51
|
Eyre NS, Drummer HE, Beard MR. The SR-BI partner PDZK1 facilitates hepatitis C virus entry. PLoS Pathog 2010; 6:e1001130. [PMID: 20949066 PMCID: PMC2951368 DOI: 10.1371/journal.ppat.1001130] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 09/02/2010] [Indexed: 01/01/2023] Open
Abstract
Entry of hepatitis C virus (HCV) into hepatocytes is a multi-step process that involves a number of different host cell factors. Following initial engagement with glycosaminoglycans and the low-density lipoprotein receptor, it is thought that HCV entry proceeds via interactions with the tetraspanin CD81, scavenger receptor class B type I (SR-BI), and the tight-junction proteins claudin-1 (CLDN1) and occludin (OCLN), culminating in clathrin-dependent endocytosis of HCV particles and their pH-dependent fusion with endosomal membranes. Physiologically, SR-BI is the major receptor for high-density lipoproteins (HDL) in the liver, where its expression is primarily controlled at the post-transcriptional level by its interaction with the scaffold protein PDZK1. However, the importance of interaction with PDZK1 to the involvement of SR-BI in HCV entry is unclear. Here we demonstrate that stable shRNA-knockdown of PDZK1 expression in human hepatoma cells significantly reduces their susceptibility to HCV infection, and that this effect can be reversed by overexpression of full length PDZK1 but not the first PDZ domain of PDZK1 alone. Furthermore, we found that overexpression of a green fluorescent protein chimera of the cytoplasmic carboxy-terminus of SR-BI (amino acids 479-509) in Huh-7 cells resulted in its interaction with PDZK1 and a reduced susceptibility to HCV infection. In contrast a similar chimera lacking the final amino acid of SR-BI (amino acids 479-508) failed to interact with PDZK1 and did not inhibit HCV infection. Taken together these results indicate an indirect involvement of PDZK1 in HCV entry via its ability to interact with SR-BI and enhance its activity as an HCV entry factor.
Collapse
Affiliation(s)
- Nicholas S. Eyre
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Heidi E. Drummer
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Michael R. Beard
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
52
|
Truong TQ, Aubin D, Falstrault L, Brodeur MR, Brissette L. SR-BI, CD36, and caveolin-1 contribute positively to cholesterol efflux in hepatic cells. Cell Biochem Funct 2010; 28:480-9. [DOI: 10.1002/cbf.1680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
53
|
Wang L, Clark ME, Crossman DK, Kojima K, Messinger JD, Mobley JA, Curcio CA. Abundant lipid and protein components of drusen. PLoS One 2010; 5:e10329. [PMID: 20428236 PMCID: PMC2859054 DOI: 10.1371/journal.pone.0010329] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 03/30/2010] [Indexed: 01/24/2023] Open
Abstract
Background Drusen are extracellular lesions characteristic of aging and age-related maculopathy, a major retinal disease of the elderly. We determined the relative proportions of lipids and proteins in drusen capped with retinal pigment epithelium (RPE) and in RPE isolated from non-macular regions of 36 human retinas with grossly normal maculas obtained <6 hr after death. Methodology/Principal Findings Druse pellets were examined by light and electron microscopy. Component proteins were extracted using novel methods for preserved tissues, separated, subjected to tryptic digestion and LC-MS(MS)2 analysis using an ion trap mass spectrometer, and identified with reference to databases. Lipid classes were separated using thin layer chromatography and quantified by densitometry. Major druse components were esterified cholesterol (EC), phosphatidylcholine (PC), and protein (37.5±13.7, 36.9±12.9, and 43.0±11.5 ng/druse, respectively). Lipid-containing particles (median diameter, 77 nm) occupied 37–44% of druse volume. Major proteins include vitronectin, complement component 9, apoE, and clusterin, previously seen in drusen, and ATP synthase subunit β, scavenger receptor B2, and retinol dehydrogenase 5, previously seen in RPE. Drusen and RPE had similar protein profiles, with higher intensities and greater variability in drusen. C8, part of the complement membrane attack complex, was localized in drusen by immunofluorescence. Conclusions/Significance At least 40% of druse content is comprised by lipids dominated by EC and PC, 2 components that are potentially accounted for by just one pathway, the secretion of lipoproteins by RPE. Manipulating genes encoding apolipoprotein pathways would be a fruitful approach to producing drusen with high EC content in laboratory animals. Therapies that directly mitigate drusen should prepare for the substantial volume of neutral lipids. The catalog of major druse proteins is nearing completion.
Collapse
Affiliation(s)
- Lan Wang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mark E. Clark
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David K. Crossman
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kyoko Kojima
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey D. Messinger
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - James A. Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
54
|
Saddar S, Mineo C, Shaul PW. Signaling by the high-affinity HDL receptor scavenger receptor B type I. Arterioscler Thromb Vasc Biol 2010; 30:144-50. [PMID: 20089950 DOI: 10.1161/atvbaha.109.196170] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Scavenger receptor B type I (SR-BI) plays an important role in mediating cholesterol exchange between cells, high-density lipoprotein (HDL) cholesterol, and other lipoproteins. SR-BI in hepatocytes is essential for reverse cholesterol transport and biliary secretion of HDL cholesterol; thus, it is atheroprotective. More recently, it has been discovered that the HDL-SR-BI tandem serves other functions that also likely contribute to HDL-related cardiovascular protection. A number of the latter mechanisms, particularly in endothelial cells, involve unique direct signal initiation by SR-BI that leads to the activation of diverse kinase cascades. SR-BI signaling occurs in response to plasma membrane cholesterol flux. It requires the C-terminal PDZ-interacting domain of the receptor, which mediates direct interaction with the adaptor molecule PDZK1; and the C-terminal transmembrane domain, which directly binds membrane cholesterol. In endothelium, direct SR-BI signaling in response to HDL results in enhanced production of the antiatherogenic molecule nitric oxide; in a nitric oxide-independent manner, it serves to maintain endothelial monolayer integrity. The role of SR-BI signaling in the numerous other cellular targets of HDL, including hepatocytes, macrophages, and platelets, and the basis by which SR-BI senses plasma membrane cholesterol movement to modify cell behavior are unknown. Further understanding of signaling by SR-BI will optimize the capacity to harness the mechanisms of action of HDL-SR-BI for cardiovascular benefit.
Collapse
Affiliation(s)
- Sonika Saddar
- Division of Pulmonary and Vascular Biology, the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
55
|
Chiba-Falek O, Nichols M, Suchindran S, Guyton J, Ginsburg GS, Barrett-Connor E, McCarthy JJ. Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI) expression in liver and association with lipid levels in a population-based study. BMC MEDICAL GENETICS 2010; 11:9. [PMID: 20085651 PMCID: PMC2822818 DOI: 10.1186/1471-2350-11-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 01/19/2010] [Indexed: 02/03/2023]
Abstract
BACKGROUND Several studies have noted that genetic variants of SCARB1, a lipoprotein receptor involved in reverse cholesterol transport, are associated with serum lipid levels in a sex-dependent fashion. However, the mechanism underlying this gene by sex interaction has not been explored. METHODS We utilized both epidemiological and molecular methods to study how estrogen and gene variants interact to influence SCARB1 expression and lipid levels. Interaction between 35 SCARB1 haplotype-tagged polymorphisms and endogenous estradiol levels was assessed in 498 postmenopausal Caucasian women from the population-based Rancho Bernardo Study. We further examined associated variants with overall and SCARB1 splice variant (SR-BI and SR-BII) expression in 91 human liver tissues using quantitative real-time PCR. RESULTS Several variants on a haplotype block spanning intron 11 to intron 12 of SCARB1 showed significant gene by estradiol interaction affecting serum lipid levels, the strongest for rs838895 with HDL-cholesterol (p=9.2x10(-4)) and triglycerides (p=1.3x10(-3)) and the triglyceride:HDL cholesterol ratio (p=2.7x10(-4)). These same variants were associated with expression of the SR-BI isoform in a sex-specific fashion, with the strongest association found among liver tissue from 52 young women<45 years old (p=0.002). CONCLUSIONS Estrogen and SCARB1 genotype may act synergistically to regulate expression of SCARB1 isoforms and impact serum levels of HDL cholesterol and triglycerides. This work highlights the importance of considering sex-dependent effects of gene variants on serum lipid levels.
Collapse
Affiliation(s)
- Ornit Chiba-Falek
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Hand, foot and mouth disease (HFMD) is generally a benign febrile exanthematous childhood disease caused by human enteroviruses. The route of transmission is postulated to be faeco-oral in developing areas but attributed more to respiratory droplet in developed areas. Transmission is facilitated by the prolonged environmental survival of these viruses and their greater resistance to biocides. Serious outbreaks with neurological and cardiopulmonary complications caused by human enterovirus 71 (HEV-71) seem to be commoner in the Asian Pacific region than elsewhere in the world. This geographical predilection is unexplained but could be related to the frequency of intra- and inter-typic genetic recombinations of the virus, the host populations' genetic predisposition, environmental hygiene, and standard of healthcare. Vaccine development could be hampered by the general mildness of the illness and rapid genetic evolution of the virus. Antivirals are not readily available; the role of intravenous immunoglobulin in the treatment of serious complications should be investigated. Monitoring of this disease and its epidemiology in the densely populated Asia Pacific epicentre is important for the detection of emerging epidemics due to enteroviruses.
Collapse
|
57
|
Abstract
Dysregulation of cholesterol balance contributes significantly to atherosclerotic cardiovascular disease (ASCVD), the leading cause of death in the United States. The intestine has the unique capability to act as a gatekeeper for entry of cholesterol into the body, and inhibition of intestinal cholesterol absorption is now widely regarded as an attractive non-statin therapeutic strategy for ASCVD prevention. In this chapter we discuss the current state of knowledge regarding sterol transport across the intestinal brush border membrane. The purpose of this work is to summarize substantial progress made in the last decade in regards to protein-mediated sterol trafficking, and to discuss this in the context of human disease.
Collapse
Affiliation(s)
| | - Liqing Yu
- Address correspondence to: Liqing Yu, M.D., Ph.D., Department of Pathology Section on Lipid Sciences, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1040, Tel: 336-716-0920, Fax: 336-716-6279,
| |
Collapse
|
58
|
Ishikawa Y, Kimura-Matsumoto M, Murakami M, Murakami M, Yamamoto K, Akasaka Y, Uzuki M, Yuri Y, Inomata N, Yokoo T, Ishii T. Distribution of smooth muscle cells and macrophages expressing scavenger receptor BI/II in atherosclerosis. J Atheroscler Thromb 2009; 16:829-39. [PMID: 20032583 DOI: 10.5551/jat.1941] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Scavenger receptors type I and II (SRBI/II) have dual roles in both atherogenic and antiatherogenic functions through interactions with lipoproteins and their expression in macrophages; how-ever, the distribution and density of SRBI/II-positive macrophages and smooth muscle cells (SMCs) as well as their association with lipid metabolism-related proteins in atherosclerotic intima of the human aorta remain unclear. METHODS Autopsied aortic tissues were double-immunostained with SRBI/BII and smooth muscle actin or macrophage-specific antibodies. The density of SRBI/BII-positive SMCs and macrophages in intimal lesion was measured. They were also immunostained with antibodies against four apolipoproteins, four phospholipase A2s, and CETP. RESULTS SRBI/II was expressed in both macrophages and SMCs distributed in various intimal lesions. The density of SRBI/II-positive SMCs in intimal lesions significantly decreased with the advance of atherosclerosis, whereas the density of SRBI/II-positive macrophages significantly increased with atherosclerotic development. In addition, functional proteins, such as apolipoproteins, secretory phospholipase A2s, and CETP, were distributed in the intimal stroma around SRBI/II-positive cells in all lesion types. CONCLUSION The results indicated that SMCs are involved in lipid metabolism via SRBI/II expression mainly in the early stages of atherosclerosis evolution, and that SRBI/II-positive macrophages are mainly involved in advanced stages.
