51
|
Lyu J, Jin L, Jin N, Xie J, Xiao X, Hu L, Tang Z, Wu Y, Niu L, Yu J. Effects of Different Vegetable Rotations on Fungal Community Structure in Continuous Tomato Cropping Matrix in Greenhouse. Front Microbiol 2020; 11:829. [PMID: 32508762 PMCID: PMC7251036 DOI: 10.3389/fmicb.2020.00829] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/07/2020] [Indexed: 12/03/2022] Open
Abstract
Intensive greenhouse vegetable cultivation aggravates continuous cropping, resulting in the disturbance of the microbial community structure and the diversity of the soil matrix. In this study, we evaluated the diversity of the rhizosphere matrix fungi in rotation and continuous cropping systems by using high-throughput sequencing analysis of substrates under 6-years of continuous tomato cropping and rotation with cabbage, bean, or celery in greenhouse pots. The results showed that fungal richness in the Chinese cabbage rotation treatment (B) was significantly lower than that of other treatments, and fungal diversities of treatment B and the bean rotation treatment (D) were significantly lower than that of continuous tomato cropping (CK). Contrastingly, the celery rotation treatment (Q) increased the fungal diversity and richness. Furthermore, a principal coordinate analysis showed that the fungal soil community structure of each rotation treatment was different from that of CK. The relative abundances of several harmful fungi (such as Pseudogymnoascus, Gibberella, and Pyrenochaeta) in control CK were significantly higher than those in rotation treatments. In addition, the matrix electrical conductivity, organic matter, total K, and available P in treatments B and D were significantly higher than those in control CK. Moreover, pH and total N of treatment Q were significantly higher than those of control CK. Most fungi were positively correlated with organic matter and available P and negatively correlated with pH. Therefore, rotation with celery could improve the abundance and diversity of fungi in continuous tomato cropping substrates and reduce the relative abundance of harmful fungi. These results indicated that the rotation of celery and tomato could effectively maintain the ecological balance of the substrate microenvironment and provide a more effective way to prevent the problems of continuous tomato cropping in greenhouse.
Collapse
Affiliation(s)
- Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lijuan Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
52
|
Macias AM, Geiser DM, Stajich JE, Łukasik P, Veloso C, Bublitz DC, Berger MC, Boyce GR, Hodge K, Kasson MT. Evolutionary relationships among Massospora spp. (Entomophthorales), obligate pathogens of cicadas. Mycologia 2020; 112:1060-1074. [PMID: 32412847 DOI: 10.1080/00275514.2020.1742033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The fungal genus Massospora (Zoopagomycota: Entomophthorales) includes more than a dozen obligate, sexually transmissible pathogenic species that infect cicadas (Hemiptera) worldwide. At least two species are known to produce psychoactive compounds during infection, which has garnered considerable interest for this enigmatic genus. As with many Entomophthorales, the evolutionary relationships and host associations of Massospora spp. are not well understood. The acquisition of M. diceroproctae from Arizona, M. tettigatis from Chile, and M. platypediae from California and Colorado provided an opportunity to conduct molecular phylogenetic analyses and morphological studies to investigate whether these fungi represent a monophyletic group and delimit species boundaries. In a three-locus phylogenetic analysis including the D1-D2 domains of the nuclear 28S rRNA gene (28S), elongation factor 1 alpha-like (EFL), and beta-tubulin (BTUB), Massospora was resolved in a strongly supported monophyletic group containing four well-supported genealogically exclusive lineages, based on two of three methods of phylogenetic inference. There was incongruence among the single-gene trees: two methods of phylogenetic inference recovered trees with either the same topology as the three-gene concatenated tree (EFL) or a basal polytomy (28S, BTUB). Massospora levispora and M. platypediae isolates formed a single lineage in all analyses and are synonymized here as M. levispora. Massospora diceroproctae was sister to M. cicadina in all three single-gene trees and on an extremely long branch relative to the other Massospora, and even the outgroup taxa, which may reflect an accelerated rate of molecular evolution and/or incomplete taxon sampling. The results of the morphological study presented here indicate that spore measurements may not be phylogenetically or diagnostically informative. Despite recent advances in understanding the ecology of Massospora, much about its host range and diversity remains unexplored. The emerging phylogenetic framework can provide a foundation for exploring coevolutionary relationships with cicada hosts and the evolution of behavior-altering compounds.
