51
|
Griese E, Caarls L, Bassetti N, Mohammadin S, Verbaarschot P, Bukovinszkine’Kiss G, Poelman EH, Gols R, Schranz ME, Fatouros NE. Insect egg-killing: a new front on the evolutionary arms-race between brassicaceous plants and pierid butterflies. THE NEW PHYTOLOGIST 2021; 230:341-353. [PMID: 33305360 PMCID: PMC7986918 DOI: 10.1111/nph.17145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
Evolutionary arms-races between plants and insect herbivores have long been proposed to generate key innovations such as plant toxins and detoxification mechanisms that can drive diversification of the interacting species. A novel front-line of plant defence is the killing of herbivorous insect eggs. We test whether an egg-killing plant trait has an evolutionary basis in such a plant-insect arms-race. Within the crucifer family (Brassicaceae), some species express a hypersensitive response (HR)-like necrosis underneath butterfly eggs (Pieridae) that leads to eggs desiccating or falling off the plant. We studied the phylogenetic distribution of this trait, its egg-killing effect on and elicitation by butterflies, by screening 31 Brassicales species, and nine Pieridae species. We show a clade-specific induction of strong, egg-killing HR-like necrosis mainly in species of the Brassiceae tribe including Brassica crops and close relatives. The necrosis is strongly elicited by pierid butterflies that are specialists of crucifers. Furthermore, HR-like necrosis is linked to PR1 defence gene expression, accumulation of reactive oxygen species and cell death, eventually leading to egg-killing. Our findings suggest that the plants' egg-killing trait is a new front on the evolutionary arms-race between Brassicaceae and pierid butterflies beyond the well-studied plant toxins that have evolved against their caterpillars.
Collapse
Affiliation(s)
- Eddie Griese
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
| | - Lotte Caarls
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
- Present address:
Plant BreedingWageningen University and ResearchWageningen6700 AJthe Netherlands
| | - Niccolò Bassetti
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| | - Setareh Mohammadin
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| | | | - Gabriella Bukovinszkine’Kiss
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
- Laboratory of GeneticsWageningen UniversityWageningen6700 AAthe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
| | - Rieta Gols
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
| | - M. Eric Schranz
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| | - Nina E. Fatouros
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| |
Collapse
|
52
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
53
|
Medina MC, Sousa-Baena MS, Prado E, Acevedo-Rodríguez P, Dias P, Demarco D. Laticifers in Sapindaceae: Structure, Evolution and Phylogenetic Importance. FRONTIERS IN PLANT SCIENCE 2021; 11:612985. [PMID: 33537047 PMCID: PMC7849378 DOI: 10.3389/fpls.2020.612985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Laticifer occurrence and structure are poorly known in Sapindaceae. Occurrence is likely underestimated owing to the low production of latex in most species. We investigated 67 species from 23 genera of Sapindaceae to verify laticifer occurrence and their structural, developmental and chemical features, as well as their evolutionary history in the family. Shoots were collected from herbarium and fresh specimens for histological analyses. Three characters derived from laticifer features were coded and their ancestral states reconstructed through Bayesian stochastic mapping and maximum likelihood estimation. Only articulated non-anastomosing laticifers were found in Sapindaceae. Laticifers differentiate early during shoot development and are found in the cortex, phloem, and pith. Latex is mostly composed of lipids. Callose and suberin were detected in laticifer cell walls in some genera. Reconstruction of laticifer ancestral states showed that laticifers are present in most clades of Sapindaceae with some reversals. Callose in the laticifer cell wall was found exclusively in Serjania and Paullinia (tribe Paullinieae), a character regarded as independently derived. Occurrence of laticifers in Sapindaceae is broader than previously reported. Articulated non-anastomosing laticifers had five independent origins in Sapindaceae with some secondary losses, occurring in five out of six genera of Paullinieae and 10 other genera outside Paullinieae. Particularly, callose in the laticifer cell wall evolved independently twice in the family, and its occurrence may be interpreted as a key-innovation that promoted the diversification of Paullinia and Serjania. Our study suggests that laticifer characters may be useful in understanding the generic relationships within the family.
Collapse
Affiliation(s)
- Maria Camila Medina
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mariane S. Sousa-Baena
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Erika Prado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro Acevedo-Rodríguez
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Pedro Dias
- Escola de Artes, Ciências e Humanidades – EACH Universidade de São Paulo, São Paulo, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
54
|
Li HS, Tang XF, Huang YH, Xu ZY, Chen ML, Du XY, Qiu BY, Chen PT, Zhang W, Ślipiński A, Escalona HE, Waterhouse RM, Zwick A, Pang H. Horizontally acquired antibacterial genes associated with adaptive radiation of ladybird beetles. BMC Biol 2021; 19:7. [PMID: 33446206 PMCID: PMC7807722 DOI: 10.1186/s12915-020-00945-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) has been documented in many herbivorous insects, conferring the ability to digest plant material and promoting their remarkable ecological diversification. Previous reports suggest HGT of antibacterial enzymes may have contributed to the insect immune response and limit bacterial growth. Carnivorous insects also display many evolutionary successful lineages, but in contrast to the plant feeders, the potential role of HGTs has been less well-studied. RESULTS Using genomic and transcriptomic data from 38 species of ladybird beetles, we identified a set of bacterial cell wall hydrolase (cwh) genes acquired by this group of beetles. Infection with Bacillus subtilis led to upregulated expression of these ladybird cwh genes, and their recombinantly produced proteins limited bacterial proliferation. Moreover, RNAi-mediated cwh knockdown led to downregulation of other antibacterial genes, indicating a role in antibacterial immune defense. cwh genes are rare in eukaryotes, but have been maintained in all tested Coccinellinae species, suggesting that this putative immune-related HGT event played a role in the evolution of this speciose subfamily of predominant predatory ladybirds. CONCLUSION Our work demonstrates that, in a manner analogous to HGT-facilitated plant feeding, enhanced immunity through HGT might have played a key role in the prey adaptation and niche expansion that promoted the diversification of carnivorous beetle lineages. We believe that this represents the first example of immune-related HGT in carnivorous insects with an association with a subsequent successful species radiation.
Collapse
Affiliation(s)
- Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ze-Yu Xu
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mei-Lan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
- School of Environment and Life Science, Nanning Normal University, Nanning, 530001, China
| | - Xue-Yong Du
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bo-Yuan Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Pei-Tao Chen
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Adam Ślipiński
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Hermes E Escalona
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
55
|
Allio R, Nabholz B, Wanke S, Chomicki G, Pérez-Escobar OA, Cotton AM, Clamens AL, Kergoat GJ, Sperling FAH, Condamine FL. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat Commun 2021; 12:354. [PMID: 33441560 PMCID: PMC7806994 DOI: 10.1038/s41467-020-20507-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
The mega-diversity of herbivorous insects is attributed to their co-evolutionary associations with plants. Despite abundant studies on insect-plant interactions, we do not know whether host-plant shifts have impacted both genomic adaptation and species diversification over geological times. We show that the antagonistic insect-plant interaction between swallowtail butterflies and the highly toxic birthworts began 55 million years ago in Beringia, followed by several major ancient host-plant shifts. This evolutionary framework provides a valuable opportunity for repeated tests of genomic signatures of macroevolutionary changes and estimation of diversification rates across their phylogeny. We find that host-plant shifts in butterflies are associated with both genome-wide adaptive molecular evolution (more genes under positive selection) and repeated bursts of speciation rates, contributing to an increase in global diversification through time. Our study links ecological changes, genome-wide adaptations and macroevolutionary consequences, lending support to the importance of ecological interactions as evolutionary drivers over long time periods.
Collapse
Affiliation(s)
- Rémi Allio
- CNRS, IRD, EPHE, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
| | - Benoit Nabholz
- CNRS, IRD, EPHE, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Guillaume Chomicki
- Department of Bioscience, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | | | - Adam M Cotton
- 86/2 Moo 5, Tambon Nong Kwai, Hang Dong, Chiang Mai, Thailand
| | - Anne-Laure Clamens
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Gaël J Kergoat
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9, AB, Canada
| | - Fabien L Condamine
- CNRS, IRD, EPHE, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9, AB, Canada.
| |
Collapse
|
56
|
Sato A, Okamura Y, Murakami M. Diversification and selection pattern of CYP6B genes in Japanese Papilio butterflies and their association with host plant spectra. PeerJ 2021; 8:e10625. [PMID: 33391886 PMCID: PMC7761194 DOI: 10.7717/peerj.10625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
Herbivorous insects are thought to have evolved counteradaptations to conquer chemical defenses in their host plants in a stepwise co-evolutionary process. Papilio butterflies use CYP6B gene family members to metabolize furanocoumarins in their Rutaceae or Apiaceae host plants. CYP6Bs have functionally diverged among Papilio species to be able to metabolite diverse types of furanocoumarins in their host plants. In this study, we examined the diversification and selection patterns of CYP6B among nine Papilio species in Japan (eight Rutaceae specialists and one Apiaceae specialist) and their association with host plant spectra and furanocoumarin profiles. We compared host plant spectrum of eight Rutaceae feeding Papilio species and also performed a furanocoumarin profiling of their host plants. In addition, we reconstructed CYP6B gene phylogeny and performed selection analysis based on the transcriptome data of those nine Papilio species. Among Rutaceae-feeding Papilio species, host plant spectrum differences were correlated with their furanocoumarin profiles. However, all tested Papilio species had similar duplicated sets of CYP6B, with no apparent lineage-specific or host plant-specific pattern of CYP6B diversification. Selection analysis showed a signature of positive selection on a CYP6B branch. The positively selected sites located at predicted substrate recognition sites and we also found that these CYP6B genes were observed only in Rutaceae-feeding species. These findings indicate that most CYP6B diversification occurred in ancestral species of these Papilio species, possibly in association with specific host plant chemical defenses and subsequent gene loss due to host specialization. These processes would have shaped the complex diversification patterns of the CYP6B gene family in Papilio butterflies. Our results also show potentially important CYP6B clades among Papilio species which likely to have diverged functions and associated with host plant phytochemicals in ancestral Papilio species.
