51
|
Leandro K, Rufino-Ramos D, Breyne K, Di Ianni E, Lopes SM, Jorge Nobre R, Kleinstiver BP, Perdigão PRL, Breakefield XO, Pereira de Almeida L. Exploring the potential of cell-derived vesicles for transient delivery of gene editing payloads. Adv Drug Deliv Rev 2024; 211:115346. [PMID: 38849005 PMCID: PMC11366383 DOI: 10.1016/j.addr.2024.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.
Collapse
Affiliation(s)
- Kevin Leandro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Emilio Di Ianni
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Pedro R L Perdigão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
52
|
Han Y, Jia Z, Xu K, Li Y, Lu S, Guan L. CRISPR-Cpf1 system and its applications in animal genome editing. Mol Genet Genomics 2024; 299:75. [PMID: 39085660 DOI: 10.1007/s00438-024-02166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein (Cas) system is a gene editing technology guided by RNA endonuclease. The CRISPR-Cas12a (also known as CRISPR-Cpf1) system is extensively utilized in genome editing research due to its accuracy and high efficiency. In this paper, we primarily focus on the application of CRISPR-Cpf1 technology in the construction of disease models and gene therapy. Firstly, the structure and mechanism of the CRISPR-Cas system are introduced. Secondly, the similarities and differences between CRISPR-Cpf1 and CRISPR-Cas9 technologies are compared. Thirdly, the main focus is on the application of the CRISPR-Cpf1 system in cell and animal genome editing. Finally, the challenges faced by CRISPR-Cpf1 technology and corresponding strategies are analyzed. Although CRISPR-Cpf1 technology has certain off-target effects, it can effectively and accurately edit cell and animal genomes, and has significant advantages in the preclinical research.
Collapse
Affiliation(s)
- Yawei Han
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Yangyang Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Suxiang Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China.
| |
Collapse
|
53
|
Liu Y, Wang R, Chen Q, Chang Y, Chen Q, Fukumoto K, Wang B, Yu J, Luo C, Ma J, Chen X, Murayama Y, Umeda K, Kodera N, Harada Y, Sekine SI, Li J, Tadakuma H. Organ-Specific Gene Expression Control Using DNA Origami-Based Nanodevices. NANO LETTERS 2024; 24:8410-8417. [PMID: 38920331 PMCID: PMC11249008 DOI: 10.1021/acs.nanolett.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.
Collapse
Affiliation(s)
- Yuxiang Liu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Ruixuan Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qimingxing Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Yan Chang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qi Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Kodai Fukumoto
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Bingxun Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jianchen Yu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Changfeng Luo
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jiayuan Ma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Xiaoxia Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Zhejiang
Provincial Key Laboratory of Pancreatic Disease Hangzhou, Zhejiang University School of Medicine First Affiliated
Hospital, Zhejiang 310009, People’s Republic
of China
| | - Yuko Murayama
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kenichi Umeda
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshie Harada
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Shun-ichi Sekine
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Jianfeng Li
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| | - Hisashi Tadakuma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| |
Collapse
|
54
|
Zhu Y, Cai SS, Ma J, Cheng L, Wei C, Aggarwal A, Toh WH, Shin C, Shen R, Kong J, Mao SA, Lao YH, Leong KW, Mao HQ. Optimization of lipid nanoparticles for gene editing of the liver via intraduodenal delivery. Biomaterials 2024; 308:122559. [PMID: 38583366 PMCID: PMC11099935 DOI: 10.1016/j.biomaterials.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024]
Abstract
Lipid nanoparticles (LNPs) have recently emerged as successful gene delivery platforms for a diverse array of disease treatments. Efforts to optimize their design for common administration methods such as intravenous injection, intramuscular injection, or inhalation, revolve primarily around the addition of targeting ligands or the choice of ionizable lipid. Here, we employed a multi-step screening method to optimize the type of helper lipid and component ratios in a plasmid DNA (pDNA) LNP library to efficiently deliver pDNA through intraduodenal delivery as an indicative route for oral administration. By addressing different physiological barriers in a stepwise manner, we down-selected effective LNP candidates from a library of over 1000 formulations. Beyond reporter protein expression, we assessed the efficiency in non-viral gene editing in mouse liver mediated by LNPs to knockdown PCSK9 and ANGPTL3 expression, thereby lowering low-density lipoprotein (LDL) cholesterol levels. Utilizing an all-in-one pDNA construct with Strep. pyogenes Cas9 and gRNAs, our results showcased that intraduodenal administration of selected LNPs facilitated targeted gene knockdown in the liver, resulting in a 27% reduction in the serum LDL cholesterol level. This LNP-based all-in-one pDNA-mediated gene editing strategy highlights its potential as an oral therapeutic approach for hypercholesterolemia, opening up new possibilities for DNA-based gene medicine applications.
Collapse
Affiliation(s)
- Yining Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Shuting Sarah Cai
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jingyao Ma
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Leonardo Cheng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Christine Wei
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Ataes Aggarwal
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Wu Han Toh
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Charles Shin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ruochen Shen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Jiayuan Kong
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shuming Alan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
55
|
Qiu L, Sun M, Chen L, Jiang J, Fu Z, Wang Y, Bi Y, Guo Q, Bai H, Chen S, Gao L, Chang G. Iron-Confined CRISPR/Cas9-Ribonucleoprotein Delivery System for Redox-Responsive Gene Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309431. [PMID: 38402425 DOI: 10.1002/smll.202309431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) is a promising gene editing tool to treat diseases at the genetic level. Nonetheless, the challenge of the safe and efficient delivery of CRISPR/Cas9 to host cells constrains its clinical applicability. In the current study, a facile, redox-responsive CRISPR/Cas9-Ribonucleoprotein (RNP) delivery system by combining iron-coordinated aggregation with liposomes (Fe-RNP@L) is reported. The Fe-RNP is formed by the coordination of Fe3+ with amino and carboxyl groups of Cas9, which modifies the lipophilicity and surface charge of RNP and alters cellular uptake from primary endocytosis to endocytosis and cholesterol-dependent membrane fusion. RNP can be rapidly and reversibly released from Fe-RNP in response to glutathione without loss of structural integrity and enzymatic activity. In addition, iron coordination also improves the stability of RNP and substantially mitigates cytotoxicity. This construct enabled highly efficient cytoplasmic/nuclear delivery (≈90%) and gene-editing efficiency (≈70%) even at low concentrations. The high payload content, high editing efficiency, good stability, low immunogenicity, and ease of production and storage, highlight its potential for diverse genome editing and clinical applications.
Collapse
Affiliation(s)
- Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Minmin Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhendong Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ying Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hao Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
56
|
Singh D. Revolutionizing Lung Cancer Treatment: Innovative CRISPR-Cas9 Delivery Strategies. AAPS PharmSciTech 2024; 25:129. [PMID: 38844700 DOI: 10.1208/s12249-024-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Lung carcinoma, including both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), remains a significant global health challenge due to its high morbidity and mortality rates. The objsective of this review is to meticulously examine the current advancements and strategies in the delivery of CRISPR-Cas9 gene-editing technology for the treatment of lung carcinoma. This technology heralds a new era in molecular biology, offering unprecedented precision in genomic modifications. However, its therapeutic potential is contingent upon the development of effective delivery mechanisms that ensure the efficient and specific transport of gene-editing tools to tumor cells. We explore a variety of delivery approaches, such as viral vectors, lipid-based nanoparticles, and physical methods, highlighting their respective advantages, limitations, and recent breakthroughs. This review also delves into the translational and clinical significance of these strategies, discussing preclinical and clinical studies that investigate the feasibility, efficacy, and safety of CRISPR-Cas9 delivery for lung carcinoma. By scrutinizing the landscape of ongoing clinical trials and offering translational perspectives, we aim to elucidate the current state and future directions of this rapidly evolving field. The review is structured to first introduce the problem and significance of lung carcinoma, followed by an overview of CRISPR-Cas9 technology, a detailed examination of delivery strategies, and an analysis of clinical applications and regulatory considerations. Our discussion concludes with future perspectives and challenges, such as optimizing delivery strategies, enhancing specificity, mitigating immunogenicity concerns, and addressing regulatory issues. This comprehensive overview seeks to provide insights into the potential of CRISPR-Cas9 as a revolutionary approach for targeted therapies and personalized medicine in lung carcinoma, emphasizing the importance of delivery strategy development in realizing the full potential of this groundbreaking technology.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India.
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
57
|
Ji W, Zhou H, Liang W, Zhang W, Gong B, Yin T, Chu J, Zhuang J, Zhang J, Luo Y, Liu Y, Gao J, Yin Y. SSK1-Loaded Neurotransmitter-Derived Nanoparticles for Alzheimer's Disease Therapy via Clearance of Senescent Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308574. [PMID: 38429234 DOI: 10.1002/smll.202308574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Age is a significant contributor to the onset of AD. Senolysis has been recently demonstrated to ameliorate aging-associated diseases that showing a great potential in AD therapy. However, due to the presence of BBB, the anti-AD activity of senolytics are significantly diminished. SSK1 is a prodrug that can be activated by β-gal, a lysosomal enzyme commonly upregulated in senescent cells, and thus selectively eliminates senescent cells. Furthermore, the level of β-gal is significantly correlated with conventional AD genes from clinical sequencing data. SSK1-loaded neurotransmitter -derived lipid nanoparticles are herein developed (SSK1-NPs) that revealing good BBB penetration and bioavailability of in the body. At the brain lesion, SSK1-NP treatment significantly reduces the expression of genes associated with senescence, induced senescent cells elimination, decreased amyloid-beta accumulation, and eventually improve cognitive function of aged AD mice. SSK1-NPs, a novel nanomedicine displaying potent anti-AD activity and excellent safety profile, provides a promising strategy for AD therapy.