Collapse
Affiliation(s)
- Angie M Macias
- Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26506
| | - David M Geiser
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park , Pennsylvania 16802
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California , Riverside, California 92521
| | - Piotr Łukasik
- Institute of Environmental Sciences, Jagiellonian University , 30-387 Kraków, Poland.,Division of Biological Sciences, University of Montana , Missoula, Montana 59812
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile , Santiago, Chile
| | - DeAnna C Bublitz
- Division of Biological Sciences, University of Montana , Missoula, Montana 59812
| | - Matthew C Berger
- Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26506
| | - Greg R Boyce
- Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26506
| | - Kathie Hodge
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University , Ithaca, New York 14853
| | - Matt T Kasson
- Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26506
| |
Collapse
|
53
|
Medina EM, Robinson KA, Bellingham-Johnstun K, Ianiri G, Laplante C, Fritz-Laylin LK, Buchler NE. Genetic transformation of Spizellomyces punctatus, a resource for studying chytrid biology and evolutionary cell biology. eLife 2020; 9:52741. [PMID: 32392127 PMCID: PMC7213984 DOI: 10.7554/elife.52741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Chytrids are early-diverging fungi that share features with animals that have been lost in most other fungi. They hold promise as a system to study fungal and animal evolution, but we lack genetic tools for hypothesis testing. Here, we generated transgenic lines of the chytrid Spizellomyces punctatus, and used fluorescence microscopy to explore chytrid cell biology and development during its life cycle. We show that the chytrid undergoes multiple rounds of synchronous nuclear division, followed by cellularization, to create and release many daughter ‘zoospores’. The zoospores, akin to animal cells, crawl using actin-mediated cell migration. After forming a cell wall, polymerized actin reorganizes into fungal-like cortical patches and cables that extend into hyphal-like structures. Actin perinuclear shells form each cell cycle and polygonal territories emerge during cellularization. This work makes Spizellomyces a genetically tractable model for comparative cell biology and understanding the evolution of fungi and early eukaryotes.
Collapse
Affiliation(s)
- Edgar M Medina
- University of Program in Genetics and Genomics, Duke University, Durham, United States.,Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Kristyn A Robinson
- Department of Biology, University of Massachusetts, Amherst, United States
| | | | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Caroline Laplante
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, United States
| | | | - Nicolas E Buchler
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, United States
| |
Collapse
|
54
|
Corsaro D, Walochnik J, Venditti D, Hauröder B, Michel R. Solving an old enigma: Morellospora saccamoebae gen. nov., sp. nov. (Rozellomycota), a Sphaerita-like parasite of free-living amoebae. Parasitol Res 2020; 119:925-934. [PMID: 32048025 DOI: 10.1007/s00436-020-06623-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
The Rozellomycota form a lineage basal or sister to the Fungi, ancestor of Microsporidia. Their biodiversity is very rich but remains poorly characterized. The few known species are all parasites, whether of water molds and algae (Rozella), crustaceans (Mitosporidium), or as endonuclear parasites of amoebae (Nucleophaga, Paramicrosporidium). Since the nineteenth century, intracytoplasmic parasites of various protozoa have been described as species of the same genus Sphaerita. However, it was later thought possible to separate these parasites into at least two distinct groups, those forming flagellated zoospores, prevalent in Euglena and other flagellates, and those forming immobile spores, found mainly in free-living and endozoic amoebae. Herein, we report the recovery of a strain of the free-living amoeba species Saccamoeba lacustris, naturally infected by an intracytoplasmic parasite, which under light microscope has a morphology consistent with that of Sphaerita. Biomolecular analyses were thus performed. Our results show that the intracytoplasmic parasite of Saccamoeba belongs to the same subgroup of Mitosporidium and that it forms a new genus within Rozellomycota, Morellospora, that corresponds to the former spore-forming Sphaerita-like parasites of amoebae.
