51
|
van Eijkeren RJ, Morris I, Borgman A, Markovska A, Kalkhoven E. Cytokine Output of Adipocyte-iNKT Cell Interplay Is Skewed by a Lipid-Rich Microenvironment. Front Endocrinol (Lausanne) 2020; 11:479. [PMID: 32849273 PMCID: PMC7412741 DOI: 10.3389/fendo.2020.00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/17/2020] [Indexed: 01/22/2023] Open
Abstract
The complex direct and indirect interplay between adipocytes and various adipose tissue (AT)-resident immune cells plays an important role in maintaining local and whole-body insulin sensitivity. Adipocytes can directly interact with and activate AT-resident invariant natural killer T (iNKT) cells through CD1d-dependent presentation of lipid antigens, which is associated with anti-inflammatory cytokine production in lean AT (IL-4, IL-10). Whether alterations in the microenvironment, i.e., increased free fatty acids concentrations or altered cytokine/adipokine profiles as observed in obesity, directly affect adipocyte-iNKT cell communication and subsequent cytokine output is currently unknown. Here we show that the cytokine output of adipocyte-iNKT cell interplay is skewed by a lipid-rich microenvironment. Incubation of mature 3T3-L1 adipocytes with a mixture of saturated and unsaturated fatty acids specifically reduced insulin sensitivity and increased lipolysis. Reduced activation of the CD1d-invariant T-Cell Receptor (TCR) signaling axis was observed in Jurkat reporter cells expressing the invariant NKT TCR, while co-culture assays with a iNKT hybridoma cell line (DN32.D3) skewed the cytokine output toward reduced IL-4 secretion and increased IFNγ secretion. Importantly, co-culture assays of mature 3T3-L1 adipocytes with primary iNKT cells isolated from visceral AT showed a similar shift in cytokine output. Collectively, these data indicate that iNKT cells display considerable plasticity with respect to their cytokine output, which can be skewed toward a more pro-inflammatory profile in vitro by microenvironmental factors like fatty acids.
Collapse
|
52
|
Khan S, Chan YT, Revelo XS, Winer DA. The Immune Landscape of Visceral Adipose Tissue During Obesity and Aging. Front Endocrinol (Lausanne) 2020; 11:267. [PMID: 32499756 PMCID: PMC7243349 DOI: 10.3389/fendo.2020.00267] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity and aging represent major health burdens to the global adult population. Both conditions promote the development of associated metabolic diseases such as insulin resistance. The visceral adipose tissue (VAT) is a site that becomes dysfunctional during obesity and aging, and plays a significant role during their pathophysiology. The changes in obese and aging VAT are now recognized to be partly driven by a chronic local inflammatory state, characterized by immune cells that typically adopt an inflammatory phenotype during metabolic disease. Here, we summarize the current knowledge on the immune cell landscape of the VAT during lean, obese, and aged conditions, highlighting their similarities and differences. We also briefly discuss possible linked mechanisms that fuel obesity- and age-associated VAT dysfunction.
Collapse
Affiliation(s)
- Saad Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Yi Tao Chan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Xavier S. Revelo
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Xavier S. Revelo
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Daniel A. Winer
| |
Collapse
|
53
|
Park J, Huh JY, Oh J, Kim JI, Han SM, Shin KC, Jeon YG, Choe SS, Park J, Kim JB. Activation of invariant natural killer T cells stimulates adipose tissue remodeling via adipocyte death and birth in obesity. Genes Dev 2019; 33:1657-1672. [PMID: 31727774 PMCID: PMC6942052 DOI: 10.1101/gad.329557.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
In this study, Park et al. set out to elucidate the mechanism by which adipose-resident invariant natural killer T cells (iNKT) cells impact adipose tissue remodeling in obesity. Using in vitro and ex vivo approaches, the authors found that, in obesity, adipose iNKT cells can kill hypertrophic and pro-inflammatory adipocytes via FasL-Fas-dependent apoptosis, thus providing new insight into the role adipose iNKT cells play in promoting healthy adipose tissue remodeling. In obesity, adipose tissue undergoes dynamic remodeling processes such as adipocyte hypertrophy, hypoxia, immune responses, and adipocyte death. However, whether and how invariant natural killer T (iNKT) cells contribute to adipose tissue remodeling are elusive. In this study, we demonstrate that iNKT cells remove unhealthy adipocytes and stimulate the differentiation of healthy adipocytes. In obese adipose tissue, iNKT cells were abundantly found nearby dead adipocytes. FasL-positive adipose iNKT cells exerted cytotoxic effects to eliminate hypertrophic and pro-inflammatory Fas-positive adipocytes. Furthermore, in vivo adipocyte-lineage tracing mice model showed that activation of iNKT cells by alpha-galactosylceramide promoted adipocyte turnover, eventually leading to potentiation of the insulin-dependent glucose uptake ability in adipose tissue. Collectively, our data propose a novel role of adipose iNKT cells in the regulation of adipocyte turnover in obesity.
Collapse
Affiliation(s)
- Jeu Park
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jin Young Huh
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jiyoung Oh
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jong In Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sang Mun Han
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Cheul Shin
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yong Geun Jeon
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jiyoung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
54
|
Chen D, Zhao H, Gao X, Chen S, Liu H, Zhang J, Zhang J, Meng M. Subcutaneous administration of α-GalCer activates iNKT10 cells to promote M2 macrophage polarization and ameliorates chronic inflammation of obese adipose tissue. Int Immunopharmacol 2019; 77:105948. [PMID: 31629216 DOI: 10.1016/j.intimp.2019.105948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The role of iNKT cells was investigated in chronic adipose tissue inflammation in obese mice after administration of α-GalCer in different pathways. METHODS C57BL/6J mice were fed high-fat diet (HFD) for 12 weeks to establish the obese mouse model. The pathology of adipose tissue was observed by H&E staining. The rates of iNKT cells, macrophages and cell subsets in adipose tissue were detected by FCM. Cytokine levels in serum and adipose tissue lymphocyte-stimulated supernatants were assessed with the CBA kit. The expression levels of related transcription factor in adipose tissue were detected by Western blot. RESULTS The proportions of iNKT cells, iNKT10 cells and M2 macrophages were decreased, while those of iNKT1 and M1 macrophages were increased in adipose tissue of HFD-fed mice. The expression levels of the related transcriptional proteins E4BP4 and Arg-1 were decreased while iNOS expression was increased in adipose tissue. Administration of α-GalCer by subcutaneous injection resulted in increased rates of iNKT10 cells and M2 macrophages, and decreased amounts of M1 macrophages in adipose tissue of HFD-fed mice. The expression of E4BP4 and Arg-1 were up-regulated, but iNOS was down-regulated. Meanwhile, infiltration of inflammatory cells into adipose tissue was further reduced. CONCLUSION The imbalance between the proportions of iNKT1 and iNKT10 cells may be involved in the development of chronic inflammation in obese adipose tissue. Administration of α-GalCer by subcutaneous injection in HFD-fed mice activates adipose tissue iNKT10 cells, which promote M2 macrophage polarization and improve chronic inflammation in obese adipose tissue.
Collapse
Affiliation(s)
- Dongzhi Chen
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Huijuan Zhao
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Xiang Gao
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Shengde Chen
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Huifang Liu
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Jingnan Zhang
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China
| | - Jinku Zhang
- Department of Pathology, The First Centre Hospital of Baoding, Baoding, Hebei Province, PR China
| | - Ming Meng
- Department of Immunology, School of Medicine, Hebei University, Baoding 071000, Hebei Province, PR China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China.
| |
Collapse
|
55
|
Gao J, Cheng Y, Hao H, Yin Y, Xue J, Zhang Q, Li L, Liu J, Xie Z, Yu S, Li B, Han W, Mu Y. Decitabine assists umbilical cord-derived mesenchymal stem cells in improving glucose homeostasis by modulating macrophage polarization in type 2 diabetic mice. Stem Cell Res Ther 2019; 10:259. [PMID: 31426846 PMCID: PMC6700792 DOI: 10.1186/s13287-019-1338-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 01/10/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have emerged as a promising therapy for type 2 diabetes (T2D). Mechanistic researches demonstrate that the anti-diabetic effect of MSCs is partially mediated by eliciting macrophages into an anti-inflammatory phenotype thus alleviating insulin resistance. However, single MSC infusion is insufficient to ameliorate sustained hyperglycemia or normalize blood glucose levels. In this study, we used decitabine (DAC), which is involved in the regulation of macrophage polarization, to test whether MSCs combined with decitabine can prolong and enhance the anti-diabetic effect in T2D mice. Methods High-fat diet (HFD) and streptozocin (STZ) were given to induce T2D mouse model. Successfully induced T2D mice were randomly divided into four groups: T2D group, MSC group, DAC group, and MSC + DAC group. Blood glucose was monitored, and glucose tolerance and insulin sensitivity were evaluated during the entire analysis period. Epididymal fat was extracted for analysis of macrophage phenotype and inflammation in adipose tissue. In vitro, we examined the effect of MSC + DAC on macrophage polarization in bone marrow-derived macrophages (BMDMs) and explore the possible mechanism. Results MSC infusion effectively improved insulin sensitivity and glucose homeostasis in T2D mice within 1 week, whereas combination therapy of MSCs + DAC extended the anti-diabetic effects of MSCs from 1 to 4 weeks (the end of the observation). Correspondingly, more M2 macrophages in adipose tissue were observed in the combination therapy group over the entire study period. In vitro, compared with the MSC group, MSCs combined with decitabine more effectively polarized M1 macrophages to M2 macrophages. Further analysis showed that the effect of MSC + DAC on macrophage polarization was largely abrogated by the peroxisome proliferator-activated receptor gamma (PPARγ) antagonist GW9662. Conclusions Our data suggest that MSCs combined with decitabine can more effectively alleviate insulin resistance and prolong and enhance the anti-diabetic effect of MSCs in T2D mice in part by prompting M2 polarization in a PPARγ-dependent manner. Thus, decitabine may be an applicable addition to MSCs for diabetes therapy. Graphic Abstract UC-MSCs combined with decitabine activate the IL4R/STAT6/STAT3/PPARγ axis to further promote M2 macrophage polarization in adipose tissue, reduce inflammation, improve insulin sensitivity, and lead to better glucose metabolism and long-term hypoglycemic effects
![]() Electronic supplementary material The online version of this article (10.1186/s13287-019-1338-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jieqing Gao
- Department of Endocrinology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.,Department of Endocrinology, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Yu Cheng
- Department of Endocrinology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Haojie Hao
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Yaqi Yin
- Department of Endocrinology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jing Xue
- Department of Endocrinology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Qi Zhang
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Li
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jiejie Liu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Zongyan Xie
- Department of Geriatrics, China-Japan Friendship Hospital, Beijing, China
| | - Songyan Yu
- Department of Endocrinology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Bing Li
- Department of Endocrinology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
56
|
Abstract
Invariant natural killer T cells (iNKT cells) are an innate-like T cell subset that expresses an invariant T cell receptor (TCR) α-chain and recognizes lipids presented on CD1d. They secrete diverse cytokines and can influence many types of immune responses. Despite having highly similar TCR specificities, iNKT cells differentiate in the thymus into distinct subsets that are analogous to T helper 1 (TH1), TH2 and TH17 cell subsets. Additional iNKT cell subsets that may require peripheral activation have also been described, including one that produces IL-10. In general, iNKT cells are non-circulating, tissue-resident lymphocytes, but the prevalence of different iNKT cell subsets differs markedly between tissues. Here, we summarize the functions of iNKT cells in four tissues in which they are prevalent, namely, the liver, the lungs, adipose tissue and the intestine. Importantly, we explain how local iNKT cell responses at each site contribute to tissue homeostasis and protection from infection but can also contribute to tissue inflammation and damage.
