51
|
Zhu J, Hoop CL, Case DA, Baum J. Cryptic binding sites become accessible through surface reconstruction of the type I collagen fibril. Sci Rep 2018; 8:16646. [PMID: 30413772 PMCID: PMC6226522 DOI: 10.1038/s41598-018-34616-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023] Open
Abstract
Collagen fibril interactions with cells and macromolecules in the extracellular matrix drive numerous cellular functions. Binding motifs for dozens of collagen-binding proteins have been determined on fully exposed collagen triple helical monomers. However, when the monomers are assembled into the functional collagen fibril, many binding motifs become inaccessible, and yet critical cellular processes occur. Here, we have developed an early stage atomic model of the smallest repeating unit of the type I collagen fibril at the fibril surface that provides a novel framework to address questions about these functionally necessary yet seemingly obstructed interactions. We use an integrative approach by combining molecular dynamics (MD) simulations with atomic force microscopy (AFM) experiments and show that reconstruction of the collagen monomers within the complex fibril play a critical role in collagen interactions. In particular, the fibril surface shows three major conformational changes, which allow cryptic binding sites, including an integrin motif involved in platelet aggregation, to be exposed. The observed dynamics and reconstruction of the fibril surface promote its role as a “smart fibril” to keep certain binding sites cryptic, and to allow accessibility of recognition domains when appropriate.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Cody L Hoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
52
|
Liu J, Das D, Yang F, Schwartz AG, Genin GM, Thomopoulos S, Chasiotis I. Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening. Acta Biomater 2018; 80:217-227. [PMID: 30240954 PMCID: PMC6510236 DOI: 10.1016/j.actbio.2018.09.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 02/04/2023]
Abstract
As the fundamental structural protein in mammals, collagen transmits cyclic forces that are necessary for the mechanical function of tissues, such as bone and tendon. Although the tissue-level mechanical behavior of collagenous tissues is well understood, the response of collagen at the nanometer length scales to cyclical loading remains elusive. To address this major gap, we cyclically stretched individual reconstituted collagen fibrils, with average diameter of 145 ± 42 nm, to small and large strains in the partially hydrated conditions of 60% relative humidity. It is shown that cyclical loading results in large steady-state hysteresis that is reached immediately after the first loading cycle, followed thereafter by limited accumulation of inelastic strain and constant initial elastic modulus. Cyclic loading above 20% strain resulted in 70% increase in tensile strength, from 638 ± 98 MPa to 1091 ± 110 MPa, and 70% increase in toughness, while maintaining the ultimate tensile strain of collagen fibrils not subjected to cyclic loading. Throughout cyclic stretching, the fibrils maintained a steady-state hysteresis, yielding loss coefficients that are 5-10 times larger than those of known homogeneous materials in their modulus range, thus establishing damping of nanoscale collagen fibrils as a major component of damping in tissues. STATEMENT OF SIGNIFICANCE: It is shown that steady-state energy dissipation occurs in individual collagen fibrils that are the building blocks of hard and soft tissues. To date, it has been assumed that energy dissipation in tissues takes place mainly at the higher length scales of the tissue hierarchy due to interactions between collagen fibrils and fibers, and in limited extent inside collagen fibrils. It is shown that individual collagen fibrils need only a single loading cycle to assume a highly dissipative, steady-state, cyclic mechanical response. Mechanical cycling at large strains leads to 70% increase in mechanical strength and values exceeding those of engineering steels. The same cyclic loading conditions also lead to 70% increase in toughness and loss properties that are 5-10 times higher than those of engineering materials with comparable stiffness.
Collapse
Affiliation(s)
- Julia Liu
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Debashish Das
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fan Yang
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrea G Schwartz
- Orthopaedic Surgery, Washington University, St. Louis, MO 60613, USA
| | - Guy M Genin
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA; NSF Science and Technology Center for Engineering Mechanobiology, St. Louis, MO 63130, USA
| | - Stavros Thomopoulos
- Orthopedic Surgery, Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Ioannis Chasiotis
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
53
|
Abstract
This Account is about templates as construction tools: molecules for making molecules. A template organizes the reactants and provides information to promote formation of a specific product, but it is not part of the final product. We have developed many different strategies for using oligopyridines as templates for the synthesis of alkyne-linked π-conjugated metalloporphyrin oligomers. These compounds include some of the largest macrocycles ever synthesized, such as a 50-porphyrin ring with a diameter of 21 nm containing a ring of 750 C-C bonds. Metalloporphyrins are excellent models for exploring template directed synthesis, as they can be functionalized in many different positions and the central metal (typically Zn or Mg) provides a handle for coordination to templates. Classical template-directed macrocyclization reactions have a 1:1 complementarity between the template and the product. This strategy works well for preparing nanorings of 5-7 porphyrin units, but larger templates are laborious to synthesize. Rings of 8 or more porphyrin units are most easily prepared using "nonclassical" strategies, in which several small templates work together to direct the formation of a large ring. In the Vernier approach, a mismatch between the number of binding sites on the template and the building block leads to a mathematical amplification of the length scale: the number of binding sites in the product is the lowest common multiple of those in the template and the building block. For example, a 40-porphyrin ring can be prepared by coupling a linear decamer in the presence of an octadentate template. Linear Vernier templating opens up intriguing possibilities for self-replication. When several small radial oligopyridine templates bind inside a large nanoring they can form complexes with some vacant coordination sites that display correlated motion like the caterpillar tracks of a bulldozer. These caterpillar track complexes can be used in template-directed synthesis and they provide the most convenient route to 8- and 10-porphyrin rings. Russian doll complexes provide another strategy for template-directed synthesis: a number of specifically designed ligands bind to a central nanoring to form a template for constructing a larger concentric nanoring. The same oligopyridine templates that are used to prepare nanorings can also be used to synthesize three-dimensional nanotubes and nanoballs. Again, nonclassical approaches, in which several small templates work together cooperatively, are much simpler than creating a single large template with sufficient binding sites to define the whole geometry of the product. Oligopyridine ligands can also be used as shadow mask templates to control the demetalation of magnesium porphyrin nanorings, because metal centers that are not coordinated by the template can be selectively demetalated with acid. Thus, the template forms a permanent shadow on the porphyrin nanostructure that remains after the template has been removed. Shadow mask templates provide a simple route to heterometalated molecular architectures. The insights emerging from these studies are widely applicable, and there are many opportunities for inventing new ways of using templates to control reactions.
Collapse
Affiliation(s)
- Pernille S. Bols
- Chemistry Research Laboratory, Department of Chemistry, Oxford University, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Harry L. Anderson
- Chemistry Research Laboratory, Department of Chemistry, Oxford University, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
54
|
Yeo J, Jung G, Tarakanova A, Martín-Martínez FJ, Qin Z, Cheng Y, Zhang YW, Buehler MJ. Multiscale modeling of keratin, collagen, elastin and related human diseases: Perspectives from atomistic to coarse-grained molecular dynamics simulations. EXTREME MECHANICS LETTERS 2018; 20:112-124. [PMID: 33344740 PMCID: PMC7745951 DOI: 10.1016/j.eml.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Scleroproteins are an important category of proteins within the human body that adopt filamentous, elongated conformations in contrast with typical globular proteins. These include keratin, collagen, and elastin, which often serve a common mechanical function in structural support of cells and tissues. Genetic mutations alter these proteins, disrupting their functions and causing diseases. Computational characterization of these mutations has proven to be extremely valuable in identifying the intricate structure-function relationships of scleroproteins from the molecular scale up, especially if combined with multiscale experimental analysis and the synthesis of model proteins to test specific structure-function relationships. In this work, we review numerous critical diseases that are related to keratin, collagen, and elastin, and through several case studies, we propose ways of extensively utilizing multiscale modeling, from atomistic to coarse-grained molecular dynamics simulations, to uncover the molecular origins for some of these diseases and to aid in the development of novel cures and therapies. As case studies, we examine the effects of the genetic disease Epidermolytic Hyperkeratosis (EHK) on the structure and aggregation of keratins 1 and 10; we propose models to understand the diseases of Osteogenesis Imperfecta (OI) and Alport syndrome (AS) that affect the mechanical and aggregation properties of collagen; and we develop atomistic molecular dynamics and elastic network models of elastin to determine the role of mutations in diseases such as Cutis Laxa and Supravalvular Aortic Stenosis on elastin's structure and molecular conformational motions and implications for assembly.
