51
|
Analysis of Histone Modifications in Rodent Pancreatic Islets by Native Chromatin Immunoprecipitation. Methods Mol Biol 2019. [PMID: 31586329 DOI: 10.1007/978-1-4939-9882-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
The islets of Langerhans are clusters of cells dispersed throughout the pancreas that produce several hormones essential for controlling a variety of metabolic processes, including glucose homeostasis and lipid metabolism. Studying the transcriptional control of pancreatic islet cells has important implications for understanding the mechanisms that control their normal development, as well as the pathogenesis of metabolic diseases such as diabetes. Histones represent the main protein components of the chromatin and undergo diverse covalent modifications that are very important for gene regulation. Here we describe the isolation of pancreatic islets from rodents and subsequently outline the methods used to immunoprecipitate and analyze the native chromatin obtained from these cells.
Collapse
|
52
|
Safi-Stibler S, Gabory A. Epigenetics and the Developmental Origins of Health and Disease: Parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin Cell Dev Biol 2019; 97:172-180. [PMID: 31587964 DOI: 10.1016/j.semcdb.2019.09.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
The literature about Developmental Origins of Health and Disease (DOHaD) studies is considerably growing. Maternal and paternal environment, during all the development of the individual from gametogenesis to weaning and beyond, as well as the psychosocial environment in childhood and teenage, can shape the adult and the elderly person's susceptibility to her/his own environment and diseases. This non-conventional, non-genetic, inheritance is underlain by several mechanisms among which epigenetics is obviously central, due to the notion of memory of early decisional events during development even when this stimulus is gone, that is implied in Waddington's developmental concept. This review first summarizes the different mechanisms by which the environment can model the epigenome: receptor signalling, energy metabolism and signal mechanotransduction from extracellular matrix to chromatin. Then an overview of the epigenetic changes in response to maternal environment during the vulnerability time windows, gametogenesis, early development, placentation and foetal growth, and postnatal period, is described, with the specific example of overnutrition and food deprivation. The implication of epigenetics in DOHaD is obvious, however the precise causal chain from early environment to the epigenome modifications to the phenotype still needs to be deciphered.
Collapse
Affiliation(s)
- Sofiane Safi-Stibler
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Anne Gabory
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
53
|
Millership SJ, Van de Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Cell Mol Life Sci 2019; 76:4009-4021. [PMID: 31270580 PMCID: PMC6785587 DOI: 10.1007/s00018-019-03197-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Imprinted genes display parent-of-origin-specific expression with this epigenetic system of regulation found exclusively in therian mammals. Historically, defined imprinted gene functions were almost solely focused on pregnancy and the influence on the growth parameters of the developing embryo and placenta. More recently, a number of postnatal functions have been identified which converge on resource allocation, both for animals in the nest and in adults. While many of the prenatal functions of imprinted genes that have so far been described adhere to the "parental conflict" hypothesis, no clear picture has yet emerged on the functional role of imprints on postnatal metabolism. As these roles are uncovered, interest in the potential for these genes to influence postnatal metabolism and associated adult-onset disease outcomes when dysregulated has gathered pace. Here, we review the published data on imprinted genes and their influence on postnatal metabolism, starting in the nest, and then progressing through to adulthood. When observing the functional effects of these genes on adult metabolism, we must always be careful to acknowledge the influence both of direct expression in the relevant metabolic tissue, but also indirect metabolic programming effects caused by their modulation of both in utero and postnatal growth trajectories.
Collapse
Affiliation(s)
- Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Mathew Van de Pette
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
54
|
Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 2019; 62:1789-1801. [PMID: 31451874 PMCID: PMC6731191 DOI: 10.1007/s00125-019-4951-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
The type 2 diabetes epidemic and one of its predisposing factors, obesity, are major influences on global health and economic burden. It is accepted that genetics and the current environment contribute to this epidemic; however, in the last two decades, both human and animal studies have consolidated considerable evidence supporting the 'developmental programming' of these conditions, specifically by the intrauterine environment. Here, we review the various in utero exposures that are linked to offspring obesity and diabetes in later life, including epidemiological insights gained from natural historical events, such as the Dutch Hunger Winter, the Chinese famine and the more recent Quebec Ice Storm. We also describe the effects of gestational exposure to endocrine disruptors, maternal infection and smoking to the fetus in relation to metabolic programming. Causal evidence from animal studies, motivated by human observations, is also discussed, as well as some of the proposed underlying molecular mechanisms for developmental programming of obesity and type 2 diabetes, including epigenetics (e.g. DNA methylation and histone modifications) and microRNA interactions. Finally, we examine the effects of non-pharmacological interventions, such as improving maternal dietary habits and/or increasing physical activity, on the offspring epigenome and metabolic outcomes.
Collapse
Affiliation(s)
- Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Level 4, Box 289, Addenbrooke's Treatment Centre, Cambridge, CB2 0QQ, UK
| | - Line Hjort
- Department of Endocrinology, the Diabetes and Bone-metabolic Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Level 4, Box 289, Addenbrooke's Treatment Centre, Cambridge, CB2 0QQ, UK.
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
55
|
Wu MJ, Gao YL, Liu JX, Zhu R, Wang J. Principal Component Analysis Based on Graph Laplacian and Double Sparse Constraints for Feature Selection and Sample Clustering on Multi-View Data. Hum Hered 2019; 84:47-58. [PMID: 31466072 DOI: 10.1159/000501653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 11/19/2022] Open
Abstract
Principal component analysis (PCA) is a widely used method for evaluating low-dimensional data. Some variants of PCA have been proposed to improve the interpretation of the principal components (PCs). One of the most common methods is sparse PCA which aims at finding a sparse basis to improve the interpretability over the dense basis of PCA. However, the performances of these improved methods are still far from satisfactory because the data still contain redundant PCs. In this paper, a novel method called PCA based on graph Laplacian and double sparse constraints (GDSPCA) is proposed to improve the interpretation of the PCs and consider the internal geometry of the data. In detail, GDSPCA utilizes L2,1-norm and L1-norm regularization terms simultaneously to enforce the matrix to be sparse by filtering redundant and irrelative PCs, where the L2,1-norm regularization term can produce row sparsity, while the L1-norm regularization term can enforce element sparsity. This way, we can make a better interpretation of the new PCs in low-dimensional subspace. Meanwhile, the method of GDSPCA integrates graph Laplacian into PCA to explore the geometric structure hidden in the data. A simple and effective optimization solution is provided. Extensive experiments on multi-view biological data demonstrate the feasibility and effectiveness of the proposed approach.
Collapse
Affiliation(s)
- Ming-Juan Wu
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Ying-Lian Gao
- Library of Qufu Normal University, Qufu Normal University, Rizhao, China,
| | - Jin-Xing Liu
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Rong Zhu
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| | - Juan Wang
- School of Information Science and Engineering, Qufu Normal University, Rizhao, China
| |
Collapse
|
56
|
Abstract
Non-communicable diseases (NCD) such as type-2 diabetes and CVD are now highly prevalent in both developed and developing countries. Evidence from both human and animal studies shows that early-life nutrition is an important determinant of NCD risk in later life. The mechanism by which the early-life environment influences future disease risk has been suggested to include the altered epigenetic regulation of gene expression. Epigenetic processes regulate the accessibility of genes to the cellular proteins that control gene transcription, determining where and when a gene is switched on and its level of activity. Epigenetic processes not only play a central role in regulating gene expression but also allow an organism to adapt to the environment. In this review, we will focus on how both maternal and paternal nutrition can alter the epigenome and the evidence that these changes are causally involved in determining future disease risk.
Collapse
Affiliation(s)
- Mark A Burton
- Academic Unit of Human Development and Health, Faculty of Medicine,University of Southampton,Southampton,UK
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences,University of Southampton,Southampton,UK
| |
Collapse
|
57
|
Li G, Petkova TD, Laritsky E, Kessler N, Baker MS, Zhu S, Waterland RA. Early postnatal overnutrition accelerates aging-associated epigenetic drift in pancreatic islets. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz015. [PMID: 31528363 PMCID: PMC6735752 DOI: 10.1093/eep/dvz015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 05/02/2023]
Abstract
Pancreatic islets of type 2 diabetes patients have altered DNA methylation, contributing to islet dysfunction and the onset of type 2 diabetes. The cause of these epigenetic alterations is largely unknown. We set out to test whether (i) islet DNA methylation would change with aging and (ii) early postnatal overnutrition would persistently alter DNA methylation. We performed genome-scale DNA methylation profiling in islets from postnatally over-nourished (suckled in a small litter) and control male mice at both postnatal day 21 and postnatal day 180. DNA methylation differences were validated using quantitative bisulfite pyrosequencing, and associations with expression were assessed by RT-PCR. We discovered that genomic regions that are hypermethylated in exocrine relative to endocrine pancreas tend to gain methylation in islets during aging (R 2 = 0.33, P < 0.0001). These methylation differences were inversely correlated with mRNA expression of genes relevant to β cell function [including Rab3b (Ras-related protein Rab-3B), Cacnb3 (voltage-dependent L-type calcium channel subunit 3), Atp2a3 (sarcoplasmic/endoplasmic reticulum calcium ATPase 3) and Ins2 (insulin 2)]. Relative to control, small litter islets showed DNA methylation differences directly after weaning and in adulthood, but few of these were present at both ages. Surprisingly, we found substantial overlap of methylated loci caused by aging and small litter feeding, suggesting that the age-associated gain of DNA methylation happened much earlier in small litter islets than control islets. Our results provide the novel insights that aging-associated DNA methylation increases reflect an epigenetic drift toward the exocrine pancreas epigenome, and that early postnatal overnutrition may accelerate this process.
