51
|
Das Bhowmik A, Patil SJ, Deshpande DV, Bhat V, Dalal A. Novel splice-site variant of UCHL1 in an Indian family with autosomal recessive spastic paraplegia-79. J Hum Genet 2018; 63:927-933. [PMID: 29735986 DOI: 10.1038/s10038-018-0463-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 01/01/2023]
Abstract
Spastic Paraplegia-79 (SPG79) is an autosomal recessive type of childhood onset complicated by hereditary spastic paraplegia. SPG79 is characterized by spasticity, paraplegia, optic atrophy, cerebellar signs, and other variable clinical features. Recessive, disease causing variants in Ubiquitin C-terminal hydrolase-L1 (UCHL1) gene have been implicated as a cause for SPG79 in two families till now. In this study, we report on a third family of SPG79 with two similarly affected siblings, harboring a novel homozygous splice-site variant in the UCHL1 gene (NM_004181.4: c.459+2T>C). The variant was identified by whole-exome sequencing and validated by Sanger sequencing in the family.
Collapse
Affiliation(s)
- Aneek Das Bhowmik
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Siddaramappa J Patil
- Department of Medical Genetics, Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, India
| | | | - Venkatraman Bhat
- Department of Radiology, Mazumdar-Shaw Medical Center, Narayana Health City, Bangalore, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
52
|
O’Connor E, Phan V, Cordts I, Cairns G, Hettwer S, Cox D, Lochmüller H, Roos A. MYO9A deficiency in motor neurons is associated with reduced neuromuscular agrin secretion. Hum Mol Genet 2018; 27:1434-1446. [PMID: 29462312 PMCID: PMC5991207 DOI: 10.1093/hmg/ddy054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Congenital myasthenic syndromes (CMS) are a group of rare, inherited disorders characterized by compromised function of the neuromuscular junction, manifesting with fatigable muscle weakness. Mutations in MYO9A were previously identified as causative for CMS but the precise pathomechanism remained to be characterized. On the basis of the role of MYO9A as an actin-based molecular motor and as a negative regulator of RhoA, we hypothesized that loss of MYO9A may affect the neuronal cytoskeleton, leading to impaired intracellular transport. To investigate this, we used MYO9A-depleted NSC-34 cells (mouse motor neuron-derived cells), revealing altered expression of a number of cytoskeletal proteins important for neuron structure and intracellular transport. On the basis of these findings, the effect on protein transport was determined using a vesicular recycling assay which revealed impaired recycling of a neuronal growth factor receptor. In addition, an unbiased approach utilizing proteomic profiling of the secretome revealed a key role for defective intracellular transport affecting proper protein secretion in the pathophysiology of MYO9A-related CMS. This also led to the identification of agrin as being affected by the defective transport. Zebrafish with reduced MYO9A orthologue expression were treated with an artificial agrin compound, ameliorating defects in neurite extension and improving motility. In summary, loss of MYO9A affects the neuronal cytoskeleton and leads to impaired transport of proteins, including agrin, which may provide a new and unexpected treatment option.
Collapse
Affiliation(s)
- Emily O’Connor
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Dortmund, Germany
| | - Isabell Cordts
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - George Cairns
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Daniel Cox
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Dortmund, Germany
| |
Collapse
|
53
|
C-Terminal Farnesylation of UCH-L1 Plays a Role in Transport of Epstein-Barr Virus Primary Oncoprotein LMP1 to Exosomes. mSphere 2018; 3:mSphere00030-18. [PMID: 29435490 PMCID: PMC5806207 DOI: 10.1128/msphere.00030-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Exosomes are small vesicles that cells secrete into the extracellular space, and there is increasing evidence that they have pivotal roles in cell-to-cell communication in malignancy. It is reported also that EBV-associated malignant cells, including those derived from nasopharyngeal carcinoma (NPC) and B-cell lymphoma, secrete exosomes. These EBV-related exosomes may contain viral products such as latent membrane protein 1 (LMP1) and may contribute to cancer progression. The aim of this study was to investigate the mechanism by which those viral products are loaded in exosomes. In this study, we show for the first time that ubiquitin C-terminal hydrolase-L1 (UCH-L1) and its C-terminal farnesylation, a posttranslational lipid modification, contribute to this mechanism. Our results also suggest that inhibition of UCH-L1 farnesylation is a potential therapeutic target against cancer metastasis and invasion. Increasing evidence shows that exosomes are key regulators in cancer cell-to-cell communication. Several reports on Epstein-Barr virus (EBV)-related malignancies demonstrate that latent membrane protein 1 (LMP1) secreted by exosomes derived from EBV- or LMP1-positive cells can promote cancer progression and metastasis. However, the mechanism by which LMP1 is loaded into exosomes is still poorly understood. Here, we examined whether the process of LMP1 loading into exosomes is linked to the multifunctional molecule of the ubiquitin system—ubiquitin C-terminal hydrolase-L1 (UCH-L1). For the first time, we demonstrate that LMP1 is physically associated with UCH-L1 and that directing of LMP1 to exosomes is mediated by C-terminal farnesylation of UCH-L1. Additionally, we found that the FTI-277 farnesyltransferase inhibitor reduces motility- and anchorage-independent growth of EBV-positive cells in functional assays. On the basis of our results, we conclude that C-terminal farnesylation of UCH-L1 is one of the key mechanisms by which LMP1 is sorted to exosomes. We hypothesize that inhibition of farnesylation with specific small-molecule inhibitors blocks exosome-mediated transfer of prometastatic molecules such as LMP1 during cancer cell-to-cell communications and thereby impedes the process of cancer invasion. IMPORTANCE Exosomes are small vesicles that cells secrete into the extracellular space, and there is increasing evidence that they have pivotal roles in cell-to-cell communication in malignancy. It is reported also that EBV-associated malignant cells, including those derived from nasopharyngeal carcinoma (NPC) and B-cell lymphoma, secrete exosomes. These EBV-related exosomes may contain viral products such as latent membrane protein 1 (LMP1) and may contribute to cancer progression. The aim of this study was to investigate the mechanism by which those viral products are loaded in exosomes. In this study, we show for the first time that ubiquitin C-terminal hydrolase-L1 (UCH-L1) and its C-terminal farnesylation, a posttranslational lipid modification, contribute to this mechanism. Our results also suggest that inhibition of UCH-L1 farnesylation is a potential therapeutic target against cancer metastasis and invasion.
Collapse
|
54
|
Kim HJ, Tsao JW, Stanfill AG. The current state of biomarkers of mild traumatic brain injury. JCI Insight 2018; 3:97105. [PMID: 29321373 DOI: 10.1172/jci.insight.97105] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a common occurrence, with over 3 million cases reported every year in the United States. While research into the underlying pathophysiology is ongoing, there is an urgent need for better clinical guidelines that allow more consistent diagnosis of mTBI and ensure safe return-to-play timelines for athletes, nonathletes, and military personnel. The development of a suite of biomarkers that indicate the pathogenicity of mTBI could lead to clinically useful tools for establishing both diagnosis and prognosis. Here, we review the current evidence for mTBI biomarkers derived from investigations of the multifactorial pathology of mTBI. While the current literature lacks the scope and size for clarification of these biomarkers' clinical utility, early studies have identified some promising candidates.
Collapse
Affiliation(s)
- Han Jun Kim
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jack W Tsao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Neurology, Memphis Veterans Affairs Medical Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Ansley Grimes Stanfill
- Department of Acute and Tertiary Care, College of Nursing, and.,Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
55
|
Radón V, Czesla M, Reichelt J, Fehlert J, Hammel A, Rosendahl A, Knop JH, Wiech T, Wenzel UO, Sachs M, Reinicke AT, Stahl RA, Meyer-Schwesinger C. Ubiquitin C-Terminal Hydrolase L1 is required for regulated protein degradation through the ubiquitin proteasome system in kidney. Kidney Int 2018; 93:110-127. [DOI: 10.1016/j.kint.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 11/30/2022]
|
56
|
Investigation of UCH-L1 levels in ischemic stroke, intracranial hemorrhage and metabolic disorder induced impaired consciousness. Am J Emerg Med 2017; 35:1895-1898. [DOI: 10.1016/j.ajem.2017.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 06/21/2017] [Indexed: 11/21/2022] Open
|
57
|
Gao H, Hartnett S, Li Y. Ubiquitin C-Terminal Hydrolase L1 regulates myoblast proliferation and differentiation. Biochem Biophys Res Commun 2017; 492:96-102. [PMID: 28803986 DOI: 10.1016/j.bbrc.2017.08.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/08/2017] [Indexed: 01/03/2023]
Abstract
Skeletal muscles are dynamic tissues that possess regenerative abilities, which require multiple processes and regulatory factors. Ubiquitin C-Terminal Hydrolase L1 (UCHL1), which is primarily expressed in neuronal tissues, was upregulated in skeletal muscles in disease conditions but its functional role in skeletal muscles is unknown. Using mouse myoblast cells C2C12 as an in vitro model, this study reported that UCHL1 elicits different regulation in myoblast cell proliferation and differentiation. We first observed that UCHL1 protein level was continuously declined during cell differentiation. Gene knockdown of UCHL1 by siRNA resulted in a significant decrease in cell proliferation but marked acceleration of cell differentiation and myotube formation. Meanwhile, UCHL1 gene knockdown upregulated myogenic factors myoD and Myogenin (MyoG). In mice, UCHL1 was significantly upregulated in denervated skeletal muscle. Overall, these novel data suggest that UCHL1 may play a role in myogenesis by promoting myoblast proliferation and inhibiting differentiation.