Collapse
Affiliation(s)
- Jingjie Yeo
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - GangSeob Jung
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francisco J. Martín-Martínez
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuan Cheng
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Yong-Wei Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
55
|
Collier TA, Nash A, Birch HL, de Leeuw NH. Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen. J Biomol Struct Dyn 2018; 37:537-549. [PMID: 29380684 DOI: 10.1080/07391102.2018.1433553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule's size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules.
Collapse
Affiliation(s)
- Thomas A Collier
- a Institute of Natural and Mathematical Sciences , Massey University , Auckland 0632 , New Zealand
| | - Anthony Nash
- b Department of Physiology, Anatomy and Genetics , University of Oxford , South Parks Road, Oxford OX1 3QX , UK
| | - Helen L Birch
- c Institute of Orthopaedics and Musculoskeletal Science, UCL, RNOH Stanmore Campus , London , UK
| | - Nora H de Leeuw
- d School of Chemistry , Cardiff University , Main Building, Park Place, Cardiff CF10 3AT , UK
| |
Collapse
|
56
|
Abstract
The extracellular matrix (ECM) provides the environment for many cells types within the body and, in addition to the well recognised role as a structural support, influences many important cell process within the body. As a result, age-related changes to the proteins of the ECM have far reaching consequences with the potential to disrupt many different aspects of homeostasis and healthy function. The proteins collagen and elastin are the most abundant in the ECM and their ability to function as a structural support and provide mechanical stability results from the formation of supra-molecular structures. Collagen and elastin have a long half-life, as required by their structural role, which leaves them vulnerable to a range of post-translational modifications. In this chapter the role of the ECM is discussed and the component proteins introduced. Major age-related modifications including glycation, carbamylation and fragmentation and the impact these have on ECM function are reviewed.
Collapse
|
57
|
Zhang Y, Ingham B, Cheong S, Ariotti N, Tilley RD, Naffa R, Holmes G, Clarke DJ, Prabakar S. Real-Time Synchrotron Small-Angle X-ray Scattering Studies of Collagen Structure during Leather Processing. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Zhang
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094, Palmerston North 4472, New Zealand
| | - Bridget Ingham
- Callaghan Innovation, P.O. Box 31310, Lower
Hutt 5040, New Zealand
| | - Soshan Cheong
- Electron
Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Nicholas Ariotti
- Electron
Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Richard D. Tilley
- Electron
Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Rafea Naffa
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094, Palmerston North 4472, New Zealand
| | - Geoff Holmes
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094, Palmerston North 4472, New Zealand
| | - David J. Clarke
- Callaghan Innovation, P.O. Box 31310, Lower
Hutt 5040, New Zealand
| | - Sujay Prabakar
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094, Palmerston North 4472, New Zealand
| |
Collapse
|
58
|
Hoop CL, Zhu J, Nunes AM, Case DA, Baum J. Revealing Accessibility of Cryptic Protein Binding Sites within the Functional Collagen Fibril. Biomolecules 2017; 7:biom7040076. [PMID: 29104255 PMCID: PMC5745458 DOI: 10.3390/biom7040076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022] Open
Abstract
Fibrillar collagens are the most abundant proteins in the extracellular matrix. Not only do they provide structural integrity to all of the connective tissues in the human body, but also their interactions with multiple cell receptors and other matrix molecules are essential to cell functions, such as growth, repair, and cell adhesion. Although specific binding sequences of several receptors have been determined along the collagen monomer, processes by which collagen binding partners recognize their binding sites in the collagen fibril, and the critical driving interactions, are poorly understood. The complex molecular assembly of bundled triple helices within the collagen fibril makes essential ligand binding sites cryptic or hidden from the molecular surface. Yet, critical biological processes that require collagen ligands to have access to interaction sites still occur. In this contribution, we will discuss the molecular packing of the collagen I fibril from the perspective of how collagen ligands access their known binding regions within the fibril, and we will present our analysis of binding site accessibility from the fibril surface. Understanding the basis of these interactions at the atomic level sets the stage for developing drug targets against debilitating collagen diseases and using collagen as drug delivery systems and new biomaterials.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Jie Zhu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Ana Monica Nunes
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
59
|
Orgel JPRO, Sella I, Madhurapantula RS, Antipova O, Mandelberg Y, Kashman Y, Benayahu D, Benayahu Y. Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 2017; 220:3327-3335. [PMID: 28705830 PMCID: PMC5612020 DOI: 10.1242/jeb.163824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022]
Abstract
We report here the biochemical, molecular and ultrastructural features of a unique organization of fibrillar collagen extracted from the octocoral Sarcophyton ehrenbergi Collagen, the most abundant protein in the animal kingdom, is often defined as a structural component of extracellular matrices in metazoans. In the present study, collagen fibers were extracted from the mesenteries of S. ehrenbergi polyps. These fibers are organized as filaments and further compacted as coiled fibers. The fibers are uniquely long, reaching an unprecedented length of tens of centimeters. The diameter of these fibers is 9±0.37 μm. The amino acid content of these fibers was identified using chromatography and revealed close similarity in content to mammalian type I and II collagens. The ultrastructural organization of the fibers was characterized by means of high-resolution microscopy and X-ray diffraction. The fibers are composed of fibrils and fibril bundles in the range of 15 to 35 nm. These data indicate a fibrillar collagen possessing structural aspects of both types I and II collagen, a highly interesting and newly described form of fibrillar collagen organization.