Collapse
Affiliation(s)
- Yukio Ishikawa
- Department of Pathology, Toho University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Yesilaltay A, Daniels K, Pal R, Krieger M, Kocher O. Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice. PLoS One 2009; 4:e8103. [PMID: 19956623 PMCID: PMC2779610 DOI: 10.1371/journal.pone.0008103] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/05/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND PDZK1 is a four PDZ-domain containing protein that binds to the carboxy terminus of the HDL receptor, scavenger receptor class B type I (SR-BI), and regulates its expression, localization and function in a tissue-specific manner. PDZK1 knockout (KO) mice are characterized by a marked reduction of SR-BI protein expression ( approximately 95%) in the liver (lesser or no reduction in other organs) with a concomitant 1.7 fold increase in plasma cholesterol. PDZK1 has been shown to be atheroprotective using the high fat/high cholesterol ('Western') diet-fed murine apolipoprotein E (apoE) KO model of atherosclerosis, presumably because of its role in promoting reverse cholesterol transport via SR-BI. PRINCIPAL FINDINGS Here, we have examined the effects of PDZK1 deficiency in apoE KO mice fed with the atherogenic 'Paigen' diet for three months. Relative to apoE KO, PDZK1/apoE double KO (dKO) mice showed increased plasma lipids (33% increase in total cholesterol; 49 % increase in unesterified cholesterol; and 36% increase in phospholipids) and a 26% increase in aortic root lesions. Compared to apoE KO, dKO mice exhibited substantial occlusive coronary artery disease: 375% increase in severe occlusions. Myocardial infarctions, not observed in apoE KO mice (although occasional minimal fibrosis was noted), were seen in 7 of 8 dKO mice, resulting in 12 times greater area of fibrosis in dKO cardiac muscle. CONCLUSIONS These results show that Paigen-diet fed PDZK1/apoE dKO mice represent a new animal model useful for studying coronary heart disease and suggest that PDZK1 may represent a valuable target for therapeutic intervention.
Collapse
Affiliation(s)
- Ayce Yesilaltay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kathleen Daniels
- Department of Pathology and Center for Vascular Biology Research, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rinku Pal
- Department of Pathology and Center for Vascular Biology Research, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
60
|
Ghosh S, Zhao B, Bie J, Song J. Role of cholesteryl ester hydrolase in atherosclerosis. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
61
|
Wiersma H, Nijstad N, Gautier T, Iqbal J, Kuipers F, Hussain MM, Tietge UJF. Scavenger receptor BI facilitates hepatic very low density lipoprotein production in mice. J Lipid Res 2009; 51:544-53. [PMID: 19723664 DOI: 10.1194/jlr.m000844] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Scavenger receptor BI (SR-BI) is a selective uptake receptor for HDL cholesterol but is also involved in the catabolism of apolipoprotein (apo)B-containing lipoproteins. However, plasma levels of apoB-containing lipoproteins increase following hepatic SR-BI overexpression, suggesting that SR-BI not solely mediates their catabolism. We therefore tested the hypothesis that hepatic SR-BI impacts on VLDL production. On day 7 following adenovirus (Ad)-mediated overexpression of SR-BI, VLDL-triglyceride and VLDL-apoB production rates were significantly increased (P < 0.001), whereas VLDL production was significantly lower in SR-BI knockout mice compared with controls (P < 0.05). In mice injected with AdSR-BI, hepatic cholesterol content increased (P < 0.001), microsomal triglyceride transfer protein activity was higher (P < 0.01) and expression of sterol-regulatory element binding protein (SREBP)2 and its target genes was decreased (P < 0.01). Conversely, in SR-BI knockout mice, microsomal triglyceride transfer protein activity was lower and expression of SREBP2 target genes was increased (P < 0.01). Finally, we demonstrate in vitro in isolated primary hepatocytes as well as in vivo that cholesterol derived from HDL and taken up via SR-BI into the liver can be resecreted within VLDL. These data indicate that hepatic SR-BI expression is linked to VLDL production, and within liver, a metabolic shunt might exist that delivers HDL cholesterol, at least in part, to a pool from which cholesterol is mobilized for VLDL production. These results might have implications for HDL-based therapies against atherosclerotic cardiovascular disease, especially with SR-BI as target.
Collapse
Affiliation(s)
- Harmen Wiersma
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
62
|
Berrougui H, Khalil A. Age-associated decrease of high-density lipoprotein-mediated reverse cholesterol transport activity. Rejuvenation Res 2009; 12:117-26. [PMID: 19405812 DOI: 10.1089/rej.2009.0840] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-density lipoproteins (HDL) are considered atheroprotective in contrast to low-density lipoproteins (LDL), which are atherogenic in their oxidized form. A growing body of evidence suggests that HDL exert part of their antiatherogenic effect by counteracting LDL oxidation as well as their proinflammatory effect. However, a number of studies, carried over the past 30 years, have shown that cholesterol efflux plays a major role in the atheroprotective effects of HDL and cholesterol homeostasis. These studies have further identified the scavenger receptor type B-I (SR-BI), the adenosine triphosphate (ATP)-binding cassette transporters ATP-binding cassette subfamily A1 (ABCA1), ATP-binding cassette subfamily G1 (ABCG1) and ABCG4, the liver X receptor/retinoid X receptor (LXR/RXR) and peroxisome proliferator-activated receptorgamma(PPAR gamma) transcription factors, the HDL components apolipoprotein A-I (apoA-I), lecithin-cholesterol acyltransferase (LCAT), and phospholipids as additional mediators of cholesterol transport. Cholesterol efflux occurs via three independent pathways: (1) aqueous diffusion, (2) nonspecific efflux via SR-BI receptors, and (3) specific efflux via cholesterol-responsive members of the ABC superfamily. Whereas aqueous diffusion and scavenger receptor class B, type I (SR-BI)-mediated efflux transport free cholesterol to a wide variety of cholesterol acceptors (particles containing phospholipids, HDL, and lipidated apo-lipoproteins; LDL, etc), the ABCA1 pathway mediates the transport of cholesterol in a unidirectional manner, mainly to lipid-poor apoA-I. In contrast, the ABCG1 pathway is responsible for the transport of cholesterol to all the subfamily members of HDL. Although HDL-mediated cholesterol efflux is apoA-I-dependent, recent studies have suggested an involvement of the enzyme paraoxonase 1 (PON1). Cholesterol efflux is carried on by a number of factors such as genetic mutations, smoking, stress, and high-fat diets. It is attenuated with aging due to changes in the composition and structure of HDL, especially the phosphatidylcholine/sphingomyelin ratio, the fluidity of the phospholipidic layer, the concentration of apoA-I, and the activity of PON1. This review summarizes the findings that cholesterol homeostasis is disrupted with aging as a consequence of dysfunctional cholesterol efflux and the impairment of physiological functions.
Collapse
Affiliation(s)
- Hicham Berrougui
- Research Center on Aging, Sherbrooke University Geriatric Institute, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
63
|
Scheri RC, Lee J, Barofsky DF, Curtis LR. Chlordecone increased subcellular distribution of scavenger receptor class B type II to murine hepatic microsomes without altering cytosolic cholesterol binding proteins. Toxicol Lett 2009; 191:20-5. [PMID: 19666090 DOI: 10.1016/j.toxlet.2009.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
Pretreatment of male C57BL/6 mice with low doses of the persistent organochlorine pesticide, chlordecone (CD), stimulated biliary excretion of exogenous cholesterol (CH) up to 3-fold. Increased biliary excretion occurred without changes in hepatic ATP-binding cassette transporter G8 (ABCG8) of the bile canaliculus or scavenger receptor class B type I (SR-BI) of the sinusoidal surface. A variety of tissues express scavenger receptor class B type II (SR-BII) and this protein was identified as a splice variant from the SR-BI gene. Although the function of SR-BII has not been elucidated it may play a role in CH homeostasis and trafficking distinctly different than SR-BI. Western blotting demonstrated that a single dose of CD promoted subcellular distribution of SR-BII to murine hepatic microsomes about 2.2-fold when compared to controls without effect on liver crude membrane SR-BII content. This was consistent with increased vesicular CH trafficking. Relative quantification of hepatic cytosolic proteins in a fraction that sequestered [(14)C]CH by mass spectrometry (MS) indicated no role for cytosolic CH binding proteins in CD altered CH homeostasis. Western blotting verified no effect of CD on liver fatty acid-binding protein (L-FABP) in cytosol. MS detected a statistically significant increase in myosin-9, which was also consistent with increased vesicular trafficking.
Collapse
Affiliation(s)
- Richard C Scheri
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|
64
|
Sabahi A. Hepatitis C Virus entry: the early steps in the viral replication cycle. Virol J 2009; 6:117. [PMID: 19643019 PMCID: PMC2726125 DOI: 10.1186/1743-422x-6-117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/30/2009] [Indexed: 02/06/2023] Open
Abstract
Approximately 170 million are infected with the hepatitis C virus (HCV) world wide and an estimated 2.7 million are HCV RNA positive in the United States alone. The acute phase of the HCV infection, in majority of individuals, is asymptomatic. A large percentage of those infected with HCV are unable to clear the virus and become chronically infected. The study of the HCV replication cycle was hampered due to difficulties in growing and propagating the virus in an in vitro setting. The advent of the HCV pseudo particle (HCVpp) and HCV cell culture (HCVcc) systems have made possible the study of the HCV replication cycle, in vitro. Studies utilizing the HCVpp and HCVcc systems have increased our insight into the early steps of the viral replication cycle of HCV, such as the identification of cellular co-receptors for binding and entry. The aim of this article is to provide a review of the outstanding literature on HCV entry, specifically looking at cellular co-receptors involved and putting the data in the context of the systems used (purified viral envelope proteins, HCVpp system, HCVcc system and/or patient sera) and to also give a brief description of the cellular co-receptors themselves.
Collapse
Affiliation(s)
- Ali Sabahi
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| |
Collapse
|
65
|
Shi Z, Sun J, Guo H, Tu C. Genomic expression profiling of peripheral blood leukocytes of pigs infected with highly virulent classical swine fever virus strain Shimen. J Gen Virol 2009; 90:1670-1680. [DOI: 10.1099/vir.0.009415-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Classical swine fever (CSF), caused by a virus of the same name (CSFV), is a highly contagious swine pyrexic disease featuring extensive haemorrhagic lesions and leukopenia, but little is known about the molecular mechanisms of its pathogenesis. To gain insight into the interaction between the virus and host cells, microarray analyses were performed to detect alterations in genomic expression of pig peripheral blood leukocytes (PBLs) following CSFV infection. Three healthy pigs were inoculated with a lethal dose of highly virulent CSFV strain Shimen. PBLs were isolated at the onset of typical clinical signs and total RNA was subjected to microarray analyses with Affymetrix Porcine Genome Array GeneChips. Of all 20 201 pig genes arrayed in the chip, 1745 showed altered expression (up- or downregulation) after infection. These were classified into eight functional groups, relating to cell proliferation (3.6 %), immune response (2.1 %), apoptosis (1.4 %), kinase activity (1.4 %), signal transduction (1.4 %), transcription (0.7 %), receptor activity (0.7 %) and cytokines/chemokines (0.4 %). The remaining 88.3 % of genes had unknown functions. Alterations in genomic expression were confirmed by real-time RT-PCR of selected cellular genes and Western blotting of annexin 2, a cellular protein relating to virus infection. The observed expression changes of numerous genes involved in immune and inflammatory responses and in the apoptosis process indicate that CSFV has developed sophisticated mechanisms to cause leukopenia in infected pigs. These data provide a basis for exploring the molecular pathogenesis of CSFV infection through an understanding of the interaction between viral and cellular components.