Collapse
Affiliation(s)
- Hongbo Gao
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark Street, Lee Med Building, Vermillion, SD 57069, USA
| | - Sigurd Hartnett
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark Street, Lee Med Building, Vermillion, SD 57069, USA
| | - Yifan Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark Street, Lee Med Building, Vermillion, SD 57069, USA.
| |
Collapse
|
58
|
Luo Y, He J, Yang C, Orange M, Ren X, Blair N, Tan T, Yang JM, Zhu H. UCH-L1 promotes invasion of breast cancer cells through activating Akt signaling pathway. J Cell Biochem 2017. [PMID: 28636190 DOI: 10.1002/jcb.26232] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As a de-ubiquitin enzyme, ubiquitin C-terminal hydrolase (UCH)-L1 has been shown to be overexpressed in several human cancers. However, the function of UCH-L1 in invasion of breast cancers is still unclear. Here we report that the expression of UCH-L1 is significantly higher in cancer cells with higher invasive ability. While ectopic UCH-L1 expression failed to alter cell proliferation in MCF-7 cells, it caused a significant upregulation of cellular invasion. Furthermore, siRNA mediated knockdown of UCH-L1 led to suppression of invasion in UCH-L1 overexpressing MCF-7 cells. In order to identify molecular mechanisms underlying these observations, a novel in vitro proximity-dependent biotin identification method was developed by fusing UCH-L1 protein with a bacterial biotin ligase (Escherichia coli BirA R118G, BioID). Streptavidin magnetic beads pulldown assay revealed that UCH-L1 can interact with Akt in MCF-7 cells. Pulldown assay with His tagged recombinant UCH-L1 protein and cell lysate from MCF-7 cells further demonstrated that UCH-L1 preferentially binds to Akt2 for Akt activation. Finally, we demonstrated that overexpression of UCH-L1 led to activation of Akt as evidenced by upregulation of phosphorylated Akt. Thus, these findings demonstrated that UCH-L1 promotes invasion of breast cancer cells and might serve as a potential therapeutic target for treatment of human patients with breast cancers.
Collapse
Affiliation(s)
- Yanhong Luo
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Jianfeng He
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Chunlin Yang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew Orange
- Department of Physical Education and Human Performance, Central Connecticut State University, New Britain, Connecticut
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Nick Blair
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
59
|
Hosseinibarkooie S, Schneider S, Wirth B. Advances in understanding the role of disease-associated proteins in spinal muscular atrophy. Expert Rev Proteomics 2017. [PMID: 28635376 DOI: 10.1080/14789450.2017.1345631] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is a neurodegenerative disorder characterized by alpha motor neuron loss in the spinal cord due to reduced survival motor neuron (SMN) protein level. While the genetic basis of SMA is well described, the specific molecular pathway underlying SMA is still not fully understood. Areas covered: This review discusses the recent advancements in understanding the molecular pathways in SMA using different omics approaches and genetic modifiers identified in both vertebrate and invertebrate systems. The findings that are summarized in this article were deduced from original articles and reviews with a particular focus on the latest advancements in the field. Expert commentary: The identification of genetic modifiers such as PLS3 and NCALD in humans or of SMA modulators such as Elavl4 (HuD), Copa, Uba1, Mapk10 (Jnk3), Nrxn2 and Tmem41b (Stasimon) in various SMA animal models improved our knowledge of impaired cellular pathways in SMA. Inspiration from modifier genes and their functions in motor neuron and neuromuscular junctions may open a new avenue for future SMA combinatorial therapies.
Collapse
Affiliation(s)
- Seyyedmohsen Hosseinibarkooie
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany
| | - Svenja Schneider
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany
| | - Brunhilde Wirth
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany.,d Center for Rare Diseases Cologne , University Hospital of Cologne, University of Cologne , Cologne , Germany
| |
Collapse
|
60
|
Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 2017; 473:2453-62. [PMID: 27515257 PMCID: PMC4980807 DOI: 10.1042/bcj20160082] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology.
Collapse
|
61
|
In vivo transduction of neurons with TAT-UCH-L1 protects brain against controlled cortical impact injury. PLoS One 2017; 12:e0178049. [PMID: 28542502 PMCID: PMC5443532 DOI: 10.1371/journal.pone.0178049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Many mechanisms or pathways are involved in secondary post-traumatic brain injury, such as the ubiquitin-proteasome pathway (UPP), axonal degeneration and neuronal cell apoptosis. UCH-L1 is a protein that is expressed in high levels in neurons and may have important roles in the UPP, autophagy and axonal integrity. The current study aims to evaluate the role of UCH-L1 in post-traumatic brain injury (TBI) and its potential therapeutic effects. A novel protein was constructed that fused the protein transduction domain (PTD) of trans-activating transduction (TAT) protein with UCH-L1 (TAT-UCH-L1) in order to promote neuronal transduction. The TAT-UCH-L1 protein was readily detected in brain by immunoblotting and immunohistochemistry after i.p. administration in mice. TBI was induced in mice using the controlled cortical impact (CCI) model. TAT-UCH-L1 treatment significantly attenuated K48-linkage polyubiquitin (polyUb)-protein accumulation in hippocampus after CCI compared to vehicle controls, but had no effects on K65-linkage polyUb-protein. TAT-UCH-L1 treatment also attenuated expression of Beclin-1 and LC3BII after CCI. TAT-UCH-L1-treated mice had significantly increased spared tissue volumes and increased survival of CA3 neurons 21 d after CCI compared to control vehicle-treated mice. Axonal injury, detected by APP immunohistochemistry, was reduced in thalamus 24 h and 21 d after CCI in TAT-UCH-L1-treated mice. These results suggest that TAT-UCH-L1 treatment improves function of the UPP and decreases activation of autophagy after CCI. Furthermore, TAT-UCH-L1 treatment also attenuates axonal injury and increases hippocampal neuronal survival after CCI. Taken together these results suggest that UCH-L1 may play an important role in the pathogenesis of cell death and axonal injury after TBI.
Collapse
|
62
|
Rydning SL, Backe PH, Sousa MML, Iqbal Z, Øye AM, Sheng Y, Yang M, Lin X, Slupphaug G, Nordenmark TH, Vigeland MD, Bjørås M, Tallaksen CM, Selmer KK. Novel UCHL1 mutations reveal new insights into ubiquitin processing. Hum Mol Genet 2017; 26:1031-1040. [PMID: 28007905 DOI: 10.1093/hmg/ddw391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 has been implicated in early-onset progressive neurodegeneration (MIM no. 615491), so far only in one family. In this study a second family is characterized, and the functional consequences of the identified mutations in UCHL1 are explored. Three siblings developed childhood-onset optic atrophy, followed by spasticity and ataxia. Whole exome sequencing identified compound heterozygous variants in UCHL1, c.533G > A (p.Arg178Gln) and c.647C > A (p.Ala216Asp), cosegregating with the phenotype. Enzymatic activity of purified recombinant proteins analysed by ubiquitin hydrolase assays showed a 4-fold increased hydrolytic activity of the recombinant UCHL1 mutant Arg178Gln compared to wild type, whereas the Ala216Asp protein was insoluble. Structural 3D analysis of UCHL1 by computer modelling suggests that Arg178 is a rate-controlling residue in catalysis which is partly abolished in the Arg178Gln mutant and, consequently, the Arg178Gln mutant increases the enzymatic turnover. UCHL1 protein levels in fibroblasts measured by targeted mass spectrometry showed a total amount of UCHL1 in control fibroblasts about 4-fold higher than in the patients. Hence, studies of the identified missense variants reveal surprisingly different functional consequences as the insoluble Ala216Asp variant leads to loss of function, whereas the Arg178Gln leads to increased enzyme activity. The reported patients have remarkably preserved cognition, and we propose that the increased enzyme activity of the Arg178Gln variant offers a protective effect on cognitive function. This study establishes the importance of UCHL1 in neurodegeneration, provides new mechanistic insight about ubiquitin processing, and underlines the complexity of the different roles of UCHL1.
Collapse
Affiliation(s)
- Siri L Rydning
- Department of Neurology, Oslo University Hospital, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Paul H Backe
- Department of Microbiology, Oslo University Hospital, Norway.,Department of Medical Biochemistry, University of Oslo, Norway
| | - Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, Norway
| | - Ane-Marte Øye
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Norway.,Department of Medical Biochemistry, University of Oslo, Norway
| | - Xiaolin Lin
- Department of Microbiology, Oslo University Hospital, Norway.,Department of Medical Biochemistry, University of Oslo, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Proteomics and Metabolomics Core Facility (PROMEC), NTNU, Trondheim, Norway
| | - Tonje H Nordenmark
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Norway
| | - Magnus D Vigeland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Magnar Bjørås
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chantal M Tallaksen
- Department of Neurology, Oslo University Hospital, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Kaja K Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| |
Collapse
|
63
|
Graham SH, Liu H. Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia. Ageing Res Rev 2017; 34:30-38. [PMID: 27702698 DOI: 10.1016/j.arr.2016.09.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
Abstract
The ubiquitin proteasome pathway (UPP) is essential for removing abnormal proteins and preventing accumulation of potentially toxic proteins within the neuron. UPP dysfunction occurs with normal aging and is associated with abnormal accumulation of protein aggregates within neurons in neurodegenerative diseases. Ischemia disrupts UPP function and thus may contribute to UPP dysfunction seen in the aging brain and in neurodegenerative diseases. Ubiquitin carboxy-terminal hydrolase L1 (UCHL1), an important component of the UPP in the neuron, is covalently modified and its activity inhibited by reactive lipids produced after ischemia. As a result, degradation of toxic proteins is impaired which may exacerbate neuronal function and cell death in stroke and neurodegenerative diseases. Preserving or restoring UCHL1 activity may be an effective therapeutic strategy in stroke and neurodegenerative diseases.
