51
|
Ptacek J, Nedvedova J, Navratil M, Havlinova B, Konvalinka J, Barinka C. The calcium-binding site of human glutamate carboxypeptidase II is critical for dimerization, thermal stability, and enzymatic activity. Protein Sci 2018; 27:1575-1584. [PMID: 30168215 DOI: 10.1002/pro.3460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022]
Abstract
Calcium ions are required for proper function of a wide spectrum of proteins within cells. X-ray crystallography of human glutamate carboxypeptidase II (GCPII) revealed the presence of a Ca2+ -binding site, but its importance for the structure and function of this metallopeptidase has not been elucidated to date. Here, we prepared a panel of mutants targeting residues that form the Ca2+ coordination sphere of GCPII and analyzed their structural and enzymatic properties using an array of complementary biophysical and biochemical approaches. Our data unequivocally show that even a slight disruption of the Ca2+ -binding site destabilizes the three-dimensional fold of GCPII and is associated with impaired secretion, a high propensity to form nonphysiological oligomers, and an inability to bind active site-targeted ligands. Additionally, the Ca2+ -binding site is critical for maintenance of the native homodimeric quaternary arrangement of GCPII, which is indispensable for its enzymatic activity. Overall, our results offer a clear picture of the importance of Ca2+ for the structural integrity and hydrolytic activity of human GCPII and by extension homologous members of the M28 zinc-dependent metallopeptidase family.
Collapse
Affiliation(s)
- Jakub Ptacek
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.,Department of Biochemistry, Charles University, Prague 2, Czech Republic
| | - Jana Nedvedova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Michal Navratil
- Department of Biochemistry, Charles University, Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Barbora Havlinova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Jan Konvalinka
- Department of Biochemistry, Charles University, Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| |
Collapse
|
52
|
Bhujwalla ZM, Kakkad S, Chen Z, Jin J, Hapuarachchige S, Artemov D, Penet MF. Theranostics and metabolotheranostics for precision medicine in oncology. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:141-151. [PMID: 29705040 PMCID: PMC5943142 DOI: 10.1016/j.jmr.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/12/2018] [Accepted: 03/07/2018] [Indexed: 05/14/2023]
Abstract
Most diseases, especially cancer, would significantly benefit from precision medicine where treatment is shaped for the individual. The concept of theragnostics or theranostics emerged around 2002 to describe the incorporation of diagnostic assays into the selection of therapy for this purpose. Increasingly, theranostics has been used for strategies that combine noninvasive imaging-based diagnostics with therapy. Within the past decade theranostic imaging has transformed into a rapidly expanding field that is located at the interface of diagnosis and therapy. A critical need in cancer treatment is to minimize damage to normal tissue. Molecular imaging can be applied to identify targets specific to cancer with imaging, design agents against these targets to visualize their delivery, and monitor response to treatment, with the overall purpose of minimizing collateral damage. Genomic and proteomic profiling can provide an extensive 'fingerprint' of each tumor. With this cancer fingerprint, theranostic agents can be designed to personalize treatment for precision medicine of cancer, and minimize damage to normal tissue. Here, for the first time, we have introduced the term 'metabolotheranostics' to describe strategies where disease-based alterations in metabolic pathways detected by MRS are specifically targeted with image-guided delivery platforms to achieve disease-specific therapy. The versatility of MRI and MRS in molecular and functional imaging makes these technologies especially important in theranostic MRI and 'metabolotheranostics'. Our purpose here is to provide insights into the capabilities and applications of this exciting new field in cancer treatment with a focus on MRI and MRS.
Collapse
Affiliation(s)
- Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Samata Kakkad
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhihang Chen
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiefu Jin
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sudath Hapuarachchige
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
53
|
Preparation of 68Ga-PSMA-11 with a Synthesis Module for Micro PET-CT Imaging of PSMA Expression during Prostate Cancer Progression. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:8046541. [PMID: 29853810 PMCID: PMC5944242 DOI: 10.1155/2018/8046541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/04/2018] [Indexed: 12/02/2022]
Abstract
Objective To synthesize 68Ga-Glu-urea-Lys(Ahx)-HBED-CC (68Ga-PSMA-11) with a synthesis module and investigate PET-CT imaging to monitor PSMA expression during prostate cancer (PCa) progression and tumor growth in mice bearing subcutaneous PCa xenografts. Method The radiochemical purity and stability of 68Ga-PSMA-11 were determined via radio-HPLC. The PCa cell lines of different PSMA expression levels (PC3, VCAP±, CWR22RV1+, and LNCaP++) were selected to mimic the PCa progression. 68Ga-PSMA-11 biodistribution was studied by dissection method and in vivo imaging with micro PET-CT. The expression levels of PSMA in tumor cells and tissues were analyzed by immunofluorescence, flow cytometry, and western blot. The correlation between PSMA expression and radio-uptake was also evaluated. 2-PMPA preadministration served as a block group. Results The radiochemical purity of 68Ga-PSMA-11 was 99.6 ± 0.1% and stable in vitro for 2 h. The equilibrium binding constant (Kd) of 68Ga-PSMA-11 to LNCaP, CWR22Rv1, PC-3, and VCAP cells was 4.3 ± 0.8 nM, 16.4 ± 1.3 nM, 225.3 ± 20.8 nM, and 125.6 ± 13.1 nM, respectively. Results of tumor uptake (% ID and % ID/g or % ID/cm3) of 68Ga-PSMA-11 in biodistribution and micro PET imaging were LNCaP > CWR22RV1 > PC-3 and VCAP due to different PSMA expression levels. It was confirmed by flow cytometry, western blot, and immunofluorescence. Tumor uptake (% ID/cm3) of 68Ga-PSMA-11 increased with the tumor anatomical volume in quadratic polynomial fashion and reached the peak (when tumor volume was 0.5 cm3) earlier than tumor uptake (% ID). Tumor uptake (% ID/cm3) of 68Ga-PSMA-11 based on functional volume correlated well with the PSMA expression in a linear manner (y = 9.35x + 2.59, R2 = 0.8924, and p < 0.0001); however, low dose 2-PMPA causes rapid renal clearance of increased tumor/kidney uptake of 68Ga-PSMA-11. Conclusions The 68Ga-PSMA-11 PET-CT imaging could invasively evaluate PSMA expression during PCa progression and tumor growth with % ID/cm3 (based on functional volume) as an important index. Low dose 2-PMPA preadministration might be a choice to decrease kidney uptake of 68Ga-PSMA-11.
Collapse
|
54
|
Psimadas D, Valotassiou V, Alexiou S, Tsougos I, Georgoulias P. Radiolabeled mAbs as Molecular Imaging and/or Therapy Agents Targeting PSMA. Cancer Invest 2018; 36:118-128. [DOI: 10.1080/07357907.2018.1430816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dimitrios Psimadas
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Varvara Valotassiou
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Sotiria Alexiou
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Tsougos
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
55
|
Baranski AC, Schäfer M, Bauder-Wüst U, Roscher M, Schmidt J, Stenau E, Simpfendörfer T, Teber D, Maier-Hein L, Hadaschik B, Haberkorn U, Eder M, Kopka K. PSMA-11–Derived Dual-Labeled PSMA Inhibitors for Preoperative PET Imaging and Precise Fluorescence-Guided Surgery of Prostate Cancer. J Nucl Med 2017; 59:639-645. [DOI: 10.2967/jnumed.117.201293] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/13/2017] [Indexed: 02/06/2023] Open
|
56
|
Fendler WP, Rahbar K, Herrmann K, Kratochwil C, Eiber M. 177Lu-PSMA Radioligand Therapy for Prostate Cancer. J Nucl Med 2017; 58:1196-1200. [PMID: 28663195 DOI: 10.2967/jnumed.117.191023] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
177Lu-prostate-specific membrane antigen (PSMA) radioligand therapy (RLT) using inhibitors of PSMA is a novel therapeutic option in patients with metastatic castration-resistant prostate cancer. The current literature suggests that this therapy is well tolerated and effective. On the basis of clinical need and current evidence, the therapy is being implemented in a growing number of centers worldwide. Here, we review important aspects of 177Lu-PSMA RLT, including patient stratification, the therapy protocol, concomitant medication, and follow-up, to inform medical staff involved in the RLT and care of patients with metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Wolfgang P Fendler
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California .,Department of Nuclear Medicine, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Nuclear Medicine, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany; and
| | - Matthias Eiber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
57
|
Gourni E, Henriksen G. Metal-Based PSMA Radioligands. Molecules 2017; 22:molecules22040523. [PMID: 28338640 PMCID: PMC6154343 DOI: 10.3390/molecules22040523] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/13/2017] [Accepted: 03/18/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is one of the most common malignancies for which great progress has been made in identifying appropriate molecular targets that would enable efficient in vivo targeting for imaging and therapy. The type II integral membrane protein, prostate specific membrane antigen (PSMA) is overexpressed on prostate cancer cells in proportion to the stage and grade of the tumor progression, especially in androgen-independent, advanced and metastatic disease, rendering it a promising diagnostic and/or therapeutic target. From the perspective of nuclear medicine, PSMA-based radioligands may significantly impact the management of patients who suffer from prostate cancer. For that purpose, chelating-based PSMA-specific ligands have been labeled with various diagnostic and/or therapeutic radiometals for single-photon-emission tomography (SPECT), positron-emission-tomography (PET), radionuclide targeted therapy as well as intraoperative applications. This review focuses on the development and further applications of metal-based PSMA radioligands.