Collapse
Affiliation(s)
- Zixue Shi
- College of Animal Science and Veterinary Medicine, Jilin University, 5333 XiAn Da Road, Changchun 130062, PR China
- Institute of Veterinary Sciences, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun 130062, PR China
| | - Jinfu Sun
- Institute of Veterinary Sciences, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun 130062, PR China
| | - Huancheng Guo
- Institute of Veterinary Sciences, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun 130062, PR China
| | - Changchun Tu
- Institute of Veterinary Sciences, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun 130062, PR China
| |
Collapse
|
66
|
de Beer MC, Webb NR, Whitaker NL, Wroblewski JM, Jahangiri A, van der Westhuyzen DR, de Beer FC. SR-BI selective lipid uptake: subsequent metabolism of acute phase HDL. Arterioscler Thromb Vasc Biol 2009; 29:1298-303. [PMID: 19304574 DOI: 10.1161/atvbaha.109.186502] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the interaction of SAA and SR-BI in remodeling of acute phase HDL (AP HDL). METHODS AND RESULTS We used SAA and SR-BI adenoviral vector expression models to study the interaction between these entities. SR-BI processing of mouse AP HDL generated progressively smaller discreet HDL particles with distinct apolipoprotein compositions. SR-BI actions segregated apolipoproteins with the smallest particles containing only apoA-I. Larger remnants contained apoA-I, apoA-II, and SAA. Small apoA-I only particles failed to associate with preformed HDL, whereas larger remnants readily did. The presence of SAA on SR-BI-processed HDL particles propelled apoA-I to a small lipid-poor form and accelerated apoA-I catabolism. CONCLUSIONS Data indicate that after core and surface HDL lipid perturbation by SR-BI, SAA propels apoA-I to a small lipid-poor form while accelerating HDL metabolism.
Collapse
Affiliation(s)
- Maria C de Beer
- Graduate Center for Nutritional Science, University of Kentucky Medical Center, Lexington, USA.
| | | | | | | | | | | | | |
Collapse
|
67
|
Dreux M, Dao Thi VL, Fresquet J, Guérin M, Julia Z, Verney G, Durantel D, Zoulim F, Lavillette D, Cosset FL, Bartosch B. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathog 2009; 5:e1000310. [PMID: 19229312 PMCID: PMC2636890 DOI: 10.1371/journal.ppat.1000310] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/23/2009] [Indexed: 12/11/2022] Open
Abstract
HCV entry into cells is a multi-step and slow process. It is believed that the
initial capture of HCV particles by glycosaminoglycans and/or lipoprotein
receptors is followed by coordinated interactions with the scavenger receptor
class B type I (SR-BI), a major receptor of high-density lipoprotein (HDL), the
CD81 tetraspanin, and the tight junction protein Claudin-1, ultimately leading
to uptake and cellular penetration of HCV via low-pH endosomes.
Several reports have indicated that HDL promotes HCV entry through interaction
with SR-BI. This pathway remains largely elusive, although it was shown that HDL
neither associates with HCV particles nor modulates HCV binding to SR-BI. In
contrast to CD81 and Claudin-1, the importance of SR-BI has only been addressed
indirectly because of lack of cells in which functional complementation assays
with mutant receptors could be performed. Here we identified for the first time
two cell types that supported HCVpp and HCVcc entry upon ectopic SR-BI
expression. Remarkably, the undetectable expression of SR-BI in rat hepatoma
cells allowed unambiguous investigation of human SR-BI functions during HCV
entry. By expressing different SR-BI mutants in either cell line, our results
revealed features of SR-BI intracellular domains that influence HCV infectivity
without affecting receptor binding and stimulation of HCV entry induced by
HDL/SR-BI interaction. Conversely, we identified positions of SR-BI ectodomain
that, by altering HCV binding, inhibit entry. Finally, we characterized
alternative ectodomain determinants that, by reducing SR-BI cholesterol uptake
and efflux functions, abolish HDL-mediated infection-enhancement. Altogether, we
demonstrate that SR-BI is an essential HCV entry factor. Moreover, our results
highlight specific SR-BI determinants required during HCV entry and
physiological lipid transfer functions hijacked by HCV to favor infection. More than 180 million people are chronically infected by hepatitis C virus (HCV),
a leading cause of liver failure and cancer, stimulating the need to fully
define the biology of HCV infection for developing novel and effective
therapeutics. During the first steps of infection, the virus is taken up and
penetrates hepatocytes. HCV entry is thought to be a coordinated multi-step
process mediated by specific factors, including CD81, Claudin-1, and the
scavenger receptor BI (SR-BI). Whereas the involvement of CD81 and Claudin-1 was
demonstrated by rendering susceptible cells that are otherwise refractory, SR-BI
complementation assays were lacking, raising questions as to its functions
during HCV entry. Here, we identify one hepatoma rat cell line, in which SR-BI
complementation assay and targeted mutagenesis could be performed. We therefore
demonstrate that SR-BI is an essential HCV entry factor. Our results shed light
on SR-BI intracellular domain functions in HCV entry, and, further, emphasize
the remarkable capacity of HCV to hijack the lipid transfer function of SR-BI,
hence favoring infection.
Collapse
Affiliation(s)
- Marlène Dreux
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - Viet Loan Dao Thi
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - Judith Fresquet
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | | | | | - Géraldine Verney
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - David Durantel
- Université de Lyon, UCB-Lyon1, IFR62; INSERM, U871; Hospices
civils de Lyon (HCL), Lyon, France
| | - Fabien Zoulim
- Université de Lyon, UCB-Lyon1, IFR62; INSERM, U871; Hospices
civils de Lyon (HCL), Lyon, France
| | - Dimitri Lavillette
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - François-Loïc Cosset
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Birke Bartosch
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
68
|
Fenske SA, Yesilaltay A, Pal R, Daniels K, Barker C, Quiñones V, Rigotti A, Krieger M, Kocher O. Normal hepatic cell surface localization of the high density lipoprotein receptor, scavenger receptor class B, type I, depends on all four PDZ domains of PDZK1. J Biol Chem 2008; 284:5797-806. [PMID: 19116202 DOI: 10.1074/jbc.m808211200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PDZK1 is a four PDZ domain-containing scaffold protein that binds to scavenger receptor class B, type I (SR-BI), the high density lipoprotein receptor, by its first PDZ domain (PDZ1). PDZK1 knock-out mice exhibit a >95% decrease in hepatic SR-BI protein and consequently an approximately 70% increase in plasma cholesterol in abnormally large high density lipoprotein particles. These defects are corrected by hepatic overexpression of full-length PDZK1 but not the PDZ1 domain alone, which partially restores SR-BI protein abundance but not cell surface expression or function. We have generated PDZK1 knock-out mice with hepatic expression of four PDZK1 transgenes encoding proteins with nested C-terminal truncations: pTEM, which lacks the three C-terminal residues (putative PDZ-binding motif), and PDZ1.2, PDZ1.2.3, or PDZ1.2.3.4, which contain only the first two, three, or four N-terminal PDZ domains, respectively, but not the remaining C-terminal sequences. Hepatic overexpression of pTEM restored normal hepatic SR-BI abundance, localization, and function. Hepatic overexpression of PDZ1.2 or PDZ1.2.3 partially restored SR-BI abundance ( approximately 12 or approximately 30% of wild type, respectively) but did not (PDZ1.2) or only slightly (PDZ1.2.3) restored hepatic SR-BI cell surface localization and function. Hepatic overexpression of PDZ1.2.3.4 completely restored SR-BI protein abundance, cell surface expression, and function (normalization of plasma cholesterol levels). Thus, all four PDZ domains in PDZK1, but not PDZ1-3 alone, are sufficient for its normal control of the abundance, localization, and therefore function of hepatic SR-BI, whereas the residues C-terminal to the PDZ4 domain, including the C-terminal putative PDZ-binding domain, are not required.
Collapse
Affiliation(s)
- Sara A Fenske
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Stamataki Z, Grove J, Balfe P, McKeating JA. Hepatitis C virus entry and neutralization. Clin Liver Dis 2008; 12:693-712, x. [PMID: 18625435 DOI: 10.1016/j.cld.2008.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The processes of hepatitis C virus (HCV) entry and antibody-mediated neutralization are intimately linked. The high frequency of neutralizing antibodies (nAbs) that inhibit E2-CD81 interaction(s) suggests that this is a major target for the humoral immune response. The observation that HCV can transmit to naive cells by means of CD81-dependent and -independent routes in vitro awaits further investigation to assess the significance in vivo but may offer new strategies for HCV to escape nAbs. The identification of claudins in the entry process highlights the importance of cell polarity in defining routes of HCV entry and release, with recent experiments suggesting a polarized route of viral entry into cells in vitro. In this review, the authors summarize the current understanding of the mechanism(s) defining HCV entry and the role of nAbs in controlling HCV replication.
Collapse
Affiliation(s)
- Zania Stamataki
- Division of Immunity and Infection, Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
| | | | | | | |
Collapse
|
70
|
Zhang X, Merkler KA, McLean MP. Characterization of regulatory intronic and exonic sequences involved in alternative splicing of scavenger receptor class B gene. Biochem Biophys Res Commun 2008; 372:173-8. [DOI: 10.1016/j.bbrc.2008.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/02/2008] [Indexed: 01/04/2023]
|
71
|
Fenske SA, Yesilaltay A, Pal R, Daniels K, Rigotti A, Krieger M, Kocher O. Overexpression of the PDZ1 domain of PDZK1 blocks the activity of hepatic scavenger receptor, class B, type I by altering its abundance and cellular localization. J Biol Chem 2008; 283:22097-104. [PMID: 18544532 DOI: 10.1074/jbc.m800029200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PDZK1 is a four-PDZ domain-containing scaffold protein that, via its first PDZ domain (PDZ1), binds to the C terminus of the high density lipoprotein (HDL) receptor scavenger receptor, class B, type I (SR-BI). Abolishing PDZK1 expression in PDZK1 knock-out (KO) mice leads to a post-transcriptional, tissue-specific decrease in SR-BI protein level and an increase in total plasma cholesterol carried in abnormally large HDL particles. Here we show that, although hepatic overexpression of PDZK1 restored normal SR-BI protein abundance and function in PDZK1 KO mice, hepatic overexpression of only the PDZ1 domain was not sufficient to restore normal SR-BI function. In wild-type mice, overexpression of the PDZ1 domain overcame the activity of the endogenous hepatic PDZK1, resulting in a 75% reduction in hepatic SR-BI protein levels and intracellular mislocalization of the remaining SR-BI. As a consequence, the plasma lipoproteins in PDZ1 transgenic mice resembled those in PDZK1 KO mice (hypercholesterolemia due to large HDL). These results indicate that the PDZ1 domain can control the abundance and localization, and therefore the function, of hepatic SR-BI and that structural features of PDZK1 in addition to its SR-BI-binding PDZ1 domain are required for normal hepatic SR-BI regulation.