Collapse
Affiliation(s)
- Ge Li
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Tihomira D Petkova
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Eleonora Laritsky
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Noah Kessler
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Maria S Baker
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Shaoyu Zhu
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Robert A Waterland
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Correspondence address. Departments of Pediatrics and Molecular & Human Genetics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, 1100 Bates Street, Ste. 5080, Houston, TX 77030, USA. Tel: +1-713-798-0304; E-mail:
| |
Collapse
|
58
|
Parrillo L, Spinelli R, Nicolò A, Longo M, Mirra P, Raciti GA, Miele C, Beguinot F. Nutritional Factors, DNA Methylation, and Risk of Type 2 Diabetes and Obesity: Perspectives and Challenges. Int J Mol Sci 2019; 20:ijms20122983. [PMID: 31248068 PMCID: PMC6627657 DOI: 10.3390/ijms20122983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
A healthy diet improves life expectancy and helps to prevent common chronic diseases such as type 2 diabetes (T2D) and obesity. The mechanisms driving these effects are not fully understood, but are likely to involve epigenetics. Epigenetic mechanisms control gene expression, maintaining the DNA sequence, and therefore the full genomic information inherited from our parents, unchanged. An interesting feature of epigenetic changes lies in their dynamic nature and reversibility. Accordingly, they are susceptible to correction through targeted interventions. Here we will review the evidence supporting a role for nutritional factors in mediating metabolic disease risk through DNA methylation changes. Special emphasis will be placed on the potential of using DNA methylation traits as biomarkers to predict risk of obesity and T2D as well as on their response to dietary and pharmacological (epi-drug) interventions.
Collapse
Affiliation(s)
- Luca Parrillo
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Rosa Spinelli
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Antonella Nicolò
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Michele Longo
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Paola Mirra
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Gregory Alexander Raciti
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Claudia Miele
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Francesco Beguinot
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| |
Collapse
|
59
|
Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome. Nutrients 2019; 11:nu11030608. [PMID: 30871166 PMCID: PMC6471069 DOI: 10.3390/nu11030608] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that is essential for regulating gene transcription. However, aberrant DNA methylation, which is a nearly universal finding in cancer, can result in disturbed gene expression. DNA methylation is modified by environmental factors such as diet that may modify cancer risk and tumor behavior. Abnormal DNA methylation has been observed in several cancers such as colon, stomach, cervical, prostate, and breast cancers. These alterations in DNA methylation may play a critical role in cancer development and progression. Dietary nutrient intake and bioactive food components are essential environmental factors that may influence DNA methylation either by directly inhibiting enzymes that catalyze DNA methylation or by changing the availability of substrates required for those enzymatic reactions such as the availability and utilization of methyl groups. In this review, we focused on nutrients that act as methyl donors or methylation co-factors and presented intriguing evidence for the role of these bioactive food components in altering DNA methylation patterns in cancer. Such a role is likely to have a mechanistic impact on the process of carcinogenesis and offer possible therapeutic potentials.
Collapse
|
60
|
Bianco A, Filippi AR, Breda J, Leonardi V, Paoli A, Petrigna L, Palma A, Tabacchi G. Combined effect of different factors on weight status and cardiometabolic risk in Italian adolescents. Ital J Pediatr 2019; 45:32. [PMID: 30836999 PMCID: PMC6402148 DOI: 10.1186/s13052-019-0619-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background The observed increase in body weight and cardiometabolic risk (CR) in youth from developed countries contributes to the global burden of chronic diseases in adult age. The aim of this work is to provide a patterning of the associations between different factors and the weight status and CR of the subjects involved in the Italian ministerial ASSO project. Methods This study involved 919 students from high schools in Palermo. Weight, height and waist circumference were collected by trained teachers; weight status was estimated by the BMI cut-offs for adolescents and CR through the waist-to-height ratio. Questionnaires were administered through the web-based ASSO-NutFit software. Chi-square test investigated the variables significantly associated with the outcomes, which were then included in a Multiple Correspondence Analysis (MCA), to explore their dimensional relationship to weight status and CR. Poisson regressions were conducted separately for the two outcomes, reporting raw and adjusted prevalence ratios (PRs) and Bootstrap Method was used to determine confidence intervals (CIs), to assessing the degree of effect of the explanatory variables over the outcomes. Results Two main dimensions were evidenced, with the overweight/obese group and the group at CR characterized by the following strongly associated factors: male gender, overweight/obese parents, following a slimming regime, caesarean birth, sedentariness, being under/overweight at birth, presence of metabolic risk, going to school by car/scooter, not using supplements. Conclusions This study contributed to identifying those adolescents that should be prioritized in interventions aiming at reducing overweight/obesity and CR in this age group. Electronic supplementary material The online version of this article (10.1186/s13052-019-0619-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, Via G. Pascoli 6, 90144, Palermo, Italy
| | - Anna Rita Filippi
- Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Via Del Vespro 133, 90127, Palermo, Italy
| | - João Breda
- WHO European Office for the Prevention and Control of Noncommunicable Diseases (NCD Office, 9 Leontyevsky Pereulok, Moscow, Russian Federation, 125009
| | - Vincenza Leonardi
- Sport and Exercise Sciences Research Unit, University of Palermo, Via G. Pascoli 6, 90144, Palermo, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Luca Petrigna
- PhD Program in Health Promotion and Cognitive Sciences, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via G. Pascoli 6, 90144, Palermo, Italy.
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, University of Palermo, Via G. Pascoli 6, 90144, Palermo, Italy
| | - Garden Tabacchi
- Sport and Exercise Sciences Research Unit, University of Palermo, Via G. Pascoli 6, 90144, Palermo, Italy
| |
Collapse
|
61
|
Prenatal Malnutrition-Induced Epigenetic Dysregulation as a Risk Factor for Type 2 Diabetes. Int J Genomics 2019; 2019:3821409. [PMID: 30944826 PMCID: PMC6421750 DOI: 10.1155/2019/3821409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/06/2019] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes (T2D) is commonly regarded as a disease originating from lifestyle-related factors and typically occurring after the age of 40. There is, however, consistent experimental and epidemiological data evidencing that the risk for developing T2D may largely depend on conditions early in life. In particular, intrauterine growth restriction (IUGR) induced by poor or unbalanced nutrient intake can impair fetal growth and also cause fetal adipose tissue and pancreatic β-cell dysfunction. On account of these processes, persisting adaptive changes can occur in the glucose-insulin metabolism. These changes can include reduced ability for insulin secretion and insulin resistance, and they may result in an improved capacity to store fat, thereby predisposing to the development of T2D and obesity in adulthood. Accumulating research findings indicate that epigenetic regulation of gene expression plays a critical role in linking prenatal malnutrition to the risk of later-life metabolic disorders including T2D. In animal models of IUGR, changes in both DNA methylation and expression levels of key metabolic genes were repeatedly found which persisted until adulthood. The causal link between epigenetic disturbances during development and the risk for T2D was also confirmed in several human studies. In this review, the conceptual models and empirical data are summarized and discussed regarding the contribution of epigenetic mechanisms in developmental nutritional programming of T2D.
Collapse
|
62
|
Kim S, Wyckoff J, Morris AT, Succop A, Avery A, Duncan GE, Jazwinski SM. DNA methylation associated with healthy aging of elderly twins. GeroScience 2018; 40:469-484. [PMID: 30136078 PMCID: PMC6294724 DOI: 10.1007/s11357-018-0040-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
Variation in healthy aging and lifespan is ascribed more to various non-genetic factors than to inherited genetic determinants, and a major goal in aging research is to reveal the epigenetic basis of aging. One approach to this goal is to find genomic sites or regions where DNA methylation correlates with biological age. Using health data from 134 elderly twins, we calculated a frailty index as a quantitative indicator of biological age, and by applying the Infinium HumanMethylation450K BeadChip technology to their leukocyte DNA samples, we obtained quantitative DNA methylation data on genome-wide CpG sites. We analyzed the health and epigenome data by taking two independent associative approaches: the parametric regression-based approach and a non-parametric machine learning approach followed by GO ontology analysis. Our results indicate that DNA methylation at CpG sites in the promoter region of PCDHGA3 is associated with biological age. PCDHGA3 belongs to clustered protocadherin genes, which are all located in a single locus on chromosome 5 in human. Previous studies of the clustered protocadherin genes showed that (1) DNA methylation is associated with age or age-related phenotypes; (2) DNA methylation can modulate gene expression; (3) dysregulated gene expression is associated with various pathologies; and (4) DNA methylation patterns at this locus are associated with adverse lifetime experiences. All these observations suggest that DNA methylation at the clustered protocadherin genes, including PCDHGA3, is a key mediator of healthy aging.