Collapse
Affiliation(s)
- Joseph P R O Orgel
- Departments of Biology, Physics and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 S. Dearborn Ave, Chicago, IL 60616, USA
- BioCAT, Advanced Photon Source, Argonne National Laboratory, IL, USA
| | - Ido Sella
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Rama S Madhurapantula
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 S. Dearborn Ave, Chicago, IL 60616, USA
| | - Olga Antipova
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 S. Dearborn Ave, Chicago, IL 60616, USA
- BioCAT, Advanced Photon Source, Argonne National Laboratory, IL, USA
| | - Yael Mandelberg
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yoel Kashman
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yehuda Benayahu
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
60
|
Bertassoni LE, Swain MV. Removal of dentin non-collagenous structures results in the unraveling of microfibril bundles in collagen type I. Connect Tissue Res 2017; 58:414-423. [PMID: 27657550 PMCID: PMC6214662 DOI: 10.1080/03008207.2016.1235566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS The structural organization of collagen from mineralized tissues, such as dentin and bone, has been a topic of debate in the recent literature. Recent reports have presented novel interpretations of the complexity of collagen type I at different hierarchical levels and in different tissues. Here, we investigate the nanostructural organization of demineralized dentin collagen following the digestion of non-collagenous components with a trypsin enzyme. MATERIALS AND METHODS Dentin specimens were obtained from healthy third-molars, cut into small cubes, and polished down to 1 µm roughness. Samples were then demineralized with 10% citric acid for 2 min. Selected specimens were further treated with a solution containing 1 mg/ml trypsin for 48 hours at 37 °C (pH 7.9-9.0). Both untreated and trypsin digested samples were analyzed using SDS-PAGE, Field Emission Scanning Electron Microscopy (FE-SEM), and nanoindentation, where surface hardness and creep properties were compared before and after treatments. RESULTS FE-SEM images of demineralized dentin showed the banded morphology of D-periodical collagen type I, which upon enzymatic digestion with trypsin appeared to dissociate longitudinally, consistently unraveling ~20 nm structures (microfibril bundles). Such nanoscale structures, to the best of our knowledge, have not been characterized in dentin previously. Mechanical characterization via nanoindentation showed that the unraveling of such microfibril bundles affected the creep displacement and creep rate of demineralized dentin. CONCLUSION In summary, our results provide novel evidence of the organization of collagen type I from dentin, which may have important implications for the interaction of dental materials with the organic dentin matrix and the mechanical properties of mineralized tissues.
Collapse
Affiliation(s)
- Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland OR, USA,Center for Regenerative Medicine, Oregon Health and Science University, Portland OR, USA,Bioengineering Laboratory, Faculty of Dentistry, University of Sydney, Sydney, NSW, Australia
| | - Michael V. Swain
- Bioengineering Laboratory, Faculty of Dentistry, University of Sydney, Sydney, NSW, Australia,Bioclinical Sciences Department, Faculty of Dentistry, University of Kuwait, Kuwait
| |
Collapse
|
61
|
Effects of tissue fixation and dehydration on tendon collagen nanostructure. J Struct Biol 2017; 199:209-215. [DOI: 10.1016/j.jsb.2017.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/18/2023]
|
62
|
Sankar S, Sharma CS, Rath SN, Ramakrishna S. Electrospun nanofibres to mimic natural hierarchical structure of tissues: application in musculoskeletal regeneration. J Tissue Eng Regen Med 2017; 12:e604-e619. [DOI: 10.1002/term.2335] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/26/2016] [Accepted: 09/26/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Sharanya Sankar
- Department of Biomedical Engineering; Indian Institute of Technology; Telangana Hyderabad India
| | - Chandra S. Sharma
- Department of Chemical Engineering; Indian Institute of Technology; Telangana Hyderabad India
| | - Subha N. Rath
- Department of Biomedical Engineering; Indian Institute of Technology; Telangana Hyderabad India
| | - Seeram Ramakrishna
- Center for Nanofibres & Nanotechnology; National University of Singapore; Singapore
| |
Collapse
|
63
|
Unraveling the role of Calcium ions in the mechanical properties of individual collagen fibrils. Sci Rep 2017; 7:46042. [PMID: 28378770 PMCID: PMC5380965 DOI: 10.1038/srep46042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Collagen, the dominating material in the extracellular matrix, provides the strength, elasticity and mechanical stability to the organisms. The mechanical property of collagen is mainly dominated by its surrounding environments. However, the variation and origin of the mechanics of collagen fibril under different concentrations of calcium ions (χCa) remains unknown. By using the atomic force microscopy based nanoindentation, the mechanics and structure of individual type II collagen fibril were first investigated under different χCa in this study. The results demonstrate that both of the mechanical and structural properties of the collagen fibril show a prominent dependence on χCa. The mechanism of χCa-dependence of the collagen fibril was attributed to the chelation between collagen molecules and the calcium ions. Given the role of calcium in the pathology of osteoarthritis, the current study may cast new light on the understanding of osteoarthritis and other soft tissue hardening related diseases in the future.
Collapse
|
64
|
Kamonsutthipaijit N, Anderson HL. Template-directed synthesis of linear porphyrin oligomers: classical, Vernier and mutual Vernier. Chem Sci 2017; 8:2729-2740. [PMID: 28553508 PMCID: PMC5426366 DOI: 10.1039/c6sc05355f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
We demonstrate a variety of template-directed strategies for preparing linear monodisperse butadiyne-linked porphyrin oligomers by Glaser–Hay coupling, based on the coordination of pyridine-substituted nickel(ii) porphyrins to zinc(ii) porphyrins.
Three different types of template-directed syntheses of linear porphyrin oligomers are presented. In the classical approach the product has the same number of binding sites as the template, whereas in Vernier reactions the product has the lowest common multiple of the numbers of binding sites in the template and the building block. Mutual Vernier templating is like Vernier templating except that both strands of the Vernier complex undergo coupling simultaneously, so that it becomes impossible to say which is the ‘template’ and which is the ‘building block’. The template-directed synthesis of monodisperse linear oligomers is more difficult than that of cyclic oligomers, because the products of linear templating have reactive ends. All three types of templating are demonstrated here, and used to prepare a nickel(ii) porphyrin dodecamer with 4-pyridyl substituents on all twelve porphyrin units. The stabilities and cooperativities of the double-strand complexes involved in these reactions were investigated by UV-vis-NIR titration. The four-rung ladder duplex has a stability constant of about 2 × 1018 M–1 in dichloromethane at 298 K.
Collapse
Affiliation(s)
| | - Harry L Anderson
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , Oxford OX1 3TA , UK .
| |
Collapse
|
65
|
Zhou Z, Qian D, Minary-Jolandan M. Clustering of hydroxyapatite on a super-twisted collagen microfibril under mechanical tension. J Mater Chem B 2017; 5:2235-2244. [DOI: 10.1039/c6tb02835g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomistic simulation of biomineralization of a super-twisted collagen microfibril reveals that mechanical stimulation facilitates clustering and growth of hydroxyapatite onto collagen.
Collapse
Affiliation(s)
- Zhong Zhou
- Department of Mechanical Engineering
- The University of Texas at Dallas
- Richardson
- USA
| | - Dong Qian
- Department of Mechanical Engineering
- The University of Texas at Dallas
- Richardson
- USA
| | - Majid Minary-Jolandan
- Department of Mechanical Engineering
- The University of Texas at Dallas
- Richardson
- USA
- Alan G. MacDiarmid NanoTech Institute
| |
Collapse
|
66
|
Kontomaris SV, Stylianou A, Yova D. Investigation of the mechanical properties of collagen fibrils under the influence of low power red laser irradiation. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/aa5195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
67
|
Bianchi F, Hofmann F, Smith AJ, Thompson MS. Probing multi-scale mechanical damage in connective tissues using X-ray diffraction. Acta Biomater 2016; 45:321-327. [PMID: 27554021 DOI: 10.1016/j.actbio.2016.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/08/2016] [Accepted: 08/17/2016] [Indexed: 11/30/2022]
Abstract
The accumulation of microstructural collagen damage following repetitive loading is linked to painful and debilitating tendon injuries. As a hierarchical, semi-crystalline material, collagen mechanics can be studied using X-ray diffraction. The aim of the study was to describe multi-structural changes in tendon collagen following controlled plastic damage (5% permanent strain). We used small angle X-ray scattering (SAXS) to interrogate the spacing of collagen molecules within a fibril, and wide angle X-ray scattering (WAXS) to measure molecular strains under macroscopic loading. Simultaneous recordings of SAXS and WAXS patterns, together with whole-tissue strain in physiologically hydrated rat-tail tendons were made during increments of in situ tensile loading. Results showed that while tissue level modulus was unchanged, fibril modulus decreased significantly, and molecular modulus significantly increased. Further, analysis of higher order SAXS peaks suggested structural changes in the gap and overlap regions, possibly localising the damage to molecular cross-links. Our results provide new insight into the fundamental damage processes at work in collagenous tissues and point to new directions for their mitigation and repair. STATEMENT OF SIGNIFICANCE This article reports the first in situ loading synchrotron studies on mechanical damage in collagenous tissues. We provide new insight into the nano- and micro-structural mechanisms of damage processes. Pre-damaged tendons showed differential alteration of moduli at macro, micro and nano-scales as measured using X-ray scattering techniques. Detailed analysis of higher order diffraction peaks suggested damage is localised to molecular cross-links. The results are consistent with previous X-ray scattering studies of tendons and also with recent thermal stability studies on damaged material. Detailed understanding of damage mechanisms is essential in the development of new therapies promoting tissue repair.