Collapse
Affiliation(s)
- Sara A Fenske
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Kocher O, Yesilaltay A, Shen CH, Zhang S, Daniels K, Pal R, Chen J, Krieger M. Influence of PDZK1 on lipoprotein metabolism and atherosclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:310-6. [PMID: 18342019 PMCID: PMC2421013 DOI: 10.1016/j.bbadis.2008.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/15/2008] [Accepted: 02/01/2008] [Indexed: 11/23/2022]
Abstract
PDZK1 is a scaffold protein containing four PDZ protein interaction domains, which bind to the carboxy termini of a number of membrane transporter proteins, including ion channels (e.g., CFTR) and cell surface receptors. One of these, the HDL receptor, scavenger receptor class B type I (SR-BI), exhibits a striking, tissue-specific dependence on PDZK1 for its expression and activity. In PDZK1 knockout (KO) mice there is a marked reduction of SR-BI protein expression (approximately 95%) in the liver, but not in steroidogenic tissues or, as we show in this report, in bone marrow- or spleen-derived macrophages, or lung-derived endothelial cells. Because of hepatic SR-BI deficiency, PDZK1 KO mice exhibit dyslipidemia characterized by elevated plasma cholesterol carried in abnormally large HDL particles. Here, we show that inactivation of the PDZK1 gene promotes the development of aortic root atherosclerosis in apolipoprotein E (apoE) KO mice fed with a high fat/high cholesterol diet. However, unlike complete SR-BI-deficiency in SR-BI/apoE double KO mice, PDZK1 deficiency in PDZK1/apoE double knockout mice did not result in development of occlusive coronary artery disease or myocardial infarction, presumably because of their residual expression of SR-BI. These findings demonstrate that deficiency of an adaptor protein essential for normal expression of a lipoprotein receptor promotes atherosclerosis in a murine model. They also define PDZK1 as a member of the family of proteins that is instrumental in preventing cardiovascular disease by maintaining normal lipoprotein metabolism.
Collapse
Affiliation(s)
- Olivier Kocher
- Department of Pathology, Beth Israel-Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Cai L, Ji A, de Beer FC, Tannock LR, van der Westhuyzen DR. SR-BI protects against endotoxemia in mice through its roles in glucocorticoid production and hepatic clearance. J Clin Invest 2008; 118:364-75. [PMID: 18064300 DOI: 10.1172/jci31539] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 10/08/2007] [Indexed: 01/11/2023] Open
Abstract
Septic shock results from an uncontrolled inflammatory response, mediated primarily by LPS. Cholesterol transport plays an important role in the host response to LPS, as LPS is neutralized by lipoproteins and adrenal cholesterol uptake is required for antiinflammatory glucocorticoid synthesis. In this study, we show that scavenger receptor B-I (SR-BI), an HDL receptor that mediates HDL cholesterol ester uptake into cells, is required for the normal antiinflammatory response to LPS-induced endotoxic shock. Despite elevated plasma HDL levels, SR-BI-null mice displayed an uncontrollable inflammatory cytokine response and a markedly higher lethality rate than control mice in response to LPS. In addition, SR-BI-null mice showed a lack of inducible glucocorticoid synthesis in response to LPS, bacterial infection, stress, or ACTH. Glucocorticoid insufficiency in SR-BI-null mice was due to primary adrenal malfunction resulting from deficient cholesterol delivery from HDL. Furthermore, corticosterone supplementation decreased the sensitivity of SR-BI-null mice to LPS. Plasma from control and SR-BI-null mice exhibited a similar ability to neutralize LPS, whereas SR-BI-null mice showed decreased plasma clearance of LPS into the liver and hepatocytes compared with normal mice. We conclude that SR-BI in mice is required for the antiinflammatory response to LPS-induced endotoxic shock, likely through its essential role in facilitating glucocorticoid production and LPS hepatic clearance.
Collapse
Affiliation(s)
- Lei Cai
- Department of Internal Medicine, Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
74
|
Scavenger receptor of class B expressed by osteoblastic cells are implicated in the uptake of cholesteryl ester and estradiol from LDL and HDL3. J Bone Miner Res 2008; 23:326-37. [PMID: 17967141 DOI: 10.1359/jbmr.071022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Lipoproteins transport many vitamins and hormones that have been shown to be necessary for bone formation. However, the metabolism of LDL and HDL3 by bone-forming osteoblastic cells remains unknown. Here we report that osteoblastic cells express scavenger receptors of class B that are implicated in the uptake of cholesterol and estradiol from LDL and HDL3. INTRODUCTION The bone tissue is continuously remodeled, and its integrity requires a balance between osteoclastic bone resorption and osteoblastic bone formation. Recent studies have reported the importance of triglyceride-rich lipoproteins for the delivery of lipophilic vitamins necessary for normal bone metabolism. However, the ability of osteoblastic cells to process low- and high-density lipoproteins (LDL and HDL3) and the receptors involved remain unknown. MATERIALS AND METHODS Binding, competition, degradation, and selective uptake assays with LDL and HDL3 radiolabeled in their protein and lipid moieties or with [3H]estradiol were conducted on human osteoblasts (MG-63 cell line and primary cultures of human osteoblasts [hOB cells]) and on mouse osteoblasts (MC3T3-E1 cell line and primary cultures of murine osteoblasts [mOB cells]). The expression of scavenger receptors (SRs) by osteoblastic cells was determined by RT-PCR and Western immunoblotting, and cellular localization was assessed by sucrose gradient fractionation. RESULTS Osteoblastic cells were able to bind, internalize, and degrade HDL3 and LDL and are capable of selectively taking up cholesteryl esters (CEs) from these lipoproteins. Also, we provide evidence that osteoblastic cells express SR-BI, SR-BII, and CD36 (SR-Bs receptors) and that these receptors are localized in membrane lipid rafts or caveolin-rich membranes. The selective uptake of CE from LDL and HDL3 by osteoblastic cells was strongly inhibited by the known SR-B ligand oxidized LDL, indicating that SR-B receptors are responsible for the selective uptake. Finally, estradiol carried by LDL and HDL3 was selectively transferred to the osteoblastic cells also through SR-B receptors. CONCLUSIONS Overall, our results suggest a novel mechanism for the routing of cholesterol and estradiol to osteoblasts involving the metabolism of LDL and HDL3 by SR-B receptors.
Collapse
|
75
|
Scavenger receptor class B is required for hepatitis C virus uptake and cross-presentation by human dendritic cells. J Virol 2008; 82:3466-79. [PMID: 18216094 DOI: 10.1128/jvi.02478-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Class B scavenger receptors (SR-Bs) bind lipoproteins and play an important role in lipid metabolism. Most recently, SR-B type I (SR-BI) and its splicing variant SR-BII have been found to mediate bacterial adhesion and cytosolic bacterial invasion in mammalian cells. In this study, we demonstrate that SR-BI is a key host factor required for hepatitis C virus (HCV) uptake and cross-presentation by human dendritic cells (DCs). Whereas monocytes and T and B cells were characterized by very low or undetectable SR-BI expression levels, human DCs demonstrated a high level of cell surface expression of SR-BI similar to that of primary human hepatocytes. Antibodies targeting the extracellular loop of SR-BI efficiently inhibited HCV-like particle binding, uptake, and cross-presentation by human DCs. Moreover, human high-density lipoprotein specifically modulated HCV-like particle binding to DCs, indicating an interplay of HCV with the lipid transfer function of SR-BI in DCs. Finally, we demonstrate that anti-SR-BI antibodies inhibit the uptake of cell culture-derived HCV (HCVcc) in DCs. In conclusion, these findings identify a novel function of SR-BI for viral antigen uptake and recognition and may have an important impact on the design of HCV vaccines and immunotherapeutic approaches aiming at the induction of efficient antiviral immune responses.
Collapse
|
76
|
Zhang X, Moor AN, Merkler KA, Liu Q, McLean MP. Regulation of alternative splicing of liver scavenger receptor class B gene by estrogen and the involved regulatory splicing factors. Endocrinology 2007; 148:5295-304. [PMID: 17673517 DOI: 10.1210/en.2007-0376] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The scavenger receptor class B isoforms (SR-B) type I and type II mediate the selective uptake of high-density lipoprotein cholesterol and promote reverse cholesterol transport, an important atherosclerosis protection mechanism, in the liver. Previously it was shown that the hepatic expression of SR-BI and SR-BII is regulated by estrogen. In the present study, we demonstrate that estrogen differentially regulates expression of the glycosylated and nonglycosylated forms of SR-BI and SR-BII in rat liver and hepatic cells. We report that estrogen mainly induces the down-regulation of glycosylated SR-BI and the up-regulation of nonglycosylated SR-BII. To study how estrogen regulates expression of the SR-B isoforms, we constructed a SR-B minigene containing minimal genomic sequences and were able to demonstrate that estrogen directly regulates the pre-mRNA alternative splicing of the exogenously expressed SR-B minigene in hepatic cells. Furthermore, we showed that the overexpression of splicing factors alternative splicing factor/splicing factor 2, Transformer (Tra)-2alpha, and Tra2beta changes the splicing pattern of SR-B dramatically, whereas other splicing factors, such as heterogeneous nuclear ribonucleoprotein-G, SC-35, and arginine/serine-rich p40, had no effect. We also demonstrate that estrogen regulates Tra2beta expression levels in liver cells. These studies suggest that estrogen may regulate SR-B isoform expression at both the RNA splicing and posttranslational modification levels and that, for alternative splicing regulation, estrogen may function by regulating the expression of the splicing factors alternative splicing factor/splicing factor 2, Tra2alpha, and especially Tra2beta.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
77
|
Miranda-Jiménez L, Murphy BD. Lipoprotein receptor expression during luteinization of the ovarian follicle. Am J Physiol Endocrinol Metab 2007; 293:E1053-61. [PMID: 17698983 DOI: 10.1152/ajpendo.00554.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ovarian follicles luteinize after ovulation, requiring structural and molecular remodeling along with exponential increases in steroidogenesis. Cholesterol substrates for luteal steroidogenesis are imported via scavenger receptor-BI (SR-BI) and the low-density lipoprotein (LDL) receptor from circulating high-density lipoproteins and LDL. SR-BI mRNA is expressed in pig ovaries at all stages of folliculogenesis and in the corpus luteum (CL). An 82-kDa form of SR-BI predominates throughout, is weakly present in granulosa cells, and is robustly expressed in the CL, along with the less abundant 57-kDa form. Digestion of N-linked carbohydrates substantially reduced the SR-BI mass in luteal cells, indicating that differences between forms is attributable to glycosylation. Immunohistochemistry revealed SR-BI to be concentrated in the cytoplasm of follicular granulosa cells, although found mostly at the periphery of luteal cells. To examine receptor dynamics during gonadotropin-induced luteinization, pigs were treated with an ovulatory stimulus, and ovaries were collected at intervals to ovulation. SR-BI in granulosa cell cytoplasm increased through the periovulatory period, with migration to the cell periphery as the CL matured. In vitro culture of follicles with human chorionic gonadotropin induced time-dependent upregulation of 82-kDa SR-BI in granulosa cells. SR-BI and LDL receptor were reciprocally expressed, with the latter highest in follicular granulosa cells, declining precipitously with CL formation. We conclude that luteinization causes upregulation of SR-BI expression, its posttranslational maturation by glycosylation, and insertion into luteal cell membranes. Expression of the LDL receptor is extinguished during luteinization, indicating dynamic regulation of cholesterol importation to maintain elevated steroid output by the CL.