Collapse
Affiliation(s)
- Ai Sato
- Community Ecology Lab, Faculty of Science, Chiba University, Chiba, Japan
| | - Yu Okamura
- Community Ecology Lab, Faculty of Science, Chiba University, Chiba, Japan.,Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Masashi Murakami
- Community Ecology Lab, Faculty of Science, Chiba University, Chiba, Japan
| |
Collapse
|
57
|
Miocene Diversification and High-Altitude Adaptation of Parnassius Butterflies (Lepidoptera: Papilionidae) in Qinghai-Tibet Plateau Revealed by Large-Scale Transcriptomic Data. INSECTS 2020; 11:insects11110754. [PMID: 33153157 PMCID: PMC7693471 DOI: 10.3390/insects11110754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/01/2022]
Abstract
Simple Summary Parnassius butterflies have contributed to fundamental studies in biogeography, insect–plant interactions, and other fields of conservation biology and ecology. However, the early evolutionary pattern and molecular adaptation mechanism of this alpine butterfly group to high altitudes in Qinghai–Tibet Plateau are poorly understood up to now. In this study, we report for the first time, a relatively large-scale transcriptomic dataset of eight Parnassius species and their two closely related papilionid species, a dated phylogeny based on hundreds of gene sequences, and potential genetic mechanisms underlying the high-altitude adaptation by investigating changes in evolutionary rates and positively selected genes. Overall, our findings indicate that the transcriptome data sets reported here can provide some new insights into the spatiotemporally evolutionary pattern and high altitude adaptation of Parnassius butterflies from the extrinsic and intrinsic view, and will support further expressional and functional studies that will help interested researchers to address evolution, biodiversity and conservation questions concerning Parnassius and other butterfly species. Abstract The early evolutionary pattern and molecular adaptation mechanism of alpine Parnassius butterflies to high altitudes in Qinghai–Tibet Plateau are poorly understood up to now, due to difficulties in sampling, limited sequence data, and time calibration issues. Here, we present large-scale transcriptomic datasets of eight representative Parnassius species to reveal the phylogenetic timescale and potential genetic basis for high-altitude adaptation with multiple analytic strategies using 476 orthologous genes. Our phylogenetic results strongly supported that the subgenus Parnassius formed a well-resolved basal clade, and the subgenera Tadumia and Kailasius were closely related in the phylogenetic trees. In addition, molecular dating analyses showed that the Parnassius began to diverge at about 13.0 to 14.3 million years ago (middle Miocene), correlated with their hostplant’s spatiotemporal distributions, as well as geological and palaeoenvironmental changes of the Qinghai–Tibet Plateau. Moreover, the accelerated evolutionary rate, candidate positively selected genes and their potentially functional changes were detected, probably contributed to the high-altitude adaptation of Parnassius species. Overall, our study provided some new insights into the spatiotemporally evolutionary pattern and high altitude adaptation of Parnassius butterflies from the extrinsic and intrinsic view, which will help to address evolution, biodiversity, and conservation questions concerning Parnassius and other butterfly species.
Collapse
|
58
|
Nemesio-Gorriz M, Menezes RC, Paetz C, Hammerbacher A, Steenackers M, Schamp K, Höfte M, Svatoš A, Gershenzon J, Douglas GC. Canditate metabolites for ash dieback tolerance in Fraxinus excelsior. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6074-6083. [PMID: 32598444 DOI: 10.1093/jxb/eraa306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Ash dieback, a forest epidemic caused by the invasive fungus Hymenoscyphus fraxineus, threatens ash trees throughout Europe. Within Fraxinus excelsior populations, a small proportion of genotypes show a low susceptibility to the pathogen. We compared the metabolomes from a cohort of low-susceptibility ash genotypes with a cohort of high-susceptibility ash genotypes. This revealed two significantly different chemotypes. A total of 64 candidate metabolites associated with reduced or increased susceptibility in the chemical families secoiridoids, coumarins, flavonoids, phenylethanoids, and lignans. Increased levels of two coumarins, fraxetin and esculetin, were strongly associated with reduced susceptibility to ash dieback. Both coumarins inhibited the growth of H. fraxineus in vitro when supplied at physiological concentrations, thereby validating their role as markers for low susceptibility to ash dieback. Similarly, fungal growth inhibition was observed when the methanolic bark extract of low-susceptibility ash genotypes was supplied. Our findings indicate the presence of constitutive chemical defense barriers against ash dieback in ash.
Collapse
Affiliation(s)
| | - Riya C Menezes
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | - Kurt Schamp
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Monica Höfte
- Department of Crop Protection, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Ghent, Belgium
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | |
Collapse
|
59
|
Whitaker MRL, Salzman S. Ecology and evolution of cycad-feeding Lepidoptera. Ecol Lett 2020; 23:1862-1877. [PMID: 32969575 DOI: 10.1111/ele.13581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
Cycads are an ancient group of tropical gymnosperms that are toxic to most animals - including humans - though the larvae of many moths and butterflies (order: Lepidoptera) feed on cycads with apparent immunity. These insects belong to distinct lineages with varying degrees of specialisation and diverse feeding ecologies, presenting numerous opportunities for comparative studies of chemically mediated eco-evolutionary dynamics. This review presents the first evolutionary evaluation of cycad-feeding among Lepidoptera along with a comprehensive review of their ecology. Our analysis suggests that multiple lineages have independently colonised cycads from angiosperm hosts, yet only a few clades appear to have radiated following their transitions to cycads. Defensive traits are likely important for diversification, as many cycad specialists are warningly coloured and sequester cycad toxins. The butterfly family Lycaenidae appears to be particularly predisposed to cycad-feeding and several cycadivorous lycaenids are warningly coloured and chemically defended. Cycad-herbivore interactions provide a promising but underutilised study system for investigating plant-insect coevolution, convergent and divergent adaptations, and the multi-trophic significance of defensive traits; therefore the review ends by suggesting specific research gaps that would be fruitfully addressed in Lepidoptera and other cycad-feeding insects.
Collapse
Affiliation(s)
- Melissa R L Whitaker
- Entomological Collection, Department of Environmental Systems Science, ETH Zürich, Weinbergstrasse 56/58, Zürich, 8092, Switzerland.,Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Shayla Salzman
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.,School of Integrative Plant Science, Cornell University, 502 Mann Library, Ithaca, NY, 14853, USA
| |
Collapse
|
60
|
Snell‐Rood EC, Swanson EM, Espeset A, Jaumann S, Philips K, Walker C, Semke B, Mori AS, Boenisch G, Kattge J, Seabloom EW, Borer ET. Nutritional constraints on brain evolution: Sodium and nitrogen limit brain size. Evolution 2020; 74:2304-2319. [DOI: 10.1111/evo.14072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/07/2020] [Accepted: 07/25/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Emilie C. Snell‐Rood
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota 55455
| | - Eli M. Swanson
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota 55455
| | - Anne Espeset
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota 55455
- Department of Biology University of Nevada‐Reno Reno Nevada 89557
| | - Sarah Jaumann
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota 55455
- Department of Biological Sciences George Washington University Washington District of Columbia 20052
| | - Kinsey Philips
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota 55455
| | - Courtney Walker
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota 55455
| | - Brandon Semke
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota 55455
| | - Akira S. Mori
- Graduate School of Environment and Information Sciences Yokohama National University Yokohama Japan
| | | | - Jens Kattge
- Max‐Planck‐Institute for Biogeochemistry Jena Germany
| | - Eric W. Seabloom
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota 55455
| | - Elizabeth T. Borer
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis Minnesota 55455
| |
Collapse
|
61
|
Paniagua Voirol LR, Weinhold A, Johnston PR, Fatouros NE, Hilker M. Legacy of a Butterfly's Parental Microbiome in Offspring Performance. Appl Environ Microbiol 2020; 86:e00596-20. [PMID: 32276976 PMCID: PMC7267186 DOI: 10.1128/aem.00596-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
An insect's phenotype can be influenced by the experiences of the parental generation. However, the effects of the parental symbiotic microbiome and host plant use on the offspring are unclear. We addressed this gap of knowledge by studying Pieris brassicae, a multivoltine butterfly species feeding on different brassicaceous plants across generations. We investigated how disturbance of the parental bacterial community by antibiotic treatment affects F1 larval traits. We tested the effects depending on whether F1 larvae are feeding on the same plant species as their parents or on a different one. The parental treatment alone had no impact on the biomass of F1 larvae feeding on the parental plant species. However, the parental treatment had a detrimental effect on F1 larval biomass when F1 larvae had a different host plant than their parents. This effect was linked to higher larval prophenoloxidase activity and greater downregulation of the major allergen gene (MA), a glucosinolate detoxification gene of P. brassicae Bacterial abundance in untreated adult parents was high, while it was very low in F1 larvae from either parental type, and thus unlikely to directly influence larval traits. Our results suggest that transgenerational effects of the parental microbiome on the offspring's phenotype become evident when the offspring is exposed to a transgenerational host plant shift.IMPORTANCE Resident bacterial communities are almost absent in larvae of butterflies and thus are unlikely to affect their host. In contrast, adult butterflies contain conspicuous amounts of bacteria. While the host plant and immune state of adult parental butterflies are known to affect offspring traits, it has been unclear whether also the parental microbiome imposes direct effects on the offspring. Here, we show that disturbance of the bacterial community in parental butterflies by an antibiotic treatment has a detrimental effect on those offspring larvae feeding on a different host plant than their parents. Hence, the study indicates that disturbance of an insect's parental microbiome by an antibiotic treatment shapes how the offspring individuals can adjust themselves to a novel host plant.