Collapse
Affiliation(s)
- Fabio Bianchi
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, UK
| | - Felix Hofmann
- Department of Engineering Science, University of Oxford, UK
| | | | - Mark S Thompson
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, UK.
| |
Collapse
|
68
|
Collier TA, Nash A, Birch HL, de Leeuw NH. Intra-molecular lysine-arginine derived advanced glycation end-product cross-linking in Type I collagen: A molecular dynamics simulation study. Biophys Chem 2016; 218:42-46. [PMID: 27648753 PMCID: PMC5068345 DOI: 10.1016/j.bpc.2016.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023]
Abstract
Covalently cross-linked advanced glycation end products (AGE) are among the major post-translational modifications to proteins as a result of non-enzymatic glycation. The formation of AGEs has been shown to have adverse effects on the properties of the collagenous tissue; they are even linked to a number of age related disorders. Little is known about the sites at which these AGEs form or why certain sites within the collagen are energetically more favourable than others. In this study we have used a proven fully atomistic molecular dynamics approach to identify six sites where the formation of the intra-molecular 3-deoxyglucosone-derived imidazolium cross-link (DOGDIC) is energetically favourable. We have also conducted a comparison of these positions with those of the more abundant glucosepane cross-link, to determine any site preference. We show that when we consider both lysine and arginine AGEs, they exhibit a prevalence to form within the gap region of the collagen fibril.
Collapse
Affiliation(s)
- Thomas A Collier
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Anthony Nash
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Helen L Birch
- Institute of Orthopaedics and Musculoskeletal Science, UCL, RNOH Stanmore Campus, London, United Kingdom
| | - Nora H de Leeuw
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom; School of Chemistry, Cardiff University, Cardiff CF10 1DF, United Kingdom.
| |
Collapse
|
69
|
Supramolecular Organization of Collagen Fibrils in Healthy and Osteoarthritic Human Knee and Hip Joint Cartilage. PLoS One 2016; 11:e0163552. [PMID: 27780246 PMCID: PMC5079628 DOI: 10.1371/journal.pone.0163552] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 09/11/2016] [Indexed: 01/13/2023] Open
Abstract
Cartilage matrix is a composite of discrete, but interacting suprastructures, i.e. cartilage fibers with microfibrillar or network-like aggregates and penetrating extrafibrillar proteoglycan matrix. The biomechanical function of the proteoglycan matrix and the collagen fibers are to absorb compressive and tensional loads, respectively. Here, we are focusing on the suprastructural organization of collagen fibrils and the degradation process of their hierarchical organized fiber architecture studied at high resolution at the authentic location within cartilage. We present electron micrographs of the collagenous cores of such fibers obtained by an improved protocol for scanning electron microscopy (SEM). Articular cartilages are permeated by small prototypic fibrils with a homogeneous diameter of 18 ± 5 nm that can align in their D-periodic pattern and merge into larger fibers by lateral association. Interestingly, these fibers have tissue-specific organizations in cartilage. They are twisted ropes in superficial regions of knee joints or assemble into parallel aligned cable-like structures in deeper regions of knee joint- or throughout hip joints articular cartilage. These novel observations contribute to an improved understanding of collagen fiber biogenesis, function, and homeostasis in hyaline cartilage.
Collapse
|
70
|
Rutenberg AD, Brown AI, Kreplak L. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils. Phys Biol 2016; 13:046008. [PMID: 27559989 DOI: 10.1088/1478-3975/13/4/046008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.
Collapse
Affiliation(s)
- Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | | | | |
Collapse
|
71
|
Abstract
Fibrous structures are an integral and dynamic feature of soft biological tissues that are directly related to the tissues' condition and function. A greater understanding of mechanical tissue behavior can be gained through quantitative analyses of structure alone, as well as its integration into computational models of soft tissue function. Histology and other nonoptical techniques have traditionally dominated the field of tissue imaging, but they are limited by their invasiveness, inability to provide resolution on the micrometer scale, and dynamic information. Recent advances in optical modalities can provide higher resolution, less invasive imaging capabilities, and more quantitative measurements. Here we describe contemporary optical imaging techniques with respect to their suitability in the imaging of tissue structure, with a focus on characterization and implementation into subsequent modeling efforts. We outline the applications and limitations of each modality and discuss the overall shortcomings and future directions for optical imaging of soft tissue structure.
Collapse
Affiliation(s)
- Will Goth
- Department of Biomedical Engineering
| | - John Lesicko
- Department of Biomedical Engineering
- Center for Cardiovascular Simulation, and
| | - Michael S Sacks
- Department of Biomedical Engineering
- Center for Cardiovascular Simulation, and
- Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas 78712;
| | | |
Collapse
|
72
|
Zhou Z, Qian D, Minary-Jolandan M. Molecular Mechanism of Polarization and Piezoelectric Effect in Super-Twisted Collagen. ACS Biomater Sci Eng 2016; 2:929-936. [DOI: 10.1021/acsbiomaterials.6b00021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhong Zhou
- Department
of Mechanical Engineering, The University of Texas at Dallas, 800
W. Campbell Rd, Richardson, Texas 75080, United States
| | - Dong Qian
- Department
of Mechanical Engineering, The University of Texas at Dallas, 800
W. Campbell Rd, Richardson, Texas 75080, United States
| | - Majid Minary-Jolandan
- Department
of Mechanical Engineering, The University of Texas at Dallas, 800
W. Campbell Rd, Richardson, Texas 75080, United States
- Alan
G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, 800
W. Campbell Rd, Richardson, Texas 75080, United States
| |
Collapse
|
73
|
Sacks MS, Zhang W, Wognum S. A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues. Interface Focus 2016; 6:20150090. [PMID: 26855761 DOI: 10.1098/rsfs.2015.0090] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exogenous cross-linking of soft collagenous tissues is a common method for biomaterial development and medical therapies. To enable improved applications through computational methods, physically realistic constitutive models are required. Yet, despite decades of research, development and clinical use, no such model exists. In this study, we develop the first rigorous full structural model (i.e. explicitly incorporating various features of the collagen fibre architecture) for exogenously cross-linked soft tissues. This was made possible, in-part, with the use of native to cross-linked matched experimental datasets and an extension to the collagenous structural constitutive model so that the uncross-linked collagen fibre responses could be mapped to the cross-linked configuration. This allowed us to separate the effects of cross-linking from kinematic changes induced in the cross-linking process, which in turn allowed the non-fibrous tissue matrix component and the interaction effects to be identified. It was determined that the matrix could be modelled as an isotropic material using a modified Yeoh model. The most novel findings of this study were that: (i) the effective collagen fibre modulus was unaffected by cross-linking and (ii) fibre-ensemble interactions played a large role in stress development, often dominating the total tissue response (depending on the stress component and loading path considered). An important utility of the present model is its ability to separate the effects of exogenous cross-linking on the fibres from changes due to the matrix. Applications of this approach include the utilization in the design of novel chemical treatments to produce specific mechanical responses and the study of fatigue damage in bioprosthetic heart valve biomaterials.