Collapse
Affiliation(s)
- Sangkyu Kim
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Jennifer Wyckoff
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Anne-T Morris
- Virginia Commonwealth University, Mid-Atlantic Twin Registry, Richmond, VA, USA
| | | | - Ally Avery
- University of Washington Twin Registry, Seattle, WA, USA
- Washington State Twin Registry, Washington State University - Health Sciences Spokane, Spokane, WA, USA
| | - Glen E Duncan
- University of Washington Twin Registry, Seattle, WA, USA
- Washington State Twin Registry, Washington State University - Health Sciences Spokane, Spokane, WA, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
63
|
Abstract
Epigenetics is the study of heritable mechanisms that can modify gene activity and phenotype without modifying the genetic code. The basis for the concept of epigenetics originated more than 2,000 yr ago as a theory to explain organismal development. However, the definition of epigenetics continues to evolve as we identify more of the components that make up the epigenome and dissect the complex manner by which they regulate and are regulated by cellular functions. A substantial and growing body of research shows that nutrition plays a significant role in regulating the epigenome. Here, we critically assess this diverse body of evidence elucidating the role of nutrition in modulating the epigenome and summarize the impact such changes have on molecular and physiological outcomes with regards to human health.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Departments of Genetics and Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina; and Departments of Nutrition and Pediatrics, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Steven H Zeisel
- Departments of Genetics and Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina; and Departments of Nutrition and Pediatrics, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| |
Collapse
|
64
|
Divergent wiring of repressive and active chromatin interactions between mouse embryonic and trophoblast lineages. Nat Commun 2018; 9:4189. [PMID: 30305613 PMCID: PMC6180096 DOI: 10.1038/s41467-018-06666-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
The establishment of the embryonic and trophoblast lineages is a developmental decision underpinned by dramatic differences in the epigenetic landscape of the two compartments. However, it remains unknown how epigenetic information and transcription factor networks map to the 3D arrangement of the genome, which in turn may mediate transcriptional divergence between the two cell lineages. Here, we perform promoter capture Hi-C experiments in mouse trophoblast (TSC) and embryonic (ESC) stem cells to understand how chromatin conformation relates to cell-specific transcriptional programmes. We find that key TSC genes that are kept repressed in ESCs exhibit interactions between H3K27me3-marked regions in ESCs that depend on Polycomb repressive complex 1. Interactions that are prominent in TSCs are enriched for enhancer-gene contacts involving key TSC transcription factors, as well as TET1, which helps to maintain the expression of TSC-relevant genes. Our work shows that the first developmental cell fate decision results in distinct chromatin conformation patterns establishing lineage-specific contexts involving both repressive and active interactions.
Collapse
|
65
|
Mohan R, Baumann D, Alejandro EU. Fetal undernutrition, placental insufficiency, and pancreatic β-cell development programming in utero. Am J Physiol Regul Integr Comp Physiol 2018; 315:R867-R878. [PMID: 30110175 DOI: 10.1152/ajpregu.00072.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of obesity and type 2 (T2D) diabetes is a major health concern in the United States and around the world. T2D is a complex disease characterized by pancreatic β-cell failure in association with obesity and insulin resistance in peripheral tissues. Although several genes associated with T2D have been identified, it is speculated that genetic variants account for only <10% of the risk for this disease. A strong body of data from both human epidemiological and animal studies shows that fetal nutrient factors in utero confer significant susceptibility to T2D. Numerous studies done in animals have shown that suboptimal maternal environment or placental insufficiency causes intrauterine growth restriction (IUGR) in the fetus, a critical factor known to predispose offspring to obesity and T2D, in part by causing permanent consequences in total functional β-cell mass. This review will focus on the potential contribution of the placenta in fetal programming of obesity and TD and its likely impact on pancreatic β-cell development and growth.
Collapse
Affiliation(s)
- Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Daniel Baumann
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Emilyn Uy Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
66
|
Abstract
The incidence of metabolic disorders like type 2 diabetes (T2D) and obesity continue to increase. Although it is evident that the increasing incidence of diabetes confers a global societal and economic burden, the mechanisms responsible for the increased incidence of T2D are not well understood. Extensive efforts to understand the association of early-life perturbations with later onset of metabolic diseases, the founding principle of developmental origins of health and disease, have been crucial in determining the mechanisms that may be driving the pathogenesis of T2D. As the programming of the epigenome occurs during critical periods of development, it has emerged as a potential molecular mechanism that could occur early in life and impact metabolic health decades later. In this review, we critically evaluate human and animal studies that illustrated an association of epigenetic processes with development of T2D as well as intervention strategies that have been employed to reverse the perturbed epigenetic modification or reprogram the naturally occurring epigenetic marks to favor improved metabolic outcome. We highlight that although our understanding of epigenetics and its contribution toward developmental origins of T2D continues to grow, whether epigenetics is a cause, consequence, or merely a correlation remains debatable due to the many limitations/challenges of the existing epigenetic studies. Finally, we discuss the potential of establishing collaborative research efforts between different disciplines, including physiology, epigenetics, and bioinformatics, to help advance the developmental origins field with great potential for understanding the pathogenesis of T2D and developing preventive strategies for T2D.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| |
Collapse
|
67
|
Abstract
Epidemiological and experimental observations tend to prove that environment, lifestyle or nutritional challenges influence heart functions together with genetic factors. Furthermore, when occurring during sensitive windows of heart development, these environmental challenges can induce an 'altered programming' of heart development and shape the future heart disease risk. In the etiology of heart diseases driven by environmental challenges, epigenetics has been highlighted as an underlying mechanism, constituting a bridge between environment and heart health. In particular, micro-RNAs which are involved in each step of heart development and functions seem to play a crucial role in the unfavorable programming of heart diseases. This review describes the latest advances in micro-RNA research in heart diseases driven by early exposure to challenges and discusses the use of micro-RNAs as potential targets in the reversal of the pathophysiology.
Collapse
|
68
|
Balcha SA, Phillips DIW, Trimble ER. Type 1 Diabetes in a Resource-Poor Setting: Malnutrition Related, Malnutrition Modified, or Just Diabetes? Curr Diab Rep 2018; 18:47. [PMID: 29904886 PMCID: PMC6002435 DOI: 10.1007/s11892-018-1003-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Very little is known about the occurrence of type 1 diabetes (T1DM) in resource-poor countries and particularly in their rural hinterlands. RECENT FINDINGS Studies of the epidemiology of T1DM in Ethiopia and similar countries in sub-Saharan Africa show that the pattern of presenting disease differs substantially from that in the West. Typically, the peak age of onset of the disease is more than a decade later with a male excess and a low prevalence of indicators of islet-cell autoimmunity. It is also associated with markers of undernutrition. These findings raise the question as to whether the principal form of T1DM seen in these resource-poor communities has a different pathogenesis. Whether the disease is a direct result of malnutrition or whether malnutrition may modify the expression of islet-cell autoimmunity is unclear. However, the poor prognosis in these settings underlines the urgent need for detailed clinical and epidemiological studies.
Collapse
Affiliation(s)
| | - David I W Phillips
- Medical Research Council's Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, UK.
| | | |
Collapse
|
69
|
Ramon-Krauel M, Pentinat T, Bloks VW, Cebrià J, Ribo S, Pérez-Wienese R, Vilà M, Palacios-Marin I, Fernández-Pérez A, Vallejo M, Téllez N, Rodríguez MÀ, Yanes O, Lerin C, Díaz R, Plosch T, Tietge UJF, Jimenez-Chillaron JC. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance. FASEB J 2018; 32:fj201700717RR. [PMID: 29812971 DOI: 10.1096/fj.201700717rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Postnatal overfeeding increases the risk of chronic diseases later in life, including obesity, insulin resistance, hepatic steatosis, and type 2 diabetes. Epigenetic mechanisms might underlie the long-lasting effects associated with early nutrition. Here we aimed to explore the molecular pathways involved in early development of insulin resistance and hepatic steatosis, and we examined the potential contribution of DNA methylation and histone modifications to long-term programming of metabolic disease. We used a well-characterized mouse model of neonatal overfeeding and early adiposity by litter size reduction. Neonatal overfeeding led to hepatic insulin resistance very early in life that persisted throughout adulthood despite normalizing food intake. Up-regulation of monoacylglycerol O-acyltransferase ( Mogat) 1 conceivably mediates hepatic steatosis and insulin resistance through increasing intracellular diacylglycerol content. Early and sustained deregulation of Mogat1 was associated with a combination of histone modifications that might favor Mogat1 expression. In sum, postnatal overfeeding causes extremely rapid derangements of hepatic insulin sensitivity that remain relatively stable until adulthood. Epigenetic mechanisms, particularly histone modifications, could contribute to such long-lasting effects. Our data suggest that targeting hepatic monoacylglycerol acyltransferase activity during early life might provide a novel strategy to improve hepatic insulin sensitivity and prevent late-onset insulin resistance and fatty liver disease.-Ramon-Krauel, M., Pentinat, T., Bloks, V. W., Cebrià, J., Ribo, S., Pérez-Wienese, R., Vilà, M., Palacios-Marin, I., Fernández-Pérez, A., Vallejo, M., Téllez, N., Rodríguez, M. À., Yanes, O., Lerin, C., Díaz, R., Plosch, T., Tietge, U. J. F., Jimenez-Chillaron, J. C. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance.