Collapse
|
64
|
Blondelle J, Shapiro P, Domenighetti AA, Lange S. Cullin E3 Ligase Activity Is Required for Myoblast Differentiation. J Mol Biol 2017; 429:1045-1066. [PMID: 28238764 DOI: 10.1016/j.jmb.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 01/06/2023]
Abstract
The role of cullin E3-ubiquitin ligases for muscle homeostasis is best known during muscle atrophy, as the cullin-1 substrate adaptor atrogin-1 is among the most well-characterized muscle atrogins. We investigated whether cullin activity was also crucial during terminal myoblast differentiation and aggregation of acetylcholine receptors for the establishment of neuromuscular junctions in vitro. The activity of cullin E3-ligases is modulated through post-translational modification with the small ubiquitin-like modifier nedd8. Using either the Nae1 inhibitor MLN4924 (Pevonedistat) or siRNA against nedd8 in early or late stages of differentiation on C2C12 myoblasts, and primary satellite cells from mouse and human, we show that cullin E3-ligase activity is necessary for each step of the muscle cell differentiation program in vitro. We further investigate known transcriptional repressors for terminal muscle differentiation, namely ZBTB38, Bhlhe41, and Id1. Due to their identified roles for terminal muscle differentiation, we hypothesize that the accumulation of these potential cullin E3-ligase substrates may be partially responsible for the observed phenotype. MLN4924 is currently undergoing clinical trials in cancer patients, and our experiments highlight concerns on the homeostasis and regenerative capacity of muscles in these patients who often experience cachexia.
Collapse
Affiliation(s)
- Jordan Blondelle
- Division of Cardiology, University of California San Diego, La Jolla, CA-92093 USA
| | - Paige Shapiro
- Division of Cardiology, University of California San Diego, La Jolla, CA-92093 USA
| | - Andrea A Domenighetti
- Rehabilitation Institute of Chicago, Chicago, IL-60611 USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL-60611, USA
| | - Stephan Lange
- Division of Cardiology, University of California San Diego, La Jolla, CA-92093 USA.
| |
Collapse
|
65
|
Posti JP, Hossain I, Takala RSK, Liedes H, Newcombe V, Outtrim J, Katila AJ, Frantzén J, Ala-Seppälä H, Coles JP, Kyllönen A, Maanpää HR, Tallus J, Hutchinson PJ, van Gils M, Menon DK, Tenovuo O. Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 Are Not Specific Biomarkers for Mild CT-Negative Traumatic Brain Injury. J Neurotrauma 2017; 34:1427-1438. [PMID: 27841729 DOI: 10.1089/neu.2016.4442] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) have been studied as potential biomarkers of mild traumatic brain injury (mTBI). We report the levels of GFAP and UCH-L1 in patients with acute orthopedic injuries without central nervous system involvement, and relate them to the type of extracranial injury, head magnetic resonance imaging (MRI) findings, and levels of GFAP and UCH-L1 in patients with CT-negative mTBI. Serum UCH-L1 and GFAP were longitudinally measured from 73 patients with acute orthopedic injury on arrival and on days 1, 2, 3, 7 after admission, and on the follow-up visit 3-10 months after the injury. The injury types were recorded, and 71% patients underwent also head MRI. The results were compared with those found in patients with CT-negative mTBI (n = 93). The levels of GFAP were higher in patients with acute orthopedic trauma than in patients with CT-negative mTBI (p = 0.026) on arrival; however, no differences were found on the following days. The levels of UCH-L1 were not significantly different between these two groups at any measured point of time. Levels of GFAP and UCH-L1 were not able to distinguish patients with CT-negative mTBI from patients with orthopedic trauma. Patients with orthopedic trauma and high levels of UCH-L1 or GFAP values may be falsely diagnosed as having a concomitant mTBI, predisposing them to unwarranted diagnostics and unnecessary brain imaging. This casts a significant doubt on the diagnostic value of GFAP and UCH-L1 in cases with mTBI.
Collapse
Affiliation(s)
- Jussi P Posti
- 1 Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital , Turku, Finland
- 2 Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital , Turku, Finland
- 3 Department of Neurology, University of Turku , Turku, Finland
| | | | - Riikka S K Takala
- 4 Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku , Turku, Finland
| | - Hilkka Liedes
- 5 Systems Medicine, VTT Technical Research Centre of Finland Ltd , Tampere, Finland
| | - Virginia Newcombe
- 6 Division of Anaesthesia, Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Joanne Outtrim
- 6 Division of Anaesthesia, Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Ari J Katila
- 4 Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku , Turku, Finland
| | - Janek Frantzén
- 1 Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital , Turku, Finland
- 2 Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital , Turku, Finland
| | | | - Jonathan P Coles
- 7 Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Anna Kyllönen
- 3 Department of Neurology, University of Turku , Turku, Finland
| | | | - Jussi Tallus
- 3 Department of Neurology, University of Turku , Turku, Finland
| | - Peter J Hutchinson
- 7 Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mark van Gils
- 5 Systems Medicine, VTT Technical Research Centre of Finland Ltd , Tampere, Finland
| | - David K Menon
- 6 Division of Anaesthesia, Department of Medicine, University of Cambridge , Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Olli Tenovuo
- 2 Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital , Turku, Finland
- 3 Department of Neurology, University of Turku , Turku, Finland
| |
Collapse
|
66
|
Sheehan P, Waites CL. Coordination of synaptic vesicle trafficking and turnover by the Rab35 signaling network. Small GTPases 2017; 10:54-63. [PMID: 28129039 PMCID: PMC6343537 DOI: 10.1080/21541248.2016.1270392] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab35 and the Rab35 network of GAPs, GEFs, and effectors are important regulators of membrane trafficking for a variety of cellular processes, from cytokinesis and phagocytosis to neurite outgrowth. In the past five years, components of this signaling network have also been implicated as critical mediators of synaptic vesicle (SV) recycling and protein homeostasis. Recent studies by several groups, including our own, have demonstrated that Rab35-mediated endosomal sorting is required for the degradation of SV proteins via the ESCRT pathway, thereby eliminating old or damaged proteins from the SV pool. This sorting process is regulated by Rab35 activation in response to neuronal activity, and potentially by an antagonistic signaling relationship between Rab35 and the small GTPase Arf6 that directs SVs into distinct recycling pathways depending on neuronal activity levels. Furthermore, mutations in genes encoding Rab35 regulatory proteins are emerging as causative factors in human neurologic and neurodegenerative diseases, consistent with their important roles in synaptic and neuronal health. Here, we review these recent findings and offer our perspective on how the Rab35 signaling network functions to maintain neurotransmission and synaptic fitness.
Collapse
Affiliation(s)
- Patricia Sheehan
- a Department of Pathology and Cell Biology , Columbia University Medical Center , New York , NY , USA
| | - Clarissa L Waites
- a Department of Pathology and Cell Biology , Columbia University Medical Center , New York , NY , USA.,b Department of Neuroscience , Columbia University Medical Center , New York , NY , USA
| |
Collapse
|
67
|
Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X. Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases. Front Aging Neurosci 2016; 8:303. [PMID: 28018215 PMCID: PMC5156861 DOI: 10.3389/fnagi.2016.00303] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is one of the major protein degradation pathways, where abnormal UPS function has been observed in cancer and neurological diseases. Many neurodegenerative diseases share a common pathological feature, namely intracellular ubiquitin-positive inclusions formed by aggregate-prone neurotoxic proteins. This suggests that dysfunction of the UPS in neurodegenerative diseases contributes to the accumulation of neurotoxic proteins and to instigate neurodegeneration. Here, we review recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Timothy Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Ying Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen UniversityXiamen, China; Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CAUSA
| | - Xin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University Xiamen, China
| |
Collapse
|
68
|
A Novel Iron Chelator-Radical Scavenger Ameliorates Motor Dysfunction and Improves Life Span and Mitochondrial Biogenesis in SOD1G93A ALS Mice. Neurotox Res 2016; 31:230-244. [DOI: 10.1007/s12640-016-9677-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
|
69
|
Zetterberg H, Blennow K. Fluid biomarkers for mild traumatic brain injury and related conditions. Nat Rev Neurol 2016; 12:563-74. [DOI: 10.1038/nrneurol.2016.127] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
70
|
Genç B, Jara JH, Schultz MC, Manuel M, Stanford MJ, Gautam M, Klessner JL, Sekerkova G, Heller DB, Cox GA, Heckman CJ, DiDonato CJ, Özdinler PH. Absence of UCHL 1 function leads to selective motor neuropathy. Ann Clin Transl Neurol 2016; 3:331-45. [PMID: 27231703 PMCID: PMC4863746 DOI: 10.1002/acn3.298] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/29/2016] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the role of ubiquitin C-terminal hydrolase-L1 (UCHL1) for motor neuron circuitry and especially in spinal motor neuron (SMN) health, function, and connectivity. METHODS Since mutations in UCHL1 gene leads to motor dysfunction in patients, we investigated the role of UCHL1 on SMN survival, axon health, and connectivity with the muscle, by employing molecular and cellular marker expression analysis and electrophysiological recordings, in healthy wild-type and Uchl1 (nm3419) (UCHL1-/-) mice, which lack all UCHL1 function. RESULTS There is pure motor neuropathy with selective degeneration of the motor, but not sensory axons in the absence of UCHL1 function. Neuromuscular junctions (NMJ) are impaired in muscle groups that are innervated by slow-twitch or fast-twitch SMN. However, unlike corticospinal motor neurons, SMN cell bodies remain intact with no signs of elevated endoplasmic reticulum (ER) stress. INTERPRETATION Presence of NMJ defects and progressive retrograde axonal degeneration in the absence of major SMN soma loss suggest that defining pathology as a function of neuron number is misleading and that upper and lower motor neurons utilize UCHL1 function in different cellular events. In line with findings in patients with mutations in UCHL1 gene, our results suggest a unique role of UCHL1, especially for motor neuron circuitry. SMN require UCHL1 to maintain NMJ and motor axon health, and that observed motor dysfunction in the absence of UCHL1 is not due to SMN loss, but mostly due to disintegrated circuitry.