Collapse
Affiliation(s)
- Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering , The University of Texas at Austin , 201 East 24th Street, PO Box 5.236, Stop C0200, Austin, TX 78712 , USA
| | - Will Zhang
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering , The University of Texas at Austin , 201 East 24th Street, PO Box 5.236, Stop C0200, Austin, TX 78712 , USA
| | - Silvia Wognum
- Department of Biomedical Engineering , Eindhoven University of Technology , PO Box 513, 5600 MB Eindhoven , The Netherlands
| |
Collapse
|
74
|
Domene C, Jorgensen C, Abbasi SW. A perspective on structural and computational work on collagen. Phys Chem Chem Phys 2016; 18:24802-24811. [DOI: 10.1039/c6cp03403a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Collagen is the single most abundant protein in the extracellular matrix in the animal kingdom, with remarkable structural and functional diversity and regarded one of the most useful biomaterials.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry
- King's College London
- UK
- Chemistry Research Laboratory
- University of Oxford
| | | | | |
Collapse
|
75
|
Andriotis OG, Chang SW, Vanleene M, Howarth PH, Davies DE, Shefelbine SJ, Buehler MJ, Thurner PJ. Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model. J R Soc Interface 2015; 12:20150701. [PMID: 26468064 PMCID: PMC4614505 DOI: 10.1098/rsif.2015.0701] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022] Open
Abstract
The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry.
Collapse
Affiliation(s)
- O G Andriotis
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Getreidemarkt 9, Vienna 1060, Austria Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
| | - S W Chang
- Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M Vanleene
- Department of Bioengineering, Imperial College London, London, UK
| | - P H Howarth
- The Brooke Laboratories, Division of Infection, Inflammation and Immunity, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - D E Davies
- The Brooke Laboratories, Division of Infection, Inflammation and Immunity, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - S J Shefelbine
- Department of Bioengineering, Imperial College London, London, UK Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - M J Buehler
- Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - P J Thurner
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Getreidemarkt 9, Vienna 1060, Austria Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
76
|
Garnero P. The Role of Collagen Organization on the Properties of Bone. Calcif Tissue Int 2015; 97:229-40. [PMID: 25894071 DOI: 10.1007/s00223-015-9996-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
Abstract
Bone is a complex tissue constituted by a collagen matrix filled in with crystal of hydroxyapatite (HAP). Bone mechanical properties are influenced by the collagen matrix which is organized into hierarchical structures from the individual type I collagen heterotrimer flanked by linear telopeptides at each end to the collagen fibrils that are interconnected by enzymatic and non-enzymatic cross-links. Although most studies focused on the role of collagen cross-links in bone strength, other organizational features may also play a role. At the molecular level it has been shown that homotrimer of type I collagen found in bone tissue of some patients with osteogenesis imperfecta (OI) is characterized by decreased mechanical competence compared to the regular heterotrimer. The state of C-telopeptide isomerization-which can be estimated by the measurement in body fluids of the native and isomerized isoforms-has also been shown to be associated with bone strength, particularly the post-yield properties independent of bone size and bone mineral density. Other higher hierarchical features of collagen organization have shown to be associated with changes in bone mechanical behavior in ex vivo models and may also be relevant to explain bone fragility in diseases characterized by collagen abnormalities e.g., OI and Paget's disease. These include the orientation of collagen fibrils in a regular longitudinal direction, the D-spacing period between collagen fibrils and the collagen-HAP interfacial bonding. Preliminary data indicate that some of these organizational features can change during treatment with bisphosphonate, raloxifene, and PTH suggesting that they may contribute to their anti-fracture efficacy. It remains however to be determined which of these parameters play a specific and independent role in bone matrix properties, what is the magnitude of mechanical strength explained by collagen organization, whether they are relevant to explain osteoporosis-induced bone fragility, and how they could be monitored non-invasively to develop efficient bone quality biomarkers.
Collapse
|
77
|
Wagermaier W, Klaushofer K, Fratzl P. Fragility of Bone Material Controlled by Internal Interfaces. Calcif Tissue Int 2015; 97:201-12. [PMID: 25772807 PMCID: PMC4525333 DOI: 10.1007/s00223-015-9978-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/28/2015] [Indexed: 12/14/2022]
Abstract
Bone material is built in a complex multiscale arrangement of mineralized collagen fibrils containing water, proteoglycans and some noncollagenous proteins. This organization is not static as bone is constantly remodeled and thus able to repair damaged tissue and adapt to the loading situation. In preventing fractures, the most important mechanical property is toughness, which is the ability to absorb impact energy without reaching complete failure. There is no simple explanation for the origin of the toughness of bone material, and this property depends in a complex way on the internal architecture of the material on all scales from nanometers to millimeters. Hence, fragility may have different mechanical origins, depending on which toughening mechanism is not working properly. This article reviews the toughening mechanisms described for bone material and attempts to put them in a clinical context, with the hope that future analysis of bone fragility may be guided by this collection of possible mechanistic origins.
Collapse
Affiliation(s)
- Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Klaus Klaushofer
- First Medical Department, Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Heinrich Collin Str. 30, 1140 Vienna, Austria
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| |
Collapse
|
78
|
Collier TA, Nash A, Birch HL, de Leeuw NH. Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study. Matrix Biol 2015; 48:78-88. [PMID: 26049074 PMCID: PMC4659457 DOI: 10.1016/j.matbio.2015.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
The extracellular matrix (ECM) undergoes progressive age-related stiffening and loss of proteolytic digestibility due to an increase in concentration of advanced glycation end products (AGEs). The most abundant AGE, glucosepane, accumulates in collagen with concentrations over 100 times greater than all other AGEs. Detrimental collagen stiffening properties are believed to play a significant role in several age-related diseases such as osteoporosis and cardiovascular disease. Currently little is known of the potential location of covalently cross-linked glucosepane formation within collagen molecules; neither are there reports on how the respective cross-link sites affect the physical and biochemical properties of collagen. Using fully atomistic molecular dynamics simulations (MD) we have identified six sites where the formation of a covalent intra-molecular glucosepane cross-link within a single collagen molecule in a fibrillar environment is energetically favourable. Identification of these favourable sites enables us to align collagen cross-linking with experimentally observed changes to the ECM. For example, formation of glucosepane was found to be energetically favourable within close proximity of the Matrix Metalloproteinase-1 (MMP1) binding site, which could potentially disrupt collagen degradation. We conduct fully atomistic molecular dynamics simulation of fibrillar collagen. Glucosepane cross-link formation is energetically favourable at six positions. Positions identified are within key collagen biomolecule sites. Positioning of sites may have a significant effect on tissue function and integrity.