Collapse
Affiliation(s)
- Marta Ramon-Krauel
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Thais Pentinat
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Vincent W Bloks
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Judith Cebrià
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Silvia Ribo
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Ricky Pérez-Wienese
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Maria Vilà
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Antonio Fernández-Pérez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Mario Vallejo
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Noèlia Téllez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, Barcelona, Spain
| | - Miguel Àngel Rodríguez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Oscar Yanes
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Carles Lerin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Rubén Díaz
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Torsten Plosch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
70
|
Danson AF, Marzi SJ, Lowe R, Holland ML, Rakyan VK. Early life diet conditions the molecular response to post-weaning protein restriction in the mouse. BMC Biol 2018; 16:51. [PMID: 29720174 PMCID: PMC5930764 DOI: 10.1186/s12915-018-0516-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Environmental influences fluctuate throughout the life course of an organism. It is therefore important to understand how the timing of exposure impacts molecular responses. Herein, we examine the responses of two key molecular markers of dietary stress, namely variant-specific methylation at ribosomal DNA (rDNA) and small RNA distribution, including tRNA fragments, in a mouse model of protein restriction (PR) with exposure at pre- and/or post-weaning. RESULTS We first confirm that pre-weaning PR exposure modulates the methylation state of rDNA in a genotype-dependent manner, whereas post-weaning PR exposure has no such effect. Conversely, post-weaning PR induces a shift in small RNA distribution, but there is no effect in the pre-weaning PR model. Intriguingly, mice exposed to PR throughout their lives show neither of these two dietary stress markers, similar to controls. CONCLUSIONS The results show that the timing of the insult affects the nature of the molecular response but also, critically, that 'matching' diet exposure either side of weaning eliminates the stress response at the level of rDNA methylation and small RNA in sperm.
Collapse
Affiliation(s)
- Amy F Danson
- The Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Sarah J Marzi
- The Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Robert Lowe
- The Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Michelle L Holland
- Department of Medical and Molecular Genetics, King's College London, Guys Hospital, London, SE1 9RT, UK.
| | - Vardhman K Rakyan
- The Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
71
|
Effects of early-life malnutrition on neurodevelopment and neuropsychiatric disorders and the potential mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:64-75. [PMID: 29287829 DOI: 10.1016/j.pnpbp.2017.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 02/08/2023]
Abstract
Lines of evidence have demonstrated that early-life malnutrition is highly correlated with neurodevelopment and adulthood neuropsychiatric disorders, while some findings are conflicting with each other. In addition, the biological mechanisms are less investigated. We systematically reviewed the evidence linking early-life nutrition status with neurodevelopment and clinical observations in human and animal models. We summarized the effects of special nutritious on neuropsychiatric disorders and explored the underlying potential mechanisms. The further understanding of the biological regulation of early-life nutritional status on neurodevelopment might shed light on precision nutrition at an integrative systems biology framework.
Collapse
|
72
|
Piao F, Aadil RM, Suleman R, Li K, Zhang M, Wu P, Shahbaz M, Ahmed Z. Ameliorative effects of taurine against diabetes: a review. Amino Acids 2018; 50:487-502. [PMID: 29492671 DOI: 10.1007/s00726-018-2544-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/19/2018] [Indexed: 01/01/2023]
Abstract
Diets in rats and humans have shown promising results. Taurine improved glucagon activity, promoted glycemic stability, modified glucose levels, successfully addressed hyperglycemia via advanced glycation end-product control, improved insulin secretion and had a beneficial effect on insulin resistance. Taurine treatment performed well against oxidative stress in brain, increased the secretion of required hormones and protected against neuropathy, retinopathy and nephropathy in diabetes compared with the control. Taurine has been observed to be effective in treatments against diabetic hepatotoxicity, vascular problems and heart injury in diabetes. Taurine was shown to be effective against oxidative stress. The mechanism of action of taurine cannot be explained by one pathway, as it has many effects. Several of the pathways are the advanced glycation end-product pathway, PI3-kinase/AKT pathway and mitochondrial apoptosis pathway. The worldwide threat of diabetes underscores the urgent need for novel therapeutic measures against this disorder. Taurine (2-aminoethane sulfonic acid) is a natural compound that has been studied in diabetes and diabetes-induced complications.
Collapse
Affiliation(s)
- Fengyuan Piao
- School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faislabad, Pakistan
| | - Raheel Suleman
- Institute of Food Science and Technology, Graduate School of Chinese Academy of Agriculture Science, Beijing, China
| | - Kaixin Li
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Mengren Zhang
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Pingan Wu
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Muhammad Shahbaz
- Department of Food Science and Technology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Zulfiqar Ahmed
- Department of Food Science and Technology, College of Environmental and Agricultural Sciences, Islamia University Bahawalpur, Bhawalpur, Pakistan
| |
Collapse
|
73
|
Abstract
As the popular adage goes, all diseases run into old age and almost all physiological changes are associated with alterations in gene expression, irrespective of whether they are causal or consequential. Therefore, the quest for mechanisms that delay ageing and decrease age-associated diseases has propelled researchers to unravel regulatory factors that lead to changes in chromatin structure and function, which ultimately results in deregulated gene expression. It is therefore essential to bring together literature, which until recently has investigated gene expression and chromatin independently. With advances in biomedical research and the emergence of epigenetic regulators as potential therapeutic targets, enhancing our understanding of mechanisms that 'derail' transcription and identification of causal genes/pathways during ageing will have a significant impact. In this context, this chapter aims to not only summarize the key features of age-associated changes in epigenetics and transcription, but also identifies gaps in the field and proposes aspects that need to be investigated in the future.
Collapse
|
74
|
Duque-Guimarães D, Ozanne S. Early nutrition and ageing: can we intervene? Biogerontology 2017; 18:893-900. [PMID: 28357523 PMCID: PMC5684303 DOI: 10.1007/s10522-017-9691-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022]
Abstract
Ageing, a complex process that results in progressive decline in intrinsic physiological function leading to an increase in mortality rate, has been shown to be affected by early life nutrition. Accumulating data from animal and epidemiological studies indicate that exposure to a suboptimal nutritional environment during fetal life can have long-term effects on adult health. In this paper, we discuss the impact of early life nutrition on the development of age-associated diseases and life span. Special emphasis is given to studies that have investigated the molecular mechanisms underlying these effects. These include permanent structural and cellular changes including epigenetics modifications, oxidative stress, DNA damage and telomere shortening. Potential strategies targeting these mechanisms, in order to prevent or alleviate the detrimental effects of suboptimal early nutrition on lifespan and age-related diseases, are also discussed. Although recent reports have already identified effective therapeutic interventions, such as antioxidant supplementation, further understanding of the extent and nature of how early nutrition influences the ageing process will enable the development of novel and more effective approaches to improve health and extend human lifespan in the future.
Collapse
Affiliation(s)
- Daniella Duque-Guimarães
- MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Cambridge, CB2 0QQ, UK
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Susan Ozanne
- MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
75
|
Prentice S. They Are What You Eat: Can Nutritional Factors during Gestation and Early Infancy Modulate the Neonatal Immune Response? Front Immunol 2017; 8:1641. [PMID: 29234319 PMCID: PMC5712338 DOI: 10.3389/fimmu.2017.01641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Abstract
The ontogeny of the human immune system is sensitive to nutrition even in the very early embryo, with both deficiency and excess of macro- and micronutrients being potentially detrimental. Neonates are particularly vulnerable to infectious disease due to the immaturity of the immune system and modulation of nutritional immunity may play a role in this sensitivity. This review examines whether nutrition around the time of conception, throughout pregnancy, and in early neonatal life may impact on the developing infant immune system.
Collapse
Affiliation(s)
- Sarah Prentice
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
76
|
Kim E, Kwak SH, Chung HR, Ohn JH, Bae JH, Choi SH, Park KS, Hong JS, Sung J, Jang HC. DNA methylation profiles in sibling pairs discordant for intrauterine exposure to maternal gestational diabetes. Epigenetics 2017; 12:825-832. [PMID: 29099273 DOI: 10.1080/15592294.2017.1370172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intrauterine exposure to hyperglycemia is reported to confer increased metabolic risk in later life, supporting the 'developmental origins of health and disease' hypothesis. Epigenetic alterations are suggested as one of the possible underlying mechanisms. In this study, we compared pairwise DNA methylation differences between siblings whose intrauterine exposure to maternal gestational diabetes (GDM) were discordant. Methylation of peripheral blood DNA of 18 sibling pairs was measured using Infinium HumanMethylation450 BeadChip assays. Of the 465,447 CpG sites analyzed, 12 showed differential methylation (false discovery rate <0.15), including markers within genes associated with monogenic diabetes (HNF4A) or obesity (RREB1). The overall methylation at HNF4A showed inverse correlations with mRNA expression levels, though non significant. In a gene set enrichment analysis, metabolism and signal transduction pathways were enriched. In conclusion, we found DNA methylation markers associated with intrauterine exposure to maternal GDM, including those within genes previously implicated in diabetes or obesity.