Collapse
Affiliation(s)
- Luis R Paniagua Voirol
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Arne Weinhold
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Nina E Fatouros
- Department of Plant Sciences, Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Monika Hilker
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
62
|
Steward RA, Boggs CL. Experience may outweigh cue similarity in maintaining a persistent host‐plant‐based evolutionary trap. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rachel A. Steward
- Department of Biological Sciences University of South Carolina 715 Sumter Street Columbia South Carolina 29208 USA
- Rocky Mountain Biological Laboratory PO Box 519 Crested Butte Colorado 81224 USA
| | - Carol L. Boggs
- Department of Biological Sciences University of South Carolina 715 Sumter Street Columbia South Carolina 29208 USA
- Rocky Mountain Biological Laboratory PO Box 519 Crested Butte Colorado 81224 USA
- School of the Earth, Ocean, & Environment University of South Carolina 701 Sumter Street Columbia South Carolina 29208 USA
| |
Collapse
|
63
|
Barua A, Mikheyev AS. Toxin expression in snake venom evolves rapidly with constant shifts in evolutionary rates. Proc Biol Sci 2020; 287:20200613. [PMID: 32345154 PMCID: PMC7282918 DOI: 10.1098/rspb.2020.0613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Key innovations provide ecological opportunity by enabling access to new resources, colonization of new environments, and are associated with adaptive radiation. The most well-known pattern associated with adaptive radiation is an early burst of phenotypic diversification. Venoms facilitate prey capture and are widely believed to be key innovations leading to adaptive radiation. However, few studies have estimated their evolutionary rate dynamics. Here, we test for patterns of adaptive evolution in venom gene expression data from 52 venomous snake species. By identifying shifts in tempo and mode of evolution along with models of phenotypic evolution, we show that snake venom exhibits the macroevolutionary dynamics expected of key innovations. Namely, all toxin families undergo shifts in their rates of evolution, likely in response to changes in adaptive optima. Furthermore, we show that rapid-pulsed evolution modelled as a Lévy process better fits snake venom evolution than conventional early burst or Ornstein-Uhlenbeck models. While our results support the idea of snake venom being a key innovation, the innovation of venom chemistry lacks clear mechanisms that would lead to reproductive isolation and thus adaptive radiation. Therefore, the extent to which venom directly influences the diversification process is still a matter of contention.
Collapse
Affiliation(s)
- Agneesh Barua
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan
| | - Alexander S. Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan
- Evolutionary genomics group, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
64
|
Chen W, Dong Y, Saqib HSA, Vasseur L, Zhou W, Zheng L, Lai Y, Ma X, Lin L, Xu X, Bai J, He W, You M. Functions of duplicated glucosinolate sulfatases in the development and host adaptation of Plutella xylostella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 119:103316. [PMID: 31953191 DOI: 10.1016/j.ibmb.2020.103316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Evolutionary adaptations of herbivorous insects are often dictated by the necessity to withstand a corresponding evolutionary innovation in host plant defense. Glucosinolate sulfatase (GSS) enzyme activity is considered a central adaptation strategy in Plutella xylostella against glucosinolates (GS)-myrosinase defense system in the Brassicales. The high functional versatility of sulfatases suggests that they may perform other vital roles in the process of growth and development. Here, we used a CRISPR/Cas9 system to generate stable homozygous single/double mutant lines of gss1 or/and gss2 with no predicted off-target effects, to analyze the functions of the pair of duplicated genes in the development and host adaptation of P. xylostella. The bioassays showed that, when fed on their usual artificial diet, significant reduction in egg hatching rate and final larval survival rate of the single mutant line of gss2 compared with the original strain or mutant lines of gss1, revealing unexpected functions of GSS2 in embryonic and larval development. When larvae of homozygous mutant lines were transferred onto a new food, Arabidopsis thaliana, no induced effect at protein level of GSS1/2 or gene expression level of gss1/gss2 was detected. The absence of GSS1 or GSS2 reduced the survival rate of larvae and prolonged the duration of the larval stage, indicating that both GSS1 and GSS2 played an important role in adaptation to host plants. The versatile functions of duplicated GSSs in this study provide a foundation for further research to understand potential functions of other sulfatase members and support evidence of adaptation in herbivorous insects.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhong Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310012, China
| | - Ling Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingfang Lai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoli Ma
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xuejiao Xu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianlin Bai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
65
|
Kaczvinsky C, Hardy NB. Do major host shifts spark diversification in butterflies? Ecol Evol 2020; 10:3636-3646. [PMID: 32313623 PMCID: PMC7160180 DOI: 10.1002/ece3.6116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 11/28/2022] Open
Abstract
The Escape and Radiate Hypothesis posits that herbivorous insects and their host plants diversify through antagonistic coevolutionary adaptive radiation. For more than 50 years, it has inspired predictions about herbivorous insect macro-evolution, but only recently have the resources begun to fall into place for rigorous testing of those predictions. Here, with comparative phylogenetic analyses of nymphalid butterflies, we test two of these predictions: that major host switches tend to increase species diversification and that such increases will be proportional to the scope of ecological opportunity afforded by a particular novel host association. We find that by and large the effect of major host-use changes on butterfly diversity is the opposite of what was predicted; although it appears that the evolution of a few novel host associations can cause short-term bursts of speciation, in general, major changes in host use tend to be linked to significant long-term decreases in butterfly species richness.
Collapse
Affiliation(s)
- Chloe Kaczvinsky
- Department of Entomology and Plant PathologyAuburn UniversityAuburnALUSA
| | - Nate B. Hardy
- Department of Entomology and Plant PathologyAuburn UniversityAuburnALUSA
| |
Collapse
|
66
|
Tao R, Xu C, Wang Y, Sun X, Li C, Ma J, Hao J, Yang Q. Spatiotemporal Differentiation of Alpine Butterfly Parnassius glacialis (Papilionidae: Parnassiinae) in China: Evidence from Mitochondrial DNA and Nuclear Single Nucleotide Polymorphisms. Genes (Basel) 2020; 11:genes11020188. [PMID: 32053967 PMCID: PMC7073557 DOI: 10.3390/genes11020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 11/24/2022] Open
Abstract
The Apollo butterfly, Parnassius glacialis, is one of the most charming members of its genus and includes two subspecies locally distributed in montane areas of south-central China and Japan. In this study, we investigated the genetic structure and demographic history of P. glacialis by analyzing partial sequences of four mitochondrial genes and nuclear single nucleotide polymorphisms (SNPs) via genotyping-by-sequencing (GBS) of samples from nearly the entire known distributional range in China. The mitochondrial DNA (mtDNA) data demonstrated that a total of 39 haplotypes were present, and the species was estimated to have diverged about 0.95 million years ago during the middle Pleistocene transition into two main clades that likely formed during the Kunlun-Huanghe tectonic movement. The two clades then dispersed independently in distinct geographic areas alongside the mountainous routes in central and southern China, most likely driven by the Pleistocene glacial-interglacial cycles. Nuclear SNP analysis was generally congruent with mtDNA results at the individual level. A minor incongruence of genetic structures that was detected between mtDNA and nuclear SNP data from the Laojunshan and Tiantangzhai populations was likely due to secondary contact and male-biased dispersal. Our work demonstrates that complicated dispersal-vicariance evolutionary processes likely led to the current geographic distribution of P. glacialis in China, particularly the uplift of the Qinghai-Tibet Plateau and related climatic oscillations during the Quaternary period.
Collapse
Affiliation(s)
- Ruisong Tao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (R.T.); (C.X.); (Y.W.)
- College of Life Sciences, Hefei Normal University, Hefei 230000, China
| | - Chang Xu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (R.T.); (C.X.); (Y.W.)
| | - Yunliang Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (R.T.); (C.X.); (Y.W.)
| | - Xiaoyan Sun
- SKLPS and Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; (X.S.); (C.L.); (J.M.)
| | - Chunxiang Li
- SKLPS and Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; (X.S.); (C.L.); (J.M.)
| | - Junye Ma
- SKLPS and Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; (X.S.); (C.L.); (J.M.)
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (R.T.); (C.X.); (Y.W.)
- Correspondence: (J.H.); (Q.Y.)
| | - Qun Yang
- SKLPS and Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; (X.S.); (C.L.); (J.M.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.H.); (Q.Y.)
| |
Collapse
|
67
|
Gillespie RG, Bennett GM, De Meester L, Feder JL, Fleischer RC, Harmon LJ, Hendry AP, Knope ML, Mallet J, Martin C, Parent CE, Patton AH, Pfennig KS, Rubinoff D, Schluter D, Seehausen O, Shaw KL, Stacy E, Stervander M, Stroud JT, Wagner C, Wogan GOU. Comparing Adaptive Radiations Across Space, Time, and Taxa. J Hered 2020; 111:1-20. [PMID: 31958131 PMCID: PMC7931853 DOI: 10.1093/jhered/esz064] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.