Collapse
Affiliation(s)
- Barış Genç
- Department of Neurology and Clinical Neurological Sciences Northwestern University, Feinberg School of Medicine Chicago Illinois USA
| | - Javier H Jara
- Department of Neurology and Clinical Neurological Sciences Northwestern University, Feinberg School of Medicine Chicago Illinois USA
| | - Megan C Schultz
- Department of Neurology and Clinical Neurological Sciences Northwestern University, Feinberg School of Medicine Chicago Illinois USA
| | - Marin Manuel
- Department of Physiology Northwestern University, Feinberg School of Medicine Chicago Illinois USA; UMR 8119 CNRS/Paris Descartes University Paris France
| | - Macdonell J Stanford
- Department of Neurology and Clinical Neurological Sciences Northwestern University, Feinberg School of Medicine Chicago Illinois USA
| | - Mukesh Gautam
- Department of Neurology and Clinical Neurological Sciences Northwestern University, Feinberg School of Medicine Chicago Illinois USA
| | - Jodi L Klessner
- Department of Neurology and Clinical Neurological Sciences Northwestern University, Feinberg School of Medicine Chicago Illinois USA
| | - Gabriella Sekerkova
- Department of Physiology Northwestern University, Feinberg School of Medicine Chicago Illinois USA
| | - Daniel B Heller
- Department of Neurology and Clinical Neurological Sciences Northwestern University, Feinberg School of Medicine Chicago Illinois USA
| | | | - Charles J Heckman
- Department of Medicine and Rehabilitation Northwestern University Feinberg School of Medicine Chicago Illinois USA; Department of Physical Therapy and Movement Sciences at Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Christine J DiDonato
- Department of Pediatrics Feinberg School of Medicine, Northwestern University Chicago Illinois USA; Human Molecular Genetics Program Ann & Robert H. Lurie Children's Hospital of Chicago Research Center Chicago Illinois USA
| | - P Hande Özdinler
- Department of Neurology and Clinical Neurological Sciences Northwestern University, Feinberg School of Medicine Chicago Illinois USA; Robert H. Lurie Cancer Center Northwestern University Chicago Illinois USA; Cognitive Neurology and Alzheimer's Disease Center Northwestern University Chicago Illinois USA
| |
Collapse
|
71
|
Scurry AN, Heredia DJ, Feng CY, Gephart GB, Hennig GW, Gould TW. Structural and Functional Abnormalities of the Neuromuscular Junction in the Trembler-J Homozygote Mouse Model of Congenital Hypomyelinating Neuropathy. J Neuropathol Exp Neurol 2016; 75:334-46. [PMID: 26921370 DOI: 10.1093/jnen/nlw004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in peripheral myelin protein 22 (PMP22) result in the most common form of Charcot-Marie-Tooth (CMT) disease, CMT1A. This hereditary peripheral neuropathy is characterized by dysmyelination of peripheral nerves, reduced nerve conduction velocity, and muscle weakness. APMP22 point mutation in L16P (leucine 16 to proline) underlies a form of human CMT1A as well as the Trembler-J mouse model of CMT1A. Homozygote Trembler-J mice (Tr(J)) die early postnatally, fail to make peripheral myelin, and, therefore, are more similar to patients with congenital hypomyelinating neuropathy than those with CMT1A. Because recent studies of inherited neuropathies in humans and mice have demonstrated that dysfunction and degeneration of neuromuscular synapses or junctions (NMJs) often precede impairments in axonal conduction, we examined the structure and function of NMJs in Tr(J)mice. Although synapses appeared to be normally innervated even in end-stage Tr(J)mice, the growth and maturation of the NMJs were altered. In addition, the amplitudes of nerve-evoked muscle endplate potentials were reduced and there was transmission failure during sustained nerve stimulation. These results suggest that the severe congenital hypomyelinating neuropathy that characterizes Tr(J)mice results in structural and functional deficits of the developing NMJ.
Collapse
Affiliation(s)
- Alexandra N Scurry
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Dante J Heredia
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Cheng-Yuan Feng
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Gregory B Gephart
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Grant W Hennig
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Thomas W Gould
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada.
| |
Collapse
|
72
|
Gong B, Radulovic M, Figueiredo-Pereira ME, Cardozo C. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer's Disease and Spinal Cord Injury. Front Mol Neurosci 2016; 9:4. [PMID: 26858599 PMCID: PMC4727241 DOI: 10.3389/fnmol.2016.00004] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer’s disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aβ accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates β-secretase thus targeting it for proteasomal degradation and reducing generation of Aβ. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick’s disease and Down’s syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions.
Collapse
Affiliation(s)
- Bing Gong
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA
| | - Miroslav Radulovic
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, and the Graduate School and University Center, The City University of New York New York, NY, USA
| | - Christopher Cardozo
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| |
Collapse
|
73
|
Fuller HR, Mandefro B, Shirran SL, Gross AR, Kaus AS, Botting CH, Morris GE, Sareen D. Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Have Reduced Expression of Proteins Important in Neuronal Development. Front Cell Neurosci 2016; 9:506. [PMID: 26793058 PMCID: PMC4707261 DOI: 10.3389/fncel.2015.00506] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/15/2015] [Indexed: 11/15/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disease primarily characterized by degeneration of spinal motor neurons, and caused by reduced levels of the SMN protein. Previous studies to understand the proteomic consequences of reduced SMN have mostly utilized patient fibroblasts and animal models. We have derived human motor neurons from type I SMA and healthy controls by creating their induced pluripotent stem cells (iPSCs). Quantitative mass spectrometry of these cells revealed increased expression of 63 proteins in control motor neurons compared to respective fibroblasts, whereas 30 proteins were increased in SMA motor neurons vs. their fibroblasts. Notably, UBA1 was significantly decreased in SMA motor neurons, supporting evidence for ubiquitin pathway defects. Subcellular distribution of UBA1 was predominantly cytoplasmic in SMA motor neurons in contrast to nuclear in control motor neurons; suggestive of neurodevelopmental abnormalities. Many of the proteins that were decreased in SMA motor neurons, including beta III-tubulin and UCHL1, were associated with neurodevelopment and differentiation. These neuron-specific consequences of SMN depletion were not evident in fibroblasts, highlighting the importance of iPSC technology. The proteomic profiles identified here provide a useful resource to explore the molecular consequences of reduced SMN in motor neurons, and for the identification of novel biomarker and therapeutic targets for SMA.
Collapse
Affiliation(s)
- Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, The Robert Jones and Agnes Hunt Orthopaedic HospitalOswestry, UK; Institute for Science and Technology in Medicine, Keele UniversityStaffordshire, UK
| | - Berhan Mandefro
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA; iPSC Core, The David and Janet Polak Foundation Stem Cell Core LaboratoryLos Angeles, CA, USA
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews Fife, UK
| | - Andrew R Gross
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Anjoscha S Kaus
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Catherine H Botting
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews Fife, UK
| | - Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, The Robert Jones and Agnes Hunt Orthopaedic HospitalOswestry, UK; Institute for Science and Technology in Medicine, Keele UniversityStaffordshire, UK
| | - Dhruv Sareen
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA; iPSC Core, The David and Janet Polak Foundation Stem Cell Core LaboratoryLos Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| |
Collapse
|
74
|
It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2756068. [PMID: 26881020 PMCID: PMC4736377 DOI: 10.1155/2016/2756068] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency of degradative systems. One of the most important cellular proteolytic systems responsible for the removal of oxidized proteins in the cytosol and in the nucleus is the proteasomal system. Several studies have demonstrated the impairment of the proteasome in AD thus suggesting a direct link between accumulation of oxidized/misfolded proteins and reduction of this clearance system. In this review we discuss the impairment of the proteasome system as a consequence of oxidative stress and how this contributes to AD neuropathology. Further, we focus the attention on the oxidative modifications of a key component of the ubiquitin-proteasome pathway, UCHL1, which lead to the impairment of its activity.
Collapse
|
75
|
Kulbe JR, Geddes JW. Current status of fluid biomarkers in mild traumatic brain injury. Exp Neurol 2016; 275 Pt 3:334-352. [PMID: 25981889 PMCID: PMC4699183 DOI: 10.1016/j.expneurol.2015.05.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 01/07/2023]
Abstract
Mild traumatic brain injury (mTBI) affects millions of people annually and is difficult to diagnose. Mild injury is insensitive to conventional imaging techniques and diagnoses are often made using subjective criteria such as self-reported symptoms. Many people who sustain a mTBI develop persistent post-concussive symptoms. Athletes and military personnel are at great risk for repeat injury which can result in second impact syndrome or chronic traumatic encephalopathy. An objective and quantifiable measure, such as a serum biomarker, is needed to aid in mTBI diagnosis, prognosis, return to play/duty assessments, and would further elucidate mTBI pathophysiology. The majority of TBI biomarker research focuses on severe TBI with few studies specific to mild injury. Most studies use a hypothesis-driven approach, screening biofluids for markers known to be associated with TBI pathophysiology. This approach has yielded limited success in identifying markers that can be used clinically, additional candidate biomarkers are needed. Innovative and unbiased methods such as proteomics, microRNA arrays, urinary screens, autoantibody identification and phage display would complement more traditional approaches to aid in the discovery of novel mTBI biomarkers.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA,; Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA,; Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA.
| |
Collapse
|
76
|
Liu H, Li W, Rose ME, Hickey RW, Chen J, Uechi GT, Balasubramani M, Day BW, Patel KV, Graham SH. The point mutation UCH-L1 C152A protects primary neurons against cyclopentenone prostaglandin-induced cytotoxicity: implications for post-ischemic neuronal injury. Cell Death Dis 2015; 6:e1966. [PMID: 26539913 PMCID: PMC4670930 DOI: 10.1038/cddis.2015.323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 02/08/2023]
Abstract
Cyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ(12,14)-prostaglandin J2 (15dPGJ2), are reactive prostaglandin metabolites exerting a variety of biological effects. CyPGs are produced in ischemic brain and disrupt the ubiquitin-proteasome system (UPS). Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain-specific deubiquitinating enzyme that has been linked to neurodegenerative diseases. Using tandem mass spectrometry (MS) analyses, we found that the C152 site of UCH-L1 is adducted by CyPGs. Mutation of C152 to alanine (C152A) inhibited CyPG modification and conserved recombinant UCH-L1 protein hydrolase activity after 15dPGJ2 treatment. A knock-in (KI) mouse expressing the UCH-L1 C152A mutation was constructed with the bacterial artificial chromosome (BAC) technique. Brain expression and distribution of UCH-L1 in the KI mouse was similar to that of wild type (WT) as determined by western blotting. Primary cortical neurons derived from KI mice were resistant to 15dPGJ2 cytotoxicity compared with neurons from WT mice as detected by the WST-1 cell viability assay and caspase-3 and poly ADP ribose polymerase (PARP) cleavage. This protective effect was accompanied with significantly less ubiquitinated protein accumulation and aggregation as well as less UCH-L1 aggregation in C152A KI primary neurons after 15dPGJ2 treatment. Additionally, 15dPGJ2-induced axonal injury was also significantly attenuated in KI neurons as compared with WT. Taken together, these studies indicate that UCH-L1 function is important in hypoxic neuronal death, and the C152 site of UCH-L1 has a significant role in neuronal survival after hypoxic/ischemic injury.