Collapse
Affiliation(s)
- Thomas A Collier
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom.
| | - Anthony Nash
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Helen L Birch
- Institute of Orthopaedics and Musculoskeletal Science, UCL, RNOH Stanmore Campus, London, United Kingdom
| | - Nora H de Leeuw
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| |
Collapse
|
79
|
Wallace JM. Effects of fixation and demineralization on bone collagen D-spacing as analyzed by atomic force microscopy. Connect Tissue Res 2015; 56:68-75. [PMID: 25634588 DOI: 10.3109/03008207.2015.1005209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM Collagen's role in bone is often considered secondary. As increased attention is paid to collagen, understanding the impact of tissue preservation is important in interpreting experimental results. The goal of this study was to test the hypothesis that bone fixation prior to demineralization would maintain its collagen ultrastructure in an undisturbed state when analyzed using Atomic Force Microscopy (AFM). MATERIALS/METHODS The anterior diaphysis of a pig femur was cut into 6 mm pieces along its length. Samples were mounted, polished and randomly assigned to control or fixation groups (n = 5/group). Fixation samples were fixed for 24 h prior to demineralization. All samples were briefly demineralized to expose collagen, and imaged using AFM. Mouse tail tendons were also analyzed to explore effects of dehydration and fixation. Measurements from each bone sample were averaged and compared using a Mann-Whitney U-test. Tendon sample means were compared using RMANOVA. To investigate differences in D-spacing distributions, Kolmogorov-Smirnov tests were used. RESULTS Fixation decreased D-spacing variability within and between bone samples and induced or maintained a higher average D-spacing versus control by shifting the D-spacing population upward. Tendon data indicate that fixing and drying samples leaves collagen near its undisturbed and hydrated native state. DISCUSSION Fixation in bone prior to demineralization decreased D-spacing variability. D-spacing was shifted upward in fixed samples, indicating that collagen is stretched with mineral present and relaxes upon its removal. The ability to decrease variability in bone suggests that fixation might increase the power to detect changes in collagen due to disease or other pressures.
Collapse
Affiliation(s)
- Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis , Indianapolis, IN , USA and
| |
Collapse
|
80
|
Kontomaris SV, Yova D, Stylianou A, Balogiannis G. The effects of UV irradiation on collagen D-band revealed by atomic force microscopy. SCANNING 2015; 37:101-11. [PMID: 25521598 DOI: 10.1002/sca.21185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 05/03/2023]
Abstract
The objective of this paper was to investigate the influence of UV irradiation on collagen D-band periodicity by using the AFM imaging and nanoindentation methods. It is well known than UV irradiation is one of the main factors inducing destabilization of collagen molecules. Due to the human's skin chronic exposure to sun light, the research concerning the influence of UV radiation on collagen is of great interest. The impact of UV irradiation on collagen can be studied in nanoscale using Atomic Force Microscopy (AFM). AFM is a powerful tool as far as surface characterization is concerned, due to its ability to relate high resolution imaging with mechanical properties. Hence, high resolution images of individual collagen fibrils and load-displacement curves on the overlapping and gap regions, under various time intervals of UV exposure, were obtained. The results demonstrated that the UV rays affect the height level differences between the overlapping and gap regions. Under various time intervals of UV exposure, the height difference between overlaps and gaps reduced from ~3.7 nm to ~0.8 nm and the fibril diameters showed an average of 8-10% reduction. In addition, the irradiation influenced the mechanical properties of collagen fibrils. The Young's modulus values were reduced per 66% (overlaps) and 61% (gaps) compared to their initial values. The observed alterations on the structural and the mechanical properties of collagen fibrils are probably a consequence of the polypeptide chain scission due to the impact of the UV irradiation.
Collapse
Affiliation(s)
- Stylianos V Kontomaris
- Biomedical Optics & Applied Biophysics Lab, Division of Electromagnetics, Electrooptics & Electronic Materials, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou, Athens, Greece; Interuniversity Postgraduate Programme on Biomedical Engineering, Faculty of Medicine of the University of Patras, School of Electrical and Computer Engineering and the School of Mechanical Engineering of the National Technical University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
81
|
Atkins A, Reznikov N, Ofer L, Masic A, Weiner S, Shahar R. The three-dimensional structure of anosteocytic lamellated bone of fish. Acta Biomater 2015; 13:311-23. [PMID: 25449924 DOI: 10.1016/j.actbio.2014.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/24/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022]
Abstract
Fish represent the most diverse and numerous of the vertebrate clades. In contrast to the bones of all tetrapods and evolutionarily primitive fish, many of the evolutionarily more advanced fish have bones that do not contain osteocytes. Here we use a variety of imaging techniques to show that anosteocytic fish bone is composed of a sequence of planar layers containing mainly aligned collagen fibrils, in which the prevailing principal orientation progressively spirals. When the sequence of fibril orientations completes a rotation of around 180°, a thin layer of poorly oriented fibrils is present between it and the next layer. The thick layer of aligned fibrils and the thin layer of non-aligned fibrils constitute a lamella. Although both basic components of mammalian lamellar bone are found here as well, the arrangement is unique, and we therefore call this structure lamellated bone. We further show that the lamellae of anosteocytic fish bone contain an array of dense, small-diameter (1-4 μm) bundles of hypomineralized collagen fibrils that are oriented mostly orthogonal to the lamellar plane. Results of mechanical tests conducted on beams from anosteocytic fish bone and human cortical bone show that the fish bones are less stiff but much tougher than the human bones. We propose that the unique lamellar structure and the orthogonal hypomineralized collagen bundles are responsible for the unusual mechanical properties and mineral distribution in anosteocytic fish bone.
Collapse
Affiliation(s)
- Ayelet Atkins
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Natalie Reznikov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lior Ofer
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Admir Masic
- Department of Biomaterials, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
82
|
Masic A, Bertinetti L, Schuetz R, Chang SW, Metzger TH, Buehler MJ, Fratzl P. Osmotic pressure induced tensile forces in tendon collagen. Nat Commun 2015; 6:5942. [PMID: 25608644 PMCID: PMC4354200 DOI: 10.1038/ncomms6942] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/21/2014] [Indexed: 11/12/2022] Open
Abstract
Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.
Collapse
Affiliation(s)
- Admir Masic
- Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Luca Bertinetti
- Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Roman Schuetz
- Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Shu-Wei Chang
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, MIT, Cambridge, Massachusetts 02139, USA
| | - Till Hartmut Metzger
- Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, MIT, Cambridge, Massachusetts 02139, USA
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| |
Collapse
|
83
|
Abstract
The biochemical and biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. The molecules that are associated with the ECM of each tissue, including collagens, proteoglycans, laminins and fibronectin, and the manner in which they are assembled determine the structure and the organization of the resultant ECM. The product is a specific ECM signature that is comprised of unique compositional and topographical features that both reflect and facilitate the functional requirements of the tissue.
Collapse
Affiliation(s)
- Janna K Mouw
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco
| | - Guanqing Ou
- 1] Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco. [2] University of California San Francisco and University of California Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94143, USA
| | - Valerie M Weaver
- 1] Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco. [2] Department of Anatomy, University of California, San Francisco. [3] Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco. [4] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco. [5] UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, California 94143, USA
| |
Collapse
|
84
|
Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 2014. [PMID: 25370693 DOI: 10.1038/nrm3902 10.1038/nrm3902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biochemical and biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. The molecules that are associated with the ECM of each tissue, including collagens, proteoglycans, laminins and fibronectin, and the manner in which they are assembled determine the structure and the organization of the resultant ECM. The product is a specific ECM signature that is comprised of unique compositional and topographical features that both reflect and facilitate the functional requirements of the tissue.
Collapse
|
85
|
Abstract
The biochemical and biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. The molecules that are associated with the ECM of each tissue, including collagens, proteoglycans, laminins and fibronectin, and the manner in which they are assembled determine the structure and the organization of the resultant ECM. The product is a specific ECM signature that is comprised of unique compositional and topographical features that both reflect and facilitate the functional requirements of the tissue.