Collapse
Affiliation(s)
- Leonor Miranda-Jiménez
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Québec, Canada J2S7C6
| | | |
Collapse
|
78
|
Sun B, Boyanovsky BB, Connelly MA, Shridas P, van der Westhuyzen DR, Webb NR. Distinct mechanisms for OxLDL uptake and cellular trafficking by class B scavenger receptors CD36 and SR-BI. J Lipid Res 2007; 48:2560-70. [PMID: 17876058 DOI: 10.1194/jlr.m700163-jlr200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modified forms of LDL, including oxidized low density lipoprotein (OxLDL), contribute to macrophage lipid accumulation in the vessel wall. Despite the pathophysiological importance of uptake pathways for OxLDL, the molecular details of OxLDL endocytosis by macrophages are not well understood. Studies in vitro demonstrate that the class B scavenger receptor CD36 mediates macrophage uptake and degradation of OxLDL. Although the closely related scavenger receptor class B type I (SR-BI) binds OxLDL with high affinity, evidence that SR-BI plays a role in OxLDL metabolism is lacking. In this study, we directly compared OxLDL uptake and degradation by CD36 and SR-BI. Our results indicate that although CD36 and SR-BI internalize OxLDL, SR-BI mediates significantly less OxLDL degradation. Endocytosis of OxLDL by both SR-BI and CD36 is independent of caveolae, microtubules, and actin cytoskeleton. However, OxLDL uptake by CD36, but not SR-BI, is dependent on dynamin. The analysis of chimeric SR-BI/CD36 receptors shows that the CD36 C-terminal cytoplasmic tail is necessary and sufficient for dynamin-dependent OxLDL internalization by class B scavenger receptors. These findings indicate that different mechanisms are involved in OxLDL uptake by SR-BI and CD36, which may segregate these two structurally homologous receptors at the cell surface, leading to differences in intracellular trafficking and degradation.
Collapse
Affiliation(s)
- Bing Sun
- Graduate Center for Nutritional Sciences, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
79
|
Orlowski S, Coméra C, Tercé F, Collet X. Lipid rafts: dream or reality for cholesterol transporters? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:869-85. [PMID: 17576551 DOI: 10.1007/s00249-007-0193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 01/12/2023]
Abstract
As a key constituent of the cell membranes, cholesterol is an endogenous component of mammalian cells of primary importance, and is thus subjected to highly regulated homeostasis at the cellular level as well as at the level of the whole body. This regulation requires adapted mechanisms favoring the handling of cholesterol in aqueous compartments, as well as its transfer into or out of membranes, involving membrane proteins. A membrane exhibits functional properties largely depending on its lipid composition and on its structural organization, which very often involves cholesterol-rich microdomains. Then there is the appealing possibility that cholesterol may regulate its own transmembrane transport at a purely functional level, independently of any transcriptional regulation based on cholesterol-sensitive nuclear factors controling the expression level of lipid transport proteins. Indeed, the main cholesterol "transporters" presently believed to mediate for instance the intestinal absorption of cholesterol, that are SR-BI, NPC1L1, ABCA1, ABCG1, ABCG5/G8 and even P-glycoprotein, all present privileged functional relationships with membrane cholesterol-containing microdomains. In particular, they all more or less clearly induce membrane disorganization, supposed to facilitate cholesterol exchanges with the close aqueous medium. The actual lipid substrates handled by these transporters are not yet unambiguously determined, but they likely concern the components of membrane microdomains. Conversely, raft alterations may provide specific modulations of the transporter activities, as well as they can induce indirect effects via local perturbations of the membrane. Finally, these cholesterol transporters undergo regulated intracellular trafficking, with presumably some relationships to rafts which remain to be clarified.
Collapse
Affiliation(s)
- Stéphane Orlowski
- SB2SM/IBTS and URA 2096 CNRS, CEA, Centre de Saclay, 91191, Gif-sur-Yvette cedex, France.
| | | | | | | |
Collapse
|
80
|
Grove J, Huby T, Stamataki Z, Vanwolleghem T, Meuleman P, Farquhar M, Schwarz A, Moreau M, Owen JS, Leroux-Roels G, Balfe P, McKeating JA. Scavenger receptor BI and BII expression levels modulate hepatitis C virus infectivity. J Virol 2007; 81:3162-9. [PMID: 17215280 PMCID: PMC1866051 DOI: 10.1128/jvi.02356-06] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/03/2007] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) enters cells via a pH- and clathrin-dependent endocytic pathway. Scavenger receptor BI (SR-BI) and CD81 are important entry factors for HCV internalization into target cells. The SR-BI gene gives rise to at least two mRNA splice variants, SR-BI and SR-BII, which differ in their C termini. SR-BI internalization remains poorly understood, but SR-BII is reported to endocytose via a clathrin-dependent pathway, making it an attractive target for HCV internalization. We demonstrate that HCV soluble E2 can interact with human SR-BI and SR-BII. Increased expression of SR-BI and SR-BII in the Huh-7.5 hepatoma cell line enhanced HCV strain J6/JFH and JFH infectivity, suggesting that endogenous levels of these receptors limit infection. Elevated expression of SR-BI, but not SR-BII, increased the rate of J6/JFH infection, which may reflect altered intracellular trafficking of the splice variants. In human plasma, HCV particles have been reported to be complexed with lipoproteins, suggesting an indirect interaction of the virus with SR-BI and other lipoprotein receptors. Plasma from J6/JFH-infected uPA-SCID mice transplanted with human hepatocytes demonstrates an increased infectivity for SR-BI/II-overexpressing Huh-7.5 cells. Plasma-derived J6/JFH infectivity was inhibited by an anti-E2 monoclonal antibody, suggesting that plasma virus interaction with SR-BI was glycoprotein dependent. Finally, anti-SR-BI antibodies inhibited the infectivity of cell culture- and plasma-derived J6/JFH, suggesting a critical role for SR-BI/II in HCV infection.
Collapse
Affiliation(s)
- Joe Grove
- Division of Immunity and Infection, Institute for Biomedical Research, The Medical School, Birmingham University, Edgbaston B14 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Yang Y, Zhang Z, Jiang W, Gao L, Zhao G, Zheng Z, Wang M, Si S, Hong B. Identification of Novel Human High-Density Lipoprotein Receptor Up-regulators Using a Cell-Based High-Throughput Screening Assay. ACTA ACUST UNITED AC 2007; 12:211-9. [PMID: 17259591 DOI: 10.1177/1087057106297568] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Scavenger receptor class B type I (SR-BI) is the high-affinity high-density lipoprotein (HDL) receptor, and CLA-1 is the human homologue of the murine SR-BI. CLA-1/SR-BI receptor has been suggested as a new preventative and/or therapeutic target for atherosclerosis due to its pivotal role in overall HDL cholesterol (HDL-C) metabolism and its antiatherogenic activity in vivo. To search for active compounds that can increase CLA-1 transcription, a novel cell-based assay was developed for application in high-throughput screening (HTS). Human hepatoma HepG2 cells were transfected with a CLA-1-promoter-luciferase reporter gene construct, and the stable transfected cell line was selected and named CLAp-LUC HepG2. With rosiglitazone as a positive control, this stable cell line was used to establish a specific CLA-1 gene expression assay in a 96-well microplate format. The evaluating parameter Z' value of 0.64 showed that this cell-based HTS assay was robust and reliable. Screening of 6000 microbial secondary metabolite crude extracts identified 8 positive strains. Between 2 identified CLA-1 up-regulators produced by actinomycete strain 04-4776, 4776B may stimulate not only the expression of CLA-1 on the transcriptional and translational levels but also the activity of CLA-1 to uptake the HDL-C in HepG2 cells. The active compounds originated from this HTS assay may be developed to drug candidates or lead compounds for new antiatherosclerosis agents.
Collapse
MESH Headings
- Actinomycetaceae/metabolism
- Biological Assay/methods
- Carbocyanines
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Fermentation
- Fluorescent Dyes
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Humans
- Hydroxyl Radical/chemistry
- Isoflavones/isolation & purification
- Isoflavones/pharmacology
- Lipoproteins, HDL/genetics
- Lipoproteins, HDL/metabolism
- Liver Neoplasms/pathology
- Luciferases/metabolism
- PPAR gamma/agonists
- Receptors, Lipoprotein/genetics
- Receptors, Lipoprotein/metabolism
- Recombinant Fusion Proteins/metabolism
- Rosiglitazone
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
- Thiazolidinediones/pharmacology
- Transcription, Genetic/drug effects
- Up-Regulation
Collapse
Affiliation(s)
- Yuan Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Kleveland EJ, Syvertsen BL, Ruyter B, Vegusdal A, Jørgensen SM, Gjøen T. Characterization of scavenger receptor class B, type I in Atlantic salmon (Salmo salar L.). Lipids 2006; 41:1017-27. [PMID: 17263301 DOI: 10.1007/s11745-006-5052-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The scavenger receptor class B, type I (SR-BI) is an important player in regulation of mammalian lipid homeostasis. We therefore wanted to study this receptor in Atlantic salmon (Salmo salar L.), which requires a diet with particular high lipid content. We have for the first time cloned and characterized SR-BI from a salmonid fish. The predicted 494 amino acid protein contained two transmembrane domains, several putative N-glycosylation sites, and showed 72% sequence identity with the predicted homolog from zebrafish. SR-BI expression was analyzed by reverse transcription Real-Time PCR in several tissues, and a high relative expression in salmon midgut was detected, which may suggest that SR-BI has a role in uptake of lipids from the diet. We also expressed a construct of salmon myc-tagged SR-BI in salmon TO cells and HeLa cells, which gave a protein of approximately 80 kDa on reducing SDS-PAGE using an antibody against the myc-epitope. Immunofluorescence microscopy analyses of the salmon SR-BI protein in transiently transfected HeLa cells revealed staining in the cell periphery and in some intracellular membranes, but not in the nucleus, which indicated that the salmon protein may be a functional membrane protein. We also observed a high degree of co-localization using an anti-peptide SR-BI antiserum. We found that 20 microg mL(-1) insulin up-regulated the SR-BI mRNA levels in primary cultures of salmon hepatocytes relative to untreated cells. Oleic acid, EPA, DHA, or dexamethasone did not affect the relative expression of SR-BI in this liver model system. In conclusion, the salmon SR-BI cDNA encoded a protein with several features common to those of mammalian species. SR-BI gene expression was high in the intestine, which leads us to propose that SR-BI may contribute to the uptake of lipids from the diet.