Collapse
|
57
|
Ji Y, Sun S, Shrestha N, Darragh LB, Shirakawa J, Xing Y, He Y, Carboneau BA, Kim H, An D, Ma M, Oberholzer J, Soleimanpour SA, Gannon M, Liu C, Naji A, Kulkarni RN, Wang Y, Kersten S, Qi L. Toll-like receptors TLR2 and TLR4 block the replication of pancreatic β cells in diet-induced obesity. Nat Immunol 2019; 20:677-686. [PMID: 31110312 PMCID: PMC6531334 DOI: 10.1038/s41590-019-0396-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
Consumption of a high-energy Western diet triggers mild adaptive β cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of β cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of β cells, but not that of α cells, leading to enlarged β cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of β cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse β cell failure in patients with diabetes.
Collapse
Affiliation(s)
- Yewei Ji
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Shengyi Sun
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Center for Molecular Medicine and Genetics, Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Neha Shrestha
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Laurel B Darragh
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Radiation Oncology, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Jun Shirakawa
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Yuan Xing
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Yi He
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Bethany A Carboneau
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hana Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- XBiotech USA, Inc., Austin, TX, USA
| | - Duo An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Jose Oberholzer
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Scott A Soleimanpour
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maureen Gannon
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Sander Kersten
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Nutrition Metabolism and Genomics group, Wageningen University, Wageningen, the Netherlands
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
58
|
Lu J, Zhao J, Meng H, Zhang X. Adipose Tissue-Resident Immune Cells in Obesity and Type 2 Diabetes. Front Immunol 2019; 10:1173. [PMID: 31191541 PMCID: PMC6540829 DOI: 10.3389/fimmu.2019.01173] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is an important contributor to the pathogenesis of obesity-related type 2 diabetes (T2D). Adipose tissue-resident immune cells have been observed, and the potential contribution of these cells to metabolic dysfunction has been appreciated in recent years. This review focused on adipose tissue-resident immune cells that are dysregulated in the context of obesity and T2D. We comprehensively overviewed emerging knowledge regarding the phenotypic and functional properties of these cells and local factors that control their development. We discussed their function in controlling the immune response cascade and disease progression. We also characterized the metabolic profiles of these cells to explain the functional consequences in obese adipose tissues. Finally, we discussed the potential therapeutic targeting of adipose tissue-resident immune cells with the aim of addressing novel therapeutic approaches for the treatment of this disease.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Junjie Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
59
|
Rakhshandehroo M, van Eijkeren RJ, Gabriel TL, de Haar C, Gijzel SMW, Hamers N, Ferraz MJ, Aerts JMFG, Schipper HS, van Eijk M, Boes M, Kalkhoven E. Adipocytes harbor a glucosylceramide biosynthesis pathway involved in iNKT cell activation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1157-1167. [PMID: 31051284 DOI: 10.1016/j.bbalip.2019.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Natural killer T (NKT) cells in adipose tissue (AT) contribute to whole body energy homeostasis. RESULTS Inhibition of the glucosylceramide synthesis in adipocytes impairs iNKT cell activity. CONCLUSION Glucosylceramide biosynthesis pathway is important for endogenous lipid antigen activation of iNKT cells in adipocytes. SIGNIFICANCE Unraveling adipocyte-iNKT cell communication may help to fight obesity-induced AT dysfunction. Overproduction and/or accumulation of ceramide and ceramide metabolites, including glucosylceramides, can lead to insulin resistance. However, glucosylceramides also fulfill important physiological functions. They are presented by antigen presenting cells (APC) as endogenous lipid antigens via CD1d to activate a unique lymphocyte subspecies, the CD1d-restricted invariant (i) natural killer T (NKT) cells. Recently, adipocytes have emerged as lipid APC that can activate adipose tissue-resident iNKT cells and thereby contribute to whole body energy homeostasis. Here we investigate the role of the glucosylceramide biosynthesis pathway in the activation of iNKT cells by adipocytes. UDP-glucose ceramide glucosyltransferase (Ugcg), the first rate limiting step in the glucosylceramide biosynthesis pathway, was inhibited via chemical compounds and shRNA knockdown in vivo and in vitro. β-1,4-Galactosyltransferase (B4Galt) 5 and 6, enzymes that convert glucosylceramides into potentially inactive lactosylceramides, were subjected to shRNA knock down. Subsequently, (pre)adipocyte cell lines were tested in co-culture experiments with iNKT cells (IFNγ and IL4 secretion). Inhibition of Ugcg activity shows that it regulates presentation of a considerable fraction of lipid self-antigens in adipocytes. Furthermore, reduced expression levels of either B4Galt5 or -6, indicate that B4Galt5 is dominant in the production of cellular lactosylceramides, but that inhibition of either enzyme results in increased iNKT cell activation. Additionally, in vivo inhibition of Ugcg by the aminosugar AMP-DNM results in decreased iNKT cell effector function in adipose tissue. Inhibition of endogenous glucosylceramide production results in decreased iNKT cells activity and cytokine production, underscoring the role of this biosynthetic pathway in lipid self-antigen presentation by adipocytes.
Collapse
Affiliation(s)
- Maryam Rakhshandehroo
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert J van Eijkeren
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tanit L Gabriel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Colin de Haar
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Sanne M W Gijzel
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nicole Hamers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria J Ferraz
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Henk S Schipper
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Marco van Eijk
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Marianne Boes
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
60
|
Van Herck MA, Weyler J, Kwanten WJ, Dirinck EL, De Winter BY, Francque SM, Vonghia L. The Differential Roles of T Cells in Non-alcoholic Fatty Liver Disease and Obesity. Front Immunol 2019; 10:82. [PMID: 30787925 PMCID: PMC6372559 DOI: 10.3389/fimmu.2019.00082] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) constitutes a spectrum of disease states characterized by hepatic steatosis and is closely associated to obesity and the metabolic syndrome. In non-alcoholic steatohepatitis (NASH), additionally, inflammatory changes and hepatocellular damage are present, representing a more severe condition, for which the treatment is an unmet medical need. Pathophysiologically, the immune system is one of the main drivers of NAFLD progression and other obesity-related comorbidities, and both the innate and adaptive immune system are involved. T cells form the cellular component of the adaptive immune system and consist of multiple differentially active subsets, i.e., T helper (Th) cells, regulatory T (Treg) cells, and cytotoxic T (Tc) cells, as well as several innate T-cell subsets. This review focuses on the role of these T-cell subsets in the pathogenesis of NAFLD, as well as the association with obesity and type 2 diabetes mellitus, reviewing the available evidence from both animal and human studies. Briefly, Th1, Th2, Th17, and Th22 cells seem to have an attenuating effect on adiposity. Th2, Th22, and Treg cells seem to decrease insulin resistance, whereas Th1, Th17, and Tc cells have an aggravating effect. Concerning NAFLD, both Th22 and Treg cells appear to have an overall tempering effect, whereas Th17 and Tc cells seem to induce more liver damage and fibrosis progression. The evidence regarding the role of the innate T-cell subsets is more controversial and warrants further exploration.