Collapse
Affiliation(s)
- Eunae Kim
- a Complex Disease and Genome Epidemiology Branch, Department of Public Health Science , School of Public Health, Seoul National University , Seoul , Republic of Korea
| | - Soo Heon Kwak
- b Department of Internal Medicine , Seoul National University Hospital , Seoul , Republic of Korea
| | - Hye Rim Chung
- c Department of Pediatrics , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Jung Hun Ohn
- d Department of Internal Medicine , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Jae Hyun Bae
- b Department of Internal Medicine , Seoul National University Hospital , Seoul , Republic of Korea
| | - Sung Hee Choi
- d Department of Internal Medicine , Seoul National University Bundang Hospital , Seongnam , Republic of Korea.,e Department of Internal Medicine , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Kyong Soo Park
- b Department of Internal Medicine , Seoul National University Hospital , Seoul , Republic of Korea.,e Department of Internal Medicine , Seoul National University College of Medicine , Seoul , Republic of Korea.,f Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology , Seoul National University , Seoul , Republic of Korea
| | - Joon-Seok Hong
- g Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Joohon Sung
- a Complex Disease and Genome Epidemiology Branch, Department of Public Health Science , School of Public Health, Seoul National University , Seoul , Republic of Korea.,h Institute of Health and Environment , Seoul National University , Seoul , Republic of Korea
| | - Hak Chul Jang
- d Department of Internal Medicine , Seoul National University Bundang Hospital , Seongnam , Republic of Korea.,e Department of Internal Medicine , Seoul National University College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
77
|
Tarry-Adkins JL, Ozanne SE. Nutrition in early life and age-associated diseases. Ageing Res Rev 2017; 39:96-105. [PMID: 27594376 DOI: 10.1016/j.arr.2016.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/24/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally. It is known that a strong association exists between a suboptimal maternal and/or early-life environment and increased propensity of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity. The dissection of underlying molecular mechanisms to explain this phenomenon, which is known as 'developmental programming' is still emerging; however three common mechanisms have emerged in many models of developmental programming. These mechanisms are (a) changes in tissue structure, (b) epigenetic regulation and (c) accelerated cellular ageing. This review will examine the epidemiological evidence and the animal models of suboptimal maternal environments, focusing upon these molecular mechanisms and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| |
Collapse
|
78
|
Kusari F, O'Doherty AM, Hodges NJ, Wojewodzic MW. Bi-directional effects of vitamin B 12 and methotrexate on Daphnia magna fitness and genomic methylation. Sci Rep 2017; 7:11872. [PMID: 28928387 PMCID: PMC5605502 DOI: 10.1038/s41598-017-12148-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
Here we interrogated, using three separate but complementary experimental approaches, the impact of vitamin B12 availability and methotrexate exposure on Daphnia magna, which we hypothesised should have an opposite effect on One carbon metabolism (OCM). OCM is a vital biological process supporting a variety of physiological processes, including DNA methylation. Contrary to mammalian models, this process remains largely unexplored in invertebrates. The purpose of this study was to elucidate the impact of OCM short-term alteration on the fitness and epigenome of the keystone species, Daphnia. We used maternal age at reproduction, brood size and survival rates in combination with DNA methylation sensitive comet assay to determine the effects of vitamin B12 or MTX on fitness and the epigenome. Vitamin B12 had a positive influence on Daphnia fitness and we provide evidence demonstrating that this may be associated with an increased level of genome-wide DNA methylation. Conversely, exposing D. magna to MTX negatively influenced the fitness of the animals and was associated with loss of global DNA methylation, translating in decreased fitness. These results highlight the potential importance of OCM in invertebrates, providing novel evidence supporting a potential role for epigenetic modifications to the genome in D. magna environmental adaptability.
Collapse
Affiliation(s)
- Fitore Kusari
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT,, UK
| | - Alan M O'Doherty
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nikolas J Hodges
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT,, UK
| | - Marcin W Wojewodzic
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT,, UK.
| |
Collapse
|
79
|
Abstract
Developmental origins of health and disease (DOHaD) is the study of how the early life environment can impact the risk of chronic diseases from childhood to adulthood and the mechanisms involved. Epigenetic modifications such as DNA methylation, histone modifications and non-coding RNAs are involved in mediating how early life environment impacts later health. This review is a summary of the Epigenetics and DOHaD workshop held at the 2016 DOHaD Society of Australia and New Zealand Conference. Our extensive knowledge of how the early life environment impacts later risk for chronic disease would not have been possible without animal models. In this review we highlight some animal model examples that demonstrate how an adverse early life exposure results in epigenetic and gene expression changes that may contribute to increased risk of chronic disease later in life. Type 2 diabetes and cardiovascular disease are chronic diseases with an increasing incidence due to the increased number of children and adults that are obese. Epigenetic changes such as DNA methylation have been shown to be associated with metabolic health measures and potentially predict future metabolic health status. Although more difficult to elucidate in humans, recent studies suggest that DNA methylation may be one of the epigenetic mechanisms that mediates the effects of early life exposures on later life risk of obesity and obesity related diseases. Finally, we discuss the role of the microbiome and how it is a new player in developmental programming and mediating early life exposures on later risk of chronic disease.
Collapse
|
80
|
Sato N, Sudo K, Mori M, Imai C, Muramatsu M, Sugimoto M. Early gestational maternal low-protein diet diminishes hepatic response to fasting in young adult male mice. Sci Rep 2017; 7:9812. [PMID: 28852200 PMCID: PMC5575317 DOI: 10.1038/s41598-017-10380-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 12/25/2022] Open
Abstract
Maternal low-protein (MLP) diet can lead to hepatic steatosis, which only develops with ageing. It is still unclear whether the young offspring show any signs of past exposure to prenatal adverse conditions. We hypothesized that early nutritional insult would first affect the dynamic responsiveness to nutritional challenges rather than the static state. We analyzed the transcriptome and metabolome profiles of the hepatic response to fasting/refeeding in young male mice offspring to identify changes induced by early gestational MLP diet. Restricted MLP exposure strictly to early gestation was achieved by the embryo transfer method. As a result, the fasting-induced upregulation of genes related to long-chain fatty acid metabolism and of stress response genes related to protein folding were significantly diminished in MLP pups. Lipid profiling after fasting showed that the hepatic signature of triacylglycerols was shifted to longer acyl-chains and higher saturation by the MLP diet. Bioinformatic analyses suggested that these phenomenological changes may be partially linked to the peroxisome proliferator activated receptor α (PPARα) pathway. Taken together, early gestational MLP diet affected the hepatic dynamic response to nutritional stress in seemingly healthy young offspring, accompanied with partial deterioration of PPARα action.
Collapse
Affiliation(s)
- Noriko Sato
- Department of Epigenetic Epidemiology/Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, 6-1-1, Shinjyuku, Shinjyuku-ku, Tokyo, 160-0022, Japan
| | - Masayo Mori
- Institute for Advanced Biosciences, Keio University, Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Chihiro Imai
- Department of Epigenetic Epidemiology/Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masaaki Muramatsu
- Department of Epigenetic Epidemiology/Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- AMED-CREST, AMED, 1-7-1 Otemachi, Chiyoda-Ku, Tokyo, 100-0004, Japan
| |
Collapse
|
81
|
Kereliuk SM, Brawerman GM, Dolinsky VW. Maternal Macronutrient Consumption and the Developmental Origins of Metabolic Disease in the Offspring. Int J Mol Sci 2017; 18:E1451. [PMID: 28684678 PMCID: PMC5535942 DOI: 10.3390/ijms18071451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
Recent research aimed at understanding the rise in obesity and cardiometabolic disease in children suggests that suboptimal maternal nutrition conditions organ systems and physiological responses in the offspring contributing to disease development. Understanding the mechanisms by which the macronutrient composition of the maternal diet during pregnancy or lactation affects health outcomes in the offspring may lead to new maternal nutrition recommendations, disease prevention strategies and therapies that reduce the increasing incidence of cardiometabolic disease in children. Recent mechanistic animal model research has identified how excess fats and sugars in the maternal diet alter offspring glucose tolerance, insulin signaling and metabolism. Maternal nutrition appears to influence epigenetic alterations in the offspring and the programming of gene expression in key metabolic pathways. This review is focused on experimental studies in animal models that have investigated mechanisms of how maternal consumption of macronutrients affects cardiometabolic disease development in the offspring. Future research using "-omic" technologies is essential to elucidate the mechanisms of how altered maternal macronutrient consumption influences the development of disease in the offspring.
Collapse
Affiliation(s)
- Stephanie M Kereliuk
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Gabriel M Brawerman
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
82
|
Gene-Diet Interactions in Type 2 Diabetes: The Chicken and Egg Debate. Int J Mol Sci 2017; 18:ijms18061188. [PMID: 28574454 PMCID: PMC5486011 DOI: 10.3390/ijms18061188] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Consistent evidence from both experimental and human studies indicates that Type 2 diabetes mellitus (T2DM) is a complex disease resulting from the interaction of genetic, epigenetic, environmental, and lifestyle factors. Nutrients and dietary patterns are important environmental factors to consider in the prevention, development and treatment of this disease. Nutritional genomics focuses on the interaction between bioactive food components and the genome and includes studies of nutrigenetics, nutrigenomics and epigenetic modifications caused by nutrients. There is evidence supporting the existence of nutrient-gene and T2DM interactions coming from animal studies and family-based intervention studies. Moreover, many case-control, cohort, cross-sectional cohort studies and clinical trials have identified relationships between individual genetic load, diet and T2DM. Some of these studies were on a large scale. In addition, studies with animal models and human observational studies, in different countries over periods of time, support a causative relationship between adverse nutritional conditions during in utero development, persistent epigenetic changes and T2DM. This review provides comprehensive information on the current state of nutrient-gene interactions and their role in T2DM pathogenesis, the relationship between individual genetic load and diet, and the importance of epigenetic factors in influencing gene expression and defining the individual risk of T2DM.