Collapse
Affiliation(s)
- E J Kleveland
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
83
|
Brundert M, Heeren J, Bahar-Bayansar M, Ewert A, Moore KJ, Rinninger F. Selective uptake of HDL cholesteryl esters and cholesterol efflux from mouse peritoneal macrophages independent of SR-BI. J Lipid Res 2006; 47:2408-21. [PMID: 16926440 DOI: 10.1194/jlr.m600136-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) and facilitates the efflux of unesterified cholesterol. SR-BI expression in macrophages presumably plays a role in atherosclerosis. The role of SR-BI for selective CE uptake and cholesterol efflux in macrophages was explored. Macrophages and HDL originated from wild-type (WT) or SR-BI knockout (KO; homozygous) mice. For uptake, macrophages were incubated in medium containing 125I-/3H-labeled HDL. For lipid removal, [3H]cholesterol efflux was analyzed using HDL as acceptor. Selective uptake of HDL CE ([3H]cholesteryl oleyl ether - 125I-tyramine cellobiose) was similar in WT and SR-BI KO macrophages. Radiolabeled SR-BI KO-HDL yielded a lower rate of selective uptake compared with WT-HDL in WT and SR-BI KO macrophages. Cholesterol efflux was similar in WT and SR-BI KO cells using HDL as acceptor. SR-BI KO-HDL more efficiently promoted cholesterol removal compared with WT-HDL from both types of macrophages. Macrophages selectively take up HDL CE independently of SR-BI. Additionally, in macrophages, there is substantial cholesterol efflux that is not mediated by SR-BI. Therefore, SR-BI-independent mechanisms mediate selective CE uptake and cholesterol removal. SR-BI KO-HDL is an inferior donor for selective CE uptake compared with WT-HDL, whereas SR-BI KO-HDL more efficiently promotes cholesterol efflux.
Collapse
Affiliation(s)
- May Brundert
- University Hospital Hamburg Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
84
|
Post SM, Groenendijk M, van der Hoogt CC, Fievet C, Luc G, Hoekstra M, Princen HMG, Staels B, Rensen PCN. Cholesterol 7alpha-hydroxylase deficiency in mice on an APOE*3-Leiden background increases hepatic ABCA1 mRNA expression and HDL-cholesterol. Arterioscler Thromb Vasc Biol 2006; 26:2724-30. [PMID: 17008588 DOI: 10.1161/01.atv.0000247260.42560.e1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE High-density lipoprotein (HDL) plays a key role in protection against development of atherosclerosis by reducing inflammation, protecting against LDL oxidation, and promoting reverse cholesterol transport from peripheral tissues to the liver for secretion into bile. Cholesterol 7alpha-hydroxylase (Cyp7a1) catalyzes the rate-limiting step in the intrahepatic conversion of cholesterol to bile acids that may have a role in HDL metabolism. We investigated the effect of Cyp7a1 deficiency on HDL metabolism in APOE*3-Leiden transgenic mice. METHODS AND RESULTS Reduced bile acid biosynthesis in Cyp7a1-/-.APOE*3-Leiden mice versus APOE*3-Leiden mice did not affect total plasma cholesterol levels, but the distribution of cholesterol over various lipoproteins was different. Cholesterol was decreased in apoB-containing lipoproteins (ie, VLDL and IDL/LDL), whereas cholesterol was increased in HDL. The activity of PLTP and LCAT, which play a role in HDL catabolism, were not changed, and neither was HDL clearance. However, the hepatic cholesterol content was 2-fold increased, which was accompanied by a 2-fold elevated expression of hepatic ABCA1 and increased rate of cholesterol efflux from the liver to HDL. CONCLUSIONS Strongly reduced bile acid synthesis in Cyp7a1-/-.APOE*3-Leiden mice leads to increased plasma HDL-cholesterol levels, as related to an increased hepatic expression of ABCA1.
Collapse
Affiliation(s)
- Sabine M Post
- TNO-Quality of Life, Department of Biomedical Research, Gaubius Laboratory, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Akpovi CD, Yoon SR, Vitale ML, Pelletier RM. The predominance of one of the SR-BI isoforms is associated with increased esterified cholesterol levels not apoptosis in mink testis. J Lipid Res 2006; 47:2233-47. [PMID: 16861621 DOI: 10.1194/jlr.m600162-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI) contributes to HDL-mediated cellular cholesterol efflux and is a phagocytosis-inducing phospholipid phosphatidylserine receptor in rat Sertoli cells, whereas the spliced variant of the SR-B gene, SR-BII, is implicated in the efflux of free cholesterol in macrophages. This study aimed to assess whether spontaneous autoimmune orchitis (AIO), which causes impaired clearance of apoptotic germ cells and spermatogenic arrest, involves SR-BI, SR-BII, and/or cholesterol. The levels measured during development and the annual reproductive cycle in normal mink were compared with those in mink with spontaneous AIO. Time periods with lowest tubular esterified cholesterol (EC) levels showed maximal SR-BI and SR-BII levels, and the periods when one or the other SR-BI isoform predominated showed increased EC levels and spermatogenic arrest in normal mink seminiferous tubules. In tubules with AIO, the predominance of only one or the other SR-BI isoform was the reverse of that measured in normal tubules, and it was associated with an increase in EC levels but not with apoptosis levels. SR-BI and SR-BII levels were not correlated with serum testosterone levels. SR-BI mainly localized to the Leydig cell, germ cell, and Sertoli cell surface, where its distribution was stage-specific. SR-BII was principally intracellular. Tubules from testes with AIO showed a deregulation of cholesterol homeostasis and SR-BI expression but relatively unchanged apoptosis levels. These results suggest that the expression of both SR-BI isoforms is required for the maintenance of low EC levels and that the predominance of only one isoform is associated with the accumulation of EC but not with apoptosis in the tubules.
Collapse
Affiliation(s)
- Casimir D Akpovi
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
86
|
Lopez D, McLean MP. Activation of the rat scavenger receptor class B type I gene by PPARalpha. Mol Cell Endocrinol 2006; 251:67-77. [PMID: 16584836 DOI: 10.1016/j.mce.2006.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 02/16/2006] [Accepted: 02/23/2006] [Indexed: 11/25/2022]
Abstract
Peroxisomal proliferator activated receptor alpha (PPARalpha) is activated by fibrate drugs which are known to protect against atherosclerosis. The present study examines the effects of PPARalpha on SR-BI expression. For this study, a rat SR-BI promoter-luciferase reporter gene construct was co-transfected into different cell lines with expression vectors that encode for PPARalpha+/-retinoic X receptor alpha (RXRalpha). PPARalpha/RXR increased the activity of the SR-BI promoter, an effect that was enhanced by clofibrate. Sequence analysis of the rat SR-BI promoter revealed the presence of a putative peroxisomal proliferator response element (PPRE) at bp -1,622. Electrophoretic mobility shift assays demonstrated that PPARalpha and RXRalpha are able to bind to the SR-BI PPRE motif. In addition, mutational analysis studies confirmed that this PPRE motif is responsible for the PPARalpha/RXRalpha-dependent activation of the rat SR-BI promoter in the cell lines examined.
Collapse
Affiliation(s)
- Dayami Lopez
- Department of Obstetrics and Gynecology, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd., MDC 37, Tampa, 33612, USA
| | | |
Collapse
|
87
|
Sun B, Eckhardt ERM, Shetty S, van der Westhuyzen DR, Webb NR. Quantitative analysis of SR-BI-dependent HDL retroendocytosis in hepatocytes and fibroblasts. J Lipid Res 2006; 47:1700-13. [PMID: 16705213 DOI: 10.1194/jlr.m500450-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previous studies have suggested that HDL retroendocytosis may play a role in scavenger receptor class B type I (SR-BI)-dependent selective lipid uptake in a cell-specific manner. To investigate this possibility, we developed methods to quantitatively measure HDL uptake and resecretion in fibroblast (COS-7) and hepatocyte (HepG2) cells expressing exogenous SR-BI. Approximately 17% and 24% of HDL associated in an SR-BI-dependent manner with COS-7 and HepG2 cells, respectively, accumulates intracellularly after a 10 min incubation. To determine whether this intracellular HDL undergoes retroendocytosis, we developed a pulse-chase assay whereby internalized biotinylated (125)I-HDL(3) secreted from cells is quantitatively precipitated from cell supernatants using immobilized streptavidin. Our results show a rapid secretion of a portion of intracellular HDL from both cell types (representing 4-7% of the total cell-associated HDL) that is almost complete within 30 min (half-life approximately 10 min). In COS-7 cells, the calculated rate of HDL secretion ( approximately 0.5 ng HDL/mg/min) was >30-fold slower than the rate of SR-BI-dependent selective cholesteryl ester (CE) uptake ( approximately 17 ng HDL/mg/min), whereas the rate of release of HDL from the cell surface ( approximately 19 ng HDL/mg/min) was similar to the rate of selective CE uptake. Notably, the rate of SR-BI-dependent HDL resecretion in COS-7 and HepG2 cells was similar. BLT1, a compound that inhibits selective CE uptake, does not alter the amount of SR-BI-mediated HDL retroendocytosis in COS-7 cells. From these data, we conclude that HDL retroendocytosis in COS-7 and HepG2 cells is similar and that the vast majority of SR-BI-dependent selective uptake occurs at the cell surface in both cell types.
Collapse
Affiliation(s)
- Bing Sun
- Department of Internal Medicine, Graduate Center for Nutritional Sciences, University of Kentucky Medical Center, Lexington, 40536, USA
| | | | | | | | | |
Collapse
|
88
|
Lopez D, McLean MP. Estrogen regulation of the scavenger receptor class B gene: Anti-atherogenic or steroidogenic, is there a priority? Mol Cell Endocrinol 2006; 247:22-33. [PMID: 16297529 DOI: 10.1016/j.mce.2005.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 10/13/2005] [Accepted: 10/13/2005] [Indexed: 02/06/2023]
Abstract
High density lipoprotein (HDL) participates in reverse cholesterol transport and in the delivery of cholesterol to the liver and steroidogenic tissues by a mechanism called "selective lipid uptake" which is mediated by the HDL receptor, scavenger receptor B type I (SR-BI). Overexpression of SR-BI suppresses atherosclerosis by increasing reverse cholesterol transport. In contrast, genetic ablation of SR-BI has a negative effect on cardiovascular physiology in both males and females and a gender specific negative impact on female fertility. Cholesterol is essential for mammalian embryonic development as a necessary component of cell membranes and as a substrate for steroidogenesis. The SR-BI receptor is highly expressed in the human placenta allowing the growing fetus to obtain a considerable portion of cholesterol from maternal lipoproteins. Estrogen, which plays an important role in maintaining pregnancy, has been shown to enhance plasma HDL levels and promote reverse cholesterol transport. Since SR-BI is the major determinant of serum HDL levels, direct regulation of the SR-BI gene by estrogen is theorized. The objective of this manuscript is to summarize the current information related to estrogen regulation of the gene that codes for the SR-BI receptor.
Collapse
Affiliation(s)
- Dayami Lopez
- Department of Obstetrics & Gynecology, University of South Florida, College of Medicine, 12901 Bruce B Downs Boulevard, MDC 37, Tampa, FL 33612, USA
| | | |
Collapse
|
89
|
Eckhardt ERM, Cai L, Shetty S, Zhao Z, Szanto A, Webb NR, Van der Westhuyzen DR. High density lipoprotein endocytosis by scavenger receptor SR-BII is clathrin-dependent and requires a carboxyl-terminal dileucine motif. J Biol Chem 2006; 281:4348-53. [PMID: 16368683 DOI: 10.1074/jbc.m513154200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high density lipoprotein (HDL) receptor Scavenger Receptor BII (SR-BII) is encoded by an alternatively spliced mRNA from the SR-BI gene and is expressed in various tissues. SR-BII protein differs from SR-BI only in the carboxyl-terminal cytoplasmic tail, which, as we showed previously, must contain a signal that confers predominant intracellular expression and rapid endocytosis of HDL. We have shown that SR-BII mediates HDL endocytosis through aclathrin-dependent, caveolae-independent pathway. Two candidate amino acid motifs were identified in the tail that could mediate association with clathrin-containing endocytic vesicles: a putative dileucine motif at position 492-493 and an overlapping tyrosine-based YXXZ motif starting at position 489. Although substitution of tyrosine at position 489 with alanine or histidine did not affect endocytosis, substitution L492A resulted in increased surface binding of HDL and reduced HDL particle endocytosis. Substitution L493A had a less dramatic effect. No other regions in the carboxyl-terminal tail appeared to contain motifs required for HDL endocytosis. Substitutions of leucine at position 492 with the hydrophobic amino acids valine or phenylalanine also reduced HDL endocytosis, stressing the importance of leucine at this position. Introducing the SR-BII YTPLL motif into the carboxyl-terminal cytoplasmic tail of SR-BI converted SR-BI into an endocytic receptor resembling SR-BII. These results demonstrated that SR-BII differs from SR-BI in subcellular localization and trafficking and suggest that the two isoforms differ in the manner in which they target ligands intracellularly.