Collapse
Affiliation(s)
- Mikhaïl A Van Herck
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Jonas Weyler
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Wilhelmus J Kwanten
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Eveline L Dirinck
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium
| | - Sven M Francque
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Luisa Vonghia
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology and Hepatology, University of Antwerp, Antwerp, Belgium.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
61
|
Pan Y, Hui X, Hoo RLC, Ye D, Chan CYC, Feng T, Wang Y, Lam KSL, Xu A. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest 2019; 129:834-849. [PMID: 30667374 DOI: 10.1172/jci123069] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Persistent, unresolved inflammation in adipose tissue is a major contributor to obesity-associated metabolic complications. However, the molecular links between lipid-overloaded adipocytes and inflammatory immune cells in obese adipose tissues remain elusive. Here we identified adipocyte-secreted microRNA-34a (miR-34a) as a key mediator through its paracrine actions on adipose-resident macrophages. The expression of miR-34a in adipose tissues was progressively increased with the development of dietary obesity. Adipose-selective or adipocyte-specific miR-34a-KO mice were resistant to obesity-induced glucose intolerance, insulin resistance, and systemic inflammation, and this was accompanied by a significant shift in polarization of adipose-resident macrophages from proinflammatory M1 to antiinflammatory M2 phenotype. Mechanistically, mature adipocyte-secreted exosomes transported miR-34a into macrophages, thereby suppressing M2 polarization by repressing the expression of Krüppel-like factor 4 (Klf4). The suppressive effects of miR-34a on M2 polarization and its stimulation of inflammatory responses were reversed by ectopic expression of Klf4 in both bone marrow-derived macrophages and adipose depots of obese mice. Furthermore, increased miR-34a expression in visceral fat of overweight/obese subjects correlated negatively with reduced Klf4 expression, but positively with the parameters of insulin resistance and metabolic inflammation. In summary, miR-34a was a key component of adipocyte-secreted exosomal vesicles that transmitted the signal of nutrient overload to the adipose-resident macrophages for exacerbation of obesity-induced systemic inflammation and metabolic dysregulation.
Collapse
Affiliation(s)
- Yong Pan
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Medicine, and
| | - Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Medicine, and
| | - Ruby Lai Chong Hoo
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| | - Dewei Ye
- Joint Laboratory between Guangdong and Hong Kong on Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Research Center of Metabolic Diseases of Integrated Western and Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | | | - Tianshi Feng
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| | - Karen Siu Ling Lam
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Medicine, and
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Medicine, and.,Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
62
|
Del Cornò M, Conti L, Gessani S. Innate Lymphocytes in Adipose Tissue Homeostasis and Their Alterations in Obesity and Colorectal Cancer. Front Immunol 2018; 9:2556. [PMID: 30455701 PMCID: PMC6230679 DOI: 10.3389/fimmu.2018.02556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and a leading cause of death, with burden expected to increase in the coming years. Enhanced adiposity, particularly visceral fat, is associated with increased cancer incidence representing an important indicator of survival, prognosis, recurrence rates, and response to therapy for several tumors including CRC. Compelling evidence has been achieved that the low-grade chronic inflammation characterizing obesity represents a main factor that can favor carcinogenesis. Adipocytes and adipose tissue (AT) infiltrating immune cells contribute to obesity-related inflammation by releasing soluble factors affecting, both locally and systemically, the function of several cell types, including immune and cancer cells. The unbalanced production of immune mediators as well as the profound changes in the repertoire and activation state of immune cells in AT of obese subjects represent key events in the processes that set the basis for a pro-tumorigenic microenvironment. AT harbors a unique profile of immune cells of different origin that play an important role in tissue homeostasis. Among these, tissue-resident innate lymphocytes are emerging as important AT components whose depletion/aberrant activation occurring in obesity could have an impact on inflammation and immune-surveillance against tumors. However, a direct link between obesity-induced dysfunction and cancer development has not been demonstrated yet. In this review, we provide an overview of human obesity- and CRC-induced alterations of blood and adipose tissue-associated innate lymphocytes, and discuss how the adipose tissue microenvironment in obesity might influence the development of CRC.
Collapse
Affiliation(s)
- Manuela Del Cornò
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Conti
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
63
|
Cortesi F, Delfanti G, Casorati G, Dellabona P. The Pathophysiological Relevance of the iNKT Cell/Mononuclear Phagocyte Crosstalk in Tissues. Front Immunol 2018; 9:2375. [PMID: 30369933 PMCID: PMC6194905 DOI: 10.3389/fimmu.2018.02375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
CD1d-restricted Natural Killer T (NKT) cells are regarded as sentinels of tissue integrity by sensing local cell stress and damage. This occurs via recognition of CD1d-restricted lipid antigens, generated by stress-related metabolic changes, and stimulation by inflammatory cytokines, such as IL-12 and IL-18. Increasing evidence suggest that this occurs mainly upon NKT cell interaction with CD1d-expressing cells of the Mononuclear Phagocytic System, i.e., monocytes, macrophages and DCs, which patrol parenchymatous organs and mucosae to maintain tissue homeostasis and immune surveillance. In this review, we discuss critical examples of this crosstalk, presenting the known underlying mechanisms and their effects on both cell types and the environment, and suggest that the interaction with CD1d-expressing mononuclear phagocytes in tissues is the fundamental job of NKT cells.
Collapse
Affiliation(s)
- Filippo Cortesi
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
64
|
Wang M, Ju C. Orchestrating liver repair: A newly discovered function of hepatic iNKT cells. Hepatology 2018; 68:773-775. [PMID: 29405328 PMCID: PMC6822979 DOI: 10.1002/hep.29828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/07/2022]
Affiliation(s)
- Meng Wang
- Department of Anesthesiology, McGovern Medical School, University of
Texas Health Science Center at Houston, Houston, United States
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of
Texas Health Science Center at Houston, Houston, United States,Address correspondence to Cynthia Ju, PHD. Department of
Anesthesiology, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, United States;
| |
Collapse
|
65
|
Bagchi S, Genardi S, Wang CR. Linking CD1-Restricted T Cells With Autoimmunity and Dyslipidemia: Lipid Levels Matter. Front Immunol 2018; 9:1616. [PMID: 30061888 PMCID: PMC6055000 DOI: 10.3389/fimmu.2018.01616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
Dyslipidemia, or altered blood lipid content, is a risk factor for developing cardiovascular disease. Furthermore, several autoimmune diseases, including systemic lupus erythematosus, psoriasis, diabetes, and rheumatoid arthritis, are correlated highly with dyslipidemia. One common thread between both autoimmune diseases and altered lipid levels is the presence of inflammation, suggesting that the immune system might act as the link between these related pathologies. Deciphering the role of innate and adaptive immune responses in autoimmune diseases and, more recently, obesity-related inflammation, have been active areas of research. The broad picture suggests that antigen-presenting molecules, which present self-peptides to autoreactive T cells, can result in either aggravation or amelioration of inflammation. However, very little is known about the role of self-lipid reactive T cells in dyslipidemia-associated autoimmune events. Given that a range of autoimmune diseases are linked to aberrant lipid profiles and a majority of lipid-specific T cells are reactive to self-antigens, it is important to examine the role of these T cells in dyslipidemia-related autoimmune ailments and determine if dysregulation of these T cells can be drivers of autoimmune conditions. CD1 molecules present lipids to T cells and are divided into two groups based on sequence homology. To date, most of the information available on lipid-reactive T cells comes from the study of group 2 CD1d-restricted natural killer T (NKT) cells while T cells reactive to group 1 CD1 molecules remain understudied, despite their higher abundance in humans compared to NKT cells. This review evaluates the mechanisms by which CD1-reactive, self-lipid specific T cells contribute to dyslipidemia-associated autoimmune disease progression or amelioration by examining available literature on NKT cells and highlighting recent progress made on the study of group 1 CD1-restricted T cells.
Collapse
Affiliation(s)
| | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
66
|
Ren Y, Sekine-Kondo E, Tateyama M, Kasetthat T, Wongratanacheewin S, Watarai H. New Genetically Manipulated Mice Provide Insights Into the Development and Physiological Functions of Invariant Natural Killer T Cells. Front Immunol 2018; 9:1294. [PMID: 29963043 PMCID: PMC6010523 DOI: 10.3389/fimmu.2018.01294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T cell subset that exhibits characteristics of both innate immune cells and T cells. They express Vα14-Jα18 (Trav11-Traj18) as an invariant chain of the T cell receptor (TCR) and are restricted to the MHC class I-like monomorphic antigen presenting molecule CD1d. iNKT cells are known as immune regulators that bridge the innate and acquired immune systems by rapid and massive production of a wide range of cytokines, which could enable them to participate in immune responses during various disease states. Thus, Traj18-deficient mice, Cd1d-deficient mice, or iNKT cell-overexpressing mice such as iNKT TCRα transgenic mice and iNKT cell cloned mice which contain a Vα14-Jα18 rearrangement in the TCRα locus are useful experimental models for the analysis of iNKT cells in vivo and in vitro. In this review, we describe the pros and cons of the various available genetically manipulated mice and summarize the insights gained from their study, including the possible roles of iNKT cells in obesity and diabetes.
Collapse
Affiliation(s)
- Yue Ren
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Neurology, The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Etsuko Sekine-Kondo
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Midori Tateyama
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Thitinan Kasetthat
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | | | - Hiroshi Watarai
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
67
|
Park YJ, Park J, Huh JY, Hwang I, Choe SS, Kim JB. Regulatory Roles of Invariant Natural Killer T Cells in Adipose Tissue Inflammation: Defenders Against Obesity-Induced Metabolic Complications. Front Immunol 2018; 9:1311. [PMID: 29951059 PMCID: PMC6008523 DOI: 10.3389/fimmu.2018.01311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a metabolic organ that plays a central role in controlling systemic energy homeostasis. Compelling evidence indicates that immune system is closely linked to healthy physiologic functions and pathologic dysfunction of adipose tissue. In obesity, the accumulation of pro-inflammatory responses in adipose tissue subsequently leads to dysfunction of adipose tissue as well as whole body energy homeostasis. Simultaneously, adipose tissue also activates anti-inflammatory responses in an effort to reduce the unfavorable effects of pro-inflammation. Notably, the interplay between adipocytes and resident invariant natural killer T (iNKT) cells is a major component of defensive mechanisms of adipose tissue. iNKT cells are leukocytes that recognize lipids loaded on CD1d as antigens, whereas most other immune cells are activated by peptide antigens. In adipose tissue, adipocytes directly interact with iNKT cells by presenting lipid antigens and stimulate iNKT cell activation to alleviate pro-inflammation. In this review, we provide an overview of the molecular and cellular determinants of obesity-induced adipose tissue inflammation. Specifically, we focus on the roles of iNKT cell-adipocyte interaction in maintaining adipose tissue homeostasis as well as the consequent modulation in systemic energy metabolism. We also briefly discuss future research directions regarding the interplay between adipocytes and adipose iNKT cells in adipose tissue inflammation.