Collapse
|
83
|
de Luca A, Hankard R, Borys JM, Sinnett D, Marcil V, Levy E. Nutriepigenomics and malnutrition. Epigenomics 2017; 9:893-917. [DOI: 10.2217/epi-2016-0168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetics is defined as the modulation of gene expression without changes to the underlying DNA sequence. Epigenetic alterations, as a consequence of in utero malnutrition, may play a role in susceptibility to develop adulthood diseases and inheritance. However, the mechanistic link between epigenetic modifications and abnormalities in nutrition remains elusive. This review provides an update on the association of suboptimal nutritional environment and the high propensity to produce adult-onset chronic illnesses with a particular focus on modifications in genome functions that occur without alterations to the DNA sequence. We will mention the drivers of the phenotype and pattern of epigenetic markers set down during the reprogramming along with novel preventative and therapeutic strategies. New knowledge of epigenetic alterations is opening a gate toward personalized medicine.
Collapse
Affiliation(s)
- Arnaud de Luca
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- INSERM, U 1069, F-37044 Tours, France
| | - Regis Hankard
- INSERM, U 1069, F-37044 Tours, France
- François Rabelais University, F-37000 Tours, France
| | | | - Daniel Sinnett
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Valérie Marcil
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Emile Levy
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec H3T 1C5, Canada
- EPODE International Network, F-75017 Paris, France
- Department of Nutrition, Faculty of Medicine, University of Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
84
|
Bahreynian M, Qorbani M, Khaniabadi BM, Motlagh ME, Safari O, Asayesh H, Kelishadi R. Association between Obesity and Parental Weight Status in Children and Adolescents. J Clin Res Pediatr Endocrinol 2017; 9:111-117. [PMID: 28008863 PMCID: PMC5463282 DOI: 10.4274/jcrpe.3790] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE This study aims to assess the relationship between body mass index (BMI) of children and that of their parents in a nationally-representative sample of Iranian population. METHODS This cross-sectional nationwide study was conducted in 2011-2012 among 6-18-year-old students and their parents living in 30 provinces of Iran. Socio-demographic information was collected. The BMI values of the children/adolescents were categorized according to the World Health Organization reference curves. Association between parental and student weight status was examined using ordinal regression models after adjustment for potential confounders. RESULTS Overall, 23043 children and adolescents and one of their parents participated in this study (50.7% boys, 73.4% urban status). Mean age of the subjects was 12.55±3.31 years. Mean BMI values of parents and children/adolescents were 27.0±4.57 and 18.8±4.4 kg/m2, respectively. After adjusting for confounders, overweight and/or obesity in students of both genders was found to be significantly associated with parental overweight and/or obesity. In those students who had obese parents, the odds ratio (OR) of being obese was 2.79 for boys [OR=2.79; 95% confidence interval (CI)=2.44-3.20] and 3.46 for girls (OR=3.46; 95% CI=3.03-3.94) compared to their peers with normal-weight parents. Boys with overweight parents were 1.7 times more overweight than their counterparts with normal-weight parents (OR=1.70; 95% CI=1.15-1.92). Similarly, girls who had overweight parents were more overweight compared to those with normal-weight parents (OR=2.00; 95% CI=1.77-2.25). CONCLUSION Our findings highlight the importance of the shared family environment as a multi-factorial contributor to the childhood obesity epidemic and the necessity of implementing family-centered preventive programs.
Collapse
Affiliation(s)
- Maryam Bahreynian
- Research Institute for Primordial Prevention of Non Communicable Disease, Child Growth and Development Research Center, Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran, E-mail:
| | - Bita Moradi Khaniabadi
- Research Institute for Primordial Prevention of Non Communicable Disease, Child Growth and Development Research Center, Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Omid Safari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamid Asayesh
- Department of Medical Emergencies, Qom University of Medical Sciences, Qom, Iran
| | - Roya Kelishadi
- Research Institute for Primordial Prevention of Non Communicable Disease, Child Growth and Development Research Center, Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
85
|
Golson ML, Kaestner KH. Epigenetics in formation, function, and failure of the endocrine pancreas. Mol Metab 2017; 6:1066-1076. [PMID: 28951829 PMCID: PMC5605720 DOI: 10.1016/j.molmet.2017.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023] Open
Abstract
Background Epigenetics, in the broadest sense, governs all aspects of the life of any multicellular organism, as it controls how differentiated cells arrive at their unique phenotype during development and differentiation, despite having a uniform (with some exceptions such as T-cells and germ cells) genetic make-up. The endocrine pancreas is no exception. Transcriptional regulators and epigenetic modifiers shape the differentiation of the five major endocrine cell types from their common precursor in the fetal pancreatic bud. Beyond their role in cell differentiation, interactions of the organism with the environment are also often encoded into permanent or semi-permanent epigenetic marks and affect cellular behavior and organismal health. Epigenetics is defined as any heritable – at least through one mitotic cell division – change in phenotype or trait that is not the result of a change in genomic DNA sequence, and it forms the basis that mediates the environmental impact on diabetes susceptibility and islet function. Scope of review We will summarize the impact of epigenetic regulation on islet cell development, maturation, function, and pathophysiology. We will briefly recapitulate the major epigenetic marks and their relationship to gene activity, and outline novel strategies to employ targeted epigenetic modifications as a tool to improve islet cell function. Major conclusions The improved understanding of the epigenetic underpinnings of islet cell differentiation, function and breakdown, as well as the development of innovative tools for their manipulation, is key to islet cell biology and the discovery of novel approaches to therapies for islet cell failure.
Collapse
Affiliation(s)
- Maria L Golson
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| | - Klaus H Kaestner
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| |
Collapse
|
86
|
Osteocalcin and its endocrine functions. Biochem Pharmacol 2017; 132:1-8. [DOI: 10.1016/j.bcp.2017.02.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/02/2017] [Indexed: 12/31/2022]
|
87
|
Bansal A, Pinney SE. DNA methylation and its role in the pathogenesis of diabetes. Pediatr Diabetes 2017; 18:167-177. [PMID: 28401680 PMCID: PMC5394941 DOI: 10.1111/pedi.12521] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Although the factors responsible for the recent increase in the prevalence of diabetes worldwide are not entirely known, the morbidity associated with this disease results in substantial health and economic burden on society. Epigenetic modifications, including DNA methylation have been identified as one mechanism by which the environment interacts with the genome and there is evidence that alterations in DNA methylation may contribute to the increased prevalence of both type 1 and type 2 diabetes. This review provides a summary of DNA methylation and its role in gene regulation, and includes descriptions of various techniques to measure site-specific and genome-wide DNA methylation changes. In addition, we review current literature highlighting the complex relationship between DNA methylation, gene expression, and the development of diabetes and related complications. In studies where both DNA methylation and gene expression changes were reported, DNA methylation status had a strong inverse correlation with gene expression, suggesting that this interaction may be a potential future therapeutic target. We highlight the emerging use of genome-wide DNA methylation profiles as a biomarker to predict patients at risk of developing diabetes or specific complications of diabetes. The development of a predictive model that incorporates both genetic sequencing and DNA methylation data may be an effective diagnostic approach for all types of diabetes and could lead to additional innovative therapies.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Biomedical Research Building II/III, Philadelphia, PA,Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, Biomedical Research Building II/III, Philadelphia, PA, USA,Division of Neonatology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Sara E. Pinney
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Biomedical Research Building II/III, Philadelphia, PA,Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, Biomedical Research Building II/III, Philadelphia, PA, USA,Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
88
|
Parental High-Fat Diet Promotes Inflammatory and Senescence-Related Changes in Prostate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4962950. [PMID: 28261375 PMCID: PMC5316447 DOI: 10.1155/2017/4962950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/24/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023]
Abstract
Background. Obesity and dietary habits are associated with increased incidences of aging-related prostatic diseases. The present study was aimed to investigate transgenerational effects of chronic high-fat diet (HFD) feeding on inflammation and senescence-related changes in prostate. Methods. Sprague-Dawley rats were kept on either normal or HFD one. Senescence-associated β-galactosidase (SA β-gal) activity, inflammation, and cellular proliferation were determined in the prostate. Results. Increased SA β-gal activity, expression of p53, and cell proliferation marker PCNA were observed in ventral prostate of HFD-fed rats. Immunostaining for p53 and PCNA revealed that the p53 immunopositive cells were primarily in stroma while PCNA immunopositive cells were epithelial cells. An increase in expression of cycloxygenase-2 (COX-2) and phosphorylation of nuclear factor-kappa B (NF-kB) was observed in prostate of weaning pups HFD-fed parents. However, in adult pups, irrespective of dietary habit, a significant increase in the expression of COX-2, PCNA, phosphorylation of NF-kB, infiltration of inflammatory cells, and SA β-gal activity was observed. Conclusions. Present investigation reports that HFD feeding promotes accumulation of p53 expressing cells, proliferation of epithelial cells, and senescence-related changes in prostate. Further, parental HFD-feeding upholds inflammatory, proliferative, and senescence-related changes in prostate of pups.