Collapse
Affiliation(s)
- Wenbo Ji
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Changle Road, Qinhuai District, Nanjing, 210006, China
| | - Wendanqi Liang
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Jungong Road, Yangpu District, Shanghai, 200093, China
| | - Weicong Zhang
- School of Pharmacy, University College London, Gower Street, London, W12 8LP, UK
| | - Baofeng Gong
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Tong Yin
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jianjian Chu
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jianhua Zhuang
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Clinical Pharmacy Innovatton Instttute, Shanghai Jiao Tong University School of Medicine, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Yi Luo
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Clinical Pharmacy Innovatton Instttute, Shanghai Jiao Tong University School of Medicine, Kongjiang Road, Yangpu District, Shanghai, 200092, China
- New Drug Discovery and Development, Biotheus Inc, Keji 7th Road, TangjiawanTown, Zhuhai, 519080, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Clinical Pharmacy Innovatton Instttute, Shanghai Jiao Tong University School of Medicine, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - You Yin
- Department of Neurology, Second Afffliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Fengyang Road, Huangpu District, Shanghai, 200003, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road, Pudong New District, Shanghai, 200120, China
| |
Collapse
|
58
|
Simões S, Lino M, Barrera A, Rebelo C, Tomatis F, Vilaça A, Breunig C, Neuner A, Peça J, González R, Carvalho A, Stricker S, Ferreira L. Near-Infrared Light Activated Formulation for the Spatially Controlled Release of CRISPR-Cas9 Ribonucleoprotein for Brain Gene Editing. Angew Chem Int Ed Engl 2024; 63:e202401004. [PMID: 38497898 DOI: 10.1002/anie.202401004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 03/19/2024]
Abstract
The CRISPR/Cas9 system has emerged as a promising platform for gene editing; however, the lack of an efficient and safe delivery system to introduce it into cells continues to hinder clinical translation. Here, we report a rationally designed gene-editing nanoparticle (NP) formulation for brain applications: an sgRNA:Cas9 ribonucleoprotein complex is immobilized on the NP surface by oligonucleotides that are complementary to the sgRNA. Irradiation of the formulation with a near-infrared (NIR) laser generates heat in the NP, leading to the release of the ribonucleoprotein complex. The gene-editing potential of the formulation was demonstrated in vitro at the single-cell level. The safety and gene editing of the formulation were also demonstrated in the brains of reporter mice, specifically in the subventricular zone after intracerebral administration and in the olfactory bulb after intranasal administration. The formulation presented here offers a new strategy for the spatially controlled delivery of the CRISPR system to the brain.
Collapse
Affiliation(s)
- Susana Simões
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Miguel Lino
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Angela Barrera
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catarina Rebelo
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Francesca Tomatis
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Andreia Vilaça
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Christopher Breunig
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, Germany
| | - Andrea Neuner
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, Germany
| | - João Peça
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Department of Life Science, University of Coimbra, Coimbra, Portugal
| | - Ricardo González
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Alexandra Carvalho
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Institute of Interdisciplinary Research of University of Coimbra, Portugal
| | - Stefan Stricker
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, Germany
| | - Lino Ferreira
- CNC-Centre for Neuroscience and Cell Biology of University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
59
|
Luo T, Zheng Q, Liu J, Yao R, Wang M. Polyphenol-Assisted Biomineralization of Metal-Organic Framework Nanoparticles for Precision Delivery of Therapeutic Proteins to Cancer Cells. Bioconjug Chem 2024; 35:682-692. [PMID: 38648296 DOI: 10.1021/acs.bioconjchem.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The delivery of proteins into the cytosol holds great promise for cell signaling manipulation and the development of precision medicine. However, this potency is challenged by achieving targeted and controlled delivery, specifically within diseased cells. In this study, we introduce a versatile and effective method for the precision delivery of therapeutic proteins to cancer cells by designing polyphenol-assisted biomineralization of zeolite imidazole framework-8 (ZIF-8). We demonstrate that by leveraging the strong noncovalent binding affinity of epigallocatechin gallate (EGCG) with both proteins and ZIF-8, our approach significantly enhances the biomineralization of ZIF-8, which in turn improves the efficiency of protein encapsulation and intracellular delivery. Moreover, the incorporation of EGCG within ZIF-8 enables controlled degradation of the nanoparticles and the selective release of the encapsulated proteins in cancer cells. This selective release is triggered by the oxidation of EGCG in response to the high levels of reactive oxygen species (ROS) found within cancer cells that destabilize the EGCG/ZIF-8 nanoparticles. We have further demonstrated the ability of EGCG/ZIF-8 to deliver a wide range of proteins into cancer cells, including bacterial virulence protein, to rewire cell signaling and prohibit tumor cell growth in a mouse xenograft model. Our strategy and findings underscore the potential of designing the EGCG/ZIF-8 interface for specific and controlled protein delivery for targeted cancer therapy.
Collapse
Affiliation(s)
- Tianli Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
60
|
Gurrola TE, Effah SN, Sariyer IK, Dampier W, Nonnemacher MR, Wigdahl B. Delivering CRISPR to the HIV-1 reservoirs. Front Microbiol 2024; 15:1393974. [PMID: 38812680 PMCID: PMC11133543 DOI: 10.3389/fmicb.2024.1393974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is well known as one of the most complex and difficult viral infections to cure. The difficulty in developing curative strategies arises in large part from the development of latent viral reservoirs (LVRs) within anatomical and cellular compartments of a host. The clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system shows remarkable potential for the inactivation and/or elimination of integrated proviral DNA within host cells, however, delivery of the CRISPR/Cas9 system to infected cells is still a challenge. In this review, the main factors impacting delivery, the challenges for delivery to each of the LVRs, and the current successes for delivery to each reservoir will be discussed.
Collapse
Affiliation(s)
- Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Samuel N. Effah
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation and Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
61
|
Asimakidou E, Tan JKS, Zeng J, Lo CH. Blood-Brain Barrier-Targeting Nanoparticles: Biomaterial Properties and Biomedical Applications in Translational Neuroscience. Pharmaceuticals (Basel) 2024; 17:612. [PMID: 38794182 PMCID: PMC11123901 DOI: 10.3390/ph17050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Overcoming the blood-brain barrier (BBB) remains a significant hurdle in effective drug delivery to the brain. While the BBB serves as a crucial protective barrier, it poses challenges in delivering therapeutic agents to their intended targets within the brain parenchyma. To enhance drug delivery for the treatment of neurological diseases, several delivery technologies to circumvent the BBB have been developed in the last few years. Among them, nanoparticles (NPs) are one of the most versatile and promising tools. Here, we summarize the characteristics of NPs that facilitate BBB penetration, including their size, shape, chemical composition, surface charge, and importantly, their conjugation with various biological or synthetic molecules such as glucose, transferrin, insulin, polyethylene glycol, peptides, and aptamers. Additionally, we discuss the coating of NPs with surfactants. A comprehensive overview of the common in vitro and in vivo models of the BBB for NP penetration studies is also provided. The discussion extends to discussing BBB impairment under pathological conditions and leveraging BBB alterations under pathological conditions to enhance drug delivery. Emphasizing the need for future studies to uncover the inherent therapeutic properties of NPs, the review advocates for their role beyond delivery systems and calls for efforts translating NPs to the clinic as therapeutics. Overall, NPs stand out as a highly promising therapeutic strategy for precise BBB targeting and drug delivery in neurological disorders.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Justin Kok Soon Tan
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore;
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
62
|
Dimitrievska M, Bansal D, Vitale M, Strouboulis J, Miccio A, Nicolaides KH, El Hoss S, Shangaris P, Jacków-Malinowska J. Revolutionising healing: Gene Editing's breakthrough against sickle cell disease. Blood Rev 2024; 65:101185. [PMID: 38493007 DOI: 10.1016/j.blre.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Recent advancements in gene editing illuminate new potential therapeutic approaches for Sickle Cell Disease (SCD), a debilitating monogenic disorder caused by a point mutation in the β-globin gene. Despite the availability of several FDA-approved medications for symptomatic relief, allogeneic hematopoietic stem cell transplantation (HSCT) remains the sole curative option, underscoring a persistent need for novel treatments. This review delves into the growing field of gene editing, particularly the extensive research focused on curing haemoglobinopathies like SCD. We examine the use of techniques such as CRISPR-Cas9 and homology-directed repair, base editing, and prime editing to either correct the pathogenic variant into a non-pathogenic or wild-type one or augment fetal haemoglobin (HbF) production. The article elucidates ways to optimize these tools for efficacious gene editing with minimal off-target effects and offers insights into their effective delivery into cells. Furthermore, we explore clinical trials involving alternative SCD treatment strategies, such as LentiGlobin therapy and autologous HSCT, distilling the current findings. This review consolidates vital information for the clinical translation of gene editing for SCD, providing strategic insights for investigators eager to further the development of gene editing for SCD.
Collapse
Affiliation(s)
- Marija Dimitrievska
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Dravie Bansal
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Marta Vitale
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - John Strouboulis
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France
| | - Kypros H Nicolaides
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | - Sara El Hoss
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| | - Panicos Shangaris
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| | | |
Collapse
|
63
|
Tan E, Wan T, Pan Q, Duan J, Zhang S, Wang R, Gao P, Lv J, Wang H, Li D, Ping Y, Cheng Y. Dual-responsive nanocarriers for efficient cytosolic protein delivery and CRISPR-Cas9 gene therapy of inflammatory skin disorders. SCIENCE ADVANCES 2024; 10:eadl4336. [PMID: 38630829 PMCID: PMC11023524 DOI: 10.1126/sciadv.adl4336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Developing protein drugs that can target intracellular sites remains a challenge due to their inadequate membrane permeability. Efficient carriers for cytosolic protein delivery are required for protein-based drugs, cancer vaccines, and CRISPR-Cas9 gene therapies. Here, we report a screening process to identify highly efficient materials for cytosolic protein delivery from a library of dual-functionalized polymers bearing both boronate and lipoic acid moieties. Both ligands were found to be crucial for protein binding, endosomal escape, and intracellular protein release. Polymers with higher grafting ratios exhibit remarkable efficacies in cytosolic protein delivery including enzymes, monoclonal antibodies, and Cas9 ribonucleoprotein while preserving their activity. Optimal polymer successfully delivered Cas9 ribonucleoprotein targeting NLRP3 to disrupt NLRP3 inflammasomes in vivo and ameliorate inflammation in a mouse model of psoriasis. Our study presents a promising option for the discovery of highly efficient materials tailored for cytosolic delivery of specific proteins and complexes such as Cas9 ribonucleoprotein.