Collapse
Affiliation(s)
- Yoon Jeong Park
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Jeu Park
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Injae Hwang
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Sung Sik Choe
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| |
Collapse
|
68
|
Satoh M, Iwabuchi K. Role of Natural Killer T Cells in the Development of Obesity and Insulin Resistance: Insights From Recent Progress. Front Immunol 2018; 9:1314. [PMID: 29942311 PMCID: PMC6004523 DOI: 10.3389/fimmu.2018.01314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
Natural killer T (NKT) cells play important roles in adipose tissue inflammation, and thus influence the development of diet-induced obesity and insulin resistance. The interactions between cluster of differentiation (CD)1d and NKT T cell receptor are thought to be critical in this process, as demonstrated in two NKT cell-deficient mouse models-systemic CD1d gene knockout (KO) and prototypic Jα18 KO mice. The latter lacks some repertoires besides invariant (i)NKT cells due to manipulation of the Jα18 gene segment; therefore, the role of iNKT vs. variant NKT cells must be reinterpreted considering the availability of new Jα18 KO mice. NKT cells have varied roles in the development of obesity; indeed, studies have reported contradictory results depending on the mouse model, diet, and rearing conditions, all of which could affect the microbiome. In this mini-review, we discuss these points considering recent findings from our laboratory and others as well as the role of NKT cells in the development of obesity and insulin resistance based on data obtained from studies on conditional CD1d1 KO and new Jα18 KO mice generated through gene editing.
Collapse
Affiliation(s)
- Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
69
|
MicroRNA-99a mimics inhibit M1 macrophage phenotype and adipose tissue inflammation by targeting TNFα. Cell Mol Immunol 2018; 16:495-507. [PMID: 29849090 DOI: 10.1038/s41423-018-0038-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 01/19/2023] Open
Abstract
In human adipose tissue and obesity, miR-99a expression is negatively correlated with inflammation. Therefore, the present study investigated the role of miR-99a in macrophage phenotype activation and adipose tissue inflammation. M2 BMDMs showed a significant increase in miR-99a expression when compared to the M0 and M1 phenotypes. Phenotype-switching experiments established an association between upregulated miR-99a expression and the M2 phenotype. Overexpression of miR-99a prevented M1 phenotype activation and attenuated bactericidal activity. Likewise, knockdown of miR-99a abolished M2 phenotype activation. By means of in silico target prediction tools and a luciferase reporter assay, TNFα was identified as a direct target of miR-99a. Knockdown of TNFα recapitulated the effect of miR-99a overexpression in M1 BMDMs. In a db/db mice model, miR-99a expression was reduced in eWAT and F4/80+ ATMs. Systemic overexpression of miR-99a in db/db mice attenuated adipocyte hypertrophy with increased CD301 and reduced CD86 immunostaining. Flow cytometry analysis also showed an increased M2 and a reduced M1 macrophage population. Mimics of miR-99a also improved the diabetic dyslipidemia and insulin signaling in eWAT and liver, with an attenuated expression of gluconeogenesis and cholesterol metabolism genes in the liver. Furthermore, adoptive transfer of miR-99a-overexpressing macrophages in the db/db mice recapitulated in vivo miR-99a mimic effects with increased M2 and reduced M1 macrophage populations and improved systemic glucose, insulin sensitivity, and insulin signaling in the eWAT and liver. The present study demonstrates that miR-99a mimics can regulate macrophage M1 phenotype activation by targeting TNFα. miR-99a therapeutics in diabetic mice reduces the adipose tissue inflammation and improves insulin sensitivity.
Collapse
|
70
|
Hill JH, Solt C, Foster MT. Obesity associated disease risk: the role of inherent differences and location of adipose depots. Horm Mol Biol Clin Investig 2018; 33:/j/hmbci.ahead-of-print/hmbci-2018-0012/hmbci-2018-0012.xml. [PMID: 29547393 DOI: 10.1515/hmbci-2018-0012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/09/2018] [Indexed: 02/07/2023]
Abstract
Obesity and associated metabolic co-morbidities are a worldwide public health problem. Negative health outcomes associated with obesity, however, do not arise from excessive adiposity alone. Rather, deleterious outcomes of adipose tissue accumulation are a result of how adipocytes are distributed to individual regions in the body. Due to our increased understanding of the dynamic relationship that exists between specific adipose depots and disease risk, an accurate characterization of total body adiposity as well as location is required to properly evaluate a population's disease risk. Specifically, distinctive tissue depots within the body include the lower body, upper body and abdominal (deep and superficial) subcutaneous regions, as well as visceral (mesenteric and omental) regions. Upper body and visceral adipose tissues are highly associated with metabolic dysfunction and chronic disease development, whereas lower body gluteofemoral subcutaneous adipose tissue imparts protection against diet-induced metabolic derangement. Each adipose depot functions distinctly as an endocrine organ hence it has a different level of impact on health outcomes. Effluent from adipose tissue can modulate the functions of other tissues, whilst receiving differential communication from the rest of the body via central nervous system innervation, metabolites and other signaling molecules. More so, adipose depots contain a diverse reservoir of tissue-resident immune cells that play an integral part in both maintaining tissue homeostasis, as well as propagating metabolically-induced inflammation. Overall, the conceptualization of obesity and associated risks needs updating to reflect the complexities of obesity. We review adipose tissue characteristics that are linked to deleterious or beneficial adipose tissue distributions.
Collapse
Affiliation(s)
- Jessica H Hill
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Claudia Solt
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Michelle T Foster
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO 80523, USA, Phone: +(970) 491-6189, Fax: +(970) 491-3875
| |
Collapse
|
71
|
Abstract
Obesity-induced adipose tissue inflammation is regulated by various immune cells for innate and adaptive immunity. Among adipose tissue immune cells, it has been proposed that invariant Natural Killer T (iNKT) cells play crucial roles in anti-inflammatory responses in obesity. iNKT cells recognize 'lipid' antigens loaded on CD1d of antigen presenting cells and modulate immune responses by secreting Th1 or Th2 type cytokines depending on species of lipid antigens, antigen presenting cell types, and environmental cytokine milieu. However, the regulatory mechanisms of antigen presenting cells for adipose iNKT cell stimulation have not been clearly elucidated. Recently, we have reported that CD1d expressing adipocytes could act as an antigen presenting cell for adipose iNKT cells by characterization of adipocyte-specific CD1d knockout (CD1dADKO) mice. Upon high-fat diet (HFD) feeding, CD1dADKO mice aggravated adipose tissue inflammation and insulin resistance compared with CD1df/f mice. In this commentary, we provide the additional data of adipocyte CD1d-dependent regulation of adipose iNKT cell responses as well as systemic insulin sensitivity. In addition, we discuss how the interaction between adipocytes and iNKT cells would be regulated with the progression of obesity.
Collapse
Affiliation(s)
- Jin Young Huh
- Department of Biological Science, Institute of Molecular Biology & Genetics, Seoul National University, Seoul, South Korea
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Yoon Jeong Park
- Department of Biological Science, Institute of Molecular Biology & Genetics, Seoul National University, Seoul, South Korea
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Department of Biological Science, Institute of Molecular Biology & Genetics, Seoul National University, Seoul, South Korea
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| |
Collapse
|
72
|
Abstract
Adipose tissue is a special tissue environment due to its high lipid content. Adipose tissue macrophages (ATMs) help maintain adipose tissue homeostasis in steady state by clearing dead adipocytes. However, adipose tissue changes drastically during obesity, resulting in a state of chronic low grade inflammation and a shift in the adipose immune landscape. In this review we will discuss how these changes influence the polarization of ATMs.
Collapse
Affiliation(s)
- Leen Catrysse
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
73
|
Duffen J, Zhang M, Masek-Hammerman K, Nunez A, Brennan A, Jones JEC, Morin J, Nocka K, Kasaian M. Modulation of the IL-33/IL-13 Axis in Obesity by IL-13Rα2. THE JOURNAL OF IMMUNOLOGY 2018; 200:1347-1359. [DOI: 10.4049/jimmunol.1701256] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
In obesity, IL-13 overcomes insulin resistance by promoting anti-inflammatory macrophage differentiation in adipose tissue. Endogenous IL-13 levels can be modulated by the IL-13 decoy receptor, IL-13Rα2, which inactivates and depletes the cytokine. In this study, we show that IL-13Rα2 is markedly elevated in adipose tissues of obese mice. Mice deficient in IL-13Rα2 had high expression of IL-13 response markers in adipose tissue, consistent with increased IL-13 activity at baseline. Moreover, exposure to the type 2 cytokine-inducing alarmin, IL-33, enhanced serum and tissue IL-13 concentrations and elevated tissue eosinophils, macrophages, and type 2 innate lymphoid cells. IL-33 also reduced body weight, fat mass, and fasting blood glucose levels. Strikingly, however, the IL-33–induced protection was greater in IL-13Rα2–deficient mice compared with wild-type littermates, and these changes were largely attenuated in mice lacking IL-13. Although IL-33 administration improved the metabolic profile in the context of a high fat diet, it also resulted in diarrhea and perianal irritation, which was enhanced in the IL-13Rα2–deficient mice. Weight loss in this group was associated with reduced food intake, which was likely related to the gastrointestinal effects. These findings outline both potentially advantageous and deleterious effects of a type 2–skewed immune response under conditions of metabolic stress, and identify IL-13Rα2 as a critical checkpoint in adipose tissues that limits the protective effects of the IL-33/IL-13 axis in obesity.