Collapse
|
89
|
Tian S, Lin XH, Xiong YM, Liu ME, Yu TT, Lv M, Zhao W, Xu GF, Ding GL, Xu CM, Jin M, Feng C, Wu YT, Tan YJ, Gao Q, Zhang J, Li C, Ren J, Jin LY, Chen B, Zhu H, Zhang XY, Chen SC, Liu XM, Liu Y, Zhang JY, Wang L, Zhang P, Chen XJ, Jin L, Chen X, Meng YC, Wu DD, Lin H, Yang Q, Zhou CL, Li XZ, Wang YY, Xiang YQ, Liu ZW, Gao L, Chen LT, Pan HJ, Li R, Zhang FH, Xing LF, Zhu YM, Klausen C, Leung PCK, Li JX, Sun F, Sheng JZ, Huang HF. Prevalence of Prediabetes Risk in Offspring Born to Mothers with Hyperandrogenism. EBioMedicine 2017; 16:275-283. [PMID: 28111236 PMCID: PMC5474435 DOI: 10.1016/j.ebiom.2017.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023] Open
Abstract
Background Excessive androgen exposure during pregnancy has been suggested to induce diabetic phenotypes in offspring in animal models. The aim of this study was to investigate whether pregestational maternal hyperandrogenism in human influenced the glucose metabolism in offspring via epigenetic memory from mother's oocyte to child's somatic cells. Methods Of 1782 reproductive-aged women detected pregestational serum androgen, 1406 were pregnant between 2005 and 2010. Of 1198 women who delivered, 1116 eligible mothers (147 with hyperandrogenism and 969 normal) were recruited. 1216 children (156 children born to mothers with hyperandrogenism and 1060 born to normal mother) were followed up their glycometabolism in mean age of 5 years. Imprinting genes of oocyte from mothers and lymphocytes from children were examined. A pregestational hyperandrogenism rat model was also established. Findings Children born to women with hyperandrogenism showed increased serum fasting glucose and insulin levels, and were more prone to prediabetes (adjusted RR: 3.98 (95%CI 1.16–13.58)). Oocytes from women with hyperandrogenism showed increased insulin-like growth factor 2 (IGF2) expression. Lymphocytes from their children also showed increased IGF2 expression and decreased IGF2 methylation. Treatment of human oocytes with dihydrotestosterone upregulated IGF2 and downregulated DNMT3a levels. In rat, pregestational hyperandrogenism induced diabetic phenotypes and impaired insulin secretion in offspring. In consistent with the findings in human, hyperandrogenism also increased Igf2 expression and decreased DNMT3a in rat oocytes. Importantly, the same altered methylation signatures of Igf2 were identified in the offspring pancreatic islets. Interpretation Pregestational hyperandrogenism may predispose offspring to glucose metabolism disorder via epigenetic oocyte inheritance. Clinical trial registry no.: ChiCTR-OCC-14004537; www.chictr.org. Maternal hyperandrogenism may increase the risks of glucose metabolism disorder and prediabetes in their children. High androgen levels in women may directly increased IGF2 expression and decreased IGF2 methylation in oocytes Intergenerational inheritance of epigenetic alteration could be regarded important in determining development of diabetes.
Hyperandrogenemia can be observed in most patients with polycystic ovarian syndrome that is a common endocrine disorder in women of reproductive age, especially in subfertile women. We found that maternal hyperandrogenism may increase the risks of glucose metabolism disorder and prediabetes in their children. Also, Data from human and rat suggest that this glucose metabolism disorder may be mediated by DNA methylation modifications, and this kind of epigenetic modification may be transmitted from oocytes of mothers to somatic cells of offspring. Hence, intergenerational inheritance of epigenetic alteration should be regarded important in determining development of diabetes in the future.
Collapse
Affiliation(s)
- Shen Tian
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China; Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xian-Hua Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Meng Xiong
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Miao-E Liu
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Tian-Tian Yu
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Min Lv
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Wei Zhao
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Gu-Feng Xu
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Guo-Lian Ding
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chen-Ming Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Min Jin
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Chun Feng
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yan-Ting Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ya-Jing Tan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Gao
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China
| | - Jian Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Cheng Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun Ren
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lu-Yang Jin
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Bin Chen
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Hong Zhu
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xue-Ying Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Song-Chang Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin-Mei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ye Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun-Yu Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Li Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ping Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiao-Jun Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Li Jin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xi Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Cong Meng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dan-Dan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Cheng-Liang Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin-Zhu Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Yu Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu-Qian Xiang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhi-Wei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ling Gao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lu-Ting Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hong-Jie Pan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rong Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fang-Hong Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lan-Feng Xing
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Christian Klausen
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Ju-Xue Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fei Sun
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jian-Zhong Sheng
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - He-Feng Huang
- The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, 310006, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
90
|
Ratnasingham A, Eiby YA, Dekker Nitert M, Donovan T, Lingwood BE. Review: Is rapid fat accumulation in early life associated with adverse later health outcomes? Placenta 2017; 54:125-130. [PMID: 28104278 DOI: 10.1016/j.placenta.2017.01.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
This review discusses ways in which the maternal environment and placental function affect the birth weight and adult health outcomes of offspring. These maternal and placental factors have varying and sometimes opposing effects on birth weight, resulting in infants that are born small for gestational age (SGA), large for gestational age (LGA) or preterm. However, all these alterations in weight have similar effects on adult health, increasing the risk of obesity and its associated cardiovascular and metabolic disorders. While birth weight has been used as a marker for risk of adverse adult health, we propose that a common feature of all these scenarios - early accumulation of excess body fat - may be a better marker than birth weight alone. Furthermore, altered neonatal fat accumulation may be more closely related to the mechanism by which maternal environment and placental adaptation mediate effects on adult health. We suggest that more research should be focussed on early fat accretion, factors that promote fat accretion and if it can be avoided, and whether it would be beneficial to try to reduce fat accumulation in early life.
Collapse
Affiliation(s)
- Abirami Ratnasingham
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia.
| | - Yvonne A Eiby
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia.
| | - Marloes Dekker Nitert
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Timothy Donovan
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia; Grantley Stable Neonatal Unit, Royal Brisbane and Women's Hospital, Herston, Queensland 4029, Australia.
| | - Barbara E Lingwood
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia; Grantley Stable Neonatal Unit, Royal Brisbane and Women's Hospital, Herston, Queensland 4029, Australia.
| |
Collapse
|
91
|
Zhang Q, Sun X, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang Z, Qi C, Wang T, Wang X. Dietary Chromium Restriction of Pregnant Mice Changes the Methylation Status of Hepatic Genes Involved with Insulin Signaling in Adult Male Offspring. PLoS One 2017; 12:e0169889. [PMID: 28072825 PMCID: PMC5224989 DOI: 10.1371/journal.pone.0169889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Maternal undernutrition is linked with an elevated risk of diabetes mellitus in offspring regardless of the postnatal dietary status. This is also found in maternal micro-nutrition deficiency, especial chromium which is a key glucose regulator. We investigated whether maternal chromium restriction contributes to the development of diabetes in offspring by affecting DNA methylation status in liver tissue. After being mated with control males, female weanling 8-week-old C57BL mice were fed a control diet (CON, 1.19 mg chromium/kg diet) or a low chromium diet (LC, 0.14 mg chromium/kg diet) during pregnancy and lactation. After weaning, some offspring were shifted to the other diet (CON-LC, or LC-CON), while others remained on the same diet (CON-CON, or LC-LC) for 29 weeks. Fasting blood glucose, serum insulin, and oral glucose tolerance test was performed to evaluate the glucose metabolism condition. Methylation differences in liver from the LC-CON group and CON-CON groups were studied by using a DNA methylation array. Bisulfite sequencing was carried out to validate the results of the methylation array. Maternal chromium limitation diet increased the body weight, blood glucose, and serum insulin levels. Even when switched to the control diet after weaning, the offspring also showed impaired glucose tolerance and insulin resistance. DNA methylation profiling of the offspring livers revealed 935 differentially methylated genes in livers of the maternal chromium restriction diet group. Pathway analysis identified the insulin signaling pathway was the main process affected by hypermethylated genes. Bisulfite sequencing confirmed that some genes in insulin signaling pathway were hypermethylated in livers of the LC-CON and LC-LC group. Accordingly, the expression of genes in insulin signaling pathway was downregulated. There findings suggest that maternal chromium restriction diet results in glucose intolerance in male offspring through alterations in DNA methylation which is associated with the insulin signaling pathway in the mice livers.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofang Sun
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| | - Jia Zheng
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhixin Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cuijuan Qi
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Translational Medicine Centre, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
92
|
Bernstein D, Golson ML, Kaestner KH. Epigenetic control of β-cell function and failure. Diabetes Res Clin Pract 2017; 123:24-36. [PMID: 27918975 PMCID: PMC5250585 DOI: 10.1016/j.diabres.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes is a highly heritable disease, but only ∼15% of this heritability can be explained by known genetic variant loci. In fact, body mass index is more predictive of diabetes than any of the common risk alleles identified by genome-wide association studies. This discrepancy may be explained by epigenetic inheritance, whereby changes in gene regulation can be passed along to offspring. Epigenetic changes throughout an organism's lifetime, based on environmental factors such as chemical exposures, diet, physical activity, and age, can also affect gene expression and susceptibility to diabetes. Recently, novel genome-wide assays of epigenetic marks have resulted in a greater understanding of how genetics, epigenetics, and the environment interact in the development and inheritance of diabetes.