Collapse
Affiliation(s)
- Echuan Tan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Tao Wan
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianan Duan
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Ruijue Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Peng Gao
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuan Ping
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
64
|
Guri-Lamce I, AlRokh Y, Kim Y, Maeshima R, Graham C, Hart SL, McGrath JA, Jacków-Malinowska J. Topical gene editing therapeutics using lipid nanoparticles: 'gene creams' for genetic skin diseases? Br J Dermatol 2024; 190:617-627. [PMID: 38149939 DOI: 10.1093/bjd/ljad528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Patients living with inherited skin diseases have benefited from recent advances in DNA sequencing technologies that provide new or improved diagnostics. However, developing and delivering new treatments for the 'genodermatoses' remains challenging. The goal of creating topical preparations that can recover the inherent gene pathology remains largely aspirational. However, recent progress in two fields - the chemistry of topical delivery formulations (lipid nanoparticles) and the molecular biology of gene repair (CRISPR-Cas9, base and prime editing) - presents new opportunities to address this unmet need. In this review, we discuss how lipid nanoparticle delivery vehicles could be used to deliver gene-editing tools to formulate topical 'gene creams' suitable for the treatment of genodermatoses. We summarize the historical landscape of topical therapeutics and advances in gene editing that may herald an era of new therapies for patients with inherited skin disorders.
Collapse
Affiliation(s)
- Ina Guri-Lamce
- St John's Institute of Dermatology, King's College London, London, UK
| | - Yara AlRokh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Youngah Kim
- St John's Institute of Dermatology, King's College London, London, UK
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Stephen L Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | |
Collapse
|
65
|
Holland R, Lam K, Jeng S, McClintock K, Palmer L, Schreiner P, Wood M, Zhao W, Heyes J. Silicon Ether Ionizable Lipids Enable Potent mRNA Lipid Nanoparticles with Rapid Tissue Clearance. ACS NANO 2024; 18:10374-10387. [PMID: 38567845 PMCID: PMC11025127 DOI: 10.1021/acsnano.3c09028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
The advent of mRNA for nucleic acid (NA) therapeutics has unlocked many diverse areas of research and clinical investigation. However, the shorter intracellular half-life of mRNA compared with other NAs may necessitate more frequent dosing regimens. Because lipid nanoparticles (LNPs) are the principal delivery system used for mRNA, this could lead to tolerability challenges associated with an accumulated lipid burden. This can be addressed by introducing enzymatically cleaved carboxylic esters into the hydrophobic domains of lipid components, notably, the ionizable lipid. However, enzymatic activity can vary significantly with age, disease state, and species, potentially limiting the application in humans. Here we report an alternative approach to ionizable lipid degradability that relies on nonenzymatic hydrolysis, leading to a controlled and highly efficient lipid clearance profile. We identify highly potent examples and demonstrate their exceptional tolerability in multiple preclinical species, including multidosing in nonhuman primates (NHP).
Collapse
Affiliation(s)
- Richard Holland
- Genevant
Science Corporation, Unit 155-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Kieu Lam
- Genevant
Science Corporation, Unit 155-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Sunny Jeng
- Genevant
Science Corporation, Unit 155-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Kevin McClintock
- Genevant
Science Corporation, Unit 155-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Lorne Palmer
- Genevant
Science Corporation, Unit 155-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Petra Schreiner
- Genevant
Science Corporation, Unit 155-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Mark Wood
- Genevant
Science Corporation, Unit 155-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Wenchen Zhao
- Genevant
Science Corporation, Unit 155-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - James Heyes
- Genevant
Science Corporation, Unit 155-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| |
Collapse
|
66
|
Fisher MA, Chaudhry W, Campbell LA. Gesicles packaging dCas9-VPR ribonucleoprotein complexes can combine with vorinostat and promote HIV proviral transcription. Mol Ther Methods Clin Dev 2024; 32:101203. [PMID: 38390557 PMCID: PMC10881426 DOI: 10.1016/j.omtm.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Despite the success of combination antiretroviral therapy (cART) in HIV treatment, a cure for HIV remains elusive. Scientists postulate that HIV latent reservoirs may be a vital target in curative strategies. Vorinostat is a latency-reversing agent that has demonstrated some effectiveness in reactivating latent HIV, but complementary therapies may be essential to enhance its efficacy. One such approach may utilize the CRISPR-Cas9 system, which has evolved to include transcriptional activators such as dCas9-VPR. In this study, we explored the effects of combining vorinostat coupled with gesicle-mediated delivery of dCas9-VPR in promoting the transcription of integrated HIV proviruses in HIV-NanoLuc CHME-5 microglia and J-Lat 10.6 lymphocytes. We confirmed that dCas9-VPR ribonucleoprotein complexes can be packaged into gesicles and application to cells successfully induced HIV transcription through interactions with the HIV LTR. Vorinostat also induced significant increases in proviral transcription but generated inhibition of cellular proliferation (microglia) or cell viability (lymphocytes) starting at 1,000 nM and higher concentrations. Experiments combining dCas9-VPR gesicles and vorinostat confirmed the enhanced transcriptional activation of the HIV provirus in microglia but not lymphocytes. Thus, a combination of dCas9-VPR gesicles with other latency-reversing agents may provide a complementary method to activate latent HIV in future studies utilizing patient-derived cells or small animal models.
Collapse
Affiliation(s)
- Michaela A Fisher
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC, USA
| | - Waj Chaudhry
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC, USA
| | - Lee A Campbell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC, USA
| |
Collapse
|
67
|
Wang L, Geng J, Wang H. Emerging Landscape of Supercharged Proteins and Peptides for Drug Delivery. ACS Pharmacol Transl Sci 2024; 7:614-629. [PMID: 38481692 PMCID: PMC10928892 DOI: 10.1021/acsptsci.3c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2025]
Abstract
Although groundbreaking biotechnological techniques such as gene editing have significantly progressed, the effective and targeted transport of therapeutic agents into host cells remains a major obstacle to the development of biotherapeutics. Confronting the unique challenge posed by large macromolecules such as proteins, peptides, and nucleic acids adds complexity to this issue. Recent findings reveal that the supercharging of proteins and peptides not only enables control over critical properties, such as temperature resistance and catalytic activity, but also holds promise as a viable strategy for their use in drug delivery. This review provides a concise summary of the attributes of supercharged proteins and peptides, encompassing both their natural occurrence and engineered variants. Furthermore, it sheds light on the present status and future possibilities of supercharged proteins and peptides as carriers for significant biomolecules in the realms of medical research and therapeutic applications.
Collapse
Affiliation(s)
- Lidan Wang
- Laboratory
Medicine Department, Chinese Medicine Hospital
of Puyang, Puyang 457000, China
| | - Jingping Geng
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - Hu Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21215, United States
| |
Collapse
|
68
|
Hwarari D, Radani Y, Ke Y, Chen J, Yang L. CRISPR/Cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks. Funct Integr Genomics 2024; 24:50. [PMID: 38441816 DOI: 10.1007/s10142-024-01314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
The CRISPR/Cas systems have emerged as transformative tools for precisely manipulating plant genomes and enhancement. It has provided unparalleled applications from modifying the plant genomes to resistant enhancement. This review manuscript summarises the mechanism, application, and current challenges in the CRISPR/Cas genome editing technology. It addresses the molecular mechanisms of different Cas genes, elucidating their applications in various plants through crop improvement, disease resistance, and trait improvement. The advent of the CRISPR/Cas systems has enabled researchers to precisely modify plant genomes through gene knockouts, knock-ins, and gene expression modulation. Despite these successes, the CRISPR/Cas technology faces challenges, including off-target effects, Cas toxicity, and efficiency. In this manuscript, we also discuss these challenges and outline ongoing strategies employed to overcome these challenges, including the development of novel CRISPR/Cas variants with improved specificity and specific delivery methods for different plant species. The manuscript will conclude by addressing the future perspectives of the CRISPR/Cas technology in plants. Although this review manuscript is not conclusive, it aims to provide immense insights into the current state and future potential of CRISPR/Cas in sustainable and secure plant production.
Collapse
Affiliation(s)
- Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongchao Ke
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
69
|
Davis DJ, Yeddula SGR. CRISPR Advancements for Human Health. MISSOURI MEDICINE 2024; 121:170-176. [PMID: 38694604 PMCID: PMC11057861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has emerged as a powerful gene editing technology that is revolutionizing biomedical research and clinical medicine. The CRISPR system allows scientists to rewrite the genetic code in virtually any organism. This review provides a comprehensive overview of CRISPR and its clinical applications. We first introduce the CRISPR system and explain how it works as a gene editing tool. We then highlight current and potential clinical uses of CRISPR in areas such as genetic disorders, infectious diseases, cancer, and regenerative medicine. Challenges that need to be addressed for the successful translation of CRISPR to the clinic are also discussed. Overall, CRISPR holds great promise to advance precision medicine, but ongoing research is still required to optimize delivery, efficacy, and safety.
Collapse
Affiliation(s)
- Daniel J Davis
- Assistant Director - Animal Modeling Core; Assistant Research Professor - Department of Veterinary Pathobiology; and Comparative Medicine Program Faculty, University of Missouri - Columbia, Columbia, Missouri
| | - Sai Goutham Reddy Yeddula
- PhD candidate in the Department of Animal Sciences, University of Missouri - Columbia, Columbia, Missouri
| |
Collapse
|
70
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
71
|
Wang J, Zhang S, Li Y, Xu Q, Kritzer JA. Investigating the Cytosolic Delivery of Proteins by Lipid Nanoparticles Using the Chloroalkane Penetration Assay. Biochemistry 2024:10.1021/acs.biochem.3c00614. [PMID: 38334719 PMCID: PMC11787851 DOI: 10.1021/acs.biochem.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein therapeutics are an expanding area for research and drug development, and lipid nanoparticles (LNPs) are the most prominent nonviral vehicles for protein delivery. The most common methods for assessing protein delivery by LNPs include assays that measure the total amount of protein taken up by cells and assays that measure the phenotypic changes associated with protein delivery. However, assays for total cellular uptake include large amounts of protein that are trapped in endosomes or are otherwise nonfunctional. Assays for functional delivery are important, but the readouts are indirect and amplified, limiting the quantitative interpretation. Here, we apply an assay for cytosolic delivery, the chloroalkane penetration assay (CAPA), to measure the cytosolic delivery of a (-30) green fluorescent protein (GFP) fused to Cre recombinase (Cre(-30)GFP) fusion protein by LNPs. We compare these data to the data from total cellular uptake and functional delivery assays to provide a richer analysis of uptake and endosomal escape for LNP-mediated protein delivery. We also use CAPA for a screen of a small library of lipidoids, identifying those with a promising ability to deliver Cre(-30)GFP to the cytosol of mammalian cells. With careful controls and optimized conditions, we expect that CAPA will be a useful tool for investigating the rate, efficiency, and mechanisms of LNP-mediated delivery of therapeutic proteins.