Collapse
Affiliation(s)
- Erik R M Eckhardt
- Department of Internal Medicine, University of Kentucky, Lexington, 40536-0200, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Truong TQ, Aubin D, Bourgeois P, Falstrault L, Brissette L. Opposite effect of caveolin-1 in the metabolism of high-density and low-density lipoproteins. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:24-36. [PMID: 16443388 DOI: 10.1016/j.bbalip.2005.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 12/06/2005] [Accepted: 12/12/2005] [Indexed: 11/21/2022]
Abstract
Receptors of the scavenger class B family were reported to be localized in caveolae, the cell surface microdomains rich in free cholesterol and glycosphyngolipids, which are characterized by the presence of caveolin-1. Parenchymal hepatic and hepatoma HepG2 cells express very low levels of caveolin-1. In the present study, stable transformants of HepG2 cells expressing caveolin-1 were generated to address the effect of caveolin-1 on receptor activity. Compared to normal cells, these cells show higher (125)I-bovine serum albumin (BSA) uptake and cholesterol efflux, two indicators of functional caveolae. By immunoprecipitation, cell fractionation and confocal analyses, we found that caveolin-1 is well colocalized with the cluster of differentiation-36 (CD36) and the low-density lipoprotein (LDL) receptor (LDLr) but to a lesser extent with the scavenger receptor class B type I (SR-BI) in HepG2 cells expressing caveolin-1. However, caveolin-1 expression favors the dimerization of SR-BI. Two clones of cells expressing caveolin-1 were investigated for their lipoprotein metabolism activity. Compared to normal cells, these cells show a 71-144% increase in (125)I-LDL degradation. The analysis of the cholesteryl esters (CE)-selective uptake (CE association minus protein association) revealed that the expression of caveolin-1 in HepG2 cells decreases by 59%-73% LDL-CE selective uptake and increases high-density lipoprotein (HDL)-CE selective uptake by 44%-66%. We conclude that the expression of caveolin-1 in HepG2 cells moves the balance of LDL degradation/CE selective uptake towards degradation and favors HDL-CE selective uptake. Thus, in the normal hepatic parenchymal situation where caveolin-1 is poorly expressed, LDL-CE selective uptake is the preferred pathway.
Collapse
Affiliation(s)
- To Quyen Truong
- Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8.
| | | | | | | | | |
Collapse
|
91
|
Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 2006; 182:1-15. [PMID: 15904923 DOI: 10.1016/j.atherosclerosis.2005.03.036] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 03/10/2005] [Accepted: 03/24/2005] [Indexed: 01/14/2023]
Abstract
Scavenger receptors are integral membrane proteins that bind a wide variety of ligands including modified or oxidised low-density lipoproteins, apoptotic cells and pathogens. Modified low-density lipoprotein accumulation is thought to be an early event in vascular disease and thus scavenger receptor function is critical in this context. The scavenger receptor family has at least eight different subclasses (A-H) which bear little sequence homology to each other but recognize common ligands. Here we review our current understanding of the scavenger receptor subclasses with emphasis on their genetics, protein structure, biochemical properties, membrane trafficking, intracellular signalling and links to disease states. We also highlight emerging areas where scavenger receptors play roles in cell and animal physiology.
Collapse
Affiliation(s)
- Jane E Murphy
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
92
|
Tosi MR, Tugnoli V. Cholesteryl esters in malignancy. Clin Chim Acta 2005; 359:27-45. [PMID: 15939411 DOI: 10.1016/j.cccn.2005.04.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/31/2005] [Accepted: 04/04/2005] [Indexed: 01/23/2023]
Abstract
Cholesteryl esters, formed by the esterification of cholesterol with long-chain fatty acids, on one hand, are the means by which cholesterol is transported through the blood by lipoproteins, on the other, the way cholesterol itself can be accumulated in the cells. Therefore, these important molecules play an active part in metabolic pathways that form the basis of cholesterol trafficking and homeostasis. The role of different regulatory mechanisms in cholesterol homeostasis in physiologic and neoplastic conditions with emphasis on intracellular content of cholesteryl esters is here reviewed. Numerous studies carried out on tumor cell lines, experimental tumors, and human tumors have shown an abnormal cholesterol metabolism that is reflected by an increase in intracellular cholesteryl esters due to an alteration in all the mechanisms that form the basis of regulation, in particular: cholesterol de novo biosynthesis; uptake of exogenous cholesterol LDL receptor mediated; cholesterol esterification mediated by the ACAT activity; cholesterol efflux HDL receptor mediated. The most recent analytic-spectroscopic applications that permit cholesteryl ester determination on tumor lipidic extracts and directly in vivo are also reported. This review gives an overview of cholesterol homeostasis in physiological and pathological conditions where cholesteryl esters are over-expressed.
Collapse
Affiliation(s)
- Maria R Tosi
- ITOI-CNR, presso IOR, via di Barbiano 1/10, 40136, Bologna, Italy.
| | | |
Collapse
|
93
|
de Beer MC, van der Westhuyzen DR, Whitaker NL, Webb NR, de Beer FC. SR-BI-mediated selective lipid uptake segregates apoA-I and apoA-II catabolism. J Lipid Res 2005; 46:2143-50. [PMID: 16061955 DOI: 10.1194/jlr.m500068-jlr200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HDL receptor scavenger receptor class B type I (SR-BI) binds HDL and mediates the selective uptake of cholesteryl ester. We previously showed that remnants, produced when human HDL(2) is catabolized in mice overexpressing SR-BI, become incrementally smaller, ultimately consisting of small alpha-migrating particles, distinct from pre-beta HDL. When mixed with mouse plasma, some remnant particles rapidly increase in size by associating with HDL without the mediation of cholesteryl ester transfer protein, LCAT, or phospholipid transfer protein. Here, we show that processing of HDL(2) by SR-BI-overexpressing mice resulted in the preferential loss of apolipoprotein A-II (apoA-II). Short-term processing generated two distinct, small alpha-migrating particles. One particle (8.0 nm diameter) contained apoA-I and apoA-II; the other particle (7.7 nm diameter) contained only apoA-I. With extensive SR-BI processing, only the 7.7 nm particle remained. Only the 8.0 nm remnants were able to associate with HDL. Compared with HDL(2), this remnant was more readily taken up by the liver than by the kidney. We conclude that SR-BI-generated HDL remnants consist of particles with or without apoA-II and that only those containing apoA-II associate with HDL in an enzyme-independent manner. Extensive SR-BI processing generates small apoA-II-depleted particles unable to reassociate with HDL and readily taken up by the liver. This represents a pathway by which apoA-I and apoA-II catabolism are segregated.
Collapse
Affiliation(s)
- Maria C de Beer
- Graduate Center for Nutritional Sciences, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
94
|
van der Westhuyzen DR, Cai L, de Beer MC, de Beer FC. Serum Amyloid A Promotes Cholesterol Efflux Mediated by Scavenger Receptor B-I. J Biol Chem 2005; 280:35890-5. [PMID: 16120612 DOI: 10.1074/jbc.m505685200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein whose expression is markedly up-regulated during inflammation and infection. The physiological function of SAA is unclear. In this study, we reported that SAA promotes cellular cholesterol efflux mediated by scavenger receptor B-I (SR-BI). In Chinese hamster ovary cells, SAA promoted cellular cholesterol efflux in an SR-BI-dependent manner, whereas apoA-I did not. Similarly, SAA, but not apoA-I, promoted cholesterol efflux from HepG2 cells in an SR-BI-dependent manner as shown by using the SR-BI inhibitor BLT-1. When SAA was overexpressed in HepG2 cells using adenovirus-mediated gene transfer, the endogenously expressed SAA promoted SR-BI-dependent efflux. To assess the effect of SAA on SR-BI-mediated efflux to high density lipoprotein (HDL), we compared normal HDL, acute phase HDL (AP-HDL, prepared from mice injected with lipopolysaccharide), and AdSAA-HDL (HDL prepared from mice overexpressing SAA). Both AP-HDL and AdSAA-HDL promoted 2-fold greater cholesterol efflux than normal HDL. Lipid-free SAA was shown to also stimulate ABCA1-dependent cholesterol efflux in fibroblasts, in line with an earlier report (Stonik, J. A., Remaley, A. T., Demosky, S. J., Neufeld, E. B., Bocharov, A., and Brewer, H. B. (2004) Biochem. Biophys. Res. Commun. 321, 936-941). When added to cells together, SAA and HDL exerted a synergistic effect in promoting ABCA1-dependent efflux, suggesting that SAA may remodel HDL in a manner that releases apoA-I or other efficient ABCA1 ligands from HDL. SAA also facilitated efflux by a process that was independent of SR-BI and ABCA1. We conclude that the acute phase protein SAA plays an important role in HDL cholesterol metabolism by promoting cellular cholesterol efflux through a number of different efflux pathways.
Collapse
Affiliation(s)
- Deneys R van der Westhuyzen
- Department of Internal Medicine, Graduate Center for Nutrition Sciences, University of Kentucky Medical Center, Lexington, Kentucky 40536-0200, USA.
| | | | | | | |
Collapse
|
95
|
van Berkel TJC, Out R, Hoekstra M, Kuiper J, Biessen E, van Eck M. Scavenger receptors: friend or foe in atherosclerosis? Curr Opin Lipidol 2005; 16:525-35. [PMID: 16148537 DOI: 10.1097/01.mol.0000183943.20277.26] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Scavenger receptors were originally defined by their ability to bind and internalize modified lipoproteins. Nowadays the family of scavenger receptors is composed of structurally different surface receptors which recognize a broad pattern of common ligands which include, besides modified lipoproteins, apoptotic cells and pathogens. This review focuses on the role of scavenger receptors in the development of atherosclerotic lesions. RECENT FINDINGS Recent studies indicate that scavenger receptor A activity can be regulated by phosphorylation, glucosidases, 8-isoprostane, high glucose and nobiletin. Modulation of these regulatory components may beneficially influence scavenger receptor A's proatherogenic function. It appears that statins do lead to a reduction in CD36 transcription and could modulate in this way CD36-mediated atherosclerotic foam cell formation. Macrophage scavenger receptor BI appears to facilitate the development of small fatty streak lesions, whereas the formation of advanced atherosclerotic lesions is reduced, indicating a unique dual role for macrophage scavenger receptor BI in the pathogenesis of atherosclerosis. SUMMARY It is proposed that the presence of scavenger receptors in macrophages is beneficial because they remove potential deleterious material from the arterial wall. Inadequate handling of the internalized material by the macrophages will lead to foam cell formation. If adequate levels of ATP-binding cassette transporters and accepting HDL are present, however, the macrophage is perfectly able to metabolize and secrete the internalized atherogenic substances whereby HDL facilitates further transport from the arterial wall to the liver, leading to release in bile.