Collapse
Affiliation(s)
- Eleni Gourni
- Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway.
- Norwegian Medical Cyclotron Centre Ltd., P.O. Box 4950 Nydalen, Oslo 0424, Norway.
| | - Gjermund Henriksen
- Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway.
- Norwegian Medical Cyclotron Centre Ltd., P.O. Box 4950 Nydalen, Oslo 0424, Norway.
- Institute of Physics, University of Oslo, Oslo 0317, Norway.
| |
Collapse
|
58
|
Sanna V, Singh CK, Jashari R, Adhami VM, Chamcheu JC, Rady I, Sechi M, Mukhtar H, Siddiqui IA. Targeted nanoparticles encapsulating (-)-epigallocatechin-3-gallate for prostate cancer prevention and therapy. Sci Rep 2017; 7:41573. [PMID: 28145499 PMCID: PMC5286400 DOI: 10.1038/srep41573] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/20/2016] [Indexed: 01/15/2023] Open
Abstract
Earlier we introduced the concept of ‘nanochemoprevention’ i.e. the use of nanotechnology to improve the outcome of cancer chemoprevention. Here, we extended our work and developed polymeric EGCG-encapsulated nanoparticles (NPs) targeted with small molecular entities, able to bind to prostate specific membrane antigen (PSMA), a transmembrane protein that is overexpressed in prostate cancer (PCa), and evaluated their efficacy in preclinical studies. First, we performed a molecular recognition of DCL- and AG-PEGylation on ligand binding on PSMA active site. Next, the biocompatible polymers PLGA-PEG-A were synthesized and used as base to conjugate DCL or AG to obtain the respective copolymers, needed for the preparation of targeted NPs. The resulting EGCG encapsulating NPs led to an enhanced anti-proliferative activity in PCa cell lines compared to the free EGCG. The behavior of EGCG encapsulated in NPs in modulating apoptosis and cell-cycle, was also determined. Then, in vivo experiments, in mouse xenograft model of prostatic tumor, using EGCG-loaded NPs, with a model of targeted nanosystems, were conducted. The obtained data supported our hypothesis of target-specific enhanced bioavailability and limited unwanted toxicity, thus leading to a significant potential for probable clinical outcome.
Collapse
Affiliation(s)
- Vanna Sanna
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, 07100 Sassari, Italy
| | - Chandra K Singh
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Rahime Jashari
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Vaqar M Adhami
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Jean Christopher Chamcheu
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Islam Rady
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, Madison WI 53706, USA.,Department of Zoology, University of AL-Azhar, Cairo, Egypt
| | - Mario Sechi
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, 07100 Sassari, Italy
| | - Hasan Mukhtar
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Imtiaz A Siddiqui
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, Madison WI 53706, USA
| |
Collapse
|
59
|
Chen Y, Chatterjee S, Lisok A, Minn I, Pullambhatla M, Wharram B, Wang Y, Jin J, Bhujwalla ZM, Nimmagadda S, Mease RC, Pomper MG. A PSMA-targeted theranostic agent for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 167:111-116. [PMID: 28063300 DOI: 10.1016/j.jphotobiol.2016.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 01/29/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is over-expressed in the epithelium of prostate cancer and in the neovasculature of many non-prostate solid tumors. PSMA has been increasingly used as a target for cancer imaging and therapy. Here we describe a low-molecular-weight theranostic photosensitizer, YC-9, for PSMA-targeted optical imaging and photodynamic therapy (PDT). YC-9 was synthesized by conjugating IRDye700DX N-hydroxysuccinimide (NHS) ester with a PSMA targeting Lys-Glu urea through a lysine-suberate linker in suitable yield. Optical imaging in vivo demonstrated PSMA-specific tumor uptake of YC-9 with rapid clearance from non-target tissues. PSMA-specific cell kill was demonstrated with YC-9in vitro through PDT in PSMA+ PC3-PIP and PSMA- PC3-flu cells. In vivo PDT in mice bearing PSMA+ PC3-PIP tumors at 4h post-injection of YC-9 (A total of four PDT sessions were performed, 48h apart) resulted in significant tumor growth delay, while tumors in control groups continued to grow. PDT with YC-9 significantly increased the median survival of the PSMA+ PC3-PIP tumor mice (56.5days) compared to control groups [23.5-30.0days, including untreated, light alone, YC-9 alone (without light) and non-targeted IRDye700DX PDT treatment groups], without noticeable toxicity at the doses used. This study proves in principle that YC-9 is a promising therapeutic agent for targeted PDT of PSMA-expressing tissues, such as prostate tumors, and may also be useful against non-prostate tumors by virtue of neovascular PSMA expression.
Collapse
Affiliation(s)
- Ying Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States.
| | - Samit Chatterjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States
| | - Ala Lisok
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States
| | - Mrudula Pullambhatla
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States
| | - Bryan Wharram
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States
| | - Yuchuan Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States
| | - Jiefu Jin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States
| | - Zaver M Bhujwalla
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States
| | - Ronnie C Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States.
| |
Collapse
|
60
|
Li X, Rowe SP, Leal JP, Gorin MA, Allaf ME, Ross AE, Pienta KJ, Lodge MA, Pomper MG. Semiquantitative Parameters in PSMA-Targeted PET Imaging with 18F-DCFPyL: Variability in Normal-Organ Uptake. J Nucl Med 2016; 58:942-946. [PMID: 27932557 DOI: 10.2967/jnumed.116.179739] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/17/2016] [Indexed: 01/06/2023] Open
Abstract
18F-DCFPyL is a small-molecule inhibitor of the prostate-specific membrane antigen that has shown promise for evaluation of primary and metastatic prostate cancer using PET. Measuring the variability in normal-organ uptake of 18F-DCFPyL is necessary to understand its biodistribution, aid image interpretation, judge the reliability of scan quantification, and provide a basis for therapeutic monitoring. Methods: Sixty-five consecutive 18F-DCFPyL PET/CT scans from 64 patients with a history of prostate cancer were analyzed. Volumes of interest were defined for the lacrimal glands, major salivary glands, liver, spleen, and both kidneys. The mean SUV normalized to body mass or to lean body mass (SUL) was calculated for each volume of interest. The average SUV across all scans, the SD, and the coefficient of variation (COV) for each organ were calculated. The same parameters were also derived for a 3-cm sphere drawn in the center of the right lobe of the liver. Results: The average SUVmean for all selected organs measured was 6.6 ± 1.8 for the right lacrimal gland, 6.4 ± 1.8 for the left lacrimal gland, 9.1 ± 2.0 for the right parotid gland, 9.0 ± 2.1 for the left parotid gland, 9.6 ± 2.3 for the right submandibular gland, 9.4 ± 2.2 for the left submandibular gland, 5.0 ± 0.7 for the whole liver, 5.1 ± 0.7 for a 3-cm sphere in the liver, 4.0 ± 1.5 for the spleen, 20.1 ± 4.6 for the right kidney, and 19.4 ± 4.5 for the left kidney. SULmean was lower overall, although demonstrating similar trends. The COV of SUVmean and SULmean was lower in the liver (13.8% and 14.5%, respectively) than in any other organ and was less than the comparable COV for 18F-FDG PET. The COV of SUVmean and SULmean in the 3-cm sphere in the liver was also low and similar to the variability in the whole liver (14.2% and 14.7%, respectively). Conclusion:18F-DCFPyL uptake in normal liver demonstrates less variability than in other 18F-DCFPyL-avid organs, and its variability is less than the reported variability of 18F-FDG in liver. Variability was slightly less for SUVmean than for SULmean, suggesting that SUVmean may be the preferable parameter for quantification of images obtained with 18F-DCFPyL.
Collapse
Affiliation(s)
- Xin Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan City, Shandong Province, China
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey P Leal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A Gorin
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Mohamad E Allaf
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Ashley E Ross
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Kenneth J Pienta
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and.,Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin A Lodge
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
61
|
Garland M, Yim JJ, Bogyo M. A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application. Cell Chem Biol 2016; 23:122-136. [PMID: 26933740 DOI: 10.1016/j.chembiol.2015.12.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 01/02/2023]
Abstract
The Precision Medicine Initiative aims to use advances in basic and clinical research to develop therapeutics that selectively target and kill cancer cells. Under the same doctrine of precision medicine, there is an equally important need to visualize these diseased cells to enable diagnosis, facilitate surgical resection, and monitor therapeutic response. Therefore, there is a great opportunity for chemists to develop chemically tractable probes that can image cancer in vivo. This review focuses on recent advances in the development of optical probes, as well as their current and future applications in the clinical management of cancer. The progress in probe development described here suggests that optical imaging is an important and rapidly developing field of study that encourages continued collaboration among chemists, biologists, and clinicians to further refine these tools for interventional surgical imaging, as well as for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Megan Garland
- Cancer Biology Program, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Cancer Biology Program, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
62
|
Penet MF, Jin J, Chen Z, Bhujwalla ZM. Magnetic Resonance Imaging and Spectroscopy in Cancer Theranostic Imaging. Top Magn Reson Imaging 2016; 25:215-221. [PMID: 27748706 PMCID: PMC5893223 DOI: 10.1097/rmr.0000000000000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With its exquisite anatomical resolution and wide-ranging functional imaging capabilities, magnetic resonance imaging (MRI) has found multiple applications in detection, staging, and monitoring treatment response in cancer. The metabolic information provided by magnetic resonance spectroscopy (MRS) is being actively investigated to complement MRI parameters, as well as existing biomarkers, in cancer detection and in monitoring response to treatment. Located at the interface of detection and therapy, theranostic imaging is a rapidly expanding new field that is showing significant promise for precision medicine of cancer. Innovations in the development of novel nanoparticles decorated with imaging reporters that can be used to deliver therapeutic cargo to specific cells and environments have provided new roles for MRI and MRS in theranostic imaging.