Collapse
Affiliation(s)
- Jing Wang
- Department of Chemistry, Tufts University, Medford, MA 02155
| | - Shiying Zhang
- Department of Chemistry, Tufts University, Medford, MA 02155
| | - Yamin Li
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155
| | - Qiaobing Xu
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155
| | | |
Collapse
|
72
|
Hii ARK, Qi X, Wu Z. Advanced strategies for CRISPR/Cas9 delivery and applications in gene editing, therapy, and cancer detection using nanoparticles and nanocarriers. J Mater Chem B 2024; 12:1467-1489. [PMID: 38288550 DOI: 10.1039/d3tb01850d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cancer remains one of the deadliest diseases, and is characterised by the uncontrolled growth of modified human cells. Unlike infectious diseases, cancer does not originate from foreign agents. Though a variety of diagnostic procedures are available; their cost-effectiveness and accessibility create significant hurdles. Non-specific cancer symptoms further complicate early detection, leading to belated recognition of certain cancer. The lack of reliable biomarkers hampers effective treatment, as chemotherapy, radiation therapy, and surgery often result in poor outcomes and high recurrence rates. Genetic and epigenetic mutations play a crucial role in cancer pathogenesis, necessitating the development of alternate treatment methods. The advent of CRISPR/Cas9 technology has transformed molecular biology and exhibits potential for gene modification and therapy in various cancer types. Nonetheless, obstacles such as safe transport, off-target consequences, and potency must be overcome before widespread clinical use. Notably, this review delves into the multifaceted landscape of cancer research, highlighting the pivotal role of nanoparticles in advancing CRISPR/Cas9-based cancer interventions. By addressing the challenges associated with cancer diagnosis and treatment, this integrated approach paves the way for innovative solutions and improved patient outcomes.
Collapse
Affiliation(s)
| | - Xiaole Qi
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, China Pharmaceutical University, 210009, 310018, Nanjing, Hangzhou, P. R. China.
| | - Zhenghong Wu
- Pharmaceutical University, 210009, Nanjing, P. R. China.
| |
Collapse
|
73
|
Wang L, Yu Y, Liu G, Hu B, Lu J. Degradation of Tetrabromobisphenol S by thermo-activated Persulphate Oxidation: reaction Kinetics, transformation Mechanisms, and brominated By-products. ENVIRONMENTAL TECHNOLOGY 2024; 45:988-998. [PMID: 36215213 DOI: 10.1080/09593330.2022.2135027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Brominated flame retardants (BFRs) are a group of contaminants of emerging environmental concern. In this study, systematic exploration was carried out to investigate the degradation of tetrabromobisphenol S (TBBPS), a typical emerging BFRs, by thermally activated persulfate (PDS) oxidation. The removal of 5.0 μM TBBPS was 100% after 60 min oxidation treatment under 60°C. Increasing the temperature or initial PDS concentration facilitated the degradation efficiency of TBBPS. The quenching test indicated that TBBPS degradation occurred via the attack of both sulphate radicals and hydroxyl radicals. Natural organic matter (NOM) decreased the removal rate, however, complete disappearance of TBBPS could still be obtained. Six intermediate products were formed during reactions between TBBPS and radicals. Transformation pathways including debromination, β-Scission, and cross-coupling were proposed. Brominated disinfection by-products (DBPs) in situ formed during the degradation of TBBPS were also investigated, such as bromoform and dibromoacetic acid. The presence of NOM reduced the formation rates of brominated DBPs. Results reveal that although thermo-activated PDS is a promising method for TBBPS-contaminated water, it can lead to potential brominated DBPs risks, which should be paid more attention to when SO4•--based oxidation technology is applied.
Collapse
Affiliation(s)
- Lu Wang
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yaqun Yu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guoqiang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, People's Republic of China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
74
|
DeJulius CR, Walton BL, Colazo JM, d'Arcy R, Francini N, Brunger JM, Duvall CL. Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nat Rev Rheumatol 2024; 20:81-100. [PMID: 38253889 PMCID: PMC11129836 DOI: 10.1038/s41584-023-01067-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Osteoarthritis (OA) is a chronic, debilitating disease that substantially impairs the quality of life of affected individuals. The underlying mechanisms of OA are diverse and are becoming increasingly understood at the systemic, tissue, cellular and gene levels. However, the pharmacological therapies available remain limited, owing to drug delivery barriers, and consist mainly of broadly immunosuppressive regimens, such as corticosteroids, that provide only short-term palliative benefits and do not alter disease progression. Engineered RNA-based and cell-based therapies developed with synthetic chemistry and biology tools provide promise for future OA treatments with durable, efficacious mechanisms of action that can specifically target the underlying drivers of pathology. This Review highlights emerging classes of RNA-based technologies that hold potential for OA therapies, including small interfering RNA for gene silencing, microRNA and anti-microRNA for multi-gene regulation, mRNA for gene supplementation, and RNA-guided gene-editing platforms such as CRISPR-Cas9. Various cell-engineering strategies are also examined that potentiate disease-dependent, spatiotemporally regulated production of therapeutic molecules, and a conceptual framework is presented for their application as OA treatments. In summary, this Review highlights modern genetic medicines that have been clinically approved for other diseases, in addition to emerging genome and cellular engineering approaches, with the goal of emphasizing their potential as transformative OA treatments.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bonnie L Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard d'Arcy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
75
|
Zhao P, Song S, He Z, Dai G, Liu D, Shen J, Asakawa T, Zheng M, Lu H. Development of a novel cholesterol tag-based system for trans-membrane transport of protein drugs. Biosci Trends 2024; 17:503-507. [PMID: 38072446 DOI: 10.5582/bst.2023.01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The main technological difficulties of developing an intracellular (transmembrane) transport system for protein drugs lie in two points: i) overcoming the barriers in the cellular membrane, and ii) loading enough protein drugs, and particularly high-dose proteins, into particles. To address these two technological problems, we recently developed a novel cholesterol tag (C-Tag)-based transmembrane transport system. This pilot study found that the C-Tag dramatically improved the cellular uptake of Fab (902-fold, vs. Fab alone) into living cells, indicating that it successfully achieved transmembrane transport. Moreover, C-Tag-mediated membrane transport was verified using micron-scale large unilamellar vesicles (LUVs, approximately 1.5 μm)-based particles. The C-Tagged Fab was able to permeate the liposomal bilayer and it greatly enhanced (a 10.1-fold increase vs. Fab alone) internalization of proteins into the LUV-based particles, indicating that the C-Tag loaded enough proteins into particles for use of high-dose proteins. Accordingly, we established a novel C-Tag-based transport system that has overcome the known technological difficulties of protein transmembrane delivery, and this might be a useful technology for drug development in the future.
Collapse
Affiliation(s)
- Pengfei Zhao
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Photonics and Biophotonics, Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Shuo Song
- Shenzhen Samii Medical Center, Shenzhen, Guangdong, China
| | - Zhuojun He
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Guiqin Dai
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Deliang Liu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Jiayin Shen
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Mingbin Zheng
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Shenzhen Samii Medical Center, Shenzhen, Guangdong, China
| | - Hongzhou Lu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- National Clinical Research Center for Infectious Disease, Shenzhen Clinical Medical Research Center for Tuberculosis, Institute for Hepatology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
76
|
Mohammadian Farsani A, Mokhtari N, Nooraei S, Bahrulolum H, Akbari A, Farsani ZM, Khatami S, Ebadi MS, Ahmadian G. Lipid nanoparticles: The game-changer in CRISPR-Cas9 genome editing. Heliyon 2024; 10:e24606. [PMID: 38288017 PMCID: PMC10823087 DOI: 10.1016/j.heliyon.2024.e24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
The steady progress in genome editing, especially genome editing based on the use of clustered regularly interspaced short palindromic repeats (CRISPR) and programmable nucleases to make precise modifications to genetic material, has provided enormous opportunities to advance biomedical research and promote human health. However, limited transfection efficiency of CRISPR-Cas9 poses a substantial challenge, hindering its wide adoption for genetic modification. Recent advancements in nanoparticle technology, specifically lipid nanoparticles (LNPs), offer promising opportunities for targeted drug delivery. LNPs are becoming popular as a means of delivering therapeutics, including those based on nucleic acids and mRNA. Notably, certain LNPs, such as Polyethylene glycol-phospholipid-modified cationic lipid nanoparticles and solid lipid nanoparticles, exhibit remarkable potential for efficient CRISPR-Cas9 delivery as a gene editing instrument. This review will introduce the molecular mechanisms and diverse applications of the CRISPR/Cas9 gene editing system, current strategies for delivering CRISPR/Cas9-based tools, the advantage of LNPs for CRISPR-Cas9 delivery, an overview of strategies for overcoming off-target genome editing, and approaches for improving genome targeting and tissue targeting. We will also highlight current developments and recent clinical trials for the delivery of CRISPR/Cas9. Finally, future directions for overcoming the limitations and adaptation of this technology for clinical trials will be discussed.
Collapse
Affiliation(s)
- Arezoo Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Negin Mokhtari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi Univesity, Tehran, Iran
| | - Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zoheir Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyedmoein Khatami
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mozhdeh sadat Ebadi
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
77
|
Chan A, Tsourkas A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME FRONTIERS 2024; 5:0035. [PMID: 38282957 PMCID: PMC10809898 DOI: 10.34133/bmef.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Protein biologics are powerful therapeutic agents with diverse inhibitory and enzymatic functions. However, their clinical use has been limited to extracellular applications due to their inability to cross plasma membranes. Overcoming this physiological barrier would unlock the potential of protein drugs for the treatment of many intractable diseases. In this review, we highlight progress made toward achieving cytosolic delivery of recombinant proteins. We start by first considering intracellular protein delivery as a drug modality compared to existing Food and Drug Administration-approved drug modalities. Then, we summarize strategies that have been reported to achieve protein internalization. These techniques can be broadly classified into 3 categories: physical methods, direct protein engineering, and nanocarrier-mediated delivery. Finally, we highlight existing challenges for cytosolic protein delivery and offer an outlook for future advances.