Collapse
Affiliation(s)
- H Liu
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W Li
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M E Rose
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R W Hickey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G T Uechi
- Genomics and Proteomics Core Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Balasubramani
- Genomics and Proteomics Core Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
| | - B W Day
- Genomics and Proteomics Core Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - K V Patel
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S H Graham
- Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
77
|
Ubiquitin-Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice. J Neurosci 2015; 35:11514-31. [PMID: 26290230 DOI: 10.1523/jneurosci.5288-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a "noncleavable" N-terminal ubiquitin moiety (Ub(G76V)). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) Ub(G76V), GFP, and a synaptic vesicle protein synaptobrevin-2 (Ub(G76V)-GFP-Syb2); (2) GFP-Syb2; or (3) Ub(G76V)-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, Ub(G76V)-GFP-Syb2, GFP-Syb2, and Ub(G76V)-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, Ub(G76V)-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and Ub(G76V)-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in Ub(G76V)-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that Ub(G76V)-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in Ub(G76V)-GFP-Syb2 mice. These findings indicate that Ub(G76V)-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals. SIGNIFICANCE STATEMENT Degeneration of motor nerve terminals occurs in amyotrophic lateral sclerosis (ALS) patients as well as in mouse models of ALS, leading to progressive paralysis. What causes a motor nerve terminal to degenerate remains unknown. Here we report on transgenic mice expressing a ubiquitinated synaptic vesicle protein (Ub(G76V)-GFP-Syb2) that develop progressive degeneration of motor nerve terminals. These mice may serve as a model for further elucidating the underlying cellular and molecular mechanisms of presynaptic nerve terminal degeneration.
Collapse
|
78
|
Powis RA, Mutsaers CA, Wishart TM, Hunter G, Wirth B, Gillingwater TH. Increased levels of UCHL1 are a compensatory response to disrupted ubiquitin homeostasis in spinal muscular atrophy and do not represent a viable therapeutic target. Neuropathol Appl Neurobiol 2015; 40:873-87. [PMID: 25041530 DOI: 10.1111/nan.12168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/25/2014] [Indexed: 12/21/2022]
Abstract
AIM Levels of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) are robustly increased in spinal muscular atrophy (SMA) patient fibroblasts and mouse models. We therefore wanted to establish whether changes in UCHL1 contribute directly to disease pathogenesis, and to assess whether pharmacological inhibition of UCHL1 represents a viable therapeutic option for SMA. METHODS SMA mice and control littermates received a pharmacological UCHL1 inhibitor (LDN-57444) or DMSO vehicle. Survival and weight were monitored daily, a righting test of motor performance was performed, and motor neurone loss, muscle fibre atrophy and neuromuscular junction pathology were all quantified. Ubiquitin-like modifier activating enzyme 1 (Uba1) was then pharmacologically inhibited in neurones in vitro to examine the relationship between Uba1 levels and UCHL1 in SMA. RESULTS Pharmacological inhibition of UCHL1 failed to improve survival, motor symptoms or neuromuscular pathology in SMA mice and actually precipitated the onset of weight loss. LDN-57444 treatment significantly decreased spinal cord mono-ubiquitin levels, further exacerbating ubiquitination defects in SMA mice. Pharmacological inhibition of Uba1, levels of which are robustly reduced in SMA, was sufficient to induce accumulation of UCHL1 in primary neuronal cultures. CONCLUSION Pharmacological inhibition of UCHL1 exacerbates rather than ameliorates disease symptoms in a mouse model of SMA. Thus, pharmacological inhibition of UCHL1 is not a viable therapeutic target for SMA. Moreover, increased levels of UCHL1 in SMA likely represent a downstream consequence of decreased Uba1 levels, indicative of an attempted supportive compensatory response to defects in ubiquitin homeostasis caused by low levels of SMN protein.
Collapse
Affiliation(s)
- Rachael A Powis
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
79
|
Yang H, Zhou T, Wang H, Liu T, Ueda K, Zhan R, Zhao L, Tong Y, Tian X, Zhang T, Jin Y, Han X, Li Z, Zhao Y, Guo X, Xiao W, Fan D, Liu G, Chui D. Lipoprotein lipase deficiency leads to α-synuclein aggregation and ubiquitin C-terminal hydrolase L1 reduction. Neuroscience 2015; 290:1-10. [DOI: 10.1016/j.neuroscience.2014.12.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
|
80
|
Carr W, Yarnell AM, Ong R, Walilko T, Kamimori GH, da Silva U, McCarron RM, LoPresti ML. Ubiquitin carboxy-terminal hydrolase-l1 as a serum neurotrauma biomarker for exposure to occupational low-level blast. Front Neurol 2015; 6:49. [PMID: 25852633 PMCID: PMC4360700 DOI: 10.3389/fneur.2015.00049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/23/2015] [Indexed: 11/15/2022] Open
Abstract
Repeated exposure to low-level blast is a characteristic of a few select occupations and there is concern that such occupational exposures present risk for traumatic brain injury. These occupations include specialized military and law enforcement units that employ controlled detonation of explosive charges for the purpose of tactical entry into secured structures. The concern for negative effects from blast exposure is based on rates of operator self-reported headache, sleep disturbance, working memory impairment, and other concussion-like symptoms. A challenge in research on this topic has been the need for improved assessment tools to empirically evaluate the risk associated with repeated exposure to blast overpressure levels commonly considered to be too low in magnitude to cause acute injury. Evaluation of serum-based neurotrauma biomarkers provides an objective measure that is logistically feasible for use in field training environments. Among candidate biomarkers, ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) has some empirical support and was evaluated in this study. We used daily blood draws to examine acute change in UCH-L1 among 108 healthy military personnel who were exposed to repeated low-level blast across a 2-week period. These research volunteers also wore pressure sensors to record blast exposures, wrist actigraphs to monitor sleep patterns, and completed daily behavioral assessments of symptomology, postural stability, and neurocognitive function. UCH-L1 levels were elevated as a function of participating in the 2-week training with explosives, but the correlation of UCH-L1 elevation and blast magnitude was weak and inconsistent. Also, UCH-L1 elevations did not correlate with deficits in behavioral measures. These results provide some support for including UCH-L1 as a measure of central nervous system effects from exposure to low-level blast. However, the weak relation observed suggests that additional indicators of blast effect are needed.
Collapse
Affiliation(s)
- Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD , USA
| | - Angela M Yarnell
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD , USA
| | - Ricardo Ong
- U.S. Army Special Forces Command , Fort Bragg, NC , USA
| | | | - Gary H Kamimori
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD , USA
| | - Uade da Silva
- NeuroTrauma Department, Naval Medical Research Center , Silver Spring, MD , USA
| | - Richard M McCarron
- NeuroTrauma Department, Naval Medical Research Center , Silver Spring, MD , USA
| | - Matthew L LoPresti
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD , USA
| |
Collapse
|
81
|
Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti MT, Natale F, Della Valle F, Borreca A, Manca A, Meli G, Ferraina C, Feligioni M, D'Aguanno S, Bussani R, Ammassari-Teule M, Nicolin V, Calissano P, Amadoro G. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum Mol Genet 2015; 24:3058-81. [PMID: 25687137 DOI: 10.1093/hmg/ddv059] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/10/2015] [Indexed: 01/26/2023] Open
Abstract
Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model. Pharmacological or genetic suppression of improper mitophagy, either by inhibition of mitochondrial targeting to autophagosomes or by shRNA-mediated silencing of Parkin or UCHL-1 gene expression, restores synaptic and mitochondrial content providing partial but significant protection against the NH2htau-induced neuronal death. Moreover, in mitochondria from human AD synapses, the endogenous NH2htau is stably associated with Parkin and with UCHL-1. Taken together, our studies show a causative link between the excessive mitochondrial turnover and the NH2htau-induced in vitro neuronal death, suggesting that pathogenetic tau truncation may contribute to synaptic deterioration in AD by aberrant recruitment of Parkin and UCHL-1 to mitochondria making them more prone to detrimental autophagic clearance.
Collapse
Affiliation(s)
- V Corsetti
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy
| | - F Florenzano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Atlante
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - A Bobba
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - M T Ciotti
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Natale
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Della Valle
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Borreca
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Manca
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Meli
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - C Ferraina
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - M Feligioni
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - S D'Aguanno
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - R Bussani
- UCO Pathological Anatomy and Histopathology Unit, Cattinara Hospital Strada di Fiume 447, 34149 Trieste, Italy and
| | - M Ammassari-Teule
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - V Nicolin
- Department of Medical, Surgical and Health Science, University of Trieste, Strada di Fiume 449, 34149 Trieste, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Amadoro
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| |
Collapse
|
82
|
Jara JH, Genç B, Cox GA, Bohn MC, Roos RP, Macklis JD, Ulupınar E, Özdinler PH. Corticospinal Motor Neurons Are Susceptible to Increased ER Stress and Display Profound Degeneration in the Absence of UCHL1 Function. Cereb Cortex 2015; 25:4259-72. [PMID: 25596590 PMCID: PMC4626833 DOI: 10.1093/cercor/bhu318] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Corticospinal motor neurons (CSMN) receive, integrate, and relay cerebral cortex's input toward spinal targets to initiate and modulate voluntary movement. CSMN degeneration is central for numerous motor neuron disorders and neurodegenerative diseases. Previously, 5 patients with mutations in the ubiquitin carboxy-terminal hydrolase-L1 (UCHL1) gene were reported to have neurodegeneration and motor neuron dysfunction with upper motor neuron involvement. To investigate the role of UCHL1 on CSMN health and stability, we used both in vivo and in vitro approaches, and took advantage of the Uchl1nm3419 (UCHL1−/−) mice, which lack all UCHL1 function. We report a unique role of UCHL1 in maintaining CSMN viability and cellular integrity. CSMN show early, selective, progressive, and profound cell loss in the absence of UCHL1. CSMN degeneration, evident even at pre-symptomatic stages by disintegration of the apical dendrite and spine loss, is mediated via increased ER stress. These findings bring a novel understanding to the basis of CSMN vulnerability, and suggest UCHL1−/− mice as a tool to study CSMN pathology.