Collapse
Affiliation(s)
- Rosemary G Gillespie
- University of California, Berkeley, Essig Museum of Entomology & Department of Environmental Science, Policy, and Management, Berkeley, CA
| | - Gordon M Bennett
- University of California Merced, Life and Environmental Sciences Unit, Merced, CA
| | - Luc De Meester
- University of Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belguim
| | - Jeffrey L Feder
- University of Notre Dame, Dept. of Biological Sciences, Notre Dame, IN
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
| | - Luke J Harmon
- University of Idaho, Dept. of Biological Sciences, Moscow, ID
| | | | | | | | - Christopher Martin
- University of California Berkeley, Integrative Biology and Museum of Vertebrate Zoology, Berkeley, CA
| | | | - Austin H Patton
- Washington State University, School of Biological Sciences, Pullman, WA
| | - Karin S Pfennig
- University of North Carolina at Chapel Hill, Department of Biology, Chapel Hill, NC
| | - Daniel Rubinoff
- University of Hawaiʻi at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu, HI
| | | | - Ole Seehausen
- Institute of Ecology & Evolution, University of Bern, Bern, BE, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Eawag, Kastanienbaum, LU, Switzerland
| | - Kerry L Shaw
- Cornell University, Neurobiology and Behavior, Tower Road,, Ithaca, NY
| | - Elizabeth Stacy
- University of Nevada Las Vegas, School of Life Sciences, Las Vegas, NV
| | - Martin Stervander
- University of Oregon, Institute of Ecology and Evolution, Eugene, OR
| | - James T Stroud
- Washington University in Saint Louis, Biology, Saint Louis, MO
| | | | - Guinevere O U Wogan
- University of California Berkeley, Environmental Science Policy, and Management, Berkeley, CA
| |
Collapse
|
68
|
Griese E, Pineda A, Pashalidou FG, Iradi EP, Hilker M, Dicke M, Fatouros NE. Plant responses to butterfly oviposition partly explain preference-performance relationships on different brassicaceous species. Oecologia 2020; 192:463-475. [PMID: 31932923 PMCID: PMC7002336 DOI: 10.1007/s00442-019-04590-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/27/2019] [Indexed: 10/26/2022]
Abstract
The preference-performance hypothesis (PPH) states that herbivorous female insects prefer to oviposit on those host plants that are best for their offspring. Yet, past attempts to show the adaptiveness of host selection decisions by herbivores often failed. Here, we tested the PPH by including often neglected oviposition-induced plant responses, and how they may affect both egg survival and larval weight. We used seven Brassicaceae species of which most are common hosts of two cabbage white butterfly species, the solitary Pieris rapae and gregarious P. brassicae. Brassicaceous species can respond to Pieris eggs with leaf necrosis, which can lower egg survival. Moreover, plant-mediated responses to eggs can affect larval performance. We show a positive correlation between P. brassicae preference and performance only when including the egg phase: 7-day-old caterpillars gained higher weight on those plant species which had received most eggs. Pieris eggs frequently induced necrosis in the tested plant species. Survival of clustered P. brassicae eggs was unaffected by the necrosis in most tested species and no relationship between P. brassicae egg survival and oviposition preference was found. Pieris rapae preferred to oviposit on plant species most frequently expressing necrosis although egg survival was lower on those plants. In contrast to the lower egg survival on plants expressing necrosis, larval biomass on these plants was higher than on plants without a necrosis. We conclude that egg survival is not a crucial factor for oviposition choices but rather egg-mediated responses affecting larval performance explained the preference-performance relationship of the two butterfly species.
Collapse
Affiliation(s)
- Eddie Griese
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Ana Pineda
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- NIOO-KNAW, Wageningen, The Netherlands
| | - Foteini G Pashalidou
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- UMR Agronomie, INRA, AgroParisTech, Universite Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Eleonora Pizarro Iradi
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- BASF Chile, Carrascal 3851, Quinta Normal, Santiago, Chile
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Nina E Fatouros
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
69
|
Sikkink KL, Hostager R, Kobiela ME, Fremling N, Johnston K, Zambre A, Snell-Rood EC. Tolerance of Novel Toxins through Generalized Mechanisms: Simulating Gradual Host Shifts of Butterflies. Am Nat 2020; 195:485-503. [PMID: 32097036 DOI: 10.1086/707195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organisms encounter a wide range of toxic compounds in their environments, from chemicals that serve anticonsumption or anticompetition functions to pollutants and pesticides. Although we understand many detoxification mechanisms that allow organisms to consume toxins typical of their diet, we know little about why organisms vary in their ability to tolerate entirely novel toxins. We tested whether variation in generalized stress responses, such as antioxidant pathways, may underlie variation in reactions to novel toxins and, if so, their associated costs. We used an artificial diet to present cabbage white butterfly caterpillars (Pieris rapae) with plant material containing toxins not experienced in their evolutionary history. Families that maintained high performance (e.g., high survival, fast development time, large body size) on diets containing one novel toxic plant also performed well when exposed to two other novel toxic plants, consistent with a generalized response. Variation in constitutive (but not induced) expression of genes involved in oxidative stress responses was positively related to performance on the novel diets. While we did not detect reproductive trade-offs of this generalized response, there was a tendency to have less melanin investment in the wings, consistent with the role of melanin in oxidative stress responses. Taken together, our results support the hypothesis that variation in generalized stress responses, such as genes involved in oxidative stress responses, may explain the variation in tolerance to entirely novel toxins and may facilitate colonization of novel hosts and environments.
Collapse
|
70
|
Maccracken SA, Miller IM, Labandeira CC. Late Cretaceous domatia reveal the antiquity of plant-mite mutualisms in flowering plants. Biol Lett 2019; 15:20190657. [PMID: 31744409 DOI: 10.1098/rsbl.2019.0657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mite houses, or acarodomatia, are found on the leaves of over 2000 living species of flowering plants today. These structures facilitate tri-trophic interactions between the host plant, its fungi or herbivore adversaries, and fungivorous or predaceous mites by providing shelter for the mite consumers. Previously, the oldest acarodomatia were described on a Cenozoic Era fossil leaf dating to 49 Myr in age. Here, we report the first occurrence of Mesozoic Era acarodomatia in the fossil record from leaves discovered in the Upper Cretaceous Kaiparowits Formation (76.6-74.5 Ma) in southern UT, USA. This discovery extends the origin of acarodomatia by greater than 25 Myr, and the antiquity of this plant-mite mutualism provides important constraints for the evolutionary history of acarodomatia on angiosperms.
Collapse
Affiliation(s)
- S Augusta Maccracken
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA.,Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO 80205, USA
| | - Ian M Miller
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO 80205, USA
| | - Conrad C Labandeira
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.,BEES Program, University of Maryland, College Park, MD 20742, USA.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA.,Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO 80205, USA.,College of Life Sciences, Capital Normal University, Beijing 100048, People's Republic of China
| |
Collapse
|
71
|
Abstract
Certain adapted insect herbivores utilize plant toxins for self-defense against their own enemies. These adaptations structure ecosystems and limit our capacity to use biological control agents to manage specialized agricultural pests. We show that entomopathogenic nematodes that are exposed to the western corn rootworm, an important agricultural pest that sequesters defense metabolites from maize, can evolve resistance to these defenses. Resisting the plant defense metabolites likely allows the nematodes to infect and kill the western corn rootworm more efficiently. These findings illustrate how predators can counter the plant-based resistance strategies of specialized insect herbivores. Breeding or engineering biological control agents that resist plant defense metabolites may improve their capacity to kill important agricultural pests such as the western corn rootworm. Plants defend themselves against herbivores through the production of toxic and deterrent metabolites. Adapted herbivores can tolerate and sometimes sequester these metabolites, allowing them to feed on defended plants and become toxic to their own enemies. Can herbivore natural enemies overcome sequestered plant defense metabolites to prey on adapted herbivores? To address this question, we studied how entomopathogenic nematodes cope with benzoxazinoid defense metabolites that are produced by grasses and sequestered by a specialist maize herbivore, the western corn rootworm. We find that nematodes from US maize fields in regions in which the western corn rootworm was present over the last 50 y are behaviorally and metabolically resistant to sequestered benzoxazinoids and more infective toward the western corn rootworm than nematodes from other parts of the world. Exposure of a benzoxazinoid-susceptible nematode strain to the western corn rootworm for 5 generations results in higher behavioral and metabolic resistance and benzoxazinoid-dependent infectivity toward the western corn rootworm. Thus, herbivores that are exposed to a plant defense sequestering herbivore can evolve both behavioral and metabolic resistance to plant defense metabolites, and these traits are associated with higher infectivity toward a defense sequestering herbivore. We conclude that plant defense metabolites that are transferred through adapted herbivores may result in the evolution of resistance in herbivore natural enemies. Our study also identifies plant defense resistance as a potential target for the improvement of biological control agents.
Collapse
|
72
|
Okamura Y, Sato A, Tsuzuki N, Murakami M, Heidel‐Fischer H, Vogel H. Molecular signatures of selection associated with host plant differences in
Pieris
butterflies. Mol Ecol 2019; 28:4958-4970. [DOI: 10.1111/mec.15268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Okamura
- Department of Entomology Max Planck Institute for Chemical Ecology Jena Germany
- Community Ecology Lab Faculty of Science Chiba University Chiba Japan
| | - Ai Sato
- Community Ecology Lab Faculty of Science Chiba University Chiba Japan
| | - Natsumi Tsuzuki
- Community Ecology Lab Faculty of Science Chiba University Chiba Japan
| | - Masashi Murakami
- Community Ecology Lab Faculty of Science Chiba University Chiba Japan
| | - Hanna Heidel‐Fischer
- Department of Entomology Max Planck Institute for Chemical Ecology Jena Germany
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI) Jena Germany
| | - Heiko Vogel
- Department of Entomology Max Planck Institute for Chemical Ecology Jena Germany
| |
Collapse
|
73
|
Gikonyo MW, Biondi M, Beran F. Adaptation of flea beetles to Brassicaceae: host plant associations and geographic distribution of Psylliodes Latreille and Phyllotreta Chevrolat (Coleoptera, Chrysomelidae). Zookeys 2019; 856:51-73. [PMID: 31293348 PMCID: PMC6603994 DOI: 10.3897/zookeys.856.33724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/30/2019] [Indexed: 11/12/2022] Open
Abstract
The cosmopolitan flea beetle genera Phyllotreta and Psylliodes (Galerucinae, Alticini) are mainly associated with host plants in the family Brassicaceae and include economically important pests of crucifer crops. In this review, the host plant associations and geographical distributions of known species in these genera are summarised from the literature, and their proposed phylogenetic relationships to other Alticini analysed from published molecular phylogenetic studies of Galerucinae. Almost all Phyllotreta species are specialised on Brassicaceae and related plant families in the order Brassicales, whereas Psylliodes species are associated with host plants in approximately 24 different plant families, and 50% are specialised to feed on Brassicaceae. The current knowledge on how Phyllotreta and Psylliodes are adapted to the characteristic chemical defence in Brassicaceae is reviewed. Based on our findings we postulate that Phyllotreta and Psylliodes colonised Brassicaceae independently from each other.