Collapse
Affiliation(s)
- Jennifer Duffen
- *Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA 02139
| | - Melvin Zhang
- *Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA 02139
| | | | - Angela Nunez
- ‡Comparative Medicine, Pfizer, Inc., Andover, MA 01810; and
| | - Agnes Brennan
- *Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA 02139
| | | | - Jeffrey Morin
- ‡Comparative Medicine, Pfizer, Inc., Andover, MA 01810; and
| | - Karl Nocka
- *Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA 02139
| | - Marion Kasaian
- *Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA 02139
| |
Collapse
|
74
|
Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Fatty Liver Disease. ZAKIM AND BOYER'S HEPATOLOGY 2018:369-390.e14. [DOI: 10.1016/b978-0-323-37591-7.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
75
|
Wang J, Yang Q, Zhang Q, Yin C, Zhou L, Zhou J, Wang Y, Mi QS. Invariant Natural Killer T Cells Ameliorate Monosodium Urate Crystal-Induced Gouty Inflammation in Mice. Front Immunol 2017; 8:1710. [PMID: 29312287 PMCID: PMC5733058 DOI: 10.3389/fimmu.2017.01710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022] Open
Abstract
Gout is an inflammatory arthritis caused by deposition of intra-articular monosodium urate (MSU) crystal. Previous studies have focused on resident macrophage, infiltrating monocyte, and neutrophil responses to MSU crystal; yet the mechanisms of cellular changes and the potential involvement of other regulatory immune cells remain largely unknown. Invariant natural killer T (iNKT) cells, an innate type of T cell, are involved in the development of various inflammatory diseases. Here, we investigate the role of iNKT cells in MSU crystal-induced gouty inflammation. MSU crystal-induced inflammatory profiles in an air-pouch model were examined in iNKT-deficient CD1d knockout (KO) and wild-type (WT) control mice. To explore potential mechanisms of iNKT cell regulation of gouty inflammation, we cocultured CD4+ or CD4−iNKT cells with bone marrow-derived macrophages (BMDMs). We found that iNKT cells quickly migrated to the site of inflammation upon MSU crystal stimulation in WT mice. The total number of infiltrating cells in CD1d KO mice, especially neutrophils, was dramatically increased at 6 and 12 h (P < 0.01) post-MSU crystal challenge, compared with WT controls. BMDMs cocultured with CD4+iNKT cells produced less tumor necrosis factor-α and expressed higher levels of M2 macrophage markers, including Clec7a, Pdcd1Ig2, and interleukin-4 (P < 0.01), compared with BMDMs cocultured with CD4−iNKT cells or conventional CD4+ T cells. CD4+iNKT cells are one of the key regulators of MSU crystal-induced gouty inflammation through the control of macrophage polarization. iNKT cells may serve as a new therapeutic target for gout.
Collapse
Affiliation(s)
- Jie Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
| | - Qibin Yang
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Department of Rheumatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Quanbo Zhang
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Department of Gerontology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Congcong Yin
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhou
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States
| | - Jingguo Zhou
- Department of Rheumatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yangang Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing-Sheng Mi
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
76
|
Kumari M, Heeren J, Scheja L. Regulation of immunometabolism in adipose tissue. Semin Immunopathol 2017; 40:189-202. [PMID: 29209828 DOI: 10.1007/s00281-017-0668-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
|
77
|
Saito M, Kaburagi M, Otokuni K, Takahashi G. Functional role of natural killer T cells in non-obese pre-diabetes model mice. Cytotechnology 2017; 70:423-430. [PMID: 29098499 DOI: 10.1007/s10616-017-0157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022] Open
Abstract
Pre-diabetic patients have a high risk of developing diabetes as well as other associated diseases. From the viewpoint of risk assessment and to assist the development of protective therapies, we focused on the functional role of natural killer T (NKT) cells in pre-diabetes. We found that the expression of an NKT cell marker gene, Va14-Ja18, was significantly lower in specific tissues/organs such as adipose tissue and pancreas in non-obese pre-diabetes model mice than in their normal littermates. Subsequently, in the pre-diabetes model mice, Va14-Ja18 was activated with α-galactosylceramide (α-GalCer) and its effect on glucose tolerance was estimated. The simultaneous injection of α-GalCer and lymphocytes improved glucose tolerance with its maximum effect on the 3rd day. An analysis of circulating cytokine levels revealed that interferon-γ, which is a pro-inflammatory cytokine, was secreted only on the 1st day after treatment with α-GalCer and that interleukin (IL)-4, which is an anti-inflammatory cytokine, was secreted from the 1st to the 4th day. The prolonged secretion of IL-4 was thought to substantially contribute to the improvement of glucose tolerance. Based on these results, the functional role of NKT cells in pre-diabetes is to improve metabolic dysfunctions.
Collapse
Affiliation(s)
- Mikako Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan. .,Koganei Bioresource Laboratories, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Misako Kaburagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Keiko Otokuni
- Koganei Bioresource Laboratories, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Genu Takahashi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
78
|
Lee SE, Kang SG, Choi MJ, Jung SB, Ryu MJ, Chung HK, Chang JY, Kim YK, Lee JH, Kim KS, Kim HJ, Lee HK, Yi HS, Shong M. Growth Differentiation Factor 15 Mediates Systemic Glucose Regulatory Action of T-Helper Type 2 Cytokines. Diabetes 2017; 66:2774-2788. [PMID: 28874416 DOI: 10.2337/db17-0333] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/24/2017] [Indexed: 11/13/2022]
Abstract
T-helper type 2 (Th2) cytokines, including interleukin (IL)-13 and IL-4, produced in adipose tissue, are critical regulators of intra-adipose and systemic lipid and glucose metabolism. Furthermore, IL-13 is a potential therapy for insulin resistance in obese mouse models. Here, we examined mediators produced by adipocytes that are responsible for regulating systemic glucose homeostasis in response to Th2 cytokines. We used RNA sequencing data analysis of cultured adipocytes to screen factors secreted in response to recombinant IL-13. Recombinant IL-13 induced expression of growth differentiation factor 15 (GDF15) via the Janus kinase-activated STAT6 pathway. In vivo administration of α-galactosylceramide or IL-33 increased IL-4 and IL-13 production, thereby increasing GDF15 levels in adipose tissue and in plasma of mice; however, these responses were abrogated in STAT6 knockout mice. Moreover, administration of recombinant IL-13 to wild-type mice fed a high-fat diet (HFD) improved glucose intolerance; this was not the case for GDF15 knockout mice fed the HFD. Taken together, these data suggest that GDF15 is required for IL-13-induced improvement of glucose intolerance in mice fed an HFD. Thus, beneficial effects of Th2 cytokines on systemic glucose metabolism and insulin sensitivity are mediated by GDF15. These findings open up a potential pharmacological route for reversing insulin resistance associated with obesity.
Collapse
Affiliation(s)
- Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
79
|
van Eijkeren RJ, Krabbe O, Boes M, Schipper HS, Kalkhoven E. Endogenous lipid antigens for invariant natural killer T cells hold the reins in adipose tissue homeostasis. Immunology 2017; 153:179-189. [PMID: 28898395 DOI: 10.1111/imm.12839] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
The global obesity epidemic and its associated co-morbidities, including type 2 diabetes, cardiovascular disease and certain types of cancers, have drawn attention to the pivotal role of adipocytes in health and disease. Besides their 'classical' function in energy storage and release, adipocytes interact with adipose-tissue-resident immune cells, among which are lipid-responsive invariant natural killer T (iNKT) cells. The iNKT cells are activated by lipid antigens presented by antigen-presenting cells as CD1d/lipid complexes. Upon activation, iNKT cells can rapidly secrete soluble mediators that either promote or oppose inflammation. In lean adipose tissue, iNKT cells elicit a predominantly anti-inflammatory immune response, whereas obesity is associated with declining iNKT cell numbers. Recent work showed that adipocytes act as non-professional antigen-presenting cells for lipid antigens. Here, we discuss endogenous lipid antigen processing and presentation by adipocytes, and speculate on how these lipid antigens, together with 'environmental factors' such as tissue/organ environment and co-stimulatory signals, are able to influence the fate of adipose-tissue-resident iNKT cells, and thereby the role of these cells in obesity and its associated pathologies.