Collapse
Affiliation(s)
| | - Andrew Tsourkas
- Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
78
|
Devarajan A. Optically Controlled CRISPR-Cas9 and Cre Recombinase for Spatiotemporal Gene Editing: A Review. ACS Synth Biol 2024; 13:25-44. [PMID: 38134336 DOI: 10.1021/acssynbio.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
CRISPR-Cas9 and Cre recombinase, two tools extensively used for genome interrogation, have catalyzed key breakthroughs in our understanding of complex biological processes and diseases. However, the immense complexity of biological systems and off-target effects hinder clinical applications, necessitating the development of platforms to control gene editing over spatial and temporal dimensions. Among the strategies developed for inducible control, light is particularly attractive as it is noninvasive and affords high spatiotemporal resolution. The principles for optical control of Cas9 and Cre recombinase are broadly similar and involve photocaged enzymes and small molecules, engineered split- and single-chain constructs, light-induced expression, and delivery by light-responsive nanocarriers. Few systems enable spatiotemporal control with a high dynamic range without loss of wild-type editing efficiencies. Such systems posit the promise of light-activatable systems in the clinic. While the prospect of clinical applications is palpably exciting, optimization and extensive preclinical validation are warranted. Judicious integration of optically activated CRISPR and Cre, tailored for the desired application, may help to bridge the "bench-to-bedside" gap in therapeutic gene editing.
Collapse
Affiliation(s)
- Archit Devarajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India - 462066
| |
Collapse
|
79
|
Lopes R, Prasad MK. Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics. Front Bioeng Biotechnol 2024; 11:1339189. [PMID: 38390600 PMCID: PMC10883050 DOI: 10.3389/fbioe.2023.1339189] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 02/24/2024] Open
Abstract
Over the last decade, CRISPR has revolutionized drug development due to its potential to cure genetic diseases that currently do not have any treatment. CRISPR was adapted from bacteria for gene editing in human cells in 2012 and, remarkably, only 11 years later has seen it's very first approval as a medicine for the treatment of sickle cell disease and transfusion-dependent beta-thalassemia. However, the application of CRISPR systems is associated with unintended off-target and on-target alterations (including small indels, and structural variations such as translocations, inversions and large deletions), which are a source of risk for patients and a vital concern for the development of safe therapies. In recent years, a wide range of methods has been developed to detect unwanted effects of CRISPR-Cas nuclease activity. In this review, we summarize the different methods for off-target assessment, discuss their strengths and limitations, and highlight strategies to improve the safety of CRISPR systems. Finally, we discuss their relevance and application for the pre-clinical risk assessment of CRISPR therapeutics within the current regulatory context.
Collapse
Affiliation(s)
- Rui Lopes
- *Correspondence: Rui Lopes, ; Megana K. Prasad,
| | | |
Collapse
|
80
|
Zheng Q, Ma T, Wang M. Unleashing the Power of Proenzyme Delivery for Targeted Therapeutic Applications Using Biodegradable Lipid Nanoparticles. Acc Chem Res 2024; 57:208-221. [PMID: 38143330 DOI: 10.1021/acs.accounts.3c00597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Proenzymes, functioning as inactive precursor forms of enzymes, hold significant promise for regulating essential biological processes. Their inherent property of latency, remaining inert until they arrive at the intended site of action, positions them as particularly promising candidates for the development of targeted therapeutics. Despite this potential, the therapeutic potential of proenzymes is challenged by designing proenzymes with excellent selectivity for disease cells. This limitation is further exacerbated by the inability of proenzymes to spontaneously cross the cell membrane, a biological barrier that impedes the cellular internalization of exogenous macromolecules. Therefore, efficacious intracellular delivery is paramount to unlocking the full therapeutic potency of proenzymes.In this Account, we first elucidate our recent advancements made in designing biodegradable lipid nanoparticles (LNPs) for the cell-specific delivery of biomacromolecules, including proteins and nucleic acids. Using a strategy of parallel synthesis, we have constructed an extensive library of ionizable lipids, each integrated with different biodegradable moieties. This combinatorial approach has led to the identification of LNPs that are particularly efficacious for the delivery of biomacromolecules specifically to tumor cells. This innovation capitalizes on the unique intracellular environment of cancer cells to control the degradation of LNPs, thereby ensuring the targeted release of therapeutics within tumor cells. Additionally, we discuss the structure-activity relationship governing the delivery efficacy of these LNPs and their applicability in regulating tumor cell signaling, specifically through the delivery of bacterial effector proteins.In the second segment, we aim to provide an overview of our recent contributions to the field of proenzyme design, where we have chemically tailored proteins to render them responsive to the unique milieu of tumor cells. Specifically, we elaborate on the chemical principles employed to modify proteins and DNAzymes, thereby priming them for activation in the presence of NAD(P)H:quinone oxidoreductase 1 (NQO1), an enzyme that is prevalently upregulated within tumor cells. We summarize the methodologies for intracellular delivery of these proenzymes using biodegradable LNPs, both in vitro and in vivo. The concomitant intracellular delivery and activation of proenzymes are examined in the context of enhanced therapeutic outcomes and targeted CRISPR/Cas9 genome editing.In conclusion, we offer a perspective on the chemical principles that could be leveraged to optimize LNPs for tissue-specific delivery of proenzymes. We also explore chemical strategies for the irreversible modulation of proenzyme activity within living cells and in vivo. Through this discussion, we provide insights into potential avenues for overcoming existing limitations and enhancing the delivery of proenzymes using LNPs, particularly for developing tumor-targeted therapies and genome editing applications.
Collapse
Affiliation(s)
- Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100490, China
| | - Tianyu Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100490, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100490, China
| |
Collapse
|
81
|
Mahato RK, Bhattacharya S, Khullar N, Sidhu IS, Reddy PH, Bhatti GK, Bhatti JS. Targeting long non-coding RNAs in cancer therapy using CRISPR-Cas9 technology: A novel paradigm for precision oncology. J Biotechnol 2024; 379:98-119. [PMID: 38065367 DOI: 10.1016/j.jbiotec.2023.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
Cancer is the second leading cause of death worldwide, despite recent advances in its identification and management. To improve cancer patient diagnosis and care, it is necessary to identify new biomarkers and molecular targets. In recent years, long non-coding RNAs (lncRNAs) have surfaced as important contributors to various cellular activities, with growing proof indicating their substantial role in the genesis, development, and spread of cancer. Their unique expression profiles within specific tissues and their wide-ranging functionalities make lncRNAs excellent candidates for potential therapeutic intervention in cancer management. They are implicated in multiple hallmarks of cancer, such as uncontrolled proliferation, angiogenesis, and immune evasion. This review article explores the innovative application of CRISPR-Cas9 technology in targeting lncRNAs as a cancer therapeutic strategy. The CRISPR-Cas9 system has been widely applied in functional genomics, gene therapy, and cancer research, offering a versatile platform for lncRNA targeting. CRISPR-Cas9-mediated targeting of lncRNAs can be achieved through CRISPR interference, activation or the complete knockout of lncRNA loci. Combining CRISPR-Cas9 technology with high-throughput functional genomics makes it possible to identify lncRNAs critical for the survival of specific cancer subtypes, opening the door for tailored treatments and personalised cancer therapies. CRISPR-Cas9-mediated lncRNA targeting with other cutting-edge cancer therapies, such as immunotherapy and targeted molecular therapeutics can be used to overcome the drug resistance in cancer. The synergy of lncRNA research and CRISPR-Cas9 technology presents immense potential for individualized cancer treatment, offering renewed hope in the battle against this disease.
Collapse
Affiliation(s)
- Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Inderpal Singh Sidhu
- Department of Zoology, Sri Guru Gobind Singh College, Sector 26, Chandigarh, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
82
|
Ilahibaks NF, Kluiver TA, de Jong OG, de Jager SCA, Schiffelers RM, Vader P, Peng WC, Lei Z, Sluijter JPG. Extracellular vesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex targeting proprotein convertase subtilisin-kexin type 9 (Pcsk9) in primary mouse hepatocytes. J Extracell Vesicles 2024; 13:e12389. [PMID: 38191764 PMCID: PMC10774704 DOI: 10.1002/jev2.12389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/14/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
The loss-of-function of the proprotein convertase subtilisin-kexin type 9 (Pcsk9) gene has been associated with significant reductions in plasma serum low-density lipoprotein cholesterol (LDL-C) levels. Both CRISPR/Cas9 and CRISPR-based editor-mediated Pcsk9 inactivation have successfully lowered plasma LDL-C and PCSK9 levels in preclinical models. Despite the promising preclinical results, these studies did not report how vehicle-mediated CRISPR delivery inactivating Pcsk9 affected low-density lipoprotein receptor recycling in vitro or ex vivo. Extracellular vesicles (EVs) have shown promise as a biocompatible delivery vehicle, and CRISPR/Cas9 ribonucleoprotein (RNP) has been demonstrated to mediate safe genome editing. Therefore, we investigated EV-mediated RNP targeting of the Pcsk9 gene ex vivo in primary mouse hepatocytes. We engineered EVs with the rapamycin-interacting heterodimer FK506-binding protein (FKBP12) to contain its binding partner, the T82L mutant FKBP12-rapamycin binding (FRB) domain, fused to the Cas9 protein. By integrating the vesicular stomatitis virus glycoprotein on the EV membrane, the engineered Cas9 EVs were used for intracellular CRISPR/Cas9 RNP delivery, achieving genome editing with an efficacy of ±28.1% in Cas9 stoplight reporter cells. Administration of Cas9 EVs in mouse hepatocytes successfully inactivated the Pcsk9 gene, leading to a reduction in Pcsk9 mRNA and increased uptake of the low-density lipoprotein receptor and LDL-C. These readouts can be used in future experiments to assess the efficacy of vehicle-mediated delivery of genome editing technologies targeting Pcsk9. The ex vivo data could be a step towards reducing animal testing and serve as a precursor to future in vivo studies for EV-mediated CRISPR/Cas9 RNP delivery targeting Pcsk9.