Collapse
Affiliation(s)
- Marie-France Penet
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jiefu Jin
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zhihang Chen
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zaver M. Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
63
|
Mohan K, Weiss GA. Engineering chemically modified viruses for prostate cancer cell recognition. MOLECULAR BIOSYSTEMS 2016; 11:3264-72. [PMID: 26463253 DOI: 10.1039/c5mb00511f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease.
Collapse
Affiliation(s)
- K Mohan
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA
| | - G A Weiss
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA and Department of Molecular Biology and Biochemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA.
| |
Collapse
|
64
|
|
65
|
Chen Y, Lisok A, Chatterjee S, Wharram B, Pullambhatla M, Wang Y, Sgouros G, Mease RC, Pomper MG. [(18)F]Fluoroethyl Triazole Substituted PSMA Inhibitor Exhibiting Rapid Normal Organ Clearance. Bioconjug Chem 2016; 27:1655-62. [PMID: 27270097 DOI: 10.1021/acs.bioconjchem.6b00195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostate-specific membrane antigen (PSMA) is overexpressed in the epithelium of prostate cancer and nonprostate solid tumor neovasculature. PSMA is increasingly utilized as a target for cancer imaging and therapy. Here, we report the synthesis and in vivo biodistribution of a low-molecular-weight PSMA-based imaging agent, 2-[3-(1-carboxy-5-{3-[1-(2-[(18)F]fluoroethyl)-1H-1,2,3-triazol-yl]propanamido}pentyl)ureido]pentanedioic acid ([(18)F]YC-88), containing an [(18)F]fluoroethyl triazole moiety. [(18)F]YC-88 was synthesized from 2-[(18)F]fluoroethyl azide and the corresponding alkyne precursor in two steps using either a one- or two-pot procedure. Biodistribution and positron emission tomography (PET) imaging were performed in immunocompromised mice using isogenic PSMA(+) PC3 PIP and PSMA(-) PC3 flu xenografts. YC-88 exhibited high affinity for PSMA as evidenced by a Ki value of 12.9 nM. The non-decay corrected radiochemical yields of [(18)F]YC-88 averaged 14 ± 1% (n = 5). Specific radioactivities ranged from 320 to 2,460 Ci/mmol (12-91 GBq/μmol) with an average of 940 Ci/mmol (35 GBq/μmol, n = 5). In an immunocompromised mouse model, [(18)F]YC-88 clearly delineated PSMA(+) PC3 PIP prostate tumor xenografts on imaging with PET. At 1 h postinjection, 47.58 ± 5.19% injected dose per gram of tissue (% ID/g) was evident within the PSMA(+) PC3 PIP tumor, with a ratio of 170:1 of uptake within PSMA(+) PC3 PIP to PSMA(-) PC3 flu tumor placed in the opposite flank. The tumor-to-kidney ratio at 2 h postinjection was 4:1. At or after 30 min postinjection, minimal nontarget tissue uptake of [(18)F]YC-88 was observed. Compared to [(18)F]DCFPyL, which is currently in clinical trials, the uptake of [(18)F]YC-88 within the kidney, liver, and spleen was significantly lower at all time-points studied. At 30 min and 1 h postinjection, salivary gland uptake of [(18)F]YC-88 was significantly less than that of [(18)F]DCFPyL. [(18)F]YC-88 is a new PSMA-targeted PET agent synthesized utilizing click chemistry that demonstrates high PSMA(+) tumor uptake in a xenograft model. Because of its low uptake in the kidney, rapid clearance from nontarget organs, and relatively simple one-pot, two-step radiosynthesis, [(18)F]YC-88 is a viable new PET radiotracer for imaging PSMA-expressing lesions.
Collapse
Affiliation(s)
- Ying Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Ala Lisok
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Samit Chatterjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Bryan Wharram
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Mrudula Pullambhatla
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Yuchuan Wang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - George Sgouros
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| |
Collapse
|
66
|
Unusual Uptake of Prostate Specific Tracer 68Ga-PSMA-HBED-CC in a Benign Thyroid Nodule. Nucl Med Mol Imaging 2016; 50:344-347. [PMID: 27994690 DOI: 10.1007/s13139-016-0408-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022] Open
Abstract
68Ga-Prostate specific membrane antigen- N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid- positron emission tomography/computed tomography or 68 Ga- HBED-CC-PSMA PET/CT, popularly known as PSMA PET/CT, is able to detect a small volume of recurrent prostate carcinoma (PC) when there is a prostate specific antigen (PSA) rise on follow-up after prostatectomy or other definitive treatment for PC. The use of PSMA PET/CT in the initial staging in PC is uncertain at this time. Clinical studies are underway to define its exact role in the management of the disease. At the same time it is important to be aware of unexpected sites of uptake of this ligand. We present here the case of a 62-year-old male patient who underwent prostatectomy for adenocarcinoma prostate. He also had a long-standing left solitary thyroid nodule (STN). Four months after surgery, he had a rising trend in serum PSA levels on three occasions, but the absolute value was less than 4 at all times. He underwent a 68Ga-PSMA-HBED-CC PET/CT, but it did not reveal any recurrent/metastatic site of disease. However, there was increased tracer uptake in the left STN. Fine needle aspiration cytology revealed features of atypia of undetermined significance, Bethesda category III. The patient underwent a left hemithyroidectomy and the histopathology showed features of a follicular adenoma.
Collapse
|
67
|
Abstract
Currently, the findings of imaging procedures used for detection or staging of prostate cancer depend on morphology of lymph nodes or bone metabolism and do not always meet diagnostic needs. Prostate-specific membrane antigen (PSMA), a transmembrane protein that has considerable overexpression on most prostate cancer cells, has gained increasing interest as a target molecule for imaging. To date, several small compounds for labelling PSMA have been developed and are currently being investigated as imaging probes for PET with the (68)Ga-labelled PSMA inhibitor Glu-NH-CO-NH-Lys(Ahx)-HBED-CC being the most widely studied agent. (68)Ga-PSMA-PET imaging in combination with multiparametric MRI (mpMRI) might provide additional molecular information on cancer localization within the prostate. In patients with primary prostate cancer of intermediate-risk to high-risk, PSMA-based imaging has been reported to improve detection of metastatic disease compared with CT or mpMRI, rendering additional cross-sectional imaging or bone scintigraphy unnecessary. Furthermore, in patients with biochemically recurrent prostate cancer, use of (68)Ga-PSMA-PET imaging has been shown to increase detection of metastatic sites, even at low serum PSA values, compared with conventional imaging or PET examination with different tracers. Thus, although current knowledge is still limited and derived mostly from retrospective series, PSMA-based imaging holds great promise to improve prostate cancer management.
Collapse
|
68
|
Fung EK, Cheal SM, Fareedy SB, Punzalan B, Beylergil V, Amir J, Chalasani S, Weber WA, Spratt DE, Veach DR, Bander NH, Larson SM, Zanzonico PB, Osborne JR. Targeting of radiolabeled J591 antibody to PSMA-expressing tumors: optimization of imaging and therapy based on non-linear compartmental modeling. EJNMMI Res 2016; 6:7. [PMID: 26801327 PMCID: PMC4723373 DOI: 10.1186/s13550-016-0164-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/12/2016] [Indexed: 11/17/2022] Open
Abstract
Background We applied a non-linear immunokinetic model to quantitatively compare absolute antibody uptake and turnover in subcutaneous LNCaP human prostate cancer (PCa) xenografts of two radiolabeled forms of the humanized anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 (124I-J591 and 89Zr-J591). Using the model, we examined the impact of dose on the tumor and plasma positron emission tomography (PET)-derived time-activity curves. We also sought to predict the optimal targeting index (ratio of integrated-tumor-to-integrated-plasma activity concentrations) for radioimmunotherapy. Methods The equilibrium rates of antibody internalization and turnover in the tumors were derived from PET images up to 96 h post-injection using compartmental modeling with a non-linear transfer rate. In addition, we serially imaged groups of LNCaP tumor-bearing mice injected with 89Zr-J591 antibody doses ranging from antigen subsaturating to saturating to examine the suitability of using a non-linear approach and derived the time-integrated concentration (in μM∙hours) of administered tracer in tumor as a function of the administered dose of antibody. Results The comparison of 124I-J591 and 89Zr-J591 yielded similar model-derived values of the total antigen concentration and internalization rate. The association equilibrium constant (ka) was twofold higher for 124I, but there was a ~tenfold greater tumoral efflux rate of 124I from tumor compared to that of 89Zr. Plots of surface-bound and internalized radiotracers indicate similar behavior up to 24 h p.i. for both 124I-J591 and 89Zr-J591, with the effect of differential clearance rates becoming apparent after about 35 h p.i. Estimates of J591/PSMA complex turnover were 3.9–90.5 × 1012 (for doses from 60 to 240 μg) molecules per hour per gram of tumor (20 % of receptors internalized per hour). Conclusions Using quantitative compartmental model methods, surface binding and internalization rates were shown to be similar for both 124I-J591 and 89Zr-J591 forms, as expected. The large difference in clearance rates of the radioactivity from the tumor is likely due to differential trapping of residualizing zirconium versus non-residualizing iodine. Our non-linear model was found to be superior to a conventional linear model. This finding and the calculated activity persistence time in tumor have important implications for radioimmunotherapy and other antibody-based therapies in patients.