Collapse
Affiliation(s)
- Matilda W. Gikonyo
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, GermanyMax Planck Institute for Chemical EcologyJenaGermany
| | - Maurizio Biondi
- Department of Health, Life and Environmental Sciences, University of L’Aquila, 67100 Coppito-L’Aquila, ItalyUniversity of L’AquilaCoppito-L’AquilaItaly
| | - Franziska Beran
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, GermanyMax Planck Institute for Chemical EcologyJenaGermany
| |
Collapse
|
74
|
Gompert Z, Brady M, Chalyavi F, Saley TC, Philbin CS, Tucker MJ, Forister ML, Lucas LK. Genomic evidence of genetic variation with pleiotropic effects on caterpillar fitness and plant traits in a model legume. Mol Ecol 2019; 28:2967-2985. [DOI: 10.1111/mec.15113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/17/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Zachariah Gompert
- Department of Biology Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | - Megan Brady
- Department of Biology Utah State University Logan Utah USA
| | | | - Tara C. Saley
- Department of Biology Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | | | | | | | | |
Collapse
|
75
|
Lehnert M, Krug M. Evolution of substrate specificity and fungal symbiosis in filmy ferns (Hymenophyllaceae): a Bayesian approach for ambiguous character state reconstruction. Symbiosis 2019. [DOI: 10.1007/s13199-018-00594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
76
|
Okamura Y, Tsuzuki N, Kuroda S, Sato A, Sawada Y, Hirai MY, Murakami M. Interspecific Differences in the Larval Performance of Pieris Butterflies (Lepidoptera: Pieridae) Are Associated with Differences in the Glucosinolate Profiles of Host Plants. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5482268. [PMID: 31039584 PMCID: PMC6490971 DOI: 10.1093/jisesa/iez035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 06/09/2023]
Abstract
The tremendous diversity of plants and herbivores has arisen from a coevolutionary relationship characterized by plant defense and herbivore counter adaptation. Pierid butterfly species feed on Brassicales plants that produce glucosinolates as a chemical deterrent against herbivory. In turn, the larvae of pierids have nitrile specifier proteins (NSPs) that are expressed in their gut and disarm glucosinolates. Pierid butterflies are known to have diversified in response to glucosinolate diversification in Brassicales. Therefore, each pierid species is expected to have a spectrum of host plants characterized by specific glucosinolate profiles. In this study, we tested whether the larval performance of different Pieris species, a genus in Pieridae (Lepidoptera: Pieridae), was associated with plant defense traits of putative host plants. We conducted feeding assays using larvae of three Pieris species and 10 species of the Brassicaceae family possessing different leaf physical traits and glucosinolate profile measurements. The larvae of Pieris rapae responded differently in the feeding assays compared with the other two Pieris species. This difference was associated with differences in glucosinolate profiles but not with variations in physical traits of the host plants. This result suggests that individual Pieris species are adapted to a subset of glucosinolate profiles within the Brassicaceae. Our results support the idea that the host ranges of Pieris species depend on larval responses to glucosinolate diversification in the host species, supporting the hypothesis of coevolution between butterflies and host plants mediated by the chemical arms race.
Collapse
Affiliation(s)
- Yu Okamura
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Community Ecology Lab., Faculty of Science, Chiba University, Chiba, Japan
| | - Natsumi Tsuzuki
- Community Ecology Lab., Faculty of Science, Chiba University, Chiba, Japan
| | - Shiori Kuroda
- Community Ecology Lab., Faculty of Science, Chiba University, Chiba, Japan
| | - Ai Sato
- Community Ecology Lab., Faculty of Science, Chiba University, Chiba, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Masashi Murakami
- Community Ecology Lab., Faculty of Science, Chiba University, Chiba, Japan
| |
Collapse
|
77
|
Beran F, Sporer T, Paetz C, Ahn SJ, Betzin F, Kunert G, Shekhov A, Vassão DG, Bartram S, Lorenz S, Reichelt M. One Pathway Is Not Enough: The Cabbage Stem Flea Beetle Psylliodes chrysocephala Uses Multiple Strategies to Overcome the Glucosinolate-Myrosinase Defense in Its Host Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1754. [PMID: 30581445 PMCID: PMC6292997 DOI: 10.3389/fpls.2018.01754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/12/2018] [Indexed: 05/18/2023]
Abstract
The cabbage stem flea beetle (Psylliodes chrysocephala) is a key pest of oilseed rape in Europe, and is specialized to feed on Brassicaceae plants armed with the glucosinolate-myrosinase defense system. Upon tissue damage, the β-thioglucosidase enzyme myrosinase hydrolyzes glucosinolates (GLS) to form toxic isothiocyanates (ITCs) which deter non-adapted herbivores. Here, we show that P. chrysocephala selectively sequester GLS from their host plants and store these throughout their life cycle. In addition, P. chrysocephala metabolize GLS to desulfo-GLS, which implies the evolution of GLS sulfatase activity in this specialist. To assess whether P. chrysocephala can largely prevent GLS hydrolysis in ingested plant tissue by sequestration and desulfation, we analyzed the metabolic fate of 4-methylsulfinylbutyl (4MSOB) GLS in adults. Surprisingly, intact and desulfo-GLS together accounted for the metabolic fate of only 26% of the total ingested GLS in P. chrysocephala, indicating that most ingested GLS are nevertheless activated by the plant myrosinase. The presence of 4MSOB-ITC and the corresponding nitrile in feces extracts confirmed the activation of ingested GLS, but the detected amounts of unmetabolized ITCs were low. P. chrysocephala partially detoxifies ITCs by conjugation with glutathione via the conserved mercapturic acid pathway. In addition to known products of the mercapturic acid pathway, we identified two previously unknown cyclic metabolites derived from the cysteine-conjugate of 4MSOB-ITC. In summary, the cabbage stem flea beetle avoids ITC formation by specialized strategies, but also relies on and extends the conserved mercapturic acid pathway to prevent toxicity of formed ITCs.
Collapse
Affiliation(s)
- Franziska Beran
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Theresa Sporer
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Seung-Joon Ahn
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Franziska Betzin
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anton Shekhov
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Daniel G. Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stefan Bartram
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sybille Lorenz
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
78
|
Braga MP, Guimarães PR, Wheat CW, Nylin S, Janz N. Unifying host-associated diversification processes using butterfly-plant networks. Nat Commun 2018; 9:5155. [PMID: 30514925 PMCID: PMC6279759 DOI: 10.1038/s41467-018-07677-x|] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/16/2018] [Indexed: 05/26/2023] Open
Abstract
Explaining the exceptional diversity of herbivorous insects is an old problem in evolutionary ecology. Here we focus on the two prominent hypothesised drivers of their diversification, radiations after major host switch or variability in host use due to continuous probing of new hosts. Unfortunately, current methods cannot distinguish between these hypotheses, causing controversy in the literature. Here we present an approach combining network and phylogenetic analyses, which directly quantifies support for these opposing hypotheses. After demonstrating that each hypothesis produces divergent network structures, we then investigate the contribution of each to diversification in two butterfly families: Pieridae and Nymphalidae. Overall, we find that variability in host use is essential for butterfly diversification, while radiations following colonisation of a new host are rare but can produce high diversity. Beyond providing an important reconciliation of alternative hypotheses for butterfly diversification, our approach has potential to test many other hypotheses in evolutionary biology.
Collapse
Affiliation(s)
- Mariana P Braga
- Department of Zoology, Stockholm University, Stockholm, 10691, Sweden.
| | - Paulo R Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, 10691, Sweden
| | - Niklas Janz
- Department of Zoology, Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
79
|
Braga MP, Guimarães PR, Wheat CW, Nylin S, Janz N. Unifying host-associated diversification processes using butterfly-plant networks. Nat Commun 2018; 9:5155. [PMID: 30514925 PMCID: PMC6279759 DOI: 10.1038/s41467-018-07677-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/16/2018] [Indexed: 01/10/2023] Open
Abstract
Explaining the exceptional diversity of herbivorous insects is an old problem in evolutionary ecology. Here we focus on the two prominent hypothesised drivers of their diversification, radiations after major host switch or variability in host use due to continuous probing of new hosts. Unfortunately, current methods cannot distinguish between these hypotheses, causing controversy in the literature. Here we present an approach combining network and phylogenetic analyses, which directly quantifies support for these opposing hypotheses. After demonstrating that each hypothesis produces divergent network structures, we then investigate the contribution of each to diversification in two butterfly families: Pieridae and Nymphalidae. Overall, we find that variability in host use is essential for butterfly diversification, while radiations following colonisation of a new host are rare but can produce high diversity. Beyond providing an important reconciliation of alternative hypotheses for butterfly diversification, our approach has potential to test many other hypotheses in evolutionary biology. Herbivorous insects could diversify through radiations after major host switches or through constant variability in new host use. With phylogenetic and network analyses, Braga et al. show that variability in host use supports most butterfly diversification, while rare radiations can further boost diversity.
Collapse
Affiliation(s)
- Mariana P Braga
- Department of Zoology, Stockholm University, Stockholm, 10691, Sweden.
| | - Paulo R Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, 10691, Sweden
| | - Niklas Janz
- Department of Zoology, Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
80
|
Wang H, Shi Y, Wang L, Liu S, Wu S, Yang Y, Feyereisen R, Wu Y. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat Commun 2018; 9:4820. [PMID: 30446639 PMCID: PMC6240031 DOI: 10.1038/s41467-018-07226-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/17/2018] [Indexed: 11/09/2022] Open
Abstract
The cotton bollworm Helicoverpa armigera, is one of the world's major pest of agriculture, feeding on over 300 hosts in 68 plant families. Resistance cases to most insecticide classes have been reported for this insect. Management of this pest in agroecosystems relies on a better understanding of how it copes with phytochemical or synthetic toxins. We have used genome editing to knock out a cluster of nine P450 genes and show that this significantly reduces the survival rate of the insect when exposed to two classes of host plant chemicals and two classes of insecticides. Functional expression of all members of this gene cluster identified the P450 enzymes capable of metabolism of these xenobiotics. The CRISPR-Cas9-based reverse genetics approach in conjunction with in vitro metabolism can rapidly identify the contributions of insect P450s in xenobiotic detoxification and serve to identify candidate genes for insecticide resistance.