Collapse
Affiliation(s)
- Nazma F. Ilahibaks
- Laboratory of Experimental Cardiology, Department Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherland
| | - Saskia C. A. de Jager
- Laboratory of Experimental Cardiology, Department Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Pieter Vader
- Laboratory of Experimental Cardiology, Department Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
- CDL Research, University Medical Center UtrechtUtrechtThe Netherlands
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Zhiyong Lei
- Laboratory of Experimental Cardiology, Department Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
- CDL Research, University Medical Center UtrechtUtrechtThe Netherlands
| | - Joost P. G. Sluijter
- Laboratory of Experimental Cardiology, Department Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Circulatory Health Laboratory, Regenerative Medicine CenterUniversity Medical Center Utrecht, University UtrechtUtrechtThe Netherlands
| |
Collapse
|
83
|
Bhushan B, Singh K, Kumar S, Bhardwaj A. Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders. Curr Gene Ther 2024; 25:34-45. [PMID: 38738727 DOI: 10.2174/0115665232292246240426125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Neurodegenerative disorders pose significant challenges in the realm of healthcare, as these conditions manifest in complex, multifaceted ways, often attributed to genetic anomalies. With the emergence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, a new frontier has been unveiled in the quest for targeted, precise genetic manipulation. This abstract explores the recent advancements and potential applications of CRISPR-based therapies in addressing genetic components contributing to various neurodegenerative disorders. The review delves into the foundational principles of CRISPR technology, highlighting its unparalleled ability to edit genetic sequences with unprecedented precision. In addition, it talks about the latest progress in using CRISPR to target specific genetic mutations linked to neurodegenerative diseases like Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease. It talks about the most important studies and trials that show how well and safely CRISPR-based therapies work. This shows how this technology can change genetic variants that cause diseases. Notably, the discussion emphasizes the challenges and ethical considerations associated with the implementation of CRISPR in clinical settings, including off-target effects, delivery methods, and long-term implications. Furthermore, the article explores the prospects and potential hurdles in the widespread application of CRISPR technology for treating neurodegenerative disorders. It touches upon the need for continued research, improved delivery mechanisms, and ethical frameworks to ensure responsible and equitable access to these groundbreaking therapies.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Anjali Bhardwaj
- Department of Pharmaceutics, Durga College of Pharmacy, Sambhal, Uttar Pradesh, India
| |
Collapse
|
84
|
Volodina OV, Fabrichnikova AR, Anuchina AA, Mishina OS, Lavrov AV, Smirnikhina SA. Evolution of Prime Editing Systems: Move Forward to the Treatment of Hereditary Diseases. Curr Gene Ther 2024; 25:46-61. [PMID: 38623982 DOI: 10.2174/0115665232295117240405070809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
The development of gene therapy using genome editing tools recently became relevant. With the invention of programmable nucleases, it became possible to treat hereditary diseases due to introducing targeted double strand break in the genome followed by homology directed repair (HDR) or non-homologous end-joining (NHEJ) reparation. CRISPR-Cas9 is more efficient and easier to use in comparison with other programmable nucleases. To improve the efficiency and safety of this gene editing tool, various modifications CRISPR-Cas9 basis were created in recent years, such as prime editing - in this system, Cas9 nickase is fused with reverse transcriptase and guide RNA, which contains a desired correction. Prime editing demonstrates equal or higher correction efficiency as HDR-mediated editing and much less off-target effect due to inducing nick. There are several studies in which prime editing is used to correct mutations in which researchers reported little or no evidence of off-target effects. The system can also be used to functionally characterize disease variants. However, prime editing still has several limitations that could be further improved. The effectiveness of the method is not yet high enough to apply it in clinical trials. Delivery of prime editors is also a big challenge due to their size. In the present article, we observe the development of the platform, and discuss the candidate proteins for efficiency enhancing, main delivery methods and current applications of prime editing.
Collapse
Affiliation(s)
- Olga V Volodina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, 115522, Moscow, Russia
| | | | - Arina A Anuchina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, 115522, Moscow, Russia
| | - Olesya S Mishina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, 115522, Moscow, Russia
| | - Alexander V Lavrov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, 115522, Moscow, Russia
| | - Svetlana A Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, 115522, Moscow, Russia
| |
Collapse
|
85
|
Kolanu ND. CRISPR-Cas9 Gene Editing: Curing Genetic Diseases by Inherited Epigenetic Modifications. Glob Med Genet 2024; 11:113-122. [PMID: 38560484 PMCID: PMC10980556 DOI: 10.1055/s-0044-1785234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Introduction CRISPR-Cas9 gene editing, leveraging bacterial defense mechanisms, offers precise DNA modifications, holding promise in curing genetic diseases. This review critically assesses its potential, analyzing evidence on therapeutic applications, challenges, and future prospects. Examining diverse genetic disorders, it evaluates efficacy, safety, and limitations, emphasizing the need for a thorough understanding among medical professionals and researchers. Acknowledging its transformative impact, a systematic review is crucial for informed decision-making, responsible utilization, and guiding future research to unlock CRISPR-Cas9's full potential in realizing the cure for genetic diseases. Methods A comprehensive literature search across PubMed, Scopus, and the Web of Science identified studies applying CRISPR-Cas9 gene editing for genetic diseases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria covered in vitro and in vivo models targeting various genetic diseases with reported outcomes on disease modification or potential cure. Quality assessment revealed a generally moderate to high risk of bias. Heterogeneity prevented quantitative meta-analysis, prompting a narrative synthesis of findings. Discussion CRISPR-Cas9 enables precise gene editing, correcting disease-causing mutations and offering hope for previously incurable genetic conditions. Leveraging inherited epigenetic modifications, it not only fixes mutations but also restores normal gene function and controls gene expression. The transformative potential of CRISPR-Cas9 holds promise for personalized treatments, improving therapeutic outcomes, but ethical considerations and safety concerns must be rigorously addressed to ensure responsible and safe application, especially in germline editing with potential long-term implications.
Collapse
|
86
|
Fu Y, He X, Gao XD, Li F, Ge S, Yang Z, Fan X. Prime editing: current advances and therapeutic opportunities in human diseases. Sci Bull (Beijing) 2023; 68:3278-3291. [PMID: 37973465 DOI: 10.1016/j.scib.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Gene editing ushers in a new era of disease treatment since many genetic diseases are caused by base-pair mutations in genomic DNA. With the rapid development of genome editing technology, novel editing tools such as base editing and prime editing (PE) have attracted public attention, heralding a great leap forward in this field. PE, in particular, is characterized by no need for double-strand breaks (DSBs) or homology sequence templates with variable application scenarios, including point mutations as well as insertions or deletions. With higher editing efficiency and fewer byproducts than traditional editing tools, PE holds great promise as a therapeutic strategy for human diseases. Subsequently, a growing demand for the standard construction of PE system has spawned numerous easy-to-access internet resources and tools for personalized prime editing guide RNA (pegRNA) design and off-target site prediction. In this review, we mainly introduce the innovation and evolutionary strategy of PE systems and the auxiliary tools for PE design and analysis. Additionally, its application and future potential in the clinical field have been summarized and envisaged.
Collapse
Affiliation(s)
- Yidian Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge MA 02141, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge MA 02138, USA
| | - Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
87
|
Chowdhry R, Lu SZ, Lee S, Godhulayyagari S, Ebrahimi SB, Samanta D. Enhancing CRISPR/Cas systems with nanotechnology. Trends Biotechnol 2023; 41:1549-1564. [PMID: 37451945 DOI: 10.1016/j.tibtech.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
CRISPR/Cas systems have revolutionized biology and medicine, and have led to new paradigms in disease diagnostics and therapeutics. However, these complexes suffer from key limitations regarding barriers to cellular entry, stability in biological environments, and off-target effects. Integrating nanotechnology with CRISPR/Cas systems has emerged as a promising strategy to overcome these challenges and has further unlocked structures that accumulate preferentially in tissues of interest, have tunable pharmacological properties, and are activated in response to desired stimuli. Nanomaterials can also enhance CRISPR/Cas-mediated detection platforms by enabling faster, more sensitive, and convenient readouts. We highlight recent advances in this rapidly growing field. We also outline areas that need further development to fully realize the potential of CRISPR technologies.
Collapse
Affiliation(s)
- Rupali Chowdhry
- Department of Public Health, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven Z Lu
- Department of Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Seungheon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Sasha B Ebrahimi
- Drug Product Development - Steriles, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
88
|
Chen K, Han H, Zhao S, Xu B, Yin B, Trinidad M, Burgstone BW, Murthy N, Doudna JA. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 RNP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.566339. [PMID: 38014175 PMCID: PMC10680715 DOI: 10.1101/2023.11.15.566339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lipid nanoparticle (LNP) delivery of CRISPR ribonucleoproteins (RNPs) has the potential to enable high-efficiency in vivo genome editing with low toxicity and an easily manufactured technology, if RNP efficacy can be maintained during LNP production. In this study, we engineered a thermostable Cas9 from Geobacillus stearothermophilus (GeoCas9) using directed evolution to generate iGeoCas9 evolved variants capable of robust genome editing of cells and organs. iGeoCas9s were significantly better at editing cells than wild-type GeoCas9, with genome editing levels >100X greater than those induced by the native GeoCas9 enzyme. Furthermore, iGeoCas9 RNP:LNP complexes edited a variety of cell lines and induced homology-directed repair (HDR) in cells receiving co-delivered single-stranded DNA (ssDNA) templates. Using tissue-selective LNP formulations, we observed genome editing of 35‒56% efficiency in the liver or lungs of mice that received intravenous injections of iGeoCas9 RNP:LNPs. In particular, iGeoCas9 complexed to acid-degradable LNPs edited lung tissue in vivo with an average of 35% efficiency, a significant improvement over editing efficiencies observed previously using viral or non-viral delivery strategies. These results show that thermostable Cas9 RNP:LNP complexes are a powerful alternative to mRNA:LNP delivery vehicles, expanding the therapeutic potential of genome editing.
Collapse
|
89
|
Cardoso RV, Pereira PR, Freitas CS, Mattos ÉBDA, Silva AVDF, Midlej VDV, Vericimo MA, Conte-Júnior CA, Paschoalin VMF. Tarin-Loaded Nanoliposomes Activate Apoptosis and Autophagy and Inhibit the Migration of Human Mammary Adenocarcinoma Cells. Int J Nanomedicine 2023; 18:6393-6408. [PMID: 37954458 PMCID: PMC10638905 DOI: 10.2147/ijn.s434626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023] Open
Abstract
Background Tarin, a lectin purified from Colocasia esculenta, promotes in vitro and in vivo immunomodulatory effects allied to promising anticancer and antimetastatic effects against human adenocarcinoma mammary cells. This makes this 47 kDa-protein a natural candidate against human breast cancer, a leading cause of death among women. Tarin encapsulated in pegylated nanoliposomes displays increased effectiveness in controlling the proliferation of a mammary adenocarcinoma lineage comprising MDA-MB-231 cells. Methods The mechanisms enrolled in anticancer and antimetastatic responses were investigated by treating MDA-MB-231 cells with nano-encapsulated tarin at 72 μg/mL for up to 48h through flow cytometry and transmission electron microscopy (TEM). The safety of nano-encapsulated tarin towards healthy tissue was also assessed by the resazurin viability assay, and the effect of nanoencapsulated tarin on cell migration was evaluated by scratch assays. Results Ultrastructural analyses of MDA-MB-231 cells exposed to nanoencapsulated tarin revealed the accumulation of autophagosomes and damaged organelles, compatible with autophagy-dependent cell death. On the other hand, the flow cytometry investigation detected the increased occurrence of acidic vacuolar organelles, a late autophagosome trait, along with the enhanced presence of apoptotic cells, activated caspase-3/7, and cell cycle arrest at G0/G1. No deleterious effects were observed in healthy fibroblast cells following tarin nanoencapsulated exposition, in contrast to reduced viability in cells exposed to free tarin. The migration of MDA-MB-231 cells was inhibited by nano-encapsulated tarin, with delayed movement by 24 h compared to free tarin. Conclusion The nanoliposome formulation delivers tarin in a delayed and sustained manner, as evidenced by the belated and potent antitumoral and anti-migration effects on adenocarcinoma cells, with no toxicity to healthy cells. Although further investigations are required to fully understand antitumorigenic tarin mechanisms, the activation of both apoptotic and autophagic machineries along with the caspase-3/7 pathway, and cell cycle arrest may comprise a part of these mechanisms.