Collapse
Affiliation(s)
- Theo J C van Berkel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Gorlaeus Laboratories, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
96
|
Svensson PA, Englund MCO, Snäckestrand MSC, Hägg DA, Ohlsson BG, Stemme V, Mattsson-Hulten L, Thelle DS, Fagerberg B, Wiklund O, Carlsson LMS, Carlsson B. Regulation and splicing of scavenger receptor class B type I in human macrophages and atherosclerotic plaques. BMC Cardiovasc Disord 2005; 5:25. [PMID: 16122381 PMCID: PMC1215476 DOI: 10.1186/1471-2261-5-25] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 08/25/2005] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The protective role of high-density lipoprotein (HDL) in the cardiovascular system is related to its role in the reverse transport of cholesterol from the arterial wall to the liver for subsequent excretion via the bile. Scavenger receptor class B type I (SR-BI) binds HDL and mediates selective uptake of cholesterol ester and cellular efflux of cholesterol to HDL. The role of SR-BI in atherosclerosis has been well established in murine models but it remains unclear whether SR-BI plays an equally important role in atherosclerosis in humans. The aim of this study was to investigate the expression of SR-BI and its isoforms in human macrophages and atherosclerotic plaques. METHODS The effect of hypoxia and minimally modified low-density lipoprotein (mmLDL), two proatherogenic stimuli, on SR-BI expression was studied in human monocyte-derived macrophages from healthy subjects using real-time PCR. In addition, SR-BI expression was determined in macrophages obtained from subjects with atherosclerosis (n = 15) and healthy controls (n = 15). Expression of SR-BI isoforms was characterized in human atherosclerotic plaques and macrophages using RT-PCR and DNA sequencing. RESULTS SR-BI expression was decreased in macrophages after hypoxia (p < 0.005). In contrast, SR-BI expression was increased by exposure to mmLDL (p < 0.05). There was no difference in SR-BI expression in macrophages from patients with atherosclerosis compared to controls. In both groups, SR-BI expression was increased by exposure to mmLDL (p < 0.05). Transcripts corresponding to SR-BI and SR-BII were detected in macrophages. In addition, a third isoform, referred to as SR-BIII, was discovered. All three isoforms were also expressed in human atherosclerotic plaque. Compared to the other isoforms, the novel SR-BIII isoform was predicted to have a unique intracellular C-terminal domain containing 53 amino acids. CONCLUSION We conclude that SR-BI is regulated by proatherogenic stimuli in humans. However, we found no differences between subjects with atherosclerosis and healthy controls. This indicates that altered SR-BI expression is not a common cause of atherosclerosis. In addition, we identified SR-BIII as a novel isoform expressed in human macrophages and in human atherosclerotic plaques.
Collapse
Affiliation(s)
- Per-Arne Svensson
- Research Centre for Endocrinology & Metabolism, Department of Internal Medicine, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Mikael CO Englund
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Magnus SC Snäckestrand
- Research Centre for Endocrinology & Metabolism, Department of Internal Medicine, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Daniel A Hägg
- Research Centre for Endocrinology & Metabolism, Department of Internal Medicine, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Bertil G Ohlsson
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Veronika Stemme
- Cardiovascular Research Unit, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lillemor Mattsson-Hulten
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Dag S Thelle
- Department of Medicine, Cardiovascular Institute, The Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | - Björn Fagerberg
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Olov Wiklund
- The Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Lena MS Carlsson
- Research Centre for Endocrinology & Metabolism, Department of Internal Medicine, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
| | - Björn Carlsson
- Research Centre for Endocrinology & Metabolism, Department of Internal Medicine, The Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden
- Department of Body Composition and Metabolism, The Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| |
Collapse
|
97
|
Thilakawardhana S, Everett DM, Murdock PR, Dingwall C, Owen JS. Quantification of apolipoprotein E receptors in human brain-derived cell lines by real-time polymerase chain reaction. Neurobiol Aging 2005; 26:813-23. [PMID: 15718039 DOI: 10.1016/j.neurobiolaging.2004.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 07/27/2004] [Accepted: 08/04/2004] [Indexed: 11/18/2022]
Abstract
Apolipoprotein (apo) E4 is a risk factor for Alzheimer's disease (AD) and other neurodegenerative diseases, compared to wild-type apoE3. The mechanism(s) is unknown. One possibility, demonstrated in peripheral tissue cell lines, is that apoE stimulates nitric oxide synthase (NOS) via a receptor-dependent signalling pathway and that apoE4 generates inappropriate amounts of nitric oxide (NO) compared to apoE3. Prior to biochemical investigations, we have quantified the expression of several candidate receptor genes, including low-density lipoprotein-receptor (LDL-r) family members and scavenger receptor class B, types I and II (SR-BI/II), as well as the three NOS isoenzymes and protein kinase B (Akt), in 38 human cell lines, of which 12 derive from brain. Expression of apoE receptor 2 (apoER2), a known signalling receptor in brain, was readily detected in SH-SY-5Y and CCF-STTG1 cells, common models of neurons and astrocytes, respectively, and was highest in H4 neuroglioma, NT-2 precursor cells and IMR-32 neuroblastoma cells. Transcripts of the other lipoprotein receptors were widely, but variably, distributed across the different cell types. Of particular note was the predominant expression of SR-BII over SR-BI in many of the brain-derived cells. As the C-terminus of SR-BII, like apoER2, contains potential SH3 signalling motifs, we suggest that in brain SR-BII functions as a signal transducer receptor.
Collapse
Affiliation(s)
- Shanaka Thilakawardhana
- Department of Medicine, Royal Free and University College Medical School, Royal Free Campus, University College London, London NW3 2PF, UK
| | | | | | | | | |
Collapse
|
98
|
Yesilaltay A, Kocher O, Rigotti A, Krieger M. Regulation of SR-BI-mediated high-density lipoprotein metabolism by the tissue-specific adaptor protein PDZK1. Curr Opin Lipidol 2005; 16:147-52. [PMID: 15767854 DOI: 10.1097/01.mol.0000162319.54795.e5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW A novel mechanism for the regulation of lipoprotein receptor activity is providing new insights into the control of lipid metabolism. The tissue-specific adaptors ARH (autosomal recessive hypercholesterolemia) and PDZK1 [where PDZ derives from postsynaptic density protein (PSD-95)/Drosophila discs-large (dlg)/tight-junction protein (ZO1)] have been shown to control the activities of distinct types of lipoprotein receptors in a posttranscriptional fashion, significantly affecting overall lipoprotein metabolism. This review will focus on one of these lipoprotein receptor-adaptor pairs, the high-density lipoprotein receptor SR-BI (scavenger receptor class B, type I) and its adaptor PDZK1. RECENT FINDINGS The PDZ domain-containing adaptor protein PDZK1 has been shown to bind to and control the activity of the high-density lipoprotein receptor SR-BI via a tissue-specific posttranscriptional mechanism. Mice deficient in PDZK1 have elevated plasma cholesterol levels due to the virtually complete hepatic ablation of SR-BI, implicating PDZK1 as a novel regulator of high-density lipoprotein metabolism. SUMMARY The functions of ARH and PDZK1 suggest that other adaptor proteins may be found to control the activities of other cell-surface receptors in a similar tissue-specific fashion. Manipulation of the expression and/or activities of such adaptors might provide new insights into receptor physiology and these adaptors may prove to be attractive targets for pharmaceutical intervention in cholesterol metabolism-related disease processes.
Collapse
Affiliation(s)
- Ayce Yesilaltay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
99
|
Assanasen C, Mineo C, Seetharam D, Yuhanna IS, Marcel YL, Connelly MA, Williams DL, de la Llera-Moya M, Shaul PW, Silver DL. Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor-BI mediate HDL-initiated signaling. J Clin Invest 2005. [PMID: 15841181 DOI: 10.1172/jci23858, 10.1172/jci200523858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The binding of HDL to scavenger receptor-BI (SR-BI) mediates cholesterol movement. HDL also induces multiple cellular signals, which in endothelium occur through SR-BI and converge to activate eNOS. To determine the molecular basis of a signaling event induced by HDL, we examined the proximal mechanisms in HDL activation of eNOS. In endothelial cells, HDL and methyl-beta-cyclodextrin caused comparable eNOS activation, whereas cholesterol-loaded methyl-beta-cyclodextrin had no effect. Phosphatidylcholine-loaded HDL caused greater stimulation than native HDL, and blocking antibody against SR-BI, which prevents cholesterol efflux, prevented eNOS activation. In a reconstitution model in COS-M6 cells, wild-type SR-BI mediated eNOS activation by both HDL and small unilamellar vesicles (SUVs), whereas the SR-BI mutant AVI, which is incapable of efflux to SUV, transmitted signal by only HDL. In addition, eNOS activation by methyl-beta-cyclodextrin was SR-BI dependent. Studies of mutant and chimeric class B scavenger receptors revealed that the C-terminal cytoplasmic PDZ-interacting domain and the C-terminal transmembrane domains of SR-BI are both necessary for HDL signaling. Furthermore, we demonstrated direct binding of cholesterol to the C-terminal transmembrane domain using a photoactivated derivative of cholesterol. Thus, HDL signaling requires cholesterol binding and efflux and C-terminal domains of SR-BI, and SR-BI serves as a cholesterol sensor on the plasma membrane.
Collapse
Affiliation(s)
- Chatchawin Assanasen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Assanasen C, Mineo C, Seetharam D, Yuhanna IS, Marcel YL, Connelly MA, Williams DL, de la Llera-Moya M, Shaul PW, Silver DL. Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor-BI mediate HDL-initiated signaling. J Clin Invest 2005; 115:969-77. [PMID: 15841181 PMCID: PMC1069105 DOI: 10.1172/jci23858] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 02/02/2005] [Indexed: 12/23/2022] Open
Abstract
The binding of HDL to scavenger receptor-BI (SR-BI) mediates cholesterol movement. HDL also induces multiple cellular signals, which in endothelium occur through SR-BI and converge to activate eNOS. To determine the molecular basis of a signaling event induced by HDL, we examined the proximal mechanisms in HDL activation of eNOS. In endothelial cells, HDL and methyl-beta-cyclodextrin caused comparable eNOS activation, whereas cholesterol-loaded methyl-beta-cyclodextrin had no effect. Phosphatidylcholine-loaded HDL caused greater stimulation than native HDL, and blocking antibody against SR-BI, which prevents cholesterol efflux, prevented eNOS activation. In a reconstitution model in COS-M6 cells, wild-type SR-BI mediated eNOS activation by both HDL and small unilamellar vesicles (SUVs), whereas the SR-BI mutant AVI, which is incapable of efflux to SUV, transmitted signal by only HDL. In addition, eNOS activation by methyl-beta-cyclodextrin was SR-BI dependent. Studies of mutant and chimeric class B scavenger receptors revealed that the C-terminal cytoplasmic PDZ-interacting domain and the C-terminal transmembrane domains of SR-BI are both necessary for HDL signaling. Furthermore, we demonstrated direct binding of cholesterol to the C-terminal transmembrane domain using a photoactivated derivative of cholesterol. Thus, HDL signaling requires cholesterol binding and efflux and C-terminal domains of SR-BI, and SR-BI serves as a cholesterol sensor on the plasma membrane.
Collapse
Affiliation(s)
- Chatchawin Assanasen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|