Flocks. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.537816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animals that live in groups may experience positive interactions such as cooperative behavior or negative interactions such as competition from group members depending on group size and similarity between individuals. The effect of group size and phenotypic and ecological similarity on group assembly has not been well-studied. Mixed-species flocks are important subsets of bird communities worldwide. We examined associations within these in relation to flock size, to understand rules of flock assembly, in the Western Ghats of India. We examined the relationship between phenotypic clumping and flock richness using four variables—body size, foraging behavior, foraging height and taxonomic relatedness. Using a null model approach, we found that small flocks were more phenotypically clumped for body size than expected by chance; however, phenotypic clumping decreased as flocks increased in size and approached expected phenotypic variation in large flocks. This pattern was not as clear for foraging height and foraging behavior. We then examined a dataset of 55 flock matrices from 24 sites across the world. We found that sites with smaller flocks had higher values of phenotypic clumping for body size and sites with larger flocks were less phenotypically clumped. This relationship was weakly negative for foraging behavior and not statistically significant for taxonomic relatedness. Unlike most single-species groups, participants in mixed-species flocks appear to be able to separate on different axes of trait similarity. They can gain benefits from similarity on one axis while mitigating competition by dissimilarity on others. Consistent with our results, we speculate that flock assembly was deterministic up to a certain point with participants being similar in body size, but larger flocks tended to approach random phenotypic assemblages of species.
Collapse
|