Collapse
Affiliation(s)
- Edward K Fung
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Sarah M Cheal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Shoaib B Fareedy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Blesida Punzalan
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Volkan Beylergil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Jawaria Amir
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Sandhya Chalasani
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Wolfgang A Weber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Daniel E Spratt
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Neil H Bander
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Joseph R Osborne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
69
|
Chevalier S, Moffett S, Turcotte E, Luz M, Chauvette L, Derbekyan V, Scarlata E, Zouanat F, Aprikian AG, Anidjar M. The dog prostate cancer (DPC-1) model: a reliable tool for molecular imaging of prostate tumors and metastases. EJNMMI Res 2015; 5:77. [PMID: 26714499 PMCID: PMC4695479 DOI: 10.1186/s13550-015-0155-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background Clinical applicability of newly discovered reagents for molecular imaging is hampered by the lack of translational models. As the dog prostate cancer (DPC-1) model recapitulates in dogs the natural history of prostate cancer in man, we tested the feasibility of single-photon emission computed tomography (SPECT)/CT imaging in this model using an anti-prostate-specific membrane antigen (PSMA)/17G1 antibody as the radiotracer. Methods Immunoblots and immunohistochemistry (IHC) with 17G1 were performed on canine and human prostate cancer cell lines and tissues. Five dogs with DPC-1 tumors were enrolled for pelvic and, in some instances, thoracic SPECT/CT procedures, also repeated over time. Controls included 111indium (In)-17G1 prior to DPC-1 implantation and 111In-immunoglobulins (IgGs) prior to imaging with 111In-17G1 in dogs bearing prostatic DPC-1 tumors. Results 17G1 cross-reactivity with canine PSMA (and J591) was confirmed by protein analyses on DPC-1, LNCaP, and PC-3 cell lines and IHC of dog vs. human prostate tissue sections. 17G1 stained luminal cells and DPC-1 cancer cells in dog prostates similarly to human luminal and cancer cells of patients and LNCaP xenografts. SPECT/CT imaging revealed low uptake (≤2.1) of both 111In-17G1 in normal dog prostates and 111In-IgGs in growing DPC-1 prostate tumors comparatively to 111In-17G1 uptake of 3.6 increasing up to 6.5 values in prostate with DPC-1 lesions. Images showed a diffused pattern and, occasionally, a peripheral doughnut-shape-like pattern. Numerous sacro-iliac lymph nodes and lung lesions were detected with contrast ratios of 5.2 and 3.0, respectively. The highest values were observed in pelvic bones (11 and 19) of two dogs, next confirmed as PSMA-positive metastases. Conclusions This proof-of-concept PSMA-based SPECT/CT molecular imaging detecting primary prostate tumors and metastases in canines with high cancer burden speaks in favor of this large model’s utility to facilitate technology transfer to the clinic and accelerate applications of new tools and modalities for tumor staging in patients. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0155-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Chevalier
- Urologic Oncology Research Group, Division of Urology, Department of Surgery, McGill University, and Research Institute (RI) of McGill University Health Centre (MUHC), 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.
| | - Serge Moffett
- ProScan, Rx Pharma Inc., 5800 Royalmount Avenue, Montréal, QC, H4P 1K5, Canada
| | - Eric Turcotte
- Department of Nuclear Medicine, Centre Hospitalier Universitaire de Sherbrooke, 580, rue Bowen Sud, Sherbrooke, QC, J1G 2E8, Canada
| | - Murillo Luz
- Urologic Oncology Research Group, Division of Urology, Department of Surgery, McGill University, and Research Institute (RI) of McGill University Health Centre (MUHC), 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - Lyne Chauvette
- Department of Nuclear Medicine, McGill University and MUHC, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - Vilma Derbekyan
- Department of Nuclear Medicine, McGill University and MUHC, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - Eleonora Scarlata
- Urologic Oncology Research Group, Division of Urology, Department of Surgery, McGill University, and Research Institute (RI) of McGill University Health Centre (MUHC), 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - Fatima Zouanat
- Urologic Oncology Research Group, Division of Urology, Department of Surgery, McGill University, and Research Institute (RI) of McGill University Health Centre (MUHC), 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - Armen G Aprikian
- Urologic Oncology Research Group, Division of Urology, Department of Surgery, McGill University, and Research Institute (RI) of McGill University Health Centre (MUHC), 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - Maurice Anidjar
- Urologic Oncology Research Group, Division of Urology, Department of Surgery, McGill University, and Research Institute (RI) of McGill University Health Centre (MUHC), 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.,Department of Urology, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| |
Collapse
|
70
|
Zhu H, Xie Q, Li N, Tian H, Liu F, Yang Z. Radio-synthesis and mass spectrometry analysis of 68Ga-DKFZ-PSMA-617 for non-invasive prostate cancer PET imaging. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4623-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
71
|
Zhu C, Bandekar A, Sempkowski M, Banerjee SR, Pomper MG, Bruchertseifer F, Morgenstern A, Sofou S. Nanoconjugation of PSMA-Targeting Ligands Enhances Perinuclear Localization and Improves Efficacy of Delivered Alpha-Particle Emitters against Tumor Endothelial Analogues. Mol Cancer Ther 2015; 15:106-113. [PMID: 26586724 DOI: 10.1158/1535-7163.mct-15-0207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022]
Abstract
This study aims to evaluate the effect on killing efficacy of the intracellular trafficking patterns of α-particle emitters by using different radionuclide carriers in the setting of targeted antivascular α-radiotherapy. Nanocarriers (lipid vesicles) targeted to the prostate-specific membrane antigen (PSMA), which is unique to human neovasculature for a variety of solid tumors, were loaded with the α-particle generator actinium-225 and were compared with a PSMA-targeted radiolabeled antibody. Actinium-225 emits a total of four α-particles per decay, providing highly lethal and localized irradiation of targeted cells with minimal exposure to surrounding healthy tissues. Lipid vesicles were derivatized with two types of PSMA-targeting ligands: a fully human PSMA antibody (mAb) and a urea-based, low-molecular-weight agent. Target selectivity and extent of internalization were evaluated on monolayers of human endothelial cells (HUVEC) induced to express PSMA in static incubation conditions and in a flow field. Both types of radiolabeled PSMA-targeted vesicles exhibit similar killing efficacy, which is greater than the efficacy of the radiolabeled control mAb when compared on the basis of delivered radioactivity per cell. Fluorescence confocal microscopy demonstrates that targeted vesicles localize closer to the nucleus, unlike antibodies which localize near the plasma membrane. In addition, targeted vesicles cause larger numbers of dsDNAs per nucleus of treated cells compared with the radiolabeled mAb. These findings demonstrate that radionuclide carriers, such as PSMA-targeted lipid-nanocarriers, which localize close to the nucleus, increase the probability of α-particle trajectories crossing the nuclei, and, therefore, enhance the killing efficacy of α-particle emitters.
Collapse
Affiliation(s)
- Charles Zhu
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Amey Bandekar
- Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Michelle Sempkowski
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Stavroula Sofou
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
- Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| |
Collapse
|
72
|
Kiess AP, Banerjee SR, Mease RC, Rowe SP, Rao A, Foss CA, Chen Y, Yang X, Cho SY, Nimmagadda S, Pomper MG. Prostate-specific membrane antigen as a target for cancer imaging and therapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2015; 59:241-68. [PMID: 26213140 PMCID: PMC4859214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The prostate-specific membrane antigen (PSMA) is a molecular target whose use has resulted in some of the most productive work toward imaging and treating prostate cancer over the past two decades. A wide variety of imaging agents extending from intact antibodies to low-molecular-weight compounds permeate the literature. In parallel there is a rapidly expanding pool of antibody-drug conjugates, radiopharmaceutical therapeutics, small-molecule drug conjugates, theranostics and nanomedicines targeting PSMA. Such productivity is motivated by the abundant expression of PSMA on the surface of prostate cancer cells and within the neovasculature of other solid tumors, with limited expression in most normal tissues. Animating the field is a variety of small-molecule scaffolds upon which the radionuclides, drugs, MR-detectable species and nanoparticles can be placed with relative ease. Among those, the urea-based agents have been most extensively leveraged, with expanding clinical use for detection and more recently for radiopharmaceutical therapy of prostate cancer, with surprisingly little toxicity. PSMA imaging of other cancers is also appearing in the clinical literature, and may overtake FDG for certain indications. Targeting PSMA may provide a viable alternative or first-line approach to managing prostate and other cancers.