Collapse
Affiliation(s)
- Raiane Vieira Cardoso
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Cyntia Silva Freitas
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
90
|
Liu X, Zhao Z, Li W, Li Y, Yang Q, Liu N, Chen Y, Yin L. Engineering Nucleotidoproteins for Base-Pairing-Assisted Cytosolic Delivery and Genome Editing. Angew Chem Int Ed Engl 2023; 62:e202307664. [PMID: 37718311 DOI: 10.1002/anie.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Protein therapeutics targeting intracellular machineries hold profound potential for disease treatment, and hence robust cytosolic protein delivery technologies are imperatively demanded. Inspired by the super-negatively charged, nucleotide-enriched structure of nucleic acids, adenylated pro-proteins (A-proteins) with dramatically enhanced negative surface charges have been engineered for the first time via facile green synthesis. Then, thymidine-modified polyethyleneimine is developed, which exhibits strong electrostatic attraction, complementary base pairing, and hydrophobic interaction with A-proteins to form salt-resistant nanocomplexes with robust cytosolic delivery efficiencies. The acidic endolysosomal environment enables traceless restoration of the A-proteins and consequently promotes the intracellular release of the native proteins. This strategy shows high efficiency and universality for a variety of proteins with different molecular weights and isoelectric points in mammalian cells. Moreover, it enables highly efficient delivery of CRISPR-Cas9 ribonucleoproteins targeting fusion oncogene EWSR1-FLI1, leading to pronounced anti-tumor efficacy against Ewing sarcoma. This study provides a potent and versatile platform for cytosolic protein delivery and gene editing, and may benefit the development of protein pharmaceuticals.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Wei Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yajie Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Qiang Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ningyu Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yongbing Chen
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| |
Collapse
|
91
|
Kim H, Gu C, Mustfa SA, Martella DA, Wang C, Wang Y, Chiappini C. CRISPR/Cas-Assisted Nanoneedle Sensor for Adenosine Triphosphate Detection in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49964-49973. [PMID: 37769296 PMCID: PMC10623508 DOI: 10.1021/acsami.3c07918] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) (CRISPR/Cas) systems have recently emerged as powerful molecular biosensing tools based on their collateral cleavage activity due to their simplicity, sensitivity, specificity, and broad applicability. However, the direct application of the collateral cleavage activity for in situ intracellular detection is still challenging. Here, we debut a CRISPR/Cas-assisted nanoneedle sensor (nanoCRISPR) for intracellular adenosine triphosphate (ATP), which avoids the challenges associated with intracellular collateral cleavage by introducing a two-step process of intracellular target recognition, followed by extracellular transduction and detection. ATP recognition occurs by first presenting in the cell cytosol an aptamer-locked Cas12a activator conjugated to nanoneedles; the recognition event unlocks the activator immobilized on the nanoneedles. The nanoneedles are then removed from the cells and exposed to the Cas12a/crRNA complex, where the activator triggers the cleavage of an ssDNA fluorophore-quencher pair, generating a detectable fluorescence signal. NanoCRISPR has an ATP detection limit of 246 nM and a dynamic range from 1.56 to 50 μM. Importantly, nanoCRISPR can detect intracellular ATP in 30 min in live cells without impacting cell viability. We anticipate that the nanoCRISPR approach will contribute to broadening the biomedical applications of CRISPR/Cas sensors for the detection of diverse intracellular molecules in living systems.
Collapse
Affiliation(s)
- Hongki Kim
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- Department
of Chemistry, Kongju National University, Gongju 32588, Republic of Korea
| | - Chenlei Gu
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| | - Salman Ahmad Mustfa
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
| | | | - Cong Wang
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| | - Yikai Wang
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| | - Ciro Chiappini
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| |
Collapse
|
92
|
Ge N, Liu M, Li R, Allen NM, Galvin J, Shen S, O'Brien T, Prendiville TW. Using Ribonucleoprotein-based CRISPR/Cas9 to Edit Single Nucleotide on Human Induced Pluripotent Stem Cells to Model Type 3 Long QT Syndrome (SCN5A ±). Stem Cell Rev Rep 2023; 19:2774-2789. [PMID: 37653182 PMCID: PMC10661835 DOI: 10.1007/s12015-023-10602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have been widely used in cardiac disease modelling, drug discovery, and regenerative medicine as they can be differentiated into patient-specific cardiomyocytes. Long QT syndrome type 3 (LQT3) is one of the more malignant congenital long QT syndrome (LQTS) variants with an SCN5A gain-of-function effect on the gated sodium channel. Moreover, the predominant pathogenic variants in LQTS genes are single nucleotide substitutions (missense) and small insertion/deletions (INDEL). CRISPR/Cas9 genome editing has been utilised to create isogenic hiPSCs to control for an identical genetic background and to isolate the pathogenicity of a single nucleotide change. In this study, we described an optimized and rapid protocol to introduce a heterozygous LQT3-specific variant into healthy control hiPSCs using ribonucleoprotein (RNP) and single-stranded oligonucleotide (ssODN). Based on this protocol, we successfully screened hiPSCs carrying a heterozygous LQT3 pathogenic variant (SCN5A±) with high efficiency (6 out of 69) and confirmed no off-target effect, normal karyotype, high alkaline phosphatase activity, unaffected pluripotency, and in vitro embryonic body formation capacity within 2 weeks. In addition, we also provide protocols to robustly differentiate hiPSCs into cardiomyocytes and evaluate the electrophysiological characteristics using Multi-electrode Array. This protocol is also applicable to introduce and/or correct other disease-specific variants into hiPSCs for future pharmacological screening and gene therapeutic development.
Collapse
Affiliation(s)
- Ning Ge
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Min Liu
- Department of Physiology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Rui Li
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | - Nicholas M Allen
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- Department of Paediatrics, University of Galway, Galway, Ireland
| | - Joseph Galvin
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
| | - Terence W Prendiville
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland.
- National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin 12, Ireland.
| |
Collapse
|
93
|
Sundaresan Y, Yacoub S, Kodati B, Amankwa CE, Raola A, Zode G. Therapeutic applications of CRISPR/Cas9 gene editing technology for the treatment of ocular diseases. FEBS J 2023; 290:5248-5269. [PMID: 36877952 PMCID: PMC10480348 DOI: 10.1111/febs.16771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/04/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Ocular diseases are a highly heterogeneous group of phenotypes, caused by a spectrum of genetic variants and environmental factors that exhibit diverse clinical symptoms. As a result of its anatomical location, structure and immune privilege, the eye is an ideal system to assess and validate novel genetic therapies. Advances in genome editing have revolutionized the field of biomedical science, enabling researchers to understand the biology behind disease mechanisms and allow the treatment of several health conditions, including ocular pathologies. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing facilitates efficient and specific genetic modifications in the nucleic acid sequence, resulting in permanent changes at the genomic level. This approach has advantages over other treatment strategies and is promising for the treatment of various genetic and non-genetic ocular conditions. This review provides an overview of the CRISPR/CRISPR-associated protein 9 (Cas9) system and summarizes recent advances in the therapeutic application of CRISPR/Cas9 for the treatment of various ocular pathologies, as well as future challenges.