Collapse
Affiliation(s)
- Huidong Wang
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lu Wang
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuai Liu
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, 1017, Denmark
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
81
|
Danner H, Desurmont GA, Cristescu SM, van Dam NM. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. THE NEW PHYTOLOGIST 2018; 220:726-738. [PMID: 28134434 DOI: 10.1111/nph.14428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/08/2016] [Indexed: 05/04/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of 10 herbivore species with different coexistence histories, diet breadths and feeding modes. Partial least squares (PLS) models were fitted to assess whether HIPV blends emitted by Dutch B. rapa differ between native and exotic herbivores, between specialists and generalists, and between piercing-sucking and chewing herbivores. These models were used to predict the status of two additional herbivores. We found that HIPV blends predicted the evolutionary history, diet breadth and feeding mode of the herbivore with an accuracy of 80% or higher. Based on the HIPVs, the PLS models reliably predicted that Trichoplusia ni and Spodoptera exigua are perceived as exotic, leaf-chewing generalists by Dutch B. rapa plants. These results indicate that there are consistent and predictable differences in HIPV blends depending on global herbivore characteristics, including coexistence history. Consequently, native organisms may be able to rapidly adapt to potentially disruptive effects of exotic herbivores on the infochemical network.
Collapse
Affiliation(s)
- Holger Danner
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500, GL Nijmegen, the Netherlands
| | - Gaylord A Desurmont
- Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- European Biological Control Laboratory, USDA-ARS, CS 90013, Montferrier-sur-Lez, France
| | - Simona M Cristescu
- Life Science Trace Gas Facility, Institute for Molecules and Materials, Radboud University, 6500, GL Nijmegen, the Netherlands
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500, GL Nijmegen, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger-Str. 159, Jena, 07743, Germany
| |
Collapse
|
82
|
Edwards KF, Kremer CT, Miller ET, Osmond MM, Litchman E, Klausmeier CA. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol Lett 2018; 21:1853-1868. [PMID: 30272831 DOI: 10.1111/ele.13142] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/16/2018] [Accepted: 07/23/2018] [Indexed: 01/15/2023]
Abstract
Biological diversity depends on the interplay between evolutionary diversification and ecological mechanisms allowing species to coexist. Current research increasingly integrates ecology and evolution over a range of timescales, but our common conceptual framework for understanding species coexistence requires better incorporation of evolutionary processes. Here, we focus on the idea of evolutionarily stable communities (ESCs), which are theoretical endpoints of evolution in a community context. We use ESCs as a unifying framework to highlight some important but under-appreciated theoretical results, and we review empirical research relevant to these theoretical predictions. We explain how, in addition to generating diversity, evolution can also limit diversity by reducing the effectiveness of coexistence mechanisms. The coevolving traits of competing species may either diverge or converge, depending on whether the number of species in the community is low (undersaturated) or high (oversaturated) relative to the ESC. Competition in oversaturated communities can lead to extinction or neutrally coexisting, ecologically equivalent species. It is critical to consider trait evolution when investigating fundamental ecological questions like the strength of different coexistence mechanisms, the feasibility of ecologically equivalent species, and the interpretation of different patterns of trait dispersion.
Collapse
Affiliation(s)
- Kyle F Edwards
- Department of Oceanography, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Colin T Kremer
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.,Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA.,Program in Ecology, Evolutionary Biology, & Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Elizabeth T Miller
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Matthew M Osmond
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, USA
| | - Elena Litchman
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA.,Program in Ecology, Evolutionary Biology, & Behavior, Michigan State University, East Lansing, MI, 48824, USA.,Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher A Klausmeier
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA.,Program in Ecology, Evolutionary Biology, & Behavior, Michigan State University, East Lansing, MI, 48824, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
83
|
Endara MJ, Nicholls JA, Coley PD, Forrister DL, Younkin GC, Dexter KG, Kidner CA, Pennington RT, Stone GN, Kursar TA. Tracking of Host Defenses and Phylogeny During the Radiation of Neotropical Inga-Feeding Sawflies (Hymenoptera; Argidae). FRONTIERS IN PLANT SCIENCE 2018; 9:1237. [PMID: 30190723 PMCID: PMC6116116 DOI: 10.3389/fpls.2018.01237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Coevolutionary theory has long predicted that the arms race between plants and herbivores is a major driver of host selection and diversification. At a local scale, plant defenses contribute significantly to the structure of herbivore assemblages and the high alpha diversity of plants in tropical rain forests. However, the general importance of plant defenses in host associations and divergence at regional scales remains unclear. Here, we examine the role of plant defensive traits and phylogeny in the evolution of host range and species divergence in leaf-feeding sawflies of the family Argidae associated with Neotropical trees in the genus Inga throughout the Amazon, the Guiana Shield and Panama. Our analyses show that the phylogenies of both the sawfly herbivores and their Inga hosts are congruent, and that sawflies radiated at approximately the same time, or more recently than their Inga hosts. Analyses controlling for phylogenetic effects show that the evolution of host use in the sawflies associated with Inga is better correlated with Inga chemistry than with Inga phylogeny, suggesting a pattern of delayed host tracking closely tied to host chemistry. Finally, phylogenetic analyses show that sister species of Inga-sawflies are dispersed across the Neotropics, suggesting a role for allopatric divergence and vicariance in Inga diversification. These results are consistent with the idea that host defensive traits play a key role not only in structuring the herbivore assemblages at a single site, but also in the processes shaping host association and species divergence at a regional scale.
Collapse
Affiliation(s)
- María-José Endara
- Department of Biology, The University of Utah, Salt Lake City, UT, United States
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - James A. Nicholls
- Ashworth Laboratories, Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Phyllis D. Coley
- Department of Biology, The University of Utah, Salt Lake City, UT, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Dale L. Forrister
- Department of Biology, The University of Utah, Salt Lake City, UT, United States
| | - Gordon C. Younkin
- Department of Biology, The University of Utah, Salt Lake City, UT, United States
| | - Kyle G. Dexter
- Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
- School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine A. Kidner
- Ashworth Laboratories, Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| | | | - Graham N. Stone
- Ashworth Laboratories, Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas A. Kursar
- Department of Biology, The University of Utah, Salt Lake City, UT, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
84
|
Letsch H, Gottsberger B, Metzl C, Astrin J, Friedman ALL, McKenna DD, Fiedler K. Climate and host-plant associations shaped the evolution of ceutorhynch weevils throughout the Cenozoic. Evolution 2018; 72:1815-1828. [PMID: 30040114 PMCID: PMC6175111 DOI: 10.1111/evo.13520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/26/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022]
Abstract
Using molecular phylogenetic data and methods we inferred divergence times and diversification patterns for the weevil subfamily Ceutorhynchinae in the context of host‐plant associations and global climate over evolutionary time. We detected four major diversification shifts that correlate with both host shifts and major climate events. Ceutorhynchinae experienced an increase in diversification rate at ∼53 Ma, during the Early Eocene Climate Optimum, coincident with a host shift to Lamiaceae. A second major diversification phase occurred at the end of the Eocene (∼34 Ma). This contrasts with the overall deterioration in climate equability at the Eocene‐Oligocene boundary, but tracks the diversification of important host plant clades in temperate (higher) latitudes, leading to increased diversification rates in the weevil clades infesting temperate hosts. A third major phase of diversification is correlated with the rising temperatures of the Late Oligocene Warming Event (∼26.5 Ma); diversification rates then declined shortly after the Middle Miocene Climate Transition (∼14.9 Ma). Our results indicate that biotic and abiotic factors together explain the evolution of Ceutorhynchinae better than each of these drivers viewed in isolation.
Collapse
Affiliation(s)
- Harald Letsch
- Department für Botanik und Biodiversitätsforschung, Universität Wien, Rennweg 14, 1030, Vienna, Austria
| | - Brigitte Gottsberger
- Department für Botanik und Biodiversitätsforschung, Universität Wien, Rennweg 14, 1030, Vienna, Austria
| | - Christian Metzl
- Department für Botanik und Biodiversitätsforschung, Universität Wien, Rennweg 14, 1030, Vienna, Austria
| | - Jonas Astrin
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | | | - Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, 38152
| | - Konrad Fiedler
- Department für Botanik und Biodiversitätsforschung, Universität Wien, Rennweg 14, 1030, Vienna, Austria
| |
Collapse
|
85
|
Chen ML, Wang T, Huang YH, Qiu BY, Li HS, Pang H. Physiological and Evolutionary Changes in a Biological Control Agent During Prey Shifts Over Several Generations. Front Physiol 2018; 9:971. [PMID: 30072921 PMCID: PMC6060241 DOI: 10.3389/fphys.2018.00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/02/2018] [Indexed: 11/30/2022] Open
Abstract
Biological control agents usually suffer from a shortage of target prey or hosts in their post-release stage. Some predatory agents turn to attacking other prey organisms, which may induce physiological and evolutionary changes. In this study, we investigated life history traits, gene expression and genotype frequency in the predatory ladybird beetle Cryptolaemus montrouzieri during experimental prey shifts. C. montrouzieri were either continuously fed on aphids Megoura japonica as an alternative prey for four generations or were shifted back to the initial prey mealybugs Planococcus citri in each generation. In general, the utilization of aphids resulted in reduced performance and severe physiological adjustments, indicated by significant changes in development and fecundity traits and a large number of differentially expressed genes between the two offering setup prey treatments. Within the aphid-fed lines, performance regarding the developmental time, the adult weight and the survival rate recovered to some level in subsequent generations, possibly as a result of adaptive evolution. In particular, we found that a shift back to mealybugs caused a gradual increase in fecundity. Accordingly, a genotype of the fecundity-related gene vitellogenin, of which there were several minor alleles in the initial population, became the main genotype within four generations. The present study explored the short-term experimental evolution of a so-call specialist predator under prey shift conditions. This potential rapid adaptation of biological control agents to novel prey will increase environmental risks associated with non-target effects.