Collapse
Affiliation(s)
- Robert J van Eijkeren
- Department of Molecular Cancer Research and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Olga Krabbe
- Department of Molecular Cancer Research and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne Boes
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Henk S Schipper
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric Kalkhoven
- Department of Molecular Cancer Research and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
80
|
Hotamisligil GS. Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity 2017; 47:406-420. [PMID: 28930657 DOI: 10.1016/j.immuni.2017.08.009] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/06/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Highly ordered interactions between immune and metabolic responses are evolutionarily conserved and paramount for tissue and organismal health. Disruption of these interactions underlies the emergence of many pathologies, particularly chronic non-communicable diseases such as obesity and diabetes. Here, we examine decades of research identifying the complex immunometabolic signaling networks and the cellular and molecular events that occur in the setting of altered nutrient and energy exposures and offer a historical perspective. Furthermore, we describe recent advances such as the discovery that a broad complement of immune cells play a role in immunometabolism and the emerging evidence that nutrients and metabolites modulate inflammatory pathways. Lastly, we discuss how this work may eventually lead to tangible therapeutic advancements to promote health.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Broad Institute of Harvard and MIT, Boston, MA 02115, USA.
| |
Collapse
|
81
|
Boulenouar S, Michelet X, Duquette D, Alvarez D, Hogan AE, Dold C, O'Connor D, Stutte S, Tavakkoli A, Winters D, Exley MA, O'Shea D, Brenner MB, von Andrian U, Lynch L. Adipose Type One Innate Lymphoid Cells Regulate Macrophage Homeostasis through Targeted Cytotoxicity. Immunity 2017; 46:273-286. [PMID: 28228283 DOI: 10.1016/j.immuni.2017.01.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/24/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022]
Abstract
Adipose tissue has a dynamic immune system that adapts to changes in diet and maintains homeostatic tissue remodeling. Adipose type 1 innate lymphoid cells (AT1-ILCs) promote pro-inflammatory macrophages in obesity, but little is known about their functions at steady state. Here we found that human and murine adipose tissue harbor heterogeneous populations of AT1-ILCs. Experiments using parabiotic mice fed a high-fat diet (HFD) showed differential trafficking of AT1-ILCs, particularly in response to short- and long-term HFD and diet restriction. At steady state, AT1-ILCs displayed cytotoxic activity toward adipose tissue macrophages (ATMs). Depletion of AT1-ILCs and perforin deficiency resulted in alterations in the ratio of inflammatory to anti-inflammatory ATMs, and adoptive transfer of AT1-ILCs exacerbated metabolic disorder. Diet-induced obesity impaired AT1-ILC killing ability. Our findings reveal a role for AT1-ILCs in regulating ATM homeostasis through cytotoxicity and suggest that this function is relevant in both homeostasis and metabolic disease.
Collapse
Affiliation(s)
- Selma Boulenouar
- Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Xavier Michelet
- Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Andrew E Hogan
- Education Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Christina Dold
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Donal O'Connor
- Education Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland
| | | | | | - Desmond Winters
- Education Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Mark A Exley
- Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Donal O'Shea
- Education Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland
| | | | | | - Lydia Lynch
- Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
82
|
Bharath LP, Ip BC, Nikolajczyk BS. Adaptive Immunity and Metabolic Health: Harmony Becomes Dissonant in Obesity and Aging. Compr Physiol 2017; 7:1307-1337. [PMID: 28915326 DOI: 10.1002/cphy.c160042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipose tissue (AT) is the primary energy reservoir organ, and thereby plays a critical role in energy homeostasis and regulation of metabolism. AT expands in response to chronic overnutrition or aging and becomes a major source of inflammation that has marked influence on systemic metabolism. The chronic, sterile inflammation that occurs in the AT during the development of obesity or in aging contributes to onset of devastating diseases such as insulin resistance, diabetes, and cardiovascular pathologies. Numerous studies have shown that inflammation in the visceral AT of humans and animals is a critical trigger for the development of metabolic syndrome. This work underscores the well-supported conclusion that the inflammatory immune response and metabolic pathways in the AT are tightly interwoven by multiple layers of relatively conserved mechanisms. During the development of diet-induced obesity or age-associated adiposity, cells of the innate and the adaptive immune systems infiltrate and proliferate in the AT. Macrophages, which dominate AT-associated immune cells in mouse models of obesity, but are less dominant in obese people, have been studied extensively. However, cells of the adaptive immune system, including T cells and B cells, contribute significantly to AT inflammation, perhaps more in humans than in mice. Lymphocytes regulate recruitment of innate immune cells into AT, and produce cytokines that influence the helpful-to-harmful inflammatory balance that, in turn, regulates organismal metabolism. This review describes inflammation, or more precisely, metabolic inflammation (metaflammation) with an eye toward the AT and the roles lymphocytes play in regulation of systemic metabolism during obesity and aging. © 2017 American Physiological Society. Compr Physiol 7:1307-1337, 2017.
Collapse
Affiliation(s)
- Leena P Bharath
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Blanche C Ip
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Molecular Pharmacology, Physiology and Biotechnology, Center of Biomedical Engineering, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
83
|
Kim HM, Lee BR, Lee ES, Kwon MH, Huh JH, Kwon BE, Park EK, Chang SY, Kweon MN, Kim PH, Ko HJ, Chung CH. iNKT cells prevent obesity-induced hepatic steatosis in mice in a C-C chemokine receptor 7-dependent manner. Int J Obes (Lond) 2017; 42:270-279. [PMID: 28811651 PMCID: PMC5803573 DOI: 10.1038/ijo.2017.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/19/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis are characterized by an increase in hepatic triglyceride content with infiltration of immune cells, which can cause steatohepatitis and hepatic insulin resistance. C-C chemokine receptor 7 (CCR7) is primarily expressed in immune cells, and CCR7 deficiency leads to the development of multi-organ autoimmunity, chronic renal disease and autoimmune diabetes. Here, we investigated the effect of CCR7 on hepatic steatosis in a mouse model and its underlying mechanism. Our results demonstrated that body and liver weights were higher in the CCR7−/− mice than in the wild-type (WT) mice when they were fed a high-fat diet. Further, glucose tolerance and insulin sensitivity were markedly diminished in CCR7−/− mice. The number of invariant natural killer T (iNKT) cells was reduced in the livers of the CCR7−/− mice. Moreover, liver inflammation was detected in obese CCR7−/− mice, which was ameliorated by the adoptive transfer of hepatic mononuclear cells from WT mice, but not through the transfer of hepatic mononuclear cells from CD1d−/− or interleukin-10-deficient (IL-10−/−) mice. Overall, these results suggest that CCR7+ mononuclear cells in the liver could regulate obesity-induced hepatic steatosis via induction of IL-10-expressing iNKT cells.
Collapse
Affiliation(s)
- H M Kim
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - B R Lee
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - E S Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - M H Kwon
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - J H Huh
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - B-E Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - E-K Park
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - S-Y Chang
- College of Pharmacy, Ajou University, Suwon, Korea
| | - M-N Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Korea
| | - P-H Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - H-J Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - C H Chung
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
84
|
Bonamichi BDSF, Lee J. Unusual Suspects in the Development of Obesity-Induced Inflammation and Insulin Resistance: NK cells, iNKT cells, and ILCs. Diabetes Metab J 2017; 41:229-250. [PMID: 28537058 PMCID: PMC5583401 DOI: 10.4093/dmj.2017.41.4.229] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022] Open
Abstract
The notion that obesity-induced inflammation mediates the development of insulin resistance in animal models and humans has been gaining strong support. It has also been shown that immune cells in local tissues, in particular in visceral adipose tissue, play a major role in the regulation of obesity-induced inflammation. Specifically, obesity increases the numbers and activation of proinflammatory immune cells, including M1 macrophages, neutrophils, Th1 CD4 T cells, and CD8 T cells, while simultaneously suppressing anti-inflammatory cells such as M2 macrophages, CD4 regulatory T cells, regulatory B cells, and eosinophils. Recently, however, new cell types have been shown to participate in the development of obesity-induced inflammation and insulin resistance. Some of these cell types also appear to regulate obesity. These cells are natural killer (NK) cells and innate lymphoid cells (ILCs), which are closely related, and invariant natural killer T (iNKT) cells. It should be noted that, although iNKT cells resemble NK cells in name, they are actually a completely different cell type in terms of their development and functions in immunity and metabolism. In this review, we will focus on the roles that these relatively new players in the metabolism field play in obesity-induced insulin resistance and the regulation of obesity.
Collapse
Affiliation(s)
| | - Jongsoon Lee
- The Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
85
|
Kopec AK, Abrahams SR, Thornton S, Palumbo JS, Mullins ES, Divanovic S, Weiler H, Owens AP, Mackman N, Goss A, van Ryn J, Luyendyk JP, Flick MJ. Thrombin promotes diet-induced obesity through fibrin-driven inflammation. J Clin Invest 2017; 127:3152-3166. [PMID: 28737512 DOI: 10.1172/jci92744] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/02/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390-396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390-396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | | | | | | | | | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Hartmut Weiler
- Department of Physiology, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - A Phillip Owens
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nigel Mackman
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashley Goss
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Joanne van Ryn
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
86
|
Liang H, Zhang Z, Yan J, Wang Y, Hu Z, Mitch WE, Wang Y. The IL-4 receptor α has a critical role in bone marrow-derived fibroblast activation and renal fibrosis. Kidney Int 2017; 92:1433-1443. [PMID: 28739140 DOI: 10.1016/j.kint.2017.04.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Abstract
Renal fibrosis is a common pathway leading to the progression of chronic kidney disease, and bone marrow-derived fibroblasts contribute significantly to the development of renal fibrosis. However, the signaling mechanisms underlying the activation of these fibroblasts are not completely understood. Here, we examined the role of IL-4 receptor α (IL-4Rα) in the activation of myeloid fibroblasts in two experimental models of renal fibrosis. Compared with wild-type mice, IL-4Rα knockout mice accumulated fewer bone marrow-derived fibroblasts and myofibroblasts in their kidneys. IL-4Rα deficiency suppressed the expression of α-smooth muscle actin, extracellular matrix proteins and the development of renal fibrosis. Furthermore, IL-4Rα deficiency inhibited the activation of signal transducer and activator of transcription 6 (STAT6) in the kidney. Moreover, wild-type mice engrafted with bone marrow cells from IL-4Rα knockout mice exhibited fewer myeloid fibroblasts in the kidney and displayed less severe renal fibrosis following ureteral obstructive injury compared with wild-type mice engrafted with wild-type bone marrow cells. In vitro, IL-4 activated STAT6 and stimulated expression of α-smooth muscle actin and fibronectin in mouse bone marrow monocytes. This was abolished in the absence of IL-4Rα. Thus, IL-4Rα plays an important role in bone marrow-derived fibroblast activation, resulting in extracellular matrix protein production and fibrosis development. Hence, the IL-4Rα/STAT6 signaling pathway may serve as a novel therapeutic target for chronic kidney disease.