Collapse
Affiliation(s)
- Javier H Jara
- Davee Department of Neurology and Clinical Neurological Sciences
| | - Barış Genç
- Davee Department of Neurology and Clinical Neurological Sciences
| | | | - Martha C Bohn
- Neurobiology Program, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Raymond P Roos
- Department of Neurology, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, UK
| | - Emel Ulupınar
- Department of Anatomy, Eskişehir Osmangazi University Medical School, Eskişehir, Turkey
| | - P Hande Özdinler
- Davee Department of Neurology and Clinical Neurological Sciences Robert H. Lurie Cancer Center Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
83
|
Xiao J, Vemula S, Yue Z. Rodent Models of Autosomal Dominant Parkinson Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
84
|
Valadas JS, Vos M, Verstreken P. Therapeutic strategies in Parkinson's disease: what we have learned from animal models. Ann N Y Acad Sci 2014; 1338:16-37. [PMID: 25515068 DOI: 10.1111/nyas.12577] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by a loss of dopaminergic neurons in the substantia nigra, as well as in other brain areas. The currently available dopamine replacement therapy provides merely symptomatic benefit and is ineffective because habituation and side effects arise relatively quickly. Studying the genetic forms of PD in animal models provides novel insight that allows targeting of specific aspects of this heterogenic disease more specifically. Among others, two important cellular deficits are associated with PD; these deficits relate to (1) synaptic transmission and vesicle trafficking, and (2) mitochondrial function, relating respectively to the dominant and recessive mutations in PD-causing genes. With increased knowledge of PD, the possibility of identifying an efficient, long-lasting treatment is becoming more conceivable, but this can only be done with an increased knowledge of the specific affected cellular mechanisms. This review discusses how discoveries in animal models of PD have clarified the therapeutic potential of pathways disrupted in PD, with a specific focus on synaptic transmission, vesicle trafficking, and mitochondrial function.
Collapse
Affiliation(s)
- Jorge S Valadas
- VIB Center for the Biology of Disease; Department of Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
85
|
McKeon JE, Sha D, Li L, Chin LS. Parkin-mediated K63-polyubiquitination targets ubiquitin C-terminal hydrolase L1 for degradation by the autophagy-lysosome system. Cell Mol Life Sci 2014; 72:1811-24. [PMID: 25403879 DOI: 10.1007/s00018-014-1781-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 11/24/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a key neuronal deubiquitinating enzyme which is mutated in Parkinson disease (PD) and in childhood-onset neurodegenerative disorder with optic atrophy. Furthermore, reduced UCH-L1 protein levels are associated with a number of neurodegenerative diseases, whereas up-regulation of UCH-L1 protein expression is found in multiple types of cancer. However, very little is known about how UCH-L1 protein level is regulated in cells. Here, we report that UCH-L1 is a novel interactor and substrate of PD-linked E3 ubiquitin-protein ligase parkin. We find that parkin mediates K63-linked polyubiquitination of UCH-L1 in cooperation with the Ubc13/Uev1a E2 ubiquitin-conjugating enzyme complex and promotes UCH-L1 degradation by the autophagy-lysosome pathway. Targeted disruption of parkin gene expression in mice causes a significant decrease in UCH-L1 ubiquitination with a concomitant increase in UCH-L1 protein level in brain, supporting an in vivo role of parkin in regulating UCH-L1 ubiquitination and degradation. Our findings reveal a direct link between parkin-mediated ubiquitin signaling and UCH-L1 regulation, and they have important implications for understanding the roles of these two proteins in health and disease.
Collapse
Affiliation(s)
- Jeanne E McKeon
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | | |
Collapse
|
86
|
Ronnebaum SM, Patterson C, Schisler JC. Emerging evidence of coding mutations in the ubiquitin-proteasome system associated with cerebellar ataxias. Hum Genome Var 2014; 1:14018. [PMID: 27081508 PMCID: PMC4785523 DOI: 10.1038/hgv.2014.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 08/28/2014] [Indexed: 12/14/2022] Open
Abstract
Cerebellar ataxia (CA) is a disorder associated with impairments in balance, coordination, and gait caused by degeneration of the cerebellum. The mutations associated with CA affect functionally diverse genes; furthermore, the underlying genetic basis of a given CA is unknown in many patients. Exome sequencing has emerged as a cost-effective technology to discover novel genetic mutations, including autosomal recessive CA (ARCA). Five recent studies that describe how exome sequencing performed on a diverse pool of ARCA patients revealed 14 unique mutations in STUB1, a gene that encodes carboxy terminus of Hsp70-interacting protein (CHIP). CHIP mediates protein quality control through chaperone and ubiquitin ligase activities and is implicated in alleviating proteotoxicity in several neurodegenerative diseases. However, these recent studies linking STUB1 mutations to various forms of ataxia are the first indications that CHIP is directly involved in the progression of a human disease. Similar exome-sequencing studies have revealed novel mutations in ubiquitin-related proteins associated with CA and other neurological disorders. This review provides an overview of CA, describes the benefits and limitations of exome sequencing, outlines newly discovered STUB1 mutations, and theorizes on how CHIP and other ubiquitin-related proteins function to prevent neurological deterioration.
Collapse
Affiliation(s)
- Sarah M Ronnebaum
- McAllister Heart Institute, The University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center , New York, NY, USA
| | - Jonathan C Schisler
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
87
|
Ristic G, Tsou WL, Todi SV. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front Mol Neurosci 2014; 7:72. [PMID: 25191222 PMCID: PMC4137239 DOI: 10.3389/fnmol.2014.00072] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
The Ubiquitin-Proteasome Pathway (UPP), which is critical for normal function in the nervous system and is implicated in various neurological diseases, requires the small modifier protein ubiquitin to accomplish its duty of selectively degrading short-lived, abnormal or misfolded proteins. Over the past decade, a large class of proteases collectively known as deubiquitinating enzymes (DUBs) has increasingly gained attention in all manners related to ubiquitin. By cleaving ubiquitin from another protein, DUBs ensure that the UPP functions properly. DUBs accomplish this task by processing newly translated ubiquitin so that it can be used for conjugation to substrate proteins, by regulating the "where, when, and why" of UPP substrate ubiquitination and subsequent degradation, and by recycling ubiquitin for re-use by the UPP. Because of the reliance of the UPP on DUB activities, it is not surprising that these proteases play important roles in the normal activities of the nervous system and in neurodegenerative diseases. In this review, we summarize recent advances in understanding the functions of DUBs in the nervous system. We focus on their role in the UPP, and make the argument that understanding the UPP from the perspective of DUBs can yield new insight into diseases that result from anomalous intra-cellular processes or inter-cellular networks. Lastly, we discuss the relevance of DUBs as therapeutic options for disorders of the nervous system.
Collapse
Affiliation(s)
- Gorica Ristic
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA ; Department of Neurology, Wayne State University School of Medicine Detroit, MI, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA ; Department of Neurology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
88
|
Andrews CD, Payne JF, Rise ML. Identification of a gene set to evaluate the potential effects of loud sounds from seismic surveys on the ears of fishes: a study with Salmo salar. JOURNAL OF FISH BIOLOGY 2014; 84:1793-1819. [PMID: 24814183 PMCID: PMC4277336 DOI: 10.1111/jfb.12398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Functional genomic studies were carried out on the inner ear of Atlantic salmon Salmo salar following exposure to a seismic airgun. Microarray analyses revealed 79 unique transcripts (passing background threshold), with 42 reproducibly up-regulated and 37 reproducibly down-regulated in exposed v. control fish. Regarding the potential effects on cellular energetics and cellular respiration, altered transcripts included those with roles in oxygen transport, the glycolytic pathway, the Krebs cycle and the electron transport chain. Of these, a number of transcripts encoding haemoglobins that are important in oxygen transport were up-regulated and among the most highly expressed. Up-regulation of transcripts encoding nicotinamide riboside kinase 2, which is also important in energy production and linked to nerve cell damage, points to evidence of neuronal damage in the ear following noise exposure. Transcripts related to protein modification or degradation also indicated potential damaging effects of sound on ear tissues. Notable in this regard were transcripts associated with the proteasome-ubiquitin pathway, which is involved in protein degradation, with the transcript encoding ubiquitin family domain-containing protein 1 displaying the highest response to exposure. The differential expression of transcripts observed for some immune responses could potentially be linked to the rupture of cell membranes. Meanwhile, the altered expression of transcripts for cytoskeletal proteins that contribute to the structural integrity of the inner ear could point to repair or regeneration of ear tissues including auditory hair cells. Regarding potential effects on hormones and vitamins, the protein carrier for thyroxine and retinol (vitamin A), namely transthyretin, was altered at the transcript expression level and it has been suggested from studies in mammalian systems that retinoic acid may play a role in the regeneration of damaged hair cells. The microarray experiment identified the transcript encoding growth hormone I as up-regulated by loud sound, supporting previous evidence linking growth hormone to hair cell regeneration in fishes. Quantitative (q) reverse transcription (RT) polymerase chain reaction (qRT-PCR) analyses confirmed dysregulation of some microarray-identified transcripts and in some cases revealed a high level of biological variability in the exposed group. These results support the potential utility of molecular biomarkers to evaluate the effect of seismic surveys on fishes with studies on the ears being placed in a priority category for development of exposure-response relationships. Knowledge of such relationships is necessary for addressing the question of potential size of injury zones.