Collapse
Affiliation(s)
- Daniele Corsaro
- CHLAREAS, 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France.
| | - Julia Walochnik
- Molecular Parasitology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1095, Vienna, Austria
| | - Danielle Venditti
- CHLAREAS, 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France
| | - Bärbel Hauröder
- Department of Pathology, Electron Microscopy Facility, Bundeswehr Central Hospital Koblenz, Andernacher Strasse 100, 56070, Koblenz, Germany
| | - Rolf Michel
- Department of Pathology, Electron Microscopy Facility, Bundeswehr Central Hospital Koblenz, Andernacher Strasse 100, 56070, Koblenz, Germany
| |
Collapse
|
55
|
Wang X, Liu N. Mitochondrial genome characterization and phylogenetic analysis of Blastocladiella sp. (Blastocladiales: Blastocladiaceae). Mitochondrial DNA B Resour 2020; 5:800-801. [PMID: 33366757 PMCID: PMC7748703 DOI: 10.1080/23802359.2020.1715859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the present study, the complete mitochondrial genome of an early diverging fungus Blastocladiella sp. was assembled by the next-generation sequencing. The complete mitochondrial genome of Blastocladiella sp. is 33, 800 bp in length and consists of 11,620 (34.38%) adenine, 5,047 (14.93%) cytosine, 6,025 (17.83%) guanosine and 11,108 (32.86%) thymine. The genome contains 19 protein-coding genes, 24 tRNA genes and 2 rRNA genes. Phylogenetic analysis based on the combined mitochondrial gene set showed that Blastocladiella sp. has a close relationship with Allomyces macrogynus and Blastocladiella emersonii.
Collapse
Affiliation(s)
- Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Na Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
56
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc 2019; 94:2101-2137. [PMID: 31659870 PMCID: PMC6899921 DOI: 10.1111/brv.12550] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
The fungal kingdom comprises a hyperdiverse clade of heterotrophic eukaryotes characterized by the presence of a chitinous cell wall, the loss of phagotrophic capabilities and cell organizations that range from completely unicellular monopolar organisms to highly complex syncitial filaments that may form macroscopic structures. Fungi emerged as a 'Third Kingdom', embracing organisms that were outside the classical dichotomy of animals versus vegetals. The taxonomy of this group has a turbulent history that is only now starting to be settled with the advent of genomics and phylogenomics. We here review the current status of the phylogeny and taxonomy of fungi, providing an overview of the main defined groups. Based on current knowledge, nine phylum-level clades can be defined: Opisthosporidia, Chytridiomycota, Neocallimastigomycota, Blastocladiomycota, Zoopagomycota, Mucoromycota, Glomeromycota, Basidiomycota and Ascomycota. For each group, we discuss their main traits and their diversity, focusing on the evolutionary relationships among the main fungal clades. We also explore the diversity and phylogeny of several groups of uncertain affinities and the main phylogenetic and taxonomical controversies and hypotheses in the field.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Health and Experimental Sciences DepartmentUniversitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
57
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
58
|
McDonald CA, Ellison AR, Toledo LF, James TY, Zamudio KR. Gene expression varies within and between enzootic and epizootic lineages of Batrachochytrium dendrobatidis (Bd) in the Americas. Fungal Biol 2019; 124:34-43. [PMID: 31892375 DOI: 10.1016/j.funbio.2019.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 07/29/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
While much research focus is paid to hypervirulent fungal lineages during emerging infectious disease outbreaks, examining enzootic pathogen isolates can be equally fruitful in delineating infection dynamics and determining pathogenesis. The fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd), exhibits markedly different patterns of disease in natural populations, where it has caused massive amphibian declines in some regions, yet persists enzootically in others. Here we compare in vitro gene expression profiles of a panel of Bd isolates representing both the enzootic Bd-Brazil lineage, and the more recently diverged, panzootic lineage, Bd-GPL. We document significantly different lineage-specific and intralineage gene expression patterns, with Bd-Brazil upregulating genes with aspartic-type peptidase activity, and Bd-GPL upregulating CBM18 chitin-binding genes, among others. We also find pronounced intralineage variation in membrane integrity and transmembrane transport ability within our Bd-GPL isolates. Finally, we highlight unexpectedly divergent expression profiles in sympatric panzootic isolates, underscoring microgeographic functional variation in a largely clonal lineage. This variation in gene expression likely plays an important role in the relative pathogenesis and host range of Bd-Brazil and Bd-GPL isolates. Together, our results demonstrate that functional genomics approaches can provide information relevant to studies of virulence evolution within the Bd clade.