Collapse
Affiliation(s)
| | | | - Bindu Kodati
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Charles E. Amankwa
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Akash Raola
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Gulab Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| |
Collapse
|
94
|
Zhao Y, Ye Z, Song D, Wich D, Gao S, Khirallah J, Xu Q. Nanomechanical action opens endo-lysosomal compartments. Nat Commun 2023; 14:6645. [PMID: 37863882 PMCID: PMC10589329 DOI: 10.1038/s41467-023-42280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
Endo-lysosomal escape is a highly inefficient process, which is a bottleneck for intracellular delivery of biologics, including proteins and nucleic acids. Herein, we demonstrate the design of a lipid-based nanoscale molecular machine, which achieves efficient cytosolic transport of biologics by destabilizing endo-lysosomal compartments through nanomechanical action upon light irradiation. We fabricate lipid-based nanoscale molecular machines, which are designed to perform mechanical movement by consuming photons, by co-assembling azobenzene lipidoids with helper lipids. We show that lipid-based nanoscale molecular machines adhere onto the endo-lysosomal membrane after entering cells. We demonstrate that continuous rotation-inversion movement of Azo lipidoids triggered by ultraviolet/visible irradiation results in the destabilization of the membranes, thereby transporting cargoes, such as mRNAs and Cre proteins, to the cytoplasm. We find that the efficiency of cytosolic transport is improved about 2.1-fold, compared to conventional intracellular delivery systems. Finally, we show that lipid-based nanoscale molecular machines are competent for cytosolic transport of tumour antigens into dendritic cells, which induce robust antitumour activity in a melanoma mouse model.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Donghui Song
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Douglas Wich
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Shuliang Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jennifer Khirallah
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
95
|
Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Front Chem 2023; 11:1259435. [PMID: 37841202 PMCID: PMC10568484 DOI: 10.3389/fchem.2023.1259435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The use of biomaterials in delivering CRISPR/Cas9 for gene therapy in infectious diseases holds tremendous potential. This innovative approach combines the advantages of CRISPR/Cas9 with the protective properties of biomaterials, enabling accurate and efficient gene editing while enhancing safety. Biomaterials play a vital role in shielding CRISPR/Cas9 components, such as lipid nanoparticles or viral vectors, from immunological processes and degradation, extending their effectiveness. By utilizing the flexibility of biomaterials, tailored systems can be designed to address specific genetic diseases, paving the way for personalized therapeutics. Furthermore, this delivery method offers promising avenues in combating viral illnesses by precisely modifying pathogen genomes, and reducing their pathogenicity. Biomaterials facilitate site-specific gene modifications, ensuring effective delivery to infected cells while minimizing off-target effects. However, challenges remain, including optimizing delivery efficiency, reducing off-target effects, ensuring long-term safety, and establishing scalable production techniques. Thorough research, pre-clinical investigations, and rigorous safety evaluations are imperative for successful translation from the laboratory to clinical applications. In this review, we discussed how CRISPR/Cas9 delivery using biomaterials revolutionizes gene therapy and infectious disease treatment, offering precise and safe editing capabilities with the potential to significantly improve human health and quality of life.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Global Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Bengaluru, Karnataka, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
96
|
Wang X, Li Y, Wang X, Sandoval DM, He Z, A S, Sáez IL, Wang W. Guanidyl-Rich Poly(β Amino Ester)s for Universal Functional Cytosolic Protein Delivery and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 Ribonucleoprotein Based Gene Editing. ACS NANO 2023; 17:17799-17810. [PMID: 37669145 PMCID: PMC10540258 DOI: 10.1021/acsnano.3c03269] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Protein therapeutics are highly promising for complex disease treatment. However, the lack of ideal delivery vectors impedes their clinical use, especially the carriers for in vivo delivery of functional cytosolic protein. In this study, we modified poly(β amino ester)s (PAEs) with a phenyl guanidine (PG) group to enhance their suitability for cytosolic protein delivery. The effects of the PG group on protein binding, cell internalization, protein function protection, and endo/lysosomal escape were systematically evaluated. Compared to the unmodified PAEs (L3), guanidyl rich PAEs (L3PG) presented superior efficiency of protein binding and protein internalization, mainly via clathrin-mediated endocytosis. In addition, both PAEs showed robust capabilities to deliver cytosolic proteins with different molecular weight (ranging from 30 to 464 kDa) and isoelectric points (ranging from 4.3 to 9), which were significantly improved in comparison with the commercial reagents of PULsin and Pierce Protein Transection Reagent. Moreover, L3PG successfully delivered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 ribonucleoprotein (RNP) into HeLa cells expressing green fluorescent protein (GFP) and achieved more than 80% GFP expression knockout. These results demonstrated that guanidyl modification on PAEs can enhance its capabilities for intracellular delivery of cytosolic functional proteins and CRISPR/Cas9 ribonucleoprotein. The guanidyl-rich PAEs are promising nonviral vectors for functional protein delivery and potential use in protein and nuclease-based gene editing therapies.
Collapse
Affiliation(s)
- Xianqing Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Yinghao Li
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Xi Wang
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Dario M. Sandoval
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Zhonglei He
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Sigen A
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| | - Irene Lara Sáez
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Wenxin Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| |
Collapse
|
97
|
Qureshi A, Connolly JB. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria. Malar J 2023; 22:234. [PMID: 37580703 PMCID: PMC10426224 DOI: 10.1186/s12936-023-04665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Population suppression gene drive is currently being evaluated, including via environmental risk assessment (ERA), for malaria vector control. One such gene drive involves the dsxFCRISPRh transgene encoding (i) hCas9 endonuclease, (ii) T1 guide RNA (gRNA) targeting the doublesex locus, and (iii) DsRed fluorescent marker protein, in genetically-modified mosquitoes (GMMs). Problem formulation, the first stage of ERA, for environmental releases of dsxFCRISPRh previously identified nine potential harms to the environment or health that could occur, should expressed products of the transgene cause allergenicity or toxicity. METHODS Amino acid sequences of hCas9 and DsRed were interrogated against those of toxins or allergens from NCBI, UniProt, COMPARE and AllergenOnline bioinformatic databases and the gRNA was compared with microRNAs from the miRBase database for potential impacts on gene expression associated with toxicity or allergenicity. PubMed was also searched for any evidence of toxicity or allergenicity of Cas9 or DsRed, or of the donor organisms from which these products were originally derived. RESULTS While Cas9 nuclease activity can be toxic to some cell types in vitro and hCas9 was found to share homology with the prokaryotic toxin VapC, there was no evidence from previous studies of a risk of toxicity to humans and other animals from hCas9. Although hCas9 did contain an 8-mer epitope found in the latex allergen Hev b 9, the full amino acid sequence of hCas9 was not homologous to any known allergens. Combined with a lack of evidence in the literature of Cas9 allergenicity, this indicated negligible risk to humans of allergenicity from hCas9. No matches were found between the gRNA and microRNAs from either Anopheles or humans. Moreover, potential exposure to dsxFCRISPRh transgenic proteins from environmental releases was assessed as negligible. CONCLUSIONS Bioinformatic and literature assessments found no convincing evidence to suggest that transgenic products expressed from dsxFCRISPRh were allergens or toxins, indicating that environmental releases of this population suppression gene drive for malaria vector control should not result in any increased allergenicity or toxicity in humans or animals. These results should also inform evaluations of other GMMs being developed for vector control and in vivo clinical applications of CRISPR-Cas9.
Collapse
Affiliation(s)
- Alima Qureshi
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK
| | - John B Connolly
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK.
| |
Collapse
|
98
|
Zheng Q, Wang W, Zhou Y, Mo J, Chang X, Zha Z, Zha L. Synthetic nanoparticles for the delivery of CRISPR/Cas9 gene editing system: classification and biomedical applications. Biomater Sci 2023; 11:5361-5389. [PMID: 37381725 DOI: 10.1039/d3bm00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Gene editing has great potential in biomedical research including disease diagnosis and treatment. Clustered regularly interspaced short palindromic repeats (CRISPR) is the most straightforward and cost-effective method. The efficient and precise delivery of CRISPR can impact the specificity and efficacy of gene editing. In recent years, synthetic nanoparticles have been discovered as effective CRISPR/Cas9 delivery vehicles. We categorized synthetic nanoparticles for CRISPR/Cas9 delivery and discribed their advantages and disadvantages. Further, the building blocks of different kinds of nanoparticles and their applications in cells/tissues, cancer and other diseases were described in detail. Finally, the challenges encountered in the clinical application of CRISPR/Cas9 delivery materials were discussed, and potential solutions were provided regarding efficiency and biosafety issues.
Collapse
Affiliation(s)
- Qi Zheng
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Weitao Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Yuhang Zhou
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Jiayin Mo
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Xinyue Chang
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Lisha Zha
- International Immunology Centre, Anhui Agricultural University, Hefei 230036, P. R. China.
| |
Collapse
|
99
|
Kocsisova Z, Coneva V. Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration. Front Genome Ed 2023; 5:1209586. [PMID: 37545761 PMCID: PMC10398581 DOI: 10.3389/fgeed.2023.1209586] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Increased understanding of plant genetics and the development of powerful and easier-to-use gene editing tools over the past century have revolutionized humankind's ability to deliver precise genotypes in crops. Plant transformation techniques are well developed for making transgenic varieties in certain crops and model organisms, yet reagent delivery and plant regeneration remain key bottlenecks to applying the technology of gene editing to most crops. Typical plant transformation protocols to produce transgenic, genetically modified (GM) varieties rely on transgenes, chemical selection, and tissue culture. Typical protocols to make gene edited (GE) varieties also use transgenes, even though these may be undesirable in the final crop product. In some crops, the transgenes are routinely segregated away during meiosis by performing crosses, and thus only a minor concern. In other crops, particularly those propagated vegetatively, complex hybrids, or crops with long generation times, such crosses are impractical or impossible. This review highlights diverse strategies to deliver CRISPR/Cas gene editing reagents to regenerable plant cells and to recover edited plants without unwanted integration of transgenes. Some examples include delivering DNA-free gene editing reagents such as ribonucleoproteins or mRNA, relying on reagent expression from non-integrated DNA, using novel delivery mechanisms such as viruses or nanoparticles, using unconventional selection methods to avoid integration of transgenes, and/or avoiding tissue culture altogether. These methods are advancing rapidly and already enabling crop scientists to make use of the precision of CRISPR gene editing tools.
Collapse
|
100
|
Wichmann M, Maire CL, Nuppenau N, Habiballa M, Uhde A, Kolbe K, Schröder T, Lamszus K, Fehse B, Głów D. Deep Characterization and Comparison of Different Retrovirus-like Particles Preloaded with CRISPR/Cas9 RNPs. Int J Mol Sci 2023; 24:11399. [PMID: 37511168 PMCID: PMC10380221 DOI: 10.3390/ijms241411399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The CRISPR/Cas system has a broad range of possible medical applications, but its clinical translation has been hampered, particularly by the lack of safe and efficient vector systems mediating the short-term expression of its components. Recently, different virus-like particles (VLPs) have been introduced as promising vectors for the delivery of CRISPR/Cas genome editing components. Here, we characterized and directly compared three different types of retrovirus-based (R) VLPs, two derived from the γ-retrovirus murine leukemia virus (gRVLPs and "enhanced" egRVLPs) and one from the lentivirus human immunodeficiency virus, HIV (LVLPs). First, we unified and optimized the production of the different RVLPs. To ensure maximal comparability of the produced RVLPs, we adapted several assays, including nanoparticle tracking analysis (NTA), multi-parametric imaging flow cytometry (IFC), and Cas9-ELISA, to analyze their morphology, surface composition, size, and concentration. Next, we comparatively tested the three RVLPs targeting different genes in 293T model cells. Using identical gRNAs, we found egRVLPs to mediate the most efficient editing. Functional analyses indicated better cargo (i.e., Cas9) transfer and/or release as the underlying reason for their superior performance. Finally, we compared on- and off-target activities of the three RVLPs in human-induced pluripotent stem cells (hiPSC) exploiting the clinically relevant C-C motif chemokine receptor 5 (CCR5) as the target. Again, egRVLPs facilitated the highest, almost 100% knockout rates, importantly with minimal off-target activity. In conclusion, in direct comparison, egRVLPs were the most efficient RVLPs. Moreover, we established methods for in-depth characterization of VLPs, facilitating their validation and thus more predictable and safe application.
Collapse
Affiliation(s)
- Max Wichmann
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Niklas Nuppenau
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Moataz Habiballa
- Institute of Neuroanatomy, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Almut Uhde
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Katharina Kolbe
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Tanja Schröder
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany
| | - Dawid Głów
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|