Collapse
Affiliation(s)
- A P Kiess
- Department of Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA -
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Virus electrodes address two major challenges associated with biosensing. First, the surface of the viruses can be readily tailored for specific, high affinity binding to targeted biomarkers. Second, the viruses are entrapped in a conducting polymer for electrical resistance-based, quantitative measurement of biomarker concentration. To further enhance device sensitivity, two different ligands can be attached to the virus surface, and increase the apparent affinity for the biomarker. In the example presented here, the two ligands bind to the analyte in a bidentate binding mode with a chelate-based avidity effect, and result in a 100 pM experimentally observed limit of detection for the cancer biomarker prostate-specific membrane antigen. The approach does not require enzymatic amplification, and allows reagent-free, real-time measurements. This article presents general protocols for the development of such biosensors with modified viruses for the enhanced detection of arbitrary target proteins.
Collapse
Affiliation(s)
- Kritika Mohan
- Department of Chemistry, University of California, Irvine, California
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, California.,Department of Chemical Engineering and Materials Science, University of California, Irvine, California
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, California.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| |
Collapse
|
74
|
Felber M, Bauwens M, Mateos JM, Imstepf S, Mottaghy FM, Alberto R. 99mTc Radiolabeling and Biological Evaluation of Nanoparticles Functionalized with a Versatile Coating Ligand. Chemistry 2015; 21:6090-9. [DOI: 10.1002/chem.201405704] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/12/2015] [Indexed: 12/25/2022]
|
75
|
Banerjee SR, Foss CA, Pullambhatla M, Wang Y, Srinivasan S, Hobbs RF, Baidoo KE, Brechbiel MW, Nimmagadda S, Mease RC, Sgouros G, Pomper MG. Preclinical evaluation of 86Y-labeled inhibitors of prostate-specific membrane antigen for dosimetry estimates. J Nucl Med 2015; 56:628-34. [PMID: 25722448 DOI: 10.2967/jnumed.114.149062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED (86)Y (half-life = 14.74 h, 33% β(+)) is within an emerging class of positron-emitting isotopes with relatively long physical half-lives that enables extended imaging of biologic processes. We report the synthesis and evaluation of 3 low-molecular-weight compounds labeled with (86)Y for imaging the prostate-specific membrane antigen (PSMA) using PET. Impetus for the study derives from the need to perform dosimetry estimates for the corresponding (90)Y-labeled radiotherapeutics. METHODS Multistep syntheses were used in preparing (86)Y- 4: - 6: PSMA inhibition constants were evaluated by competitive binding assay. In vivo characterization using tumor-bearing male mice was performed by PET/CT for (86)Y- 4: - 6: and by biodistribution studies of (86)Y- 4: and (86)Y- 6: out to 24 h after injection. Quantitative whole-body PET scans were recorded to measure the kinetics for 14 organs in a male baboon using (86)Y- 6 RESULTS: Compounds (86)Y- 4: - 6: were obtained in high radiochemical yield and purity, with specific radioactivities of more than 83.92 GBq/μmol. PET imaging and biodistribution studies using PSMA-positive PC-3 PIP and PSMA-negative PC-3 flu tumor-bearing mice revealed that (86)Y- 4-6: had high site-specific uptake in PSMA-positive PC-3 PIP tumor starting at 20 min after injection and remained high at 24 h. Compound (86)Y- 6: demonstrated the highest tumor uptake and retention, with 32.17 ± 7.99 and 15.79 ± 6.44 percentage injected dose per gram (%ID/g) at 5 and 24 h, respectively. Low activity concentrations were associated with blood and normal organs, except for the kidneys, a PSMA-expressing tissue. PET imaging in baboons reveals that all organs have a 2-phase (rapid and slow) clearance, with the highest uptake (8 %ID/g) in the kidneys at 25 min. The individual absolute uptake kinetics were used to calculate radiation doses using the OLINDA/EXM software. The highest mean absorbed dose was received by the renal cortex, with 1.9 mGy per MBq of (86)Y- 6: CONCLUSION Compound (86)Y- 6: is a promising candidate for quantitative PET imaging of PSMA-expressing tumors. Dosimetry calculations indicate promise for future (90)Y or other radiometals that could use a similar chelator/scaffold combination for radiopharmaceutical therapy based on the structure of 6.
Collapse
Affiliation(s)
- Sangeeta Ray Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Catherine A Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Mrudula Pullambhatla
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Yuchuan Wang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Senthamizhchelvan Srinivasan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Robert F Hobbs
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | | | | | - Sridhar Nimmagadda
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - George Sgouros
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| |
Collapse
|
76
|
Grillaud M, Bianco A. Multifunctional adamantane derivatives as new scaffolds for the multipresentation of bioactive peptides. J Pept Sci 2014; 21:330-45. [DOI: 10.1002/psc.2719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Maxime Grillaud
- CNRS, Institut de Biologie Moléculaire et; Cellulaire, Immunopathologie et Chimie Thérapeutique; Strasbourg France
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et; Cellulaire, Immunopathologie et Chimie Thérapeutique; Strasbourg France
| |
Collapse
|
77
|
Tykvart J, Navrátil V, Sedlák F, Corey E, Colombatti M, Fracasso G, Koukolík F, Bařinka C, Sácha P, Konvalinka J. Comparative analysis of monoclonal antibodies against prostate-specific membrane antigen (PSMA). Prostate 2014; 74:1674-90. [PMID: 25262926 DOI: 10.1002/pros.22887] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/05/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is generally recognized as a diagnostic and therapeutic cancer antigen and a molecular address for targeted imaging and drug delivery studies. Due to its significance in cancer research, numerous monoclonal antibodies (mAbs) against GCPII have been described and marketed in the past decades. Unfortunately, some of these mAbs are poorly characterized, which might lead to their inappropriate use and misinterpretation of the acquired results. METHODS We collected the 13 most frequently used mAbs against GCPII and quantitatively characterized their binding to GCPII by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR). Using a peptide library, we mapped epitopes recognized by a given mAb. Finally, we assessed the applicability of these mAbs to routine experimental setups, including Western blotting, immunohistochemistry, and flow cytometry. RESULTS ELISA and SPR analyses revealed that mAbs J591, J415, D2B, 107-1A4, GCP-05, and 2G7 bind preferentially to GCPII in native form, while mAbs YPSMA-1, YPSMA-2, GCP-02, GCP-04, and 3E6 bind solely to denatured GCPII. mAbs 24.4E6 and 7E11-C5.3 recognize both forms of GCPII. Additionally, we determined that GCP-02 and 3E6 cross-react with mouse GCPII, while GCP-04 recognizes GCPII and GCPIII proteins from both human and mouse. CONCLUSION This comparative analysis provides the first detailed quantitative characterization of the most commonly used mAbs against GCPII and can serve as a guideline for the scientific community to use them in a proper and efficient way.
Collapse
Affiliation(s)
- J Tykvart
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. EJNMMI Res 2014; 4:63. [PMID: 26116124 PMCID: PMC4452638 DOI: 10.1186/s13550-014-0063-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/06/2014] [Indexed: 01/12/2023] Open
Abstract
Background Due to its high expression in prostate cancer, PSMA (prostate-specific membrane antigen) represents an ideal target for both diagnostic imaging and endoradiotherapeutic approaches. Based on a previously published highly specific PSMA ligand ([68Ga]DOTA-FFK(Sub-KuE)), we developed a corresponding metabolically stable 1,4,7,10-tetraazacyclododececane,1-(glutaric acid)-4,7,10-triacetic acid (DOTAGA) construct for theranostic treatment of prostate cancer. Methods All ligands were synthesized by a combined solid phase and solution phase synthesis strategy. The affinity of the natgallium and lutetium complexes to PSMA and the internalization efficiency of the radiotracers were determined on PSMA-expressing LNCaP cells. The 68Ga- and 177Lu-labelled ligands were further investigated for lipophilicity, binding specificity, metabolic stability, as well as biodistribution and μPET in LNCaP-tumour-bearing mice. Results Radiochemical yields for 68Ga (3 nmol, 5.0 M NaCl/2.7 M HEPES (approximately 5/1), pH 3.5 to 4.5, 5 min, 95°C) and 177Lu labelling (0.7 nmol, 0.1 M NH4OAc, pH 5.5, 30 min, 95°C) were almost quantitative, resulting in specific activities of 250 to 300 GBq/μmol for the 68Ga analogues and 38 GBq/μmol for 177Lu complexes. Due to metabolic instability of l-amino acid spacers, d-amino acids were implemented resulting in a metabolically stable DOTAGA ligand. Compared to the DOTA ligand, the DOTAGA derivatives showed higher hydrophilicity (logP = −3.6 ± 0.1 and −3.9 ± 0.1 for 68Ga and 177Lu, respectively) and improved affinity to PSMA resulting in an about twofold increased specific internalization of the 68Ga- and 177Lu-labelled DOTAGA analogue. Especially, [68Ga]DOTAGA-ffk(Sub-KuE) exhibits favourable pharmacokinetics, low unspecific uptake and high tumour accumulation in LNCaP-tumour-bearing mice. Conclusions The pair of diagnostic/therapeutic PSMA-ligands [68Ga/177Lu]DOTAGA-ffk(Sub-KuE) possess remarkable potential for the management of prostate cancer.