Collapse
Affiliation(s)
- C A McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA.
| | - A R Ellison
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - L F Toledo
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - T Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
59
|
Wang Y, Youssef NH, Couger MB, Hanafy RA, Elshahed MS, Stajich JE. Molecular Dating of the Emergence of Anaerobic Rumen Fungi and the Impact of Laterally Acquired Genes. mSystems 2019; 4:e00247-19. [PMID: 31455637 PMCID: PMC6712302 DOI: 10.1128/msystems.00247-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023] Open
Abstract
The anaerobic gut fungi (AGF), or Neocallimastigomycota, inhabit the rumen and alimentary tract of herbivorous mammals, where they play important roles in the degradation of plant fiber. Comparative genomic and phylogenomic analyses of the AGF have long been hampered by their fastidious growth condition, as well as their large (up to 200 Mb) and AT-biased (78 to 84%) genomes. We sequenced 21 AGF transcriptomes and combined them with 5 available AGF genome sequences to explore their evolutionary relationships, time their divergence, and characterize gene gain/loss patterns associated with their evolution. We estimate that the most recent common ancestor of the AGF diverged 66 (±10) million years ago, a time frame that coincides with the evolution of grasses (Poaceae), as well as the mammalian transition from insectivory to herbivory. The concordance of independent estimations suggests that AGF have been important in shaping the success of mammalian herbivory transition by improving the efficiency of energy acquisition from recalcitrant plant materials. Comparative genomics identified multiple lineage-specific genes in the AGF, two of which were acquired from rumen gut bacteria and animal hosts via horizontal gene transfer (HGT). A third AGF domain, plant-like polysaccharide lyase, represents a novel gene in fungi that potentially aids AGF to degrade pectin. Analysis of genomic and transcriptomic sequences confirmed both the presence and expression of these lineage-specific genes in nearly all AGF clades. These genetic elements may contribute to the exceptional abilities of AGF to degrade plant biomass and enable metabolism of the rumen microbes and animal hosts.IMPORTANCE Anaerobic fungi living in the rumen of herbivorous mammals possess an extraordinary ability to degrade plant biomass. We examined the origin and genomic composition of these poorly characterized anaerobic gut fungi using both transcriptome and genomic data. Phylogenomics and molecular dating analyses found remarkable concurrence of the divergence times of the rumen fungi, the forage grasses, and the dietary shift of ancestral mammals from primarily insectivory to herbivory. Comparative genomics identified unique machinery in these fungi to utilize plant polysaccharides. The rumen fungi were also identified with the ability to code for three protein domains with putative functions in plant pectin degradation and microbial defense, which were absent from all other fungal organisms (examined over 1,000 fungal genomes). Two of these domains were likely acquired from rumen gut bacteria and animal hosts separately via horizontal gene transfer. The third one is a plant-like polysaccharide lyase, representing a unique fungal enzyme with potential pectin breakdown abilities.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew Brian Couger
- High Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
60
|
Sista Kameshwar AK, Qin W. Systematic review of publicly available non-Dikarya fungal proteomes for understanding their plant biomass-degrading and bioremediation potentials. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0264-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
61
|
Karpov SA, Moreira D, Mamkaeva MA, Popova OV, Aleoshin VV, López-García P. New Member of Gromochytriales (Chytridiomycetes)-Apiochytrium granulosporum nov. gen. et sp. J Eukaryot Microbiol 2019; 66:582-591. [PMID: 30460733 PMCID: PMC6685791 DOI: 10.1111/jeu.12702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/28/2018] [Accepted: 11/09/2018] [Indexed: 11/29/2022]
Abstract
Molecular phylogenetic analysis of 18S rRNA gene sequences of nearly any species of Chytridiomycota has typically challenged traditional classification and triggered taxonomic revision. This has often led to the establishment of new taxa which, normally, appears well supported by zoospore ultrastructure, which provides diagnostic characters. To construct a meaningful and comprehensive classification of Chytridiomycota, the combination of molecular phylogenies and morphological studies of traditionally defined chytrid species is needed. In this work, we have studied morphological and ultrastructural features based on light and transmission electron microscopy as well as molecular phylogenetic analysis of a parasite (strain X-124 CCPP ZIN RAS) morphologically similar to Rhizophydium granulosporum living on the yellow-green alga Tribonema gayanum. Phylogenetic analysis of the 18S rRNA gene sequence of this strain supports that it represents a new genus and species affiliated to the recently established order Gromochytriales. The ultrastructure of X-124 confirms its phylogenetic position sister to Gromochytrium and serves as the basis for the description of the new genus and species Apiochytrium granulosporum. The 18S rRNA gene of A. granulosporum contains a S943 group I intron that carries a homing endonuclease pseudogene.