Collapse
Affiliation(s)
- Mei-Lan Chen
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bo-Yuan Qiu
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
86
|
Nallu S, Hill JA, Don K, Sahagun C, Zhang W, Meslin C, Snell-Rood E, Clark NL, Morehouse NI, Bergelson J, Wheat CW, Kronforst MR. The molecular genetic basis of herbivory between butterflies and their host plants. Nat Ecol Evol 2018; 2:1418-1427. [PMID: 30076351 PMCID: PMC6149523 DOI: 10.1038/s41559-018-0629-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 07/02/2018] [Indexed: 12/30/2022]
Abstract
Interactions between herbivorous insects and their host-plants are a central component of terrestrial food webs and a critical topic in agriculture, where a substantial fraction of potential crop yield is lost annually to pests. Important insights into plant-insect interactions have come from research on specific plant defenses and insect detoxification mechanisms. Yet, much remains unknown about the molecular mechanisms that mediate plant-insect interactions. Here we use multiple genome-wide approaches to map the molecular basis of herbivory from both plant and insect perspectives, focusing on butterflies and their larval host-plants. Parallel genome-wide association studies in the Cabbage White butterfly, Pieris rapae, and its host-plant, Arabidopsis thaliana, pinpointed a small number of butterfly and plant genes that influenced herbivory. These genes, along with much of the genome, were regulated in a dynamic way over the time course of the feeding interaction. Comparative analyses, including diverse butterfly/plant systems, showed a variety of genome-wide responses to herbivory, yet a core set of highly conserved genes in butterflies as well as their host-plants. These results greatly expand our understanding of the genomic causes and evolutionary consequences of ecological interactions across two of nature’s most diverse taxa, butterflies and flowering plants.
Collapse
Affiliation(s)
- Sumitha Nallu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Jason A Hill
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Kristine Don
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Carlos Sahagun
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.,Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Protein and Plant Gene Research, and School of Life Sciences, Peking University, Beijing, China
| | - Camille Meslin
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Institut National de la Recherche Agronomique (INRA), Institute of Ecology and Environmental Sciences of Paris (IEES-Paris), Versailles , France
| | - Emilie Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan I Morehouse
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | | | - Marcus R Kronforst
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
87
|
Steiner AM, Busching C, Vogel H, Wittstock U. Molecular identification and characterization of rhodaneses from the insect herbivore Pieris rapae. Sci Rep 2018; 8:10819. [PMID: 30018390 PMCID: PMC6050342 DOI: 10.1038/s41598-018-29148-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022] Open
Abstract
The association of cabbage white butterflies (Pieris spec., Lepidoptera: Pieridae) with their glucosinolate-containing host plants represents a well-investigated example of the sequential evolution of plant defenses and insect herbivore counteradaptations. The defensive potential of glucosinolates, a group of amino acid-derived thioglucosides present in plants of the Brassicales order, arises mainly from their rapid breakdown upon tissue disruption resulting in formation of toxic isothiocyanates. Larvae of P. rapae are able to feed exclusively on glucosinolate-containing plants due to expression of a nitrile-specifier protein in their gut which redirects glucosinolate breakdown to the formation of nitriles. The release of equimolar amounts of cyanide upon further metabolism of the benzylglucosinolate-derived nitrile suggests that the larvae are also equipped with efficient means of cyanide detoxification such as β-cyanoalanine synthases or rhodaneses. While insect β-cyanoalanine synthases have recently been identified at the molecular level, no sequence information was available of characterized insect rhodaneses. Here, we identify and characterize two single-domain rhodaneses from P. rapae, PrTST1 and PrTST2. The enzymes differ in their kinetic properties, predicted subcellular localization and expression in P. rapae indicating different physiological roles. Phylogenetic analysis together with putative lepidopteran rhodanese sequences indicates an expansion of the rhodanese family in Pieridae.
Collapse
Affiliation(s)
- Anna-Maria Steiner
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Christine Busching
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany.
| |
Collapse
|
88
|
Agroecological Pest Management in the City: Experiences from California and Chiapas. SUSTAINABILITY 2018. [DOI: 10.3390/su10062068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
89
|
Espeland M, Breinholt J, Willmott KR, Warren AD, Vila R, Toussaint EF, Maunsell SC, Aduse-Poku K, Talavera G, Eastwood R, Jarzyna MA, Guralnick R, Lohman DJ, Pierce NE, Kawahara AY. A Comprehensive and Dated Phylogenomic Analysis of Butterflies. Curr Biol 2018; 28:770-778.e5. [DOI: 10.1016/j.cub.2018.01.061] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/21/2017] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
|
90
|
Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:703-728. [PMID: 29160609 DOI: 10.1111/tpj.13773] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
Herbivorous arthropods have interacted with plants for millions of years. During feeding they release chemical cues that allow plants to detect the attack and mount an efficient defense response. A signaling cascade triggers the expression of hundreds of genes, which encode defensive proteins and enzymes for synthesis of toxic metabolites. This direct defense is often complemented by emission of volatiles that attract beneficial parasitoids. In return, arthropods have evolved strategies to interfere with plant defenses, either by producing effectors to inhibit detection and downstream signaling steps, or by adapting to their detrimental effect. In this review, we address the current knowledge on the molecular and chemical dialog between plants and herbivores, with an emphasis on co-evolutionary aspects.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Olivier Hilfiker
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
91
|
Jahner JP, Forister ML, Parchman TL, Smilanich AM, Miller JS, Wilson JS, Walla TR, Tepe EJ, Richards LA, Quijano‐Abril MA, Glassmire AE, Dyer LA. Host conservatism, geography, and elevation in the evolution of a Neotropical moth radiation. Evolution 2017; 71:2885-2900. [DOI: 10.1111/evo.13377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua P. Jahner
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology University of Nevada Reno Nevada 89557
| | - Matthew L. Forister
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology University of Nevada Reno Nevada 89557
| | - Thomas L. Parchman
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology University of Nevada Reno Nevada 89557
| | - Angela M. Smilanich
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology University of Nevada Reno Nevada 89557
| | - James S. Miller
- Division of Invertebrate Zoology American Museum of Natural History New York New York 10024
| | | | - Thomas R. Walla
- Department of Biology Colorado Mesa University Grand Junction Colorado 81507
- Seccion Invertebrados Museo Ecuatoriano de Ciencias Naturales Quito Ecuador
| | - Eric J. Tepe
- Department of Biological Sciences University of Cincinnati Cincinnati Ohio 45221
| | - Lora A. Richards
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology University of Nevada Reno Nevada 89557
| | | | - Andrea E. Glassmire
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology University of Nevada Reno Nevada 89557
| | - Lee A. Dyer
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology University of Nevada Reno Nevada 89557
- Seccion Invertebrados Museo Ecuatoriano de Ciencias Naturales Quito Ecuador
| |
Collapse
|
92
|
Segar ST, Volf M, Isua B, Sisol M, Redmond CM, Rosati ME, Gewa B, Molem K, Dahl C, Holloway JD, Basset Y, Miller SE, Weiblen GD, Salminen JP, Novotny V. Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest. Proc Biol Sci 2017; 284:20171803. [PMID: 29118136 PMCID: PMC5698651 DOI: 10.1098/rspb.2017.1803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/09/2017] [Indexed: 11/12/2022] Open
Abstract
A long-term goal in evolutionary ecology is to explain the incredible diversity of insect herbivores and patterns of host plant use in speciose groups like tropical Lepidoptera. Here, we used standardized food-web data, multigene phylogenies of both trophic levels and plant chemistry data to model interactions between Lepidoptera larvae (caterpillars) from two lineages (Geometridae and Pyraloidea) and plants in a species-rich lowland rainforest in New Guinea. Model parameters were used to make and test blind predictions for two hectares of an exhaustively sampled forest. For pyraloids, we relied on phylogeny alone and predicted 54% of species-level interactions, translating to 79% of all trophic links for individual insects, by sampling insects from only 15% of local woody plant diversity. The phylogenetic distribution of host-plant associations in polyphagous geometrids was less conserved, reducing accuracy. In a truly quantitative food web, only 40% of pair-wise interactions were described correctly in geometrids. Polyphenol oxidative activity (but not protein precipitation capacity) was important for understanding the occurrence of geometrids (but not pyraloids) across their hosts. When both foliar chemistry and plant phylogeny were included, we predicted geometrid-plant occurrence with 89% concordance. Such models help to test macroevolutionary hypotheses at the community level.