Collapse
|
79
|
Wang Z, Zong S, Chen H, Wang C, Xu S, Cui Y. SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation. Adv Healthc Mater 2014; 3:1889-97. [PMID: 24862088 DOI: 10.1002/adhm.201400092] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/21/2014] [Indexed: 01/02/2023]
Abstract
A new kind of cancer cell separation method is demonstrated, using surface-enhanced Raman scattering (SERS) and fluorescence dual-encoded magnetic nanoprobes. The designed nanoprobes can realize SERS-fluorescence joint spectral encoding (SFJSE) and greatly improve the multiplexing ability. The nanoprobes have four main components, that is, the magnetic core, SERS generator, fluorescent agent, and targeting antibody. These components are assembled with a multi-layered structure to form the nanoprobes. Specifically, silica-coated magnetic nanobeads (MBs) are used as the inner core. Au core-Ag shell nanorods (Au@Ag NRs) are employed as the SERS generators and attached on the silica-coated MBs. After burying these Au@Ag NRs with another silica layer, CdTe quantum dots (QDs), that is, the fluorescent agent, are anchored onto the silica layer. Finally, antibodies are covalently linked to CdTe QDs. SFJSE is fulfilled by using different Raman molecules and QDs with different emission wavelengths. By utilizing four human cancer cell lines and one normal cell line as the model cells, the nanoprobes can specifically and simultaneously separate target cancer cells from the normal ones. This SFJSE-based method greatly facilitates the multiplex, rapid, and accurate cancer cell separation, and has a prosperous potential in high-throughput analysis and cancer diagnosis.
Collapse
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University; Nanjing 210096 China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University; Nanjing 210096 China
| | - Hui Chen
- Advanced Photonics Center, Southeast University; Nanjing 210096 China
| | - Chunlei Wang
- Advanced Photonics Center, Southeast University; Nanjing 210096 China
| | - Shuhong Xu
- Advanced Photonics Center, Southeast University; Nanjing 210096 China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University; Nanjing 210096 China
| |
Collapse
|
80
|
Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014; 190:485-99. [PMID: 24984011 PMCID: PMC4153400 DOI: 10.1016/j.jconrel.2014.06.038] [Citation(s) in RCA: 541] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 12/27/2022]
Abstract
Collaborative efforts from the fields of biology, materials science, and engineering are leading to exciting progress in the development of nanomedicines. Since the targets of many therapeutic agents are localized in subcellular compartments, modulation of nanoparticle-cell interactions for efficient cellular uptake through the plasma membrane and the development of nanomedicines for precise delivery to subcellular compartments remain formidable challenges. Cellular internalization routes determine the post-internalization fate and intracellular localization of nanoparticles. This review highlights the cellular uptake routes most relevant to the field of non-targeted nanomedicine and presents an account of ligand-targeted nanoparticles for receptor-mediated cellular internalization as a strategy for modulating the cellular uptake of nanoparticles. Ligand-targeted nanoparticles have been the main impetus behind the progress of nanomedicines towards the clinic. This strategy has already resulted in remarkable progress towards effective oral delivery of nanomedicines that can overcome the intestinal epithelial barrier. A detailed overview of the recent developments in subcellular targeting as a novel platform for next-generation organelle-specific nanomedicines is also provided. Each section of the review includes prospects, potential, and concrete expectations from the field of targeted nanomedicines and strategies to meet those expectations.
Collapse
Affiliation(s)
- Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Won Il Choi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Cristian Vilos
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA; Universidad Andres Bello, Facultad de Medicina, Center for Integrative Medicine and Innovative Science (CIMIS), Echaurren 183, Santiago, Chile
| | - Archana Swami
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Jinjun Shi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA; King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
81
|
|
82
|
Slovin SF. Targeting castration-resistant prostate cancer with monoclonal antibodies and constructs. Immunotherapy 2014; 5:1347-55. [PMID: 24283845 DOI: 10.2217/imt.13.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antibodies administered either alone or in a unique construct that can enhance targeting, immunologic recognition and cell killing, remain an area of active interest for a variety of solid tumors. Prostate cancer has unique characteristics as a target for immune-mediated therapies, particularly since it has not only a wide array of antigens expressed on its cell surface, but also has an associated biomarker, which not only can monitor the disease status but also its response to therapy. A number of unique cell surface antigens, as well as internally mediated cell molecules, have shown their clinical activity and efficacy as prostate cancer treatments. The continued evolution of novel antibody-drug and antibody-imaging constructs will probably offer more efficient ways to deliver a therapeutic to the tumor and enhance imaging of active or treated sites of disease.
Collapse
Affiliation(s)
- Susan F Slovin
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate & Urologic Cancers, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
83
|
Eder M, Neels O, Müller M, Bauder-Wüst U, Remde Y, Schäfer M, Hennrich U, Eisenhut M, Afshar-Oromieh A, Haberkorn U, Kopka K. Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. Pharmaceuticals (Basel) 2014; 7:779-96. [PMID: 24983957 PMCID: PMC4113732 DOI: 10.3390/ph7070779] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
The detection of prostate cancer lesions by PET imaging of the prostate-specific membrane antigen (PSMA) has gained highest clinical impact during the last years. 68Ga-labelled Glu-urea-Lys(Ahx)-HBED-CC ([68Ga]Ga-PSMA-HBED-CC) represents a successful novel PSMA inhibitor radiotracer which has recently demonstrated its suitability in individual first-in-man studies. The radiometal chelator HBED-CC used in this molecule represents a rather rarely used acyclic complexing agent with chemical characteristics favourably influencing the biological functionality of the PSMA inhibitor. The simple replacement of HBED-CC by the prominent radiometal chelator DOTA was shown to dramatically reduce the in vivo imaging quality of the respective 68Ga-labelled PSMA-targeted tracer proving that HBED-CC contributes intrinsically to the PSMA binding of the Glu-urea-Lys(Ahx) pharmacophore. Owing to the obvious growing clinical impact, this work aims to reflect the properties of HBED-CC as acyclic radiometal chelator and presents novel preclinical data and relevant aspects of the radiopharmaceutical production process of [68Ga]Ga-PSMA-HBED-CC.
Collapse
Affiliation(s)
- Matthias Eder
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Oliver Neels
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Miriam Müller
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Ulrike Bauder-Wüst
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Yvonne Remde
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Martin Schäfer
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Ute Hennrich
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Michael Eisenhut
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, University of Heidelberg, Im Neuenheimer Feld 400, Heidelberg 69120, Germany.
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University of Heidelberg, Im Neuenheimer Feld 400, Heidelberg 69120, Germany.
| | - Klaus Kopka
- German Cancer Research Center (dkfz), Division of Radiopharmaceutical Chemistry, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
84
|
Zare H, Rajabibazl M, Rasooli I, Ebrahimizadeh W, Bakherad H, Ardakani LS, Gargari SLM. Production of nanobodies against prostate-specific membrane antigen (PSMA) recognizing LnCaP cells. Int J Biol Markers 2014; 29:e169-e179. [PMID: 24425321 DOI: 10.5301/jbm.5000063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
Prostate cancer is the most common type of cancer in men. The antibody-mediated therapy for cancer treatment depends on the identification of selected molecular targets. The prostate-specific membrane antigen (PSMA) is a potential molecular target in prostate cancer and is abundantly expressed in this type of cancer. This study is aimed at designing and producing a recombinant PSMA epitope and a monoclonal nanobody with a high affinity toward the PSMA protein. A DNA fragment encoding the dominant epitopes of PSMA was designed, synthesized, and expressed in E. coli BL21 (DE3). A camel was immunized with the purified recombinant PSMA (rPSMA). Following mRNA isolation and cDNA synthesis, the variable fragment of heavy-chain antibodies (VHH) fragments were cloned and displayed on the surface of an M13 phage and used in sequential panning rounds. After phage ELISA and selection of colonies with the highest affinity, soluble nanobodies were produced and evaluated. Affinity of the nanobodies to rPSMA was estimated to be 3.5 × 10-7. Adherence of the purified anti-PSMA VHH was tested in cell-ELISA in the LnCaP and PC3 cell lines. VHH efficiently bound to LnCaP cells. The high specificity and affinity of this nanobody suggests its possible application as an effective tool in the diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Hamed Zare
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran - Iran
| | | | | | | | | | | | | |
Collapse
|
85
|
Peng ZH, Sima M, Salama ME, Kopečková P, Kopeček J. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer. J Drug Target 2014; 21:968-80. [PMID: 24160903 DOI: 10.3109/1061186x.2013.833207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (-GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer--DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates' in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice.
Collapse
Affiliation(s)
- Zheng-Hong Peng
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD
| | | | | | | | | |
Collapse
|
86
|
Lütje S, Rijpkema M, Helfrich W, Oyen WJG, Boerman OC. Targeted Radionuclide and Fluorescence Dual-modality Imaging of Cancer: Preclinical Advances and Clinical Translation. Mol Imaging Biol 2014; 16:747-55. [DOI: 10.1007/s11307-014-0747-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
87
|
Abstract
Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has been developed, with the potential to revolutionize the diagnosis and treatment of several diseases, in particular by improving the sensitivity and recognition ability of imaging contrast agents and by selectively directing bioactive agents to biological targets. Focusing on cancer, promising nanoprototypes have been designed to overcome the lack of specificity of conventional chemotherapeutic agents, as well as for early detection of precancerous and malignant lesions. However, several obstacles, including difficulty in achieving the optimal combination of physicochemical parameters for tumor targeting, evading particle clearance mechanisms, and controlling drug release, prevent the translation of nanomedicines into therapy. In spite of this, recent efforts have been focused on developing functionalized nanoparticles for delivery of therapeutic agents to specific molecular targets overexpressed on different cancer cells. In particular, the combination of targeted and controlled-release polymer nanotechnologies has resulted in a new programmable nanotherapeutic formulation of docetaxel, namely BIND-014, which recently entered Phase II clinical testing for patients with solid tumors. BIND-014 has been developed to overcome the limitations facing delivery of nanoparticles to many neoplasms, and represents a validated example of targeted nanosystems with the optimal biophysicochemical properties needed for successful tumor eradication.