Collapse
Affiliation(s)
- Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, 199034, Russian Federation
- St. Petersburg State University, St. Petersburg, 199034, Russian Federation
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, 91400, France
| | - Maria A Mamkaeva
- St. Petersburg State University, St. Petersburg, 199034, Russian Federation
| | - Olga V Popova
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Vladimir V Aleoshin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russian Federation
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, 91400, France
| |
Collapse
|
62
|
Medina D, Hughey MC, Walke JB, Becker MH, Pontarelli K, Sun S, Badgley B, Belden LK. Amphibian skin fungal communities vary across host species and do not correlate with infection by a pathogenic fungus. Environ Microbiol 2019; 21:2905-2920. [PMID: 31087743 DOI: 10.1111/1462-2920.14682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
Amphibian population declines caused by the fungus Batrachochytrium dendrobatidis (Bd) have prompted studies on the bacterial community that resides on amphibian skin. However, studies addressing the fungal portion of these symbiont communities have lagged behind. Using ITS1 amplicon sequencing, we examined the fungal portion of the skin microbiome of temperate and tropical amphibian species currently coexisting with Bd in nature. We assessed cooccurrence patterns between bacterial and fungal OTUs using a subset of samples for which bacterial 16S rRNA gene amplicon data were also available. We determined that fungal communities were dominated by members of the phyla Ascomycota and Basidiomycota, and also by Chytridiomycota in the most aquatic amphibian species. Alpha diversity of the fungal communities differed across host species, and fungal community structure differed across species and regions. However, we did not find a correlation between fungal diversity/community structure and Bd infection, though we did identify significant correlations between Bd and specific OTUs. Moreover, positive bacterial-fungal cooccurrences suggest that positive interactions between these organisms occur in the skin microbiome. Understanding the ecology of amphibian skin fungi, and their interactions with bacteria will complement our knowledge of the factors influencing community assembly and the overall function of these symbiont communities.
Collapse
Affiliation(s)
- Daniel Medina
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Myra C Hughey
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Department of Biology, Vassar College, Poughkeepsie, NY, USA
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Department of Biology, Eastern Washington University, Cheney, WA, USA
| | - Matthew H Becker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Shan Sun
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.,College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Brian Badgley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
63
|
Karpov SA, Vishnyakov AE, Moreira D, López-García P. The Ultrastructure of Sanchytrium tribonematis (Sanchytriaceae, Fungi incertae sedis) Confirms its Close Relationship to Amoeboradix. J Eukaryot Microbiol 2019; 66:892-898. [PMID: 31034699 DOI: 10.1111/jeu.12740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022]
Abstract
Fungi encompass, in addition to classically well-studied lineages, an ever-expanding diversity of poorly known lineages that include, among others, zoosporic chytrid-like parasites. According to recent phylogenetic analysis based on 18S + 28S rRNA concatenated genes two unusual chytrid-like fungi Amoeboradix gromovi and Sanchytrium tribonematis form a monophyletic group, the family Sanchytriaceae, which represents a new divergent taxon that remains incertae sedis within Fungi. Zoospores of Amoeboradix gromovi contain one of the longest kinetosomes known in eukaryotic cells, which are composed of microtubular singlets or doublets. However, the ultrastructure of S. tribonematis, the type species of the genus had not been yet studied. Here, we provide the results of TEM investigations of zoospores and sporangia from two strains of S. tribonematis. The two strains are endowed with unusual features. Like in A. gromovi, amoeboid zoospores of S. tribonematis contain a long kinetosome composed of microtubular singlets, and the two orthogonal centrioles in their sporangia have nine microtubular singlets with an internal ring. The morphological and ultrastructural features of S. tribonematis are now included in the improved taxonomic diagnosis for this species.