Collapse
Affiliation(s)
- C D Andrews
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, 80 East White Hills Rd, St John's, NL, A1C 5X1, Canada
| | | | | |
Collapse
|
89
|
Puvenna V, Brennan C, Shaw G, Yang C, Marchi N, Bazarian JJ, Merchant-Borna K, Janigro D. Significance of ubiquitin carboxy-terminal hydrolase L1 elevations in athletes after sub-concussive head hits. PLoS One 2014; 9:e96296. [PMID: 24806476 PMCID: PMC4012998 DOI: 10.1371/journal.pone.0096296] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
The impact of sub-concussive head hits (sub-CHIs) has been recently investigated in American football players, a population at risk for varying degrees of post-traumatic sequelae. Results show how sub-CHIs in athletes translate in serum as the appearance of reporters of blood-brain barrier disruption (BBBD), how the number and severity of sub-CHIs correlate with elevations of putative markers of brain injury is unknown. Serum brain injury markers such as UCH-L1 depend on BBBD. We investigated the effects of sub-CHIs in collegiate football players on markers of BBBD, markers of cerebrospinal fluid leakage (serum beta 2-transferrin) and markers of brain damage. Emergency room patients admitted for a clinically-diagnosed mild traumatic brain injury (mTBI) were used as positive controls. Healthy volunteers were used as negative controls. Specifically this study was designed to determine the use of UCH-L1 as an aid in the diagnosis of sub-concussive head injury in athletes. The extent and intensity of head impacts and serum values of S100B, UCH-L1, and beta-2 transferrin were measured pre- and post-game from 15 college football players who did not experience a concussion after a game. S100B was elevated in players experiencing the most sub-CHIs; UCH-L1 levels were also elevated but did not correlate with S100B or sub-CHIs. Beta-2 transferrin levels remained unchanged. No correlation between UCH-L1 levels and mTBI were measured in patients. Low levels of S100B were able to rule out mTBI and high S100B levels correlated with TBI severity. UCH-L1 did not display any interpretable change in football players or in individuals with mild TBI. The significance of UCH-L1 changes in sub-concussions or mTBI needs to be further elucidated.
Collapse
Affiliation(s)
- Vikram Puvenna
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Chanda Brennan
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Clinical-Bioanalytical Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
| | - Gerald Shaw
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
| | - Cui Yang
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
| | - Nicola Marchi
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Jeffrey J. Bazarian
- Departments of Emergency Medicine and Neurosurgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kian Merchant-Borna
- Departments of Emergency Medicine and Neurosurgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Damir Janigro
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Clinical-Bioanalytical Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
90
|
Hartnett S, Zhang F, Abitz A, Li Y. Ubiquitin C-terminal hydrolase L1 interacts with choline transporter in cholinergic cells. Neurosci Lett 2014; 564:115-9. [PMID: 24525247 DOI: 10.1016/j.neulet.2014.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/27/2014] [Accepted: 02/02/2014] [Indexed: 02/02/2023]
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme, which is highly expressed in neuronal cells. Previous studies have indicated that UCHL1 is involved in cognitive function, neurodegenerative diseases, and neuromuscular junction development. Acetylcholine (Ach) is a critical neurotransmitter in these functions. Yet, the effect of UCHL1 on the cholinergic system has not been reported. In this study, using a cholinergic neuronal cell line, SN56, as an invitro model, we detected the physical interaction of UCHL1 and high affinity choline transporter (CHT), which is a key protein regulating Ach re-synthesis. Reduction of UCHL1 by siRNA gene knockdown significantly increased poly-ubiquitinated CHT and decreased native CHT protein level, but did not affect CHT mRNA expression. Biotinylation assay showed that UCHL1 is localized only in the cytosol of the cells and that the gene knockdown of UCHL1 significantly reduced cytosolic CHT but had no significant effect on membrane CHT level. These data provide novel and potentially important evidence that UCHL1 may play a role in the regulation of cholinergic function by affecting CHT ubiquitination and degradation.
Collapse
Affiliation(s)
- Sigurd Hartnett
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA
| | - Fan Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA
| | - Allison Abitz
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA
| | - Yifan Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
91
|
Marshall AG, Watson JA, Hallengren JJ, Walters BJ, Dobrunz LE, Francillon L, Wilson JA, Phillips SE, Wilson SM. Genetic background alters the severity and onset of neuromuscular disease caused by the loss of ubiquitin-specific protease 14 (usp14). PLoS One 2013; 8:e84042. [PMID: 24358326 PMCID: PMC3865287 DOI: 10.1371/journal.pone.0084042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022] Open
Abstract
In this study, we identified and characterized an N-ethyl-N-nitrosourea (ENU) induced mutation in Usp14 (nmf375) that leads to adult-onset neurological disease. The nmf375 mutation causes aberrant splicing of Usp14 mRNA, resulting in a 95% reduction in USP14. We previously showed that loss of USP14 in ataxia (ax (J)) mice results in reduced ubiquitin levels, motor endplate disease, Purkinje cell axonal dystrophy and decreased hippocampal paired pulse facilitation (PPF) during the first 4-6 weeks of life, and early postnatal lethality by two months of age. Although the loss of USP14 is comparable between the nmf375 and ax (J) mice, the nmf375 mice did not exhibit these ax (J) developmental abnormalities. However, by 12 weeks of age the nmf375 mutants present with ubiquitin depletion and motor endplate disease, indicating a continual role for USP14-mediated regulation of ubiquitin pools and neuromuscular junction (NMJ) structure in adult mice. The observation that motor endplate disease was only seen after ubiquitin depletion suggests that the preservation of NMJ structure requires the stable maintenance of synaptic ubiquitin pools. Differences in genetic background were shown to affect ubiquitin expression and dramatically alter the phenotypes caused by USP14 deficiency.
Collapse
Affiliation(s)
- Andrea G. Marshall
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jennifer A. Watson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jada J. Hallengren
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brandon J. Walters
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lynn E. Dobrunz
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ludwig Francillon
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Julie A. Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Scott E. Phillips
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Scott M. Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
92
|
Wiese CB, Fleming N, Buehler DP, Southard-Smith EM. A Uchl1-Histone2BmCherry:GFP-gpi BAC transgene for imaging neuronal progenitors. Genesis 2013; 51:852-61. [PMID: 24123561 DOI: 10.1002/dvg.22716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/30/2013] [Accepted: 09/20/2013] [Indexed: 11/09/2022]
Abstract
Uchl1 encodes the protein gene product 9.5 antigen (PGP9.5) that is a widely used to identify migrating neural progenitors in the PNS, mature neurons of the central and peripheral nervous systems, as well as neuroendocrine cells. To facilitate analysis of developing peripheral neurons, we linked regulatory regions of Uchl1 carried within a 160kb bacterial artificial chromosome (BAC) to the dual fluorescent reporter H2BmCherry:GFP-gpi. The Uchl1-H2BmCherry:GFP-gpi transgene exhibits robust expression and allows clear discrimination of individual cells and cellular processes in cranial ganglia, sympathetic chain, the enteric nervous system (ENS), and autonomic ganglia of the urogenital system. The transgene also labels subsets of cells in endocrine tissues where earlier in situ hybridization (ISH) studies have previously identified expression of this deubiquinating enzyme. The Uchl1-H2BmCherry:GFP-gpi transgene will be a powerful tool for static and live imaging, as well as isolation of viable neural progenitors to investigate processes of autonomic neurogenesis.
Collapse
Affiliation(s)
- Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | | | | | | |
Collapse
|
93
|
Choi HY, Liu Y, Tennert C, Sugiura Y, Karakatsani A, Kröger S, Johnson EB, Hammer RE, Lin W, Herz J. APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice. eLife 2013; 2:e00220. [PMID: 23986861 PMCID: PMC3748711 DOI: 10.7554/elife.00220] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 07/18/2013] [Indexed: 12/22/2022] Open
Abstract
ApoE, ApoE receptors and APP cooperate in the pathogenesis of Alzheimer's disease. Intriguingly, the ApoE receptor LRP4 and APP are also required for normal formation and function of the neuromuscular junction (NMJ). In this study, we show that APP interacts with LRP4, an obligate co-receptor for muscle-specific tyrosine kinase (MuSK). Agrin, a ligand for LRP4, also binds to APP and co-operatively enhances the interaction of APP with LRP4. In cultured myotubes, APP synergistically increases agrin-induced acetylcholine receptor (AChR) clustering. Deletion of the transmembrane domain of LRP4 (LRP4 ECD) results in growth retardation of the NMJ, and these defects are markedly enhanced in APP(-/-);LRP4(ECD/ECD) mice. Double mutant NMJs are significantly reduced in size and number, resulting in perinatal lethality. Our findings reveal novel roles for APP in regulating neuromuscular synapse formation through hetero-oligomeric interaction with LRP4 and agrin and thereby provide new insights into the molecular mechanisms that govern NMJ formation and maintenance. DOI:http://dx.doi.org/10.7554/eLife.00220.001.