Collapse
Affiliation(s)
- Vanna Sanna
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, Sassari, Italy
| | - Nicolino Pala
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, Sassari, Italy
| | - Mario Sechi
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, Sassari, Italy
| |
Collapse
|
88
|
Hess C, Venetz D, Neri D. Emerging classes of armed antibody therapeutics against cancer. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00360d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
89
|
Penet MF, Chen Z, Kakkad S, Pomper MG, Bhujwalla ZM. Theranostic imaging of cancer. Eur J Radiol 2013; 81 Suppl 1:S124-6. [PMID: 23083557 DOI: 10.1016/s0720-048x(12)70051-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Marie-France Penet
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science
| | | | | | | | | |
Collapse
|
90
|
Dimeric DNA Aptamer Complexes for High-capacity-targeted Drug Delivery Using pH-sensitive Covalent Linkages. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e107. [PMID: 23860551 PMCID: PMC3731884 DOI: 10.1038/mtna.2013.37] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/30/2013] [Indexed: 11/08/2022]
Abstract
Treatment with doxorubicin (Dox) results in serious systemic toxicities that limit effectiveness for cancer treatment and cause long-term health issues for cancer patients. We identified a new DNA aptamer to prostate-specific membrane antigen (PSMA) using fixed sequences to promote Dox binding and developed dimeric aptamer complexes (DACs) for specific delivery of Dox to PSMA(+) cancer cells. DACs are stable under physiological conditions and are internalized specifically into PSMA(+) C4-2 cells with minimal uptake into PSMA-null PC3 cells. Cellular internalization of DAC was demonstrated by confocal microscopy and flow cytometry. Covalent modification of DAC with Dox (DAC-D) resulted in a complex with stoichiometry ~4:1. Dox was covalently bound in DAC-D using a reversible linker that promotes covalent attachment of Dox to genomic DNA following cell internalization. Dox was released from the DAC-D under physiological conditions with a half-life of 8 hours, sufficient for in vivo targeting. DAC-D was used to selectively deliver Dox to C4-2 cells with endosomal release and nuclear localization of Dox. DAC-D was selectively cytotoxic to C4-2 cells with similar cytotoxicity as the molar equivalent of free-Dox. In contrast, DAC-D displayed minimal cytotoxicity to PC3 cells, demonstrating the complex displays a high degree of selectivity for PSMA(+) cells. DAC-D displays specificity and stability features that may be useful for improved delivery of Dox selectively to malignant tissue in vivo.Molecular Therapy-Nucleic Acids (2013) 2, e107; doi:10.1038/mtna.2013.37; published online 16 July 2013.
Collapse
|
91
|
Hao G, Kumar A, Dobin T, Oz OK, Hsieh JT, Sun X. A multivalent approach of imaging probe design to overcome an endogenous anion binding competition for noninvasive assessment of prostate specific membrane antigen. Mol Pharm 2013; 10:2975-85. [PMID: 23768233 DOI: 10.1021/mp4000844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2[(3-Amino-3-carboxypropyl)(hydroxy)(phosphinyl)methyl]pentane-1,5-dioic acid) (GPI) is a highly potent inhibitor of prostate specific membrane antigen (PSMA) with a rapid in vivo clearance profile from nontarget organs including kidneys, but its use for imaging of PSMA is impeded by an endogenous anion (serum phosphate) competition, which compromises its specific binding to the antigen. Multipresentation of a targeting molecule on a single entity has been recognized as a practical way for imaging sensitivity enhancement. Herein, we demonstrate a multivalent approach based on a (64)Cu-specific bifunctional chelator scaffold to overcome the endogenous phosphate competition thus enabling the utility of GPI conjugates for in vivo detection of PSMA and imaging quantification. Both monomeric (H2CBT1G) and dimeric (H2CBT2G) conjugates were synthesized and labeled with (64)Cu for in vitro and in vivo evaluations. A 4-fold enhancement of PSMA binding affinity was observed for H2CBT2G as compared to H2CBT1G from the PSMA competitive binding assays performed on LNCaP cells. In vivo PET imaging studies were conducted on mouse xenograft models established with a PSMA(+) cell line, LNCaP, and PSMA(-) PC3 and H2009 cell lines. (64)Cu-CBT2G showed significantly higher LNCaP tumor uptake than (64)Cu-CBT1G at 1, 4, and 24 h postinjection (p.i.) (p < 0.05). In addition, tumor uptake of (64)Cu-CBT2G remained steady out to 24 h p.i. (1.46 ± 0.54, 1.12 ± 0.56, and 1.00 ± 0.50% ID/g at 1, 4, and 24 h p.i., respectively), while (64)Cu-CBT1G showed a great decrease from 1 to 4 h p.i. The PSMA imaging specificity of both H2CBT1G and H2CBT2G was demonstrated by their low uptake in PSMA(-) tumors (PC3 and H2009) and further confirmed by a significant signal reduction in PSMA(+) LNCaP tumors in the blockade study. In addition, the LNCaP tumor uptake (% ID/g) of (64)Cu-CBT2G was found to be in a positive linear correlation with the tumor size (R(2) = 0.92, 0.94, and 0.93 for 1 h, 4 h, and 24 h p.i.). This may render the probe with potential application in the management of patients with prostate cancer.
Collapse
Affiliation(s)
- Guiyang Hao
- Department of Radiology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | | | | | | | | | | |
Collapse
|
92
|
Discriminatory Role of Detergent-Resistant Membranes in the Dimerization and Endocytosis of Prostate-Specific Membrane Antigen. PLoS One 2013; 8:e66193. [PMID: 23840421 PMCID: PMC3686812 DOI: 10.1371/journal.pone.0066193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/02/2013] [Indexed: 11/20/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a type-II membrane glycoprotein that was initially identified in LNCaP cells. It is expressed at elevated levels in prostate cancer. In view of the correlation between the expression levels of PSMA and disease grade and stage, PSMA is considered to be one of the most promising biomarkers in the diagnosis and treatment of prostate cancer. In LNCaP cells PSMA undergoes internalization via clathrin-coated pits followed by accumulation in the endosomes. PSMA associates with different types of detergent-resistant membranes (DRMs) along the secretory pathway. Its mature form is mainly insoluble in Lubrol WX, but does not associate with Triton X-100-DRMs. To understand the mechanism of PSMA internalization we investigated its association during internalization with DRMs. For this purpose, internalization was induced by antibody cross-linking. We demonstrate at the biochemical and cell biological levels that: [i] exclusively homodimers of PSMA are associated with Lubrol WX-DRMs, [ii] antibody-induced cross-linking of PSMA molecules results in a time-dependent partitioning into another DRMs type, namely Triton X-100-DRMs, and [iii] concomitant with its association with Triton-X-100-DRMs internalization of PSMA occurs along tubulin filaments. In a previous work (Colombatti et al. (2009) PLoS One 4: e4608) we demonstrated that the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 are activated during antibody cross-linking. As downstream effects of this activation we observed a strong induction of NF-kB associated with an increased expression of IL-6 and CCL5 genes and that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically. These observations together with findings reported here hypothesize a fundamental role of DRMs during activation of PSMA as platforms for trafficking, endocytosis and signalling. Understanding these mechanisms constitutes an essential prerequisite for utilization of PSMA as a therapeutically suitable target in prostate cancer.
Collapse
|
93
|
Mohan K, Donavan KC, Arter JA, Penner RM, Weiss GA. Sub-nanomolar detection of prostate-specific membrane antigen in synthetic urine by synergistic, dual-ligand phage. J Am Chem Soc 2013; 135:7761-7. [PMID: 23614709 DOI: 10.1021/ja4028082] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sensitive detection of cancer biomarkers in urine could revolutionize cancer diagnosis and treatment. Such detectors must be inexpensive, easy to interpret, and sensitive. This report describes a bioaffinity matrix of viruses integrated into PEDOT films for electrochemical sensing of prostate-specific membrane antigen (PSMA), a prostate cancer biomarker. High sensitivity to PSMA resulted from synergistic action by two different ligands to PSMA on the same phage particle. One ligand was genetically encoded, and the secondary recognition ligand was chemically synthesized to wrap around the phage. The dual ligands result in a bidentate binder with high-copy, dense ligand display for enhanced PSMA detection through a chelate-based avidity effect. Biosensing with virus-PEDOT films provides a 100 pM limit of detection for PSMA in synthetic urine without requiring enzymatic or other amplification.