Collapse
Affiliation(s)
- Hua Liang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA; Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Zhengmao Zhang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jingyin Yan
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yuguo Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zhaoyong Hu
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - William E Mitch
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA; Center for Translational Research on Inflammatory Diseases and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.
| |
Collapse
|
87
|
Meza-Perez S, Randall TD. Immunological Functions of the Omentum. Trends Immunol 2017; 38:526-536. [PMID: 28579319 PMCID: PMC5812451 DOI: 10.1016/j.it.2017.03.002] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/28/2017] [Accepted: 03/10/2017] [Indexed: 12/25/2022]
Abstract
The omentum is a visceral adipose tissue with unique immune functions. Although it is primarily an adipose tissue, the omentum also contains lymphoid aggregates, called milky spots (MSs), that contribute to peritoneal immunity by collecting antigens, particulates, and pathogens from the peritoneal cavity and, depending on the stimuli, promoting a variety of immune responses, including inflammation, tolerance, or even fibrosis. Reciprocal interactions between cells in the MS and adipocytes regulate their immune and metabolic functions. Importantly, the omentum collects metastasizing tumor cells and supports tumor growth by immunological and metabolic mechanisms. Here we summarize our current knowledge about the development, organization, and function of the omentum in peritoneal immunity.
Collapse
Affiliation(s)
- Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
88
|
Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 542:177-185. [PMID: 28179656 DOI: 10.1038/nature21363] [Citation(s) in RCA: 1520] [Impact Index Per Article: 190.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2017] [Indexed: 12/11/2022]
Abstract
Proper regulation and management of energy, substrate diversity and quantity, as well as macromolecular synthesis and breakdown processes, are fundamental to cellular and organismal survival and are paramount to health. Cellular and multicellular organization are defended by the immune response, a robust and critical system through which self is distinguished from non-self, pathogenic signals are recognized and eliminated, and tissue homeostasis is safeguarded. Many layers of evolutionarily conserved interactions occur between immune response and metabolism. Proper maintenance of this delicate balance is crucial for health and has important implications for many pathological states such as obesity, diabetes, and other chronic non-communicable diseases.
Collapse
|
89
|
Ma WT, Jia YJ, Liu QZ, Yang YQ, Yang JB, Zhao ZB, Yang ZY, Shi QH, Ma HD, Gershwin ME, Lian ZX. Modulation of liver regeneration via myeloid PTEN deficiency. Cell Death Dis 2017; 8:e2827. [PMID: 28542148 PMCID: PMC5520744 DOI: 10.1038/cddis.2017.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 02/08/2023]
Abstract
Molecular mechanisms that modulate liver regeneration are of critical importance for a number of hepatic disorders. Kupffer cells and natural killer (NK) cells are two cell subsets indispensable for liver regeneration. We have focused on these two populations and, in particular, the interplay between them. Importantly, we demonstrate that deletion of the myeloid phosphatase and tensin homolog on chromosome 10 (PTEN) leading to an M2-like polarization of Kupffer cells, which results in decreased activation of NK cells. In addition, PTEN-deficient Kupffer cells secrete additional factors that facilitate the proliferation of hepatocytes. In conclusion, PTEN is critical for inhibiting M2-like polarization of Kupffer cells after partial hepatectomy, resulting in NK cell activation and thus the inhibition of liver regeneration. Furthermore, PTEN reduces growth factor secretion by Kupffer cells. Our results suggest that targeting PTEN on Kupffer cells may be useful in altering liver regeneration in patients undergoing liver resection.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yan-Jie Jia
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Zhi Liu
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yan-Qing Yang
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jing-Bo Yang
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhi-Bin Zhao
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhen-Ye Yang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Hua Shi
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| |
Collapse
|
90
|
Zhou Q, Xian M, Xiang S, Xiang D, Shao X, Wang J, Cao J, Yang X, Yang B, Ying M, He Q. All-Trans Retinoic Acid Prevents Osteosarcoma Metastasis by Inhibiting M2 Polarization of Tumor-Associated Macrophages. Cancer Immunol Res 2017; 5:547-559. [PMID: 28515123 DOI: 10.1158/2326-6066.cir-16-0259] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
M2-polarized tumor-associated macrophages (TAM) play a critical role in cancer invasion and metastasis. Here, we report that M2 macrophages enhanced metastasis of K7M2 WT osteosarcoma cells to the lungs in mice, thus establishing M2 TAMs as a therapeutic target for blocking osteosarcoma metastasis. We found that all-trans retinoic acid (ATRA) inhibited osteosarcoma metastasis via inhibiting the M2 polarization of TAMs. ATRA suppressed IL13- or IL4-induced M2-type macrophages, and then inhibited migration of osteosarcoma cells as promoted by M2-type macrophages in vitro ATRA reduced the number of pulmonary metastatic nodes of osteosarcoma and decreased expression of M2-type macrophages in metastatic nodes both in intravenous injection and orthotopic transplantation models. ATRA's effect was independent of conventional STAT3/6 or C/EBPβ signaling, which regulate M2-like polarization of macrophages. Quantitative genomic and functional analyses revealed that MMP12, a macrophage-secreted elastase, was elevated in IL13-skewed TAM polarization, whereas ATRA treatment downregulated IL13-induced secretion of MMP12. This downregulation correlates with the antimetastasis effect of ATRA. Our results show the role of TAM polarization in osteosarcoma metastasis, identify a therapeutic opportunity for antimetastasis treatment, and indicate ATRA treatment as an approach for preventing osteosarcoma metastasis via M2-type polarization intervention. Cancer Immunol Res; 5(7); 547-59. ©2017 AACR.
Collapse
Affiliation(s)
- Qian Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Miao Xian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Senfeng Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Danyan Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
91
|
Favreau M, Menu E, Gaublomme D, Vanderkerken K, Faict S, Maes K, De Bruyne E, Govindarajan S, Drennan M, Van Calenbergh S, Leleu X, Zabeau L, Tavernier J, Venken K, Elewaut D. Leptin receptor antagonism of iNKT cell function: a novel strategy to combat multiple myeloma. Leukemia 2017; 31:2678-2685. [PMID: 28490813 DOI: 10.1038/leu.2017.146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 12/28/2022]
Abstract
A hallmark of bone marrow changes with aging is the increase in adipocyte composition, but how this impacts development of multiple myeloma (MM) is unknown. Here, we report the role of the adipokine leptin as master regulator of anti-myeloma tumor immunity by modulating the invariant natural killer T (iNKT) cell function. A marked increase in serum leptin levels and leptin receptor (LR) expression on iNKT cells in MM patients and the 5T33 murine MM model was observed. MM cells and leptin synergistically counteracted anti-tumor functionality of both murine and human iNKT cells. In vivo blockade of LR signaling combined with iNKT stimulation resulted in superior anti-tumor protection. This was linked to persistent IFN-γ secretion upon repeated iNKT cell stimulation and a restoration of the dynamic antigen-induced motility arrest as observed by intravital microscopy, thereby showing alleviation of iNKT cell anergy. Overall our data reveal the LR axis as novel therapeutic target for checkpoint inhibition to treat MM.
Collapse
Affiliation(s)
- M Favreau
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - E Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - D Gaublomme
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - K Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - S Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - K Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - E De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - S Govindarajan
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - M Drennan
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - S Van Calenbergh
- Laboratory for Medicinal Chemistry, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - X Leleu
- Service d'Hématologie et Thérapie Cellulaire, Pôle Régional de Cancérologie, Hospital de la Miléterie, Poitiers, France
| | - L Zabeau
- Department of Biochemistry, VIB Medical Biotechnology Center, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - J Tavernier
- Department of Biochemistry, VIB Medical Biotechnology Center, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - K Venken
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - D Elewaut
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| |
Collapse
|
92
|
Cinkajzlová A, Mráz M, Haluzík M. Lymphocytes and macrophages in adipose tissue in obesity: markers or makers of subclinical inflammation? PROTOPLASMA 2017; 254:1219-1232. [PMID: 28150048 DOI: 10.1007/s00709-017-1082-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 05/17/2023]
Abstract
Obesity is accompanied by the development of chronic low-grade inflammation in adipose tissue. The presence of chronic inflammatory response along with metabolically harmful factors released by adipose tissue into the circulation is associated with several metabolic complications of obesity such as type 2 diabetes mellitus or accelerated atherosclerosis. The present review is focused on macrophages and lymphocytes and their possible role in low-grade inflammation in fat. Both macrophages and lymphocytes respond to obesity-induced adipocyte hypertrophy by their migration into adipose tissue. After activation and differentiation, they contribute to the development of local inflammatory response and modulation of endocrine function of adipose tissue. Despite intensive research, the exact role of lymphocytes and macrophages within adipose tissue is only partially clarified and various data obtained by different approaches bring ambiguous information with respect to their polarization and cytokine production. Compared to immunocompetent cells, the role of adipocytes in the obesity-related adipose tissue inflammation is often underestimated despite their abundant production of factors with immunomodulatory actions such as cytokines or adipokines such as leptin, adiponektin, and others. In summary, conflicting evidence together with only partial correlation of in vitro findings with true in vivo situation due to great heterogeneity and molecular complexity of tissue environment calls for intensive research in this rapidly evolving and important area.
Collapse
Affiliation(s)
- Anna Cinkajzlová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
- Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Miloš Mráz
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Haluzík
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic.
- Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Department of Obesitology, Institute of Endocrinology, Prague, Czech Republic.
| |
Collapse
|
93
|
Huh JY, Park J, Kim JI, Park YJ, Lee YK, Kim JB. Deletion of CD1d in Adipocytes Aggravates Adipose Tissue Inflammation and Insulin Resistance in Obesity. Diabetes 2017; 66:835-847. [PMID: 28082459 DOI: 10.2337/db16-1122] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/08/2017] [Indexed: 11/13/2022]
Abstract
Adipose tissue inflammation is an important factor in obesity that promotes insulin resistance. Among various cell types in adipose tissue, immune cells actively regulate inflammatory responses and affect whole-body energy metabolism. In particular, invariant natural killer T (iNKT) cells contribute to mitigating dysregulation of systemic energy homeostasis by counteracting obesity-induced inflammation in adipose tissue. However, the molecular mechanisms by which adipose iNKT cells become activated and mediate anti-inflammatory roles in obese adipose tissue have not been thoroughly understood yet. In the current study, we demonstrate that adipocyte CD1d plays a key role in the stimulation of adipose iNKT cells, leading to anti-inflammatory responses in high-fat diet (HFD)-fed mice. Accordingly, adipocyte-specific CD1d-knockout (CD1dADKO) mice showed reduced numbers of iNKT cells in adipose tissues and decreased responses to α-galactosylceramide-induced iNKT cell activation. Additionally, HFD-fed CD1dADKO mice revealed reduced interleukin-4 expression in adipose iNKT cells and aggravated adipose tissue inflammation and insulin resistance. Collectively, these data suggest that adipocytes could selectively stimulate adipose iNKT cells to mediate anti-inflammatory responses and attenuate excess proinflammatory responses in obese adipose tissue.
Collapse
Affiliation(s)
- Jin Young Huh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Jeu Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Jong In Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Yoon Jeong Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, Korea
| | - Yun Kyung Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Jae Bum Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| |
Collapse
|
94
|
Hui X, Zhang M, Gu P, Li K, Gao Y, Wu D, Wang Y, Xu A. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue. EMBO Rep 2017; 18:645-657. [PMID: 28270525 DOI: 10.15252/embr.201643184] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 11/09/2022] Open
Abstract
Adipose tissue inflammation, characterized by augmented infiltration and altered polarization of macrophages, contributes to insulin resistance and its associated metabolic diseases. The NAD+-dependent deacetylase SIRT1 serves as a guardian against metabolic disorders in multiple tissues. To dissect the roles of SIRT1 in adipose tissues, metabolic phenotypes of mice with selective ablation of SIRT1 in adipocytes and myeloid cells were monitored. Compared to myeloid-specific SIRT1 depletion, mice with adipocyte-selective deletion of SIRT1 are more susceptible to diet-induced insulin resistance. The phenotypic changes in adipocyte-selective SIRT1 knockout mice are associated with an increased number of adipose-resident macrophages and their polarization toward the pro-inflammatory M1 subtype. Mechanistically, SIRT1 in adipocytes modulates expression and secretion of several adipokines, including adiponectin, MCP-1, and interleukin 4, which in turn alters recruitment and polarization of the macrophages in adipose tissues. In adipocytes, SIRT1 deacetylates the transcription factor NFATc1 and thereby enhances the binding of NFATc1 to the Il4 gene promoter. These findings suggest that adipocyte SIRT1 controls systemic glucose homeostasis and insulin sensitivity via the cross talk with adipose-resident macrophages.
Collapse
Affiliation(s)
- Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ping Gu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Endocrinology, School of Medicine, Nanjing University Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Kuai Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan Gao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Donghai Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China .,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China .,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
95
|
Xia C, Rao X, Zhong J. Role of T Lymphocytes in Type 2 Diabetes and Diabetes-Associated Inflammation. J Diabetes Res 2017; 2017:6494795. [PMID: 28251163 PMCID: PMC5307004 DOI: 10.1155/2017/6494795] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/30/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Although a critical role of adaptive immune system has been confirmed in driving local and systemic inflammation in type 2 diabetes and promoting insulin resistance, the underlying mechanism is not completely understood. Inflammatory regulation has been focused on innate immunity especially macrophage for a long time, while increasing evidence suggests T cells are crucial for the development of metabolic inflammation and insulin resistance since 2009. There was growing evidence supporting the critical implication of T cells in the pathogenesis of type 2 diabetes. We will discuss the available effect of T cells subsets in adaptive immune system associated with the procession of T2DM, which may unveil several potential strategies that could provide successful therapies in the future.
Collapse
Affiliation(s)
- Chang Xia
- College of Health Science & Nursing, Wuhan Polytechnic University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
96
|
Wang XL, Chang XY, Tang XX, Chen ZG, Zhou T, Sun K. Peripheral invariant natural killer T cell deficiency in metabolically unhealthy but normal weight versus metabolically healthy but obese individuals. J Int Med Res 2016; 44:1272-1282. [PMID: 28322093 PMCID: PMC5536764 DOI: 10.1177/0300060516663778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective To investigate the proportion of circulating invariant natural killer T (iNKT) cells in four body health types. Methods In this cross-sectional study, participants were classified into four body health types according to the body mass index and metabolic status: metabolically healthy and normal weight (MHNW), metabolically unhealthy but normal weight (MUNW), metabolically healthy but obese (MHO), or metabolically unhealthy and obese (MUO). Demographic and clinical characteristics were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and visceral adiposity index (VAI) were calculated. The proportion of circulating iNKT cells was also evaluated by flow cytometry. Results The study enrolled 41 MHNW, 37 MUNW, 30 MHO, and 43 MUO participants. Compared with the MHNW group, the MUNW, MHO, and MUO groups had significantly lower iNKT cell proportions. The iNKT cell proportion was significantly higher in the MHO group than the MUNW and MUO groups. The iNKT cell proportion was inversely correlated with high-sensitivity C-reactive protein, HOMA-IR, and VAI values. Conclusion The proportion of iNKT cells was lower in people (lean or obese) with excessive visceral fat accumulation, suggesting that iNKT cell deficiency may be involved in the pathophysiology of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Xiao-Li Wang
- 1 Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang, China
| | - Xiang-Yun Chang
- 1 Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang, China
| | - Xiao-Xiao Tang
- 1 Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang, China
| | - Zhi-Gang Chen
- 2 Department of Medical Laboratory, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ting Zhou
- 2 Department of Medical Laboratory, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Kan Sun
- 1 Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang, China
| |
Collapse
|
97
|
Adipose tissue at the nexus of systemic and cellular immunometabolism. Semin Immunol 2016; 28:431-440. [DOI: 10.1016/j.smim.2016.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
|
98
|
Kumamoto Y, Camporez JPG, Jurczak MJ, Shanabrough M, Horvath T, Shulman GI, Iwasaki A. CD301b(+) Mononuclear Phagocytes Maintain Positive Energy Balance through Secretion of Resistin-like Molecule Alpha. Immunity 2016; 45:583-596. [PMID: 27566941 DOI: 10.1016/j.immuni.2016.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 05/12/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022]
Abstract
Mononuclear phagocytes (MNPs) are a highly heterogeneous group of cells that play important roles in maintaining the body's homeostasis. Here, we found CD301b (also known as MGL2), a lectin commonly used as a marker for alternatively activated macrophages, was selectively expressed by a subset of CD11b(+)CD11c(+)MHCII(+) MNPs in multiple organs including adipose tissues. Depleting CD301b(+) MNPs in vivo led to a significant weight loss with increased insulin sensitivity and a marked reduction in serum Resistin-like molecule (RELM) α, a multifunctional cytokine produced by MNPs. Reconstituting RELMα in CD301b(+) MNP-depleted animals restored body weight and normoglycemia. Thus, CD301b(+) MNPs play crucial roles in maintaining glucose metabolism and net energy balance.
Collapse
Affiliation(s)
- Yosuke Kumamoto
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joao Paulo G Camporez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael J Jurczak
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Marya Shanabrough
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tamas Horvath
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA.
| |
Collapse
|
99
|
Fan X, Rudensky AY. Hallmarks of Tissue-Resident Lymphocytes. Cell 2016; 164:1198-1211. [PMID: 26967286 DOI: 10.1016/j.cell.2016.02.048] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Indexed: 01/20/2023]
Abstract
Although they are classically viewed as continuously recirculating through the lymphoid organs and blood, lymphocytes also establish residency in non-lymphoid tissues, most prominently at barrier sites, including the mucosal surfaces and skin. These specialized tissue-resident lymphocyte subsets span the innate-adaptive continuum and include innate lymphoid cells (ILCs), unconventional T cells (e.g., NKT, MAIT, γδ T cells, and CD8αα(+) IELs), and tissue-resident memory T (T(RM)) cells. Although these diverse cell types differ in the particulars of their biology, they nonetheless exhibit important shared features, including a role in the preservation of tissue integrity and function during homeostasis, infection, and non-infectious perturbations. In this Review, we discuss the hallmarks of tissue-resident innate, innate-like, and adaptive lymphocytes, as well as their potential functions in non-lymphoid organs.
Collapse
Affiliation(s)
- Xiying Fan
- Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA; Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA.
| |
Collapse
|
100
|
Huang S, Moody DB. Donor-unrestricted T cells in the human CD1 system. Immunogenetics 2016; 68:577-96. [PMID: 27502318 PMCID: PMC5915868 DOI: 10.1007/s00251-016-0942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
The CD1 and MHC systems are specialized for lipid and peptide display, respectively. Here, we review evidence showing how cellular CD1a, CD1b, CD1c, and CD1d proteins capture and display many cellular lipids to T cell receptors (TCRs). Increasing evidence shows that CD1-reactive T cells operate outside two classical immunogenetic concepts derived from the MHC paradigm. First, because CD1 proteins are non-polymorphic in human populations, T cell responses are not restricted to the donor's genetic background. Second, the simplified population genetics of CD1 antigen-presenting molecules can lead to simplified patterns of TCR usage. As contrasted with donor-restricted patterns of MHC-TCR interaction, the donor-unrestricted nature of CD1-TCR interactions raises the prospect that lipid agonists and antagonists of T cells could be developed.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - D Branch Moody
- Divison of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|