Collapse
Affiliation(s)
- Diana Bernstein
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
93
|
Elsakr JM, Gannon M. Developmental programming of the pancreatic islet by in utero overnutrition. TRENDS IN DEVELOPMENTAL BIOLOGY 2017; 10:79-95. [PMID: 29657386 PMCID: PMC5894880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Developmental Origins of Health and Disease (DOHaD) Hypothesis postulates that the in utero environment influences postnatal health and plays a role in disease etiology. Studies in both humans and animal models have shown that exposure to either under- or overnutrition in utero results in an increased risk of metabolic disease later in life. In addition, offspring born to overweight or obese mothers are more likely to be obese as children and into early adulthood and to have impaired glucose tolerance as adults. The Centers for Disease Control and Prevention estimates that over 70% of adults over the age of 20 are either overweight or obese and that nearly half of women are either overweight or obese at the time they become pregnant. Thus, the consequences of maternal overnutrition on the developing fetus are likely to be realized in greater numbers in the coming decades. This review will focus specifically on the effects of in utero overnutrition on pancreatic islet development and function and how the resulting morphological and functional changes influence the offspring's risk of developing metabolic disease. We will discuss the advantages and challenges of different animal models, the effects of exposure to overnutrition during distinct periods of development, the similarities and differences between and within model systems, and potential mechanisms and future directions in understanding how developmental alterations due to maternal diet exposure influence islet health and function later in life.
Collapse
Affiliation(s)
- Joseph M. Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
94
|
Navarro E, Funtikova AN, Fíto M, Schröder H. Prenatal nutrition and the risk of adult obesity: Long-term effects of nutrition on epigenetic mechanisms regulating gene expression. J Nutr Biochem 2017; 39:1-14. [DOI: 10.1016/j.jnutbio.2016.03.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/23/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
|
95
|
Abstract
Type 2 diabetes is a typical multifactorial disease, but the causes can largely be divided into genetic and environmental factors. In recent years, focus has shifted to the interaction between these factors (i.e., gene-environment interactions). It has become widely known that changes in the intrauterine environment such as intrauterine growth restriction result in gene expression changes in various tissues, which ultimately lead to the onset of diabetes. Epigenetic modification is considered to be a particularly important mechanism in these effects, as it is easily affected by environmental changes that occur during the fetal and neonatal periods. Moreover, recent reports have revealed that epigenetic modifications are passed down through generations. Although genome-wide association studies have identified many type 2 diabetes susceptibility genes, these genes do not pose a significantly high risk when isolated as single factors. In particular, it has been suggested that the interaction of the FTO or KCNQ1 genes with environmental factors increases the incidence of diabetes. These findings suggest that detailed analyses of individual gene-environment interactions hold promise for gaining new insight into the mechanisms and risk factors contributing to type 2 diabetes, with application to personalized diagnoses and treatments. We look forward to future developments in this regard.
Collapse
Affiliation(s)
- Yoshiaki Kido
- 1Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan.,2Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
96
|
The integration of epigenetics and genetics in nutrition research for CVD risk factors. Proc Nutr Soc 2016; 76:333-346. [PMID: 27919301 DOI: 10.1017/s0029665116000823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is increasing evidence documenting gene-by-environment (G × E) interactions for CVD related traits. However, the underlying mechanisms are still unclear. DNA methylation may represent one of such potential mechanisms. The objective of this review paper is to summarise the current evidence supporting the interplay among DNA methylation, genetic variants, and environmental factors, specifically (1) the association between SNP and DNA methylation; (2) the role that DNA methylation plays in G × E interactions. The current evidence supports the notion that genotype-dependent methylation may account, in part, for the mechanisms underlying observed G × E interactions in loci such asAPOE, IL6and ATP-binding cassette A1. However, these findings should be validated using intervention studies with high level of scientific evidence. The ultimate goal is to apply the knowledge and the technology generated by this research towards genetically based strategies for the development of personalised nutrition and medicine.
Collapse
|
97
|
Su Y, Jiang X, Li Y, Li F, Cheng Y, Peng Y, Song D, Hong J, Ning G, Cao Y, Wang W. Maternal Low Protein Isocaloric Diet Suppresses Pancreatic β-Cell Proliferation in Mouse Offspring via miR-15b. Endocrinology 2016; 157:4782-4793. [PMID: 27754789 DOI: 10.1210/en.2016-1167] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanism underlying the increased susceptibility of type 2 diabetes in offspring of maternal malnutrition is poorly determined. Here we tested the hypothesis that functional microRNAs (miRNAs) mediated the maternal low-protein (LP) isocaloric diet induced pancreatic β-cell impairment. We performed miRNA profiling in the islets from offspring of LP and control diet mothers to explore the potential functional miRNAs responsible for β-cell dysfunction. We found that LP offspring exhibited impaired glucose tolerance due to decreased β-cell mass and insulin secretion. Reduction in the β-cell proliferation rate and cell size contributed to the decreased β-cell mass. MiR-15b was up-regulated in the islets of LP offspring. The up-regulated miR-15b inhibited pancreatic β-cell proliferation via targeting cyclin D1 and cyclin D2. Inhibition of miR-15b in LP islet cells restored β-cell proliferation and insulin secretion. Our findings demonstrate that miR-15b is critical for the regulation of pancreatic β-cells in offspring of maternal protein restriction, which may provide a further insight for β-cell exhaustion originated from intrauterine growth restriction.
Collapse
Affiliation(s)
- Yutong Su
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiuli Jiang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanli Li
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Li
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yulong Cheng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Peng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dalong Song
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Hong
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanan Cao
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases (Y.S., X.J., Y.L., F.L., Y.P., D.S., J.H., G.N., Y.C., W.W.), Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (Y.C., G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
98
|
Broholm C, Olsson AH, Perfilyev A, Hansen NS, Schrölkamp M, Strasko KS, Scheele C, Ribel-Madsen R, Mortensen B, Jørgensen SW, Ling C, Vaag A. Epigenetic programming of adipose-derived stem cells in low birthweight individuals. Diabetologia 2016; 59:2664-2673. [PMID: 27627980 DOI: 10.1007/s00125-016-4099-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/09/2016] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Low birthweight (LBW) is associated with dysfunctions of adipose tissue and metabolic disease in adult life. We hypothesised that altered epigenetic and transcriptional regulation of adipose-derived stem cells (ADSCs) could play a role in programming adipose tissue dysfunction in LBW individuals. METHODS ADSCs were isolated from the subcutaneous adipose tissue of 13 normal birthweight (NBW) and 13 LBW adult men. The adipocytes were cultured in vitro, and genome-wide differences in RNA expression and DNA methylation profiles were analysed in ADSCs and differentiated adipocytes. RESULTS We demonstrated that ADSCs from LBW individuals exhibit multiple expression changes as well as genome-wide alterations in methylation pattern. Reduced expression of the transcription factor cyclin T2 encoded by CCNT2 may play a key role in orchestrating several of the gene expression changes in ADSCs from LBW individuals. Indeed, silencing of CCNT2 in human adipocytes decreased leptin secretion as well as the mRNA expression of several genes involved in adipogenesis, including MGLL, LIPE, PPARG, LEP and ADIPOQ. Only subtle genome-wide mRNA expression and DNA methylation changes were seen in mature cultured adipocytes from LBW individuals. CONCLUSIONS/INTERPRETATION Epigenetic and transcriptional changes in LBW individuals are most pronounced in immature ADSCs that in turn may programme physiological characteristics of the mature adipocytes that influence the risk of metabolic diseases. Reduced expression of CCNT2 may play a key role in the developmental programming of adipose tissue.
Collapse
Affiliation(s)
- Christa Broholm
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark.
| | - Anders H Olsson
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
| | - Alexander Perfilyev
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, CRC, Malmö, Sweden
| | - Ninna S Hansen
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maren Schrölkamp
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
| | - Klaudia S Strasko
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
| | - Camilla Scheele
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | | | | | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, CRC, Malmö, Sweden
| | - Allan Vaag
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet - Section 7652, Tagensvej 20, DK-2200, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center A/S, Gentofte, Denmark
| |
Collapse
|
99
|
Murdoch BM, Murdoch GK, Greenwood S, McKay S. Nutritional Influence on Epigenetic Marks and Effect on Livestock Production. Front Genet 2016; 7:182. [PMID: 27822224 PMCID: PMC5075561 DOI: 10.3389/fgene.2016.00182] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Nutrition represents one of the greatest environmental determinants of an individual’s health. While nutrient quantity and quality impart direct effects, the interaction of nutrition with genetic and epigenetic modifications is often overlooked despite being shown to influence biological variation in mammals. Dissecting complex traits, such as those that are diet or nutrition related, to determine the genetic and epigenetic contributions toward a phenotype can be a formidable process. Epigenetic modifications add another layer of complexity as they do not change the DNA sequence itself but can affect transcription and are important mediators of gene expression and ensuing phenotypic variation. Altered carbohydrate metabolism and rates of fat and protein deposition resulting from diet-induced hypo- or hyper-methylation highlight the capability of nutritional epigenetics to influence livestock commodity quality and quantity. This interaction can yield either products tailored to consumer preference, such as marbling in meat cuts, or potentially increasing productivity and yield both in terms of carcass yield and/or offspring performance. Understanding how these and other desirable phenotypes result from epigenetic mechanisms will facilitate their inducible potential in livestock systems. Here, we discuss the establishment of the epigenome, examples of nutritional mediated alterations of epigenetics and epigenetic effects on livestock production.
Collapse
Affiliation(s)
- Brenda M Murdoch
- Department of Animal and Veterinary Science, University of Idaho, Moscow ID, USA
| | - Gordon K Murdoch
- Department of Animal and Veterinary Science, University of Idaho, Moscow ID, USA
| | - Sabrina Greenwood
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington VT, USA
| | - Stephanie McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington VT, USA
| |
Collapse
|
100
|
|