Collapse
Affiliation(s)
- Simon T Segar
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Martin Volf
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Brus Isua
- New Guinea Binatang Research Center, PO Box 604 Madang, Madang, Papua New Guinea
| | - Mentap Sisol
- New Guinea Binatang Research Center, PO Box 604 Madang, Madang, Papua New Guinea
| | - Conor M Redmond
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Margaret E Rosati
- National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA
| | - Bradley Gewa
- New Guinea Binatang Research Center, PO Box 604 Madang, Madang, Papua New Guinea
| | - Kenneth Molem
- New Guinea Binatang Research Center, PO Box 604 Madang, Madang, Papua New Guinea
| | - Chris Dahl
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Jeremy D Holloway
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Yves Basset
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panama City, Republic of Panama
| | - Scott E Miller
- National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA
| | - George D Weiblen
- Bell Museum of Natural History and Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108-1095, USA
| | - Juha-Pekka Salminen
- Department of Chemistry, University of Turku, Vatselankatu 2, FI-20500 Turku, Finland
| | - Vojtech Novotny
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
93
|
Wininger K, Rank N. Evolutionary dynamics of interactions between plants and their enemies: comparison of herbivorous insects and pathogens. Ann N Y Acad Sci 2017; 1408:46-60. [PMID: 29125186 DOI: 10.1111/nyas.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
Plants colonized land over 400 million years ago. Shortly thereafter, organisms began to consume terrestrial plant tissue as a nutritional resource. Most plant enemies are plant pathogens or herbivores, and they impose natural selection for plants to evolve defenses. These traits generate selection pressures on enemies. Coevolution between terrestrial plants and their enemies is an important element of the evolutionary history of both groups. However, coevolutionary studies of plant-pathogen interactions have tended to focus on different research topics than plant-herbivore interactions. Specifically, studies of plant-pathogen interactions often adopt a "gene-for-gene" conceptual framework. In contrast, studies of plants and herbivores often investigate escalation or elaboration of plant defense and herbivore adaptations to overcome it. The main exceptions to the general pattern are studies that focus on small, sessile herbivores that share many features with plant pathogens, studies that incorporate both herbivores and pathogens into a single investigation, and studies that test aspects of Thompson's geographic mosaic theory for coevolution. We discuss the implications of these findings for future research.
Collapse
Affiliation(s)
- Kerry Wininger
- Department of Biology, Sonoma State University, Rohnert Park, California
| | - Nathan Rank
- Department of Biology, Sonoma State University, Rohnert Park, California
| |
Collapse
|
94
|
Cenzer ML. Maladaptive Plasticity Masks the Effects of Natural Selection in the Red-Shouldered Soapberry Bug. Am Nat 2017; 190:521-533. [DOI: 10.1086/693456] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
95
|
Wang H, Holloway JD, Janz N, Braga MP, Wahlberg N, Wang M, Nylin S. Polyphagy and diversification in tussock moths: Support for the oscillation hypothesis from extreme generalists. Ecol Evol 2017; 7:7975-7986. [PMID: 29043049 PMCID: PMC5632610 DOI: 10.1002/ece3.3350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/16/2017] [Accepted: 07/23/2017] [Indexed: 01/06/2023] Open
Abstract
Theory on plasticity driving speciation, as applied to insect-plant interactions (the oscillation hypothesis), predicts more species in clades with higher diversity of host use, all else being equal. Previous support comes mainly from specialized herbivores such as butterflies, and plasticity theory suggests that there may be an upper host range limit where host diversity no longer promotes diversification. The tussock moths (Erebidae: Lymantriinae) are known for extreme levels of polyphagy. We demonstrate that this system is also very different from butterflies in terms of phylogenetic signal for polyphagy and for use of specific host orders. Yet we found support for the generality of the oscillation hypothesis, in that clades with higher diversity of host use were found to contain more species. These clades also consistently contained the most polyphagous single species. Comparing host use in Lymantriinae with related taxa shows that the taxon indeed stands out in terms of the frequency of polyphagous species. Comparative evidence suggests that this is most probably due to its nonfeeding adults, with polyphagy being part of a resulting life history syndrome. Our results indicate that even high levels of plasticity can drive diversification, at least when the levels oscillate over time.
Collapse
Affiliation(s)
- Houshuai Wang
- Department of EntomologySouth China Agricultural UniversityGuangzhouChina
| | | | - Niklas Janz
- Department of ZoologyStockholm UniversityStockholmSweden
| | | | - Niklas Wahlberg
- Department of BiologyLaboratory of GeneticsUniversity of TurkuTurkuFinland
- Department of BiologyLund UniversityLundSweden
| | - Min Wang
- Department of EntomologySouth China Agricultural UniversityGuangzhouChina
| | - Sören Nylin
- Department of ZoologyStockholm UniversityStockholmSweden
| |
Collapse
|
96
|
Nakadai R. Species diversity of herbivorous insects: a brief review to bridge the gap between theories focusing on the generation and maintenance of diversity. Ecol Res 2017. [DOI: 10.1007/s11284-017-1500-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
97
|
Su C, Shi Q, Sun X, Ma J, Li C, Hao J, Yang Q. Dated phylogeny and dispersal history of the butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae). Sci Rep 2017; 7:8799. [PMID: 28821757 PMCID: PMC5562872 DOI: 10.1038/s41598-017-08993-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/17/2017] [Indexed: 11/29/2022] Open
Abstract
The origin and dispersal history of the large butterfly subfamily Nymphalinae are not fully understood, due to internal phylogenetic and time calibration issues. We conducted phylogenetic and dating analyses using mitochondrial and nuclear genes of biogeographically diverse groups of the Nymphalinae in order to resolve some controversial relationships and the paleobiogeographic pattern of the subfamily. Our results support the sister relationship of Vanessa (Tribe Nymphalini) and the Nymphalis-group, and the grouping of the three old-world genera (Rhinopalpa, Kallimoides and Vanessula) within Tribe Victorinini. Molecular dating analyses invoking two additional calibrations under the butterfly-host plant coevolutionary scenarios result in a relatively deeper divergence of the subfamily's two major clades (Nymphalini and the Kallimoids), compatible with the Cretaceous floral turnover scenario during the so-called Cretaceous Terrestrial Revolution. Phylobiogeographic analyses reveal that the Oriental region is probably the center of early divergences for Nymphalinae after the Cretaceous-Paleogene (K-Pg) mass extinction, followed by repeated dispersals into the rest of the Old World and the New World during various periods beginning in Eocene. The biogeographic history indicates that temperature changes and host-plant diversification may have facilitated the dispersals of this butterfly subfamily, with accelerated global colonization during the middle to late Miocene.
Collapse
Affiliation(s)
- Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- Xuzhou College of industrial technology, Xuzhou, 221140, China
| | - Qinghui Shi
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Xiaoyan Sun
- Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Junye Ma
- Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Chunxiang Li
- Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Qun Yang
- Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
98
|
Abstract
About half of the world's animal species are arthropods associated with plants, and the ability to consume plant material has been proposed to be an important trait associated with the spectacular diversification of terrestrial insects. We review the phylogenetic distribution of plant feeding in the Crustacea, the other major group of arthropods that commonly consume plants, to estimate how often plant feeding has arisen and to test whether this dietary transition is associated with higher species numbers in extant clades. We present evidence that at least 31 lineages of marine, freshwater, and terrestrial crustaceans (including 64 families and 185 genera) have independently overcome the challenges of consuming plant material. These plant-feeding clades are, on average, 21-fold more speciose than their sister taxa, indicating that a shift in diet is associated with increased net rates of diversification. In contrast to herbivorous insects, most crustaceans have very broad diets, and the increased richness of taxa that include plants in their diet likely results from access to a novel resource base rather than host-associated divergence.
Collapse
|
99
|
Abstract
Cyanide is generated in larvae of the glucosinolate-specialist Pieris rapae (Lepidoptera:Pieridae) upon ingestion of plant material containing phenylalanine-derived glucosinolates as chemical defenses. As these glucosinolates were widespread within ancient Brassicales, the ability to detoxify cyanide may therefore have been essential for the host plant shift of Pierid species from Fabales to Brassicales species giving rise to the Pierinae subfamily. Previous research identified β-cyanoalanine and thiocyanate as products of cyanide detoxification in P. rapae larvae as well as three cDNAs encoding the β-cyanoalanine synthases PrBSAS1-PrBSAS3. Here, we analyzed a total of eight species of four lepidopteran families to test if their cyanide detoxification capacity correlates with their feeding specialization. We detected β-cyanoalanine synthase activity in gut protein extracts of all six species tested, which included Pierid species with glucosinolate-containing host plants, Pierids with other hosts, and other Lepidoptera with varying food specialization. Rhodanese activity was only scarcely detectable with the highest levels appearing in the two glucosinolate-feeding Pierids. We then amplified by polymerase chain reaction (PCR) 14 cDNAs encoding β-cyanoalanine synthases from seven species. Enzyme characterization and phylogenetic analysis indicated that lepidopterans are generally equipped with one PrBSAS2 homolog with high affinity for cyanide. A second β-cyanoalanine synthase which grouped with PrBSAS3 was restricted to Pierid species, while a third variant (i.e., homologs of PrBSAS1), was only present in members of the Pierinae subfamily. These results are in agreement with the hypothesis that the host shift to Brassicales was associated with the requirement for a specialized cyanide detoxification machinery.
Collapse
|
100
|
Schweizer F, Heidel-Fischer H, Vogel H, Reymond P. Arabidopsis glucosinolates trigger a contrasting transcriptomic response in a generalist and a specialist herbivore. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 85:21-31. [PMID: 28455184 DOI: 10.1016/j.ibmb.2017.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Phytophagous insects have to deal with toxic defense compounds from their host plants. Although it is known that insects have evolved genes and mechanisms to detoxify plant allochemicals, how specialist and generalist precisely respond to specific secondary metabolites at the molecular level is less understood. Here we studied the larval performance and transcriptome of the generalist moth Heliothis virescens and the specialist butterfly Pieris brassicae feeding on Arabidopsis thaliana genotypes with different glucosinolate (GS) levels. H. virescens larvae gained significantly more weight on the GS-deficient mutant quadGS compared to wild-type (Col-0) plants. On the contrary, P. brassicae was unaffected by the presence of GS and performed equally well on both genotypes. Strikingly, there was a considerable differential gene expression in H. virescens larvae feeding on Col-0 compared to quadGS. In contrast, compared to H. virescens, P. brassicae displayed a much-reduced transcriptional activation when fed on both plant genotypes. Transcripts coding for putative detoxification enzymes were significantly upregulated in H. virescens, along with digestive enzymes and transposable elements. These data provide an unprecedented view on transcriptional changes that are specifically activated by GS and illustrate differential molecular responses that are linked to adaptation to diet in lepidopteran herbivores.
Collapse
Affiliation(s)
- Fabian Schweizer
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|