Collapse
Affiliation(s)
- Kritika Mohan
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | | | | | | | | |
Collapse
|
94
|
Zhang F, Shan L, Liu Y, Neville D, Woo JH, Chen Y, Korotcov A, Lin S, Huang S, Sridhar R, Liang W, Wang PC. An anti-PSMA bivalent immunotoxin exhibits specificity and efficacy for prostate cancer imaging and therapy. Adv Healthc Mater 2013; 2:736-44. [PMID: 23184611 PMCID: PMC3741670 DOI: 10.1002/adhm.201200254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/22/2012] [Indexed: 11/10/2022]
Abstract
Prostate specific membrane antigen (PSMA) is overexpressed on prostate tumor cells and the neovascular endothelia various solid tumors. A bivalent immunotoxin generated by fusing a fold-back single-chain diabody derived from the Fv fragments of an anti-PSMA monoclonal antibody with a truncated diphtheria toxin (DT) containing the activity and translocation domains [A-dmDT390-scfbDb(PSMA)] might be suitable for targeted therapy of tumors that overexpress PSMA. In this study, a PSMA-positive and a PSMA-negative prostate cancer cell lines were treated with immunotoxin A-dmDT390-scfbDb(PSMA) in order to study the tumor targeting specificity and therapeutic potential of the immunotoxin. The cellular uptake and selective toxicity of the immunotoxin were evident in monolayer cultures of PSMA-positive LNCaP prostate cancer cells but not in cultures of PSMA-negative PC-3 prostate cancer cells. Cellular accumulation of A-dmDT390-scfbDb(PSMA) increased with increasing incubation times and concentrations in LNCaP cells. The proportion of apoptotic LNCaP cells increased upon incubation with increasing doses of the fold-back immunotoxin. Optical imaging and MRI with the Alexa Fluor 680-labeled A-dmDT390-scfbDb(PSMA) confirmed the specific targeting and therapeutic efficacy of this immunotoxin towards PSMA-positive LNCaP solid tumor xenografts in athymic nude mice.
Collapse
Affiliation(s)
- Fayun Zhang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Shan
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Jung-Hee Woo
- Cancer Research Institute of Scott and White Healthcare, Texas A&M Health Science Center, Temple, TX 76502, USA
| | - Yue Chen
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| | - Alexandru Korotcov
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| | - Stephen Lin
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| | - Sophia Huang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| | - Rajagopalan Sridhar
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Paul C. Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, 20060, USA
| |
Collapse
|
95
|
Kramer-Marek G, Longmire MR, Choyke PL, Kobayashi H. Recent advances in optical cancer imaging of EGF receptors. Curr Med Chem 2013; 19:4759-66. [PMID: 22873662 DOI: 10.2174/092986712803341584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/14/2011] [Accepted: 04/06/2012] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor (EGF) receptors are commonly expressed on the cell membrane of cancer cells and activity of these receptors results in accelerated cell growth and carcinogenesis. A variety of targeted molecules have been developed to block ligand binding and/or inhibit the function of these receptor tyrosine kinases, and several have proven therapeutic benefits. Along with the advent of new therapeutic agents comes a need for non-invasive tools to diagnose, characterize, and monitor tumor responsiveness to therapy. Imaging EGF receptors with radionuclides has been performed for decades. However, recently this area has advanced considerably with the development of EGF receptor-targeted optical imaging probes. Herein, we review recent advances in molecular imaging of the EGF receptor family, focusing specifically on optical imaging. Such agents provide the opportunity for earlier diagnosis, improved tumor characterization, and the ability to measure and monitor tumor responsiveness to anti-EGF receptor treatment strategies.
Collapse
|
96
|
Mease RC, Foss CA, Pomper MG. PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem 2013. [PMID: 23590171 DOI: 10.2174/092986712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in American men. Positron emission tomography/computed tomography (PET/CT) with emerging radiopharmaceuticals promises accurate staging of primary disease, restaging of recurrent disease, detection of metastatic lesions and, ultimately, for predicting the aggressiveness of disease. Prostate-specific membrane antigen (PSMA) is a well-characterized imaging biomarker of PCa. Because PSMA levels are directly related to androgen independence, metastasis and progression, PSMA could prove an important target for the development of new radiopharmaceuticals for PET. Preclinical data for new PSMA-based radiotracers are discussed and include new (89)Zr- and (64)Cu-labeled anti-PSMA antibodies and antibody fragments, (64)Cu-labeled aptamers, and (11)C-, (18)F-, (68)Ga-, (64)Cu-, and (86)Y-labeled low molecular weight inhibitors of PSMA. Several of these agents, namely (68)Ga- HBED-CC conjugate 15, (18)F-DCFBC 8, and BAY1075553 are particularly promising, each having detected sites of PCa in initial clinical studies. These early clinical results suggest that PET/CT using PSMA-targeted agents, especially with compounds of low molecular weight, will make valuable contributions to the management of PCa.
Collapse
Affiliation(s)
- Ronnie C Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
97
|
Abstract
There is a need for developing improved therapeutic options for the management of prostate cancer, able to inhibit proliferation of precancerous and malignant lesions and/or to improve the effectiveness of conventional chemopreventive and chemotherapeutic agents. In this perspective, application of nanotechnology based strategies for the delivery of natural compounds for effective management of the disease is being actively researched. Here, after highlighting the most promising natural compounds for chemoprevention and chemotherapy of prostate cancer, the state of the art nanotherapeutics and the recent proof-of-concept of "nanochemoprevention", as well as the clinical development of promising targeted nanoprototypes for use in the prostate cancer treatment are being discussed.
Collapse
|
98
|
Graham K, Lesche R, Gromov AV, Böhnke N, Schäfer M, Hassfeld J, Dinkelborg L, Kettschau G. Radiofluorinated derivatives of 2-(phosphonomethyl)pentanedioic acid as inhibitors of prostate specific membrane antigen (PSMA) for the imaging of prostate cancer. J Med Chem 2012; 55:9510-20. [PMID: 23025786 DOI: 10.1021/jm300710j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For prostate cancer, prostate specific membrane antigen (PSMA) has been identified as a diagnostic and therapeutic target. Fluorinated derivatives of 2-(phosphonomethyl)pentanedioic acid were designed and synthesized to explore whether this fluorine-substituent is tolerated in the pentanedioic acid moiety that is common to almost all PSMA targeting small molecule inhibitors. The binding affinities of the racemic and individual stereoisomers of 2-fluoro-4-(phosphonomethyl)pentanedioic acid were determined and showed that the introduction of fluorine was well tolerated. The radiosynthesis of the analogous 2-[(18)F]fluoro-4-(phosphonomethyl)pentanedioic acid was developed and evaluated in vivo with the PSMA positive LNCaP human prostate cancer cell. The biological results demonstrated specific binding of the tracer to PSMA positive tumors in mice. These results warrant the further evaluation of this class of compounds as radiolabeled tracers for the detection and staging of prostate cancer.
Collapse
Affiliation(s)
- Keith Graham
- Global Drug Discovery, Bayer HealthCare, Müllerstrasse 178, 13353, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Walczak MA, Danishefsky SJ. Solving the convergence problem in the synthesis of triantennary N-glycan relevant to prostate-specific membrane antigen (PSMA). J Am Chem Soc 2012; 134:16430-3. [PMID: 22954207 PMCID: PMC3470013 DOI: 10.1021/ja307628w] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first total synthesis of triantennary, fully sialylated N-glycan of complex type is described. Two strategies for installation of sialylated antennae are explored, and both approaches converge on a global glycosylation step that delivers the desired tetradecasaccharide in good yields.
Collapse
Affiliation(s)
- Maciej A Walczak
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10065, USA
| | | |
Collapse
|
100
|
Chen Z, Penet MF, Nimmagadda S, Li C, Banerjee SR, Winnard PT, Artemov D, Glunde K, Pomper MG, Bhujwalla ZM. PSMA-targeted theranostic nanoplex for prostate cancer therapy. ACS NANO 2012; 6:7752-7762. [PMID: 22866897 PMCID: PMC4066818 DOI: 10.1021/nn301725w] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Theranostic imaging, where diagnosis is combined with therapy, is particularly suitable for a disease that is as complex as cancer, especially now that genomic and proteomic profiling can provide an extensive "fingerprint" of each tumor. With such information, theranostic agents can be designed to personalize treatment and minimize damage to normal tissue. Here we have developed a nanoplex platform for theranostic imaging of prostate cancer (PCa). In these proof-of-principle studies, a therapeutic nanoplex containing multimodal imaging reporters was targeted to prostate-specific membrane antigen (PSMA), which is expressed on the cell surface of castrate-resistant PCa. The nanoplex was designed to deliver small interfering RNA (siRNA) along with a prodrug enzyme to PSMA-expressing tumors. Each component of the nanoplex was carefully selected to evaluate its diagnostic aspect of PSMA imaging and its therapeutic aspects of siRNA-mediated down-regulation of a target gene and the conversion of a prodrug to cytotoxic drug, using noninvasive multimodality imaging. Studies performed using two variants of human PC3-PCa cells and tumors, one with high PSMA expression level and another with negligible expression levels, demonstrated PSMA-specific uptake. In addition, down-regulation of the selected siRNA target, choline kinase (Chk), and the conversion of the nontoxic prodrug 5-fluorocytosine (5-FC) to cytotoxic 5-fluorouracil (5-FU) were also demonstrated with noninvasive imaging. The nanoplex was well-tolerated and did not induce liver or kidney toxicity or a significant immune response. The nanoplex platform described can be easily modified and applied to different cancers, receptors, and pathways to achieve theranostic imaging, as a single agent or in combination with other treatment modalities.
Collapse
Affiliation(s)
- Zhihang Chen
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science
| | - Marie-France Penet
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science
| | - Sridhar Nimmagadda
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Cong Li
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science
| | - Sangeeta R Banerjee
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science
| | - Paul T Winnard
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science
| | - Dmitri Artemov
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Kristine Glunde
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Martin G Pomper
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|