Collapse
Affiliation(s)
- Hong Y Choi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Christian Tennert
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yoshie Sugiura
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Andromachi Karakatsani
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, München, Germany
| | - Stephan Kröger
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, München, Germany
| | - Eric B Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, United States
- Center for Neuroscience, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
94
|
Karim R, Tummers B, Meyers C, Biryukov JL, Alam S, Backendorf C, Jha V, Offringa R, van Ommen GJB, Melief CJM, Guardavaccaro D, Boer JM, van der Burg SH. Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response. PLoS Pathog 2013; 9:e1003384. [PMID: 23717208 PMCID: PMC3662672 DOI: 10.1371/journal.ppat.1003384] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/10/2013] [Indexed: 12/24/2022] Open
Abstract
Persistent infection of basal keratinocytes with high-risk human papillomavirus (hrHPV) may cause cancer. Keratinocytes are equipped with different pattern recognition receptors (PRRs) but hrHPV has developed ways to dampen their signals resulting in minimal inflammation and evasion of host immunity for sustained periods of time. To understand the mechanisms underlying hrHPV's capacity to evade immunity, we studied PRR signaling in non, newly, and persistently hrHPV-infected keratinocytes. We found that active infection with hrHPV hampered the relay of signals downstream of the PRRs to the nucleus, thereby affecting the production of type-I interferon and pro-inflammatory cytokines and chemokines. This suppression was shown to depend on hrHPV-induced expression of the cellular protein ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in keratinocytes. UCHL1 accomplished this by inhibiting tumor necrosis factor receptor-associated factor 3 (TRAF3) K63 poly-ubiquitination which lead to lower levels of TRAF3 bound to TANK-binding kinase 1 and a reduced phosphorylation of interferon regulatory factor 3. Furthermore, UCHL1 mediated the degradation of the NF-kappa-B essential modulator with as result the suppression of p65 phosphorylation and canonical NF-κB signaling. We conclude that hrHPV exploits the cellular protein UCHL1 to evade host innate immunity by suppressing PRR-induced keratinocyte-mediated production of interferons, cytokines and chemokines, which normally results in the attraction and activation of an adaptive immune response. This identifies UCHL1 as a negative regulator of PRR-induced immune responses and consequently its virus-increased expression as a strategy for hrHPV to persist.
Collapse
Affiliation(s)
- Rezaul Karim
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart Tummers
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jennifer L. Biryukov
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Samina Alam
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Claude Backendorf
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Veena Jha
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rienk Offringa
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Gert-Jan B. van Ommen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis J. M. Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniele Guardavaccaro
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Judith M. Boer
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
95
|
Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation. EMBO J 2013; 32:954-69. [PMID: 23403927 DOI: 10.1038/emboj.2013.27] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/15/2013] [Indexed: 11/08/2022] Open
Abstract
The presynaptic active zone (AZ) is a specialized microdomain designed for the efficient and repetitive release of neurotransmitter. Bassoon and Piccolo are two high molecular weight components of the AZ, with hypothesized roles in its assembly and structural maintenance. However, glutamatergic synapses lacking either protein exhibit relatively minor defects, presumably due to their significant functional redundancy. In the present study, we have used interference RNAs to eliminate both proteins from glutamatergic synapses, and find that they are essential for maintaining synaptic integrity. Loss of Bassoon and Piccolo leads to the aberrant degradation of multiple presynaptic proteins, culminating in synapse degeneration. This phenotype is mediated in part by the E3 ubiquitin ligase Siah1, an interacting partner of Bassoon and Piccolo whose activity is negatively regulated by their conserved zinc finger domains. Our findings demonstrate a novel role for Bassoon and Piccolo as critical regulators of presynaptic ubiquitination and proteostasis.
Collapse
|
96
|
Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proc Natl Acad Sci U S A 2013; 110:3489-94. [PMID: 23359680 DOI: 10.1073/pnas.1222732110] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCHL1), a neuron-specific de-ubiquitinating enzyme, is one of the most abundant proteins in the brain. We describe three siblings from a consanguineous union with a previously unreported early-onset progressive neurodegenerative syndrome featuring childhood onset blindness, cerebellar ataxia, nystagmus, dorsal column dysfuction, and spasticity with upper motor neuron dysfunction. Through homozygosity mapping of the affected individuals followed by whole-exome sequencing of the index case, we identified a previously undescribed homozygous missense mutation within the ubiquitin binding domain of UCHL1 (UCHL1(GLU7ALA)), shared by all affected subjects. As demonstrated by isothermal titration calorimetry, purified UCHL1(GLU7ALA), compared with WT, exhibited at least sevenfold reduced affinity for ubiquitin. In vitro, the mutation led to a near complete loss of UCHL1 hydrolase activity. The GLU7ALA variant is predicted to interfere with the substrate binding by restricting the proper positioning of the substrate for tunneling underneath the cross-over loop spanning the catalytic cleft of UCHL1. This interference with substrate binding, combined with near complete loss of hydrolase activity, resulted in a >100-fold reduction in the efficiency of UCHL1(GLU7ALA) relative to WT. These findings demonstrate a broad requirement of UCHL1 in the maintenance of the nervous system.
Collapse
|
97
|
The role of deubiquitinating enzymes in synaptic function and nervous system diseases. Neural Plast 2012; 2012:892749. [PMID: 23316392 PMCID: PMC3536295 DOI: 10.1155/2012/892749] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/25/2012] [Indexed: 12/04/2022] Open
Abstract
Posttranslational modification of proteins by ubiquitin has emerged as a critical regulator of synapse development and function. Ubiquitination is a reversible modification mediated by the concerted action of a large number of specific ubiquitin ligases and ubiquitin proteases, called deubiquitinating enzymes (DUBs). The balance of activity of these enzymes determines the localization, function, and stability of target proteins. While some DUBs counter the action of specific ubiquitin ligases by removing ubiquitin and editing ubiquitin chains, other DUBs function more generally to maintain the cellular pool of free ubiquitin monomers. The importance of DUB function at the synapse is underscored by the association of specific mutations in DUB genes with several neurological disorders. Over the last decade, although much research has led to the identification and characterization of many ubiquitin ligases at the synapse, our knowledge of the relevant DUBs that act at the synapse has lagged. This review is focused on highlighting our current understanding of DUBs that regulate synaptic function and the diseases that result from dysfunction of these DUBs.
Collapse
|
98
|
Frisan T, Coppotelli G, Dryselius R, Masucci MG. Ubiquitin C-terminal hydrolase-L1 interacts with adhesion complexes and promotes cell migration, survival, and anchorage independent growth. FASEB J 2012; 26:5060-70. [PMID: 22932395 DOI: 10.1096/fj.12-211946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is a deubiquitinating enzyme of unknown function that is highly expressed in neurons and overexpressed in several human cancers. UCH-L1 has been implicated in the regulation of phenotypic properties associated with malignant cell growth but the underlying mechanisms have not been elucidated. By comparing cells expressing catalytically active or inactive versions of UCH-L1, we found that the active enzyme enhances cell adhesion, spreading, and migration; inhibits anoikis; and promotes anchorage independent growth. UCH-L1 accumulates at the motile edge of the cell membrane during the initial phases of adhesion, colocalizes with focal adhesion kinase (FAK), p120-catenin, and vinculin, and enhances the formation of focal adhesions, which correlates with enhanced FAK activation. The involvement of UCH-L1 in the regulation of focal adhesions and adherens junctions is supported by coimmunoprecipitation with key components of these complexes, including FAK, paxillin, p120-catenin, β-catenin, and vinculin. UCH-L1 stabilizes focal adhesion signaling in the absence of adhesion, as assessed by reduced caspase-dependent cleavage of FAK following cell detachment and sustained activity of the AKT signaling pathway. These findings offer new insights on the molecular interactions through which the deubiquitinating enzyme regulates the survival, proliferation, and metastatic potential of malignant cells.
Collapse
Affiliation(s)
- Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden, Box 285, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
99
|
Wobst H, Förster S, Laurini C, Sekulla A, Dreiseidler M, Höhfeld J, Schmitz B, Diestel S. UCHL1 regulates ubiquitination and recycling of the neural cell adhesion molecule NCAM. FEBS J 2012; 279:4398-409. [PMID: 23061666 DOI: 10.1111/febs.12029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/04/2012] [Accepted: 10/10/2012] [Indexed: 12/12/2022]
Abstract
The neural cell adhesion molecule (NCAM) is involved in neural development and in plasticity in the adult brain. NCAM140 and NCAM180 isoforms are transmembrane proteins with cytoplasmic domains that differ only in an alternatively spliced exon in the NCAM180 isoform. Both isoforms can interact with several extracellular and cytoplasmic molecules mediating NCAM-dependent functions. Most identified intracellular interaction partners bind to both isoforms, NCAM140 and NCAM180. To identify further intracellular interaction partners specifically binding to NCAM180 the cytosolic domain of human NCAM180 was recombinantly expressed and applied onto a protein macroarray containing the protein library from human fetal brain. We identified the ubiquitin C-terminal hydrolase (UCHL1) which has been described as a de-ubiquitinating enzyme as a potential interaction partner of NCAM180. Since NCAM180 and NCAM140 are ubiquitinated, NCAM140 was included in the subsequent experiments. A partial colocalization of both NCAM isoforms and UCHL1 was observed in primary neurons and the B35 neuroblastoma cell line. Overexpression of UCHL1 significantly decreased constitutive ubiquitination of NCAM180 and NCAM140 whereas inhibition of endogenous UCHL1 increased NCAM's ubiquitination. Furthermore, lysosomal localization of NCAM180 and NCAM140 was significantly reduced after overexpression of UCHL1 consistent with a partial colocalization of internalized NCAM with UCHL1. These data indicate that UCHL1 is a novel interaction partner of both NCAM isoforms that regulates their ubiquitination and intracellular trafficking.
Collapse
Affiliation(s)
- Hilke Wobst
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012; 35:441-53. [PMID: 22633140 DOI: 10.1016/j.tins.2012.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 01/22/2023]
Abstract
The vertebrate neuromuscular junction (NMJ), a peripheral synapse formed between motoneuron and skeletal muscle, is characterized by a protracted postnatal period of maturation and life-long maintenance. In neuromuscular disorders such as congenital myasthenic syndromes (CMSs), disruptions of NMJ maturation and/or maintenance are frequently observed. In particular, defective neuromuscular transmission associated with structural and molecular abnormalities at the pre- and postsynaptic membranes, as well as at the synaptic cleft, has been reported in these patients. Here, we review recent advances in the understanding of molecular and cellular events that mediate NMJ maturation and maintenance. The underlying regulatory mechanisms, including key molecular regulators at the presynaptic nerve terminal, synaptic cleft, and postsynaptic muscle membrane, are discussed.
Collapse
|