Collapse
|
86
|
Stylianou A, Yova D, Alexandratou E. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:455-68. [PMID: 25491851 DOI: 10.1016/j.msec.2014.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/21/2014] [Accepted: 09/08/2014] [Indexed: 01/06/2023]
Abstract
Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell-matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications.
Collapse
Affiliation(s)
- Andreas Stylianou
- Biomedical Optics and Applied Biophysics Laboratory, Division of Electromagnetics, Electrooptics and Electronic Materials, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Athens 15780 Greece.
| | - Dido Yova
- Biomedical Optics and Applied Biophysics Laboratory, Division of Electromagnetics, Electrooptics and Electronic Materials, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Athens 15780 Greece
| | - Eleni Alexandratou
- Biomedical Optics and Applied Biophysics Laboratory, Division of Electromagnetics, Electrooptics and Electronic Materials, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Athens 15780 Greece
| |
Collapse
|
87
|
Abstract
Type I collagen fibrils have circular cross sections with radii mostly distributed in between 50 and 100 nm and are characterized by an axial banding pattern with a period of 67 nm. The constituent long molecules of those fibrils, the so-called triple helices, are densely packed but their nature is such that their assembly must conciliate two conflicting requirements. One is a double-twist around the axis of the fibril induced by their chirality and the other is a periodic layered organization, corresponding to the axial banding, built by specific lateral interactions. We examine here how such a conflict could contribute to the control of the radius of a fibril. We develop our analysis with the help of two geometrical archetypes: the Hopf fibration and the algorithm of phyllotaxis. The first one provides an ideal template for a twisted bundle of fibres and the second ensures the best homogeneity and local isotropy possible for a twisted dense packing with circular symmetry. This approach shows that, as the radius of a fibril with constant double-twist increases, the periodic layered organization can not be preserved without moving from planar to helicoidal configurations. Such changes of configurations are indeed made possible by the edge dislocations naturally present in the phyllotactic pattern. The distribution of those defects is such that the lateral growth of a fibril should stay limited in the observed range. Because of our limited knowledge about the elastic constants involved, this purely geometrical development stays at a quite conjectural level.
Collapse
Affiliation(s)
- Jean Charvolin
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS UMR 8502, F-91405 Orsay, Cedex, France
| | - Jean-François Sadoc
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS UMR 8502, F-91405 Orsay, Cedex, France
| |
Collapse
|
88
|
Lovelady HH, Shashidhara S, Matthews WG. Solvent specific persistence length of molecular type I collagen. Biopolymers 2014; 101:329-35. [DOI: 10.1002/bip.22365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/05/2022]
|
89
|
Zhong B, Peng C, Wang G, Tian L, Cai Q, Cui F. Contemporary research findings on dentine remineralization. J Tissue Eng Regen Med 2013; 9:1004-16. [PMID: 23955967 DOI: 10.1002/term.1814] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/13/2013] [Accepted: 07/24/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Zhong
- Centre of Stomatology; China-Japan Friendship Hospital; Beijing People's Republic of China
| | - Ce Peng
- Department of Materials Science and Engineering; Tsinghua University; Beijing People's Republic of China
| | - Guanhong Wang
- Centre of Stomatology; China-Japan Friendship Hospital; Beijing People's Republic of China
| | - Lili Tian
- Centre of Stomatology; China-Japan Friendship Hospital; Beijing People's Republic of China
| | - Qiang Cai
- Department of Materials Science and Engineering; Tsinghua University; Beijing People's Republic of China
| | - Fuzhai Cui
- Department of Materials Science and Engineering; Tsinghua University; Beijing People's Republic of China
| |
Collapse
|
90
|
Niu LN, Zhang W, Pashley DH, Breschi L, Mao J, Chen JH, Tay FR. Biomimetic remineralization of dentin. Dent Mater 2013; 30:77-96. [PMID: 23927881 DOI: 10.1016/j.dental.2013.07.013] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Remineralization of demineralized dentin is important for improving dentin bonding stability and controlling primary and secondary caries. Nevertheless, conventional dentin remineralization strategy is not suitable for remineralizing completely demineralized dentin within hybrid layers created by etch-and-rinse and moderately aggressive self-etch adhesive systems, or the superficial part of a caries-affected dentin lesion left behind after minimally invasive caries removal. Biomimetic remineralization represents a different approach to this problem by attempting to backfill the demineralized dentin collagen with liquid-like amorphous calcium phosphate nanoprecursor particles that are stabilized by biomimetic analogs of noncollagenous proteins. METHODS This paper reviewed the changing concepts in calcium phosphate mineralization of fibrillar collagen, including the recently discovered, non-classical particle-based crystallization concept, formation of polymer-induced liquid-precursors (PILP), experimental collagen models for mineralization, and the need for using phosphate-containing biomimetic analogs for biomimetic mineralization of collagen. Published work on the remineralization of resin-dentin bonds and artificial caries-like lesions by various research groups was then reviewed. Finally, the problems and progress associated with the translation of a scientifically sound concept into a clinically applicable approach are discussed. RESULTS AND SIGNIFICANCE The particle-based biomimetic remineralization strategy based on the PILP process demonstrates great potential in remineralizing faulty hybrid layers or caries-like dentin. Based on this concept, research in the development of more clinically feasible dentin remineralization strategy, such as incorporating poly(anionic) acid-stabilized amorphous calcium phosphate nanoprecursor-containing mesoporous silica nanofillers in dentin adhesives, may provide a promising strategy for increasing of the durability of resin-dentin bonding and remineralizing caries-affected dentin.
Collapse
Affiliation(s)
- Li-Na Niu
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Stomatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - David H Pashley
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Lorenzo Breschi
- Department of Medical Sciences, University of Trieste, Trieste and IGM-CNR, Bologna, Italy
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hua Chen
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| | - Franklin R Tay
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA; Department of Endodontics, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
91
|
Stylianou A, Yova D. Surface nanoscale imaging of collagen thin films by Atomic Force Microscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2947-57. [DOI: 10.1016/j.msec.2013.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/01/2013] [Accepted: 03/14/2013] [Indexed: 01/24/2023]
|
92
|
Abstract
Collagen constitutes one third of the human proteome, providing mechanical stability, elasticity and strength to organisms and is thus the prime construction material in biology. Collagen is also the dominating material in the extracellular matrix where its stiffness controls cell differentiation, growth and pathology. We use atomistic-based hierarchical multiscale modeling to describe this complex biological material from the bottom up. This includes the use and development of large-scale computational modeling tools to investigate several aspects related to collagen-based tissues, including source of visco-elasticity and deformation mechanisms at the nanoscale level. The key innovation of this research is that until now, collagen materials have primarily been described at macroscopic scales, without explicitly understanding the mechanical contributions at the molecular and fibrillar levels. The major impact of this research will be the development of fundamental models of collagenous tissues, important to the design of new scaffolding biomaterials for regenerative medicine as well as for the understanding of collagen-related diseases.
Collapse
Affiliation(s)
- Simone Vesentini
- Biomechanics Group, Department of Electronics, Information and Bioengineering, Politecnico of Milan, Milan, Italy
| | | | | |
Collapse
|
93
|
Thompson MS. Tendon mechanobiology: experimental models require mathematical underpinning. Bull Math Biol 2013; 75:1238-54. [PMID: 23681792 DOI: 10.1007/s11538-013-9850-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
Mathematical and computational modeling is in demand to help address current challenges in mechanobiology of musculoskeletal tissues. In particular for tendon, the high clinical importance of the tissue, the huge mechanical demands placed on it and its ability to adapt to these demands, require coupled, multiscale models incorporating complex geometrical and microstructural information as well as time-based descriptions of cellular activity and response.This review introduces the information sources required to develop such multiscale models. It covers tissue structure and biomechanics, cell biomechanics, the current understanding of tendon's ability in health and disease to update its properties and structure and the few already existing multiscale mechanobiological models of the tissue. Finally, a sketch is provided of what such models could achieve ideally, pointing out where experimental data and knowledge are still missing.
Collapse
Affiliation(s)
- Mark S Thompson
- Institute of Biomedical Engineering, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| |
Collapse
|
94
|
Marino M, Vairo G. Multiscale Elastic Models of Collagen Bio-structures: From Cross-Linked Molecules to Soft Tissues. MULTISCALE COMPUTER MODELING IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 2013. [DOI: 10.1007/8415_2012_154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
95
|
Abstract
In situ synchrotron X-ray scattering and diffraction, in combination with micromechanical testing, can provide quantitative information on the nanoscale mechanics of biomineralized composites, such as bone, nacre, and enamel. Due to the hierarchical architecture of these systems, the methodology for extraction of mechanical parameters at the molecular and supramolecular scale requires special considerations regarding design of mechanical test apparatus, sample preparation and testing, data analysis, and interpretation of X-ray structural information in terms of small-scale mechanics. In this chapter, this methodology is described using as a case study the deformation mechanisms at the fibrillar and mineral particle level in cortical bone. Following a description of the sample preparation, testing, and analysis procedures for bone in general, two applications of the method-to understand fibrillar-level mechanics in tension and bending in a mouse model of rachitic disease-are presented, together with a discussion of how to relate in situ scattering and diffraction data acquired during mechanical testing to nanostructural models for deformation of biomineralized composites.
Collapse
Affiliation(s)
- Angelo Karunaratne
- Queen Mary University of London, School of Engineering and Material Sciences, London, United Kingdom
| | | | | |
Collapse
|
96
|
Multi-scale modeling of biomaterials and tissues. MATERIOMICS: MULTISCALE MECHANICS OF BIOLOGICAL MATERIALS AND STRUCTURES 2013. [DOI: 10.1007/978-3-7091-1574-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
97
|
Loo RW, Goh JB, Cheng CCH, Su N, Goh MC. In vitro synthesis of native, fibrous long spacing and segmental long spacing collagen. J Vis Exp 2012:e4417. [PMID: 23023198 PMCID: PMC3490236 DOI: 10.3791/4417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Collagen fibrils are present in the extracellular matrix of animal tissue to provide structural scaffolding and mechanical strength. These native collagen fibrils have a characteristic banding periodicity of ~67 nm and are formed in vivo through the hierarchical assembly of Type I collagen monomers, which are 300 nm in length and 1.4 nm in diameter. In vitro, by varying the conditions to which the monomer building blocks are exposed, unique structures ranging in length scales up to 50 microns can be constructed, including not only native type fibrils, but also fibrous long spacing and segmental long spacing collagen. Herein, we present procedures for forming the three different collagen structures from a common commercially available collagen monomer. Using the protocols that we and others have published in the past to make these three types typically lead to mixtures of structures. In particular, unbanded fibrils were commonly found when making native collagen, and native fibrils were often present when making fibrous long spacing collagen. These new procedures have the advantage of producing the desired collagen fibril type almost exclusively. The formation of the desired structures is verified by imaging using an atomic force microscope.
Collapse
Affiliation(s)
- Richard W Loo
- Department of Chemistry, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
98
|
Gautieri A, Pate MI, Vesentini S, Redaelli A, Buehler MJ. Hydration and distance dependence of intermolecular shearing between collagen molecules in a model microfibril. J Biomech 2012; 45:2079-83. [DOI: 10.1016/j.jbiomech.2012.05.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/24/2012] [Accepted: 05/27/2012] [Indexed: 11/25/2022]
|
99
|
Bertassoni LE, Orgel JPR, Antipova O, Swain MV. The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale. Acta Biomater 2012; 8:2419-33. [PMID: 22414619 PMCID: PMC3473357 DOI: 10.1016/j.actbio.2012.02.022] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/16/2012] [Accepted: 02/28/2012] [Indexed: 11/28/2022]
Abstract
The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for current resin-based dental restorations. Here we review progress in the identification of the nanostructural organization of the organic matrix of dentin, the largest component of the tooth structure, and highlight aspects relevant to understating the interaction of restorative biomaterials with the dentin substrate. We offer novel insights into the influence of the hierarchically assembled supramolecular structure of dentin collagen fibrils and their structural dependence on water molecules. Secondly, we review recent evidence for the participation of proteoglycans in composing the dentin organic network. Finally, we discuss the relation of these complexly assembled nanostructures with the protease degradative processes driving the low durability of current resin-based dental restorations. We argue in favour of the structural limitations that these complexly organized and inherently hydrated organic structures may impose on the clinical prospects of current hydrophobic and hydrolyzable dental polymers that establish ultrafine contact with the tooth substrate.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Biomaterials Science Research Unit, Faculty of Dentistry, University of Sydney, United Dental Hospital, NSW, Australia.
| | | | | | | |
Collapse
|
100
|
Sricholpech M, Perdivara I, Yokoyama M, Nagaoka H, Terajima M, Tomer KB, Yamauchi M. Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J Biol Chem 2012; 287:22998-3009. [PMID: 22573318 PMCID: PMC3391079 DOI: 10.1074/jbc.m112.343954] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/29/2012] [Indexed: 12/31/2022] Open
Abstract
Recently, by employing the short hairpin RNA technology, we have generated MC3T3-E1 (MC)-derived clones stably suppressing lysyl hydroxylase 3 (LH3) (short hairpin (Sh) clones) and demonstrated the LH3 function as glucosyltransferase in type I collagen (Sricholpech, M., Perdivara, I., Nagaoka, H., Yokoyama, M., Tomer, K. B., and Yamauchi, M. (2011) Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J. Biol. Chem. 286, 8846-8856). To further elucidate the biological significance of this modification, we characterized and compared type I collagen phenotypes produced by Sh clones and two control groups, MC and those transfected with empty vector. Mass spectrometric analysis identified five glycosylation sites in type I collagen (i.e. α1,2-87, α1,2-174, and α2-219. Of these, the predominant glycosylation site was α1-87, one of the major helical cross-linking sites. In Sh collagen, the abundance of glucosylgalactosylhydroxylysine was significantly decreased at all of the five sites with a concomitant increase in galactosylhydroxylysine at four of these sites. The collagen cross-links were significantly diminished in Sh clones, and, for the major cross-link, dihydroxylysinonorleucine (DHLNL), glucosylgalactosyl-DHLNL was diminished with a concomitant increase in galactosyl-DHLNL. When subjected to in vitro incubation, in Sh clones, the rate of decrease in DHLNL was lower, whereas the rate of increase in its maturational cross-link, pyridinoline, was comparable with controls. Furthermore, in Sh clones, the mean diameters of collagen fibrils were significantly larger, and the onset of mineralized nodule formation was delayed when compared with those of controls. These results indicate that the LH3-mediated glucosylation occurs at the specific molecular loci in the type I collagen molecule and plays critical roles in controlling collagen cross-linking, fibrillogenesis, and mineralization.
Collapse
Affiliation(s)
- Marnisa Sricholpech
- North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|