Collapse
Affiliation(s)
- Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, 199034, Russia.,St. Petersburg State University, St. Petersburg, 199034, Russia.,Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
| | | | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
| |
Collapse
|
64
|
Jerônimo GH, Jesus AL, Simmons DR, James TY, Pires-Zottarelli CLA. Novel taxa in Cladochytriales (Chytridiomycota): Karlingiella (gen. nov.) and Nowakowskiella crenulata (sp. nov.). Mycologia 2019; 111:506-516. [DOI: 10.1080/00275514.2019.1588583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Gustavo H. Jerônimo
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, São Paulo 04301-902, Brazil
| | - Ana L. Jesus
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, São Paulo 04301-902, Brazil
| | - D. Rabern Simmons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| | | |
Collapse
|
65
|
Huang Y, Huang J. Coupled effects of land use pattern and hydrological regime on composition and diversity of riverine eukaryotic community in a coastal watershed of Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:787-798. [PMID: 30743964 DOI: 10.1016/j.scitotenv.2019.01.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The coupled effects of land use pattern and hydrological regime on composition and diversity of riverine eukaryotic community are needed for understanding riverine ecosystem health and algal blooming mechanism. In-situ monitoring and 18S rRNA gene sequencing were used to investigate spatiotemporal variations of eukaryotic community in three types of watershed with different dominant land use type (i.e. urban, forest, and natural) during three seasons (i.e. dry, transition, and wet seasons) in a coastal watershed of Southeast China. Results showed that agricultural and urban watersheds had significantly higher diversity in dry and transition seasons, and higher richness in transition and wet seasons than those in forest watershed. The non-metric multidimensional scaling analysis further verified great spatiotemporal variations of eukaryotic community. Stramenopiles, Alveolata, Animalia, and Eukaryota, dominated the sequences reads for all sampling sites in three seasons. Agricultural watershed had the highest relative abundant of Animalia, whereas Eukaryota was the most abundant in urban watershed and forest watershed had the highest relative abundance of Stramenopiles and Alveolata. The RDA ordination showed that Builtup and streamflow were two most important factors for moderate taxa and abundant taxa, respectively. Variation partitioning revealed that land use pattern and hydrological regime together explained 54.4%, 61% and 67.2% variances of the composition of eukaryotic community. Among three sampling seasons, the relative contribution of land use pattern was higher than that of hydrological regime. The results of this investigation demonstrated how land use pattern and hydrological regime affected the composition and diversity of riverine eukaryotic community. The findings can provide a useful insight into the riverine eukaryotic communities and their underlying ecological mechanisms in coastal China watersheds.
Collapse
Affiliation(s)
- Yaling Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Jinliang Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
66
|
Powell MJ, Letcher PM. Ultrastructure of early stages of Rozella allomycis (Cryptomycota) infection of its host, Allomyces macrogynus (Blastocladiomycota). Fungal Biol 2019; 123:109-116. [PMID: 30709516 DOI: 10.1016/j.funbio.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 01/02/2023]
Abstract
This study reconstructs early stages of Rozella allomycis endoparasitic infection of its host, Allomyces macrogynus. Young thalli of A. macrogynus were inoculated with suspensions of R. allomycis zoospores and allowed to develop for 120 h. Infected thalli at intervals were fixed for electron microscopy and observed. Zoospores were attracted to host thalli, encysted on their surfaces, and penetrated their walls with an infection tube. The parasite cyst discharged its protoplast through an infection tube, which invaginated the host plasma membrane. The host plasma membrane then surrounded the parasite protoplast and formed a compartment confining it inside host cytoplasm. The earliest host-parasite interface within host cytoplasm consisted of two membranes, the outer layer the host plasma membrane and the inner layer the parasite plasma membrane. At first a wide space separated the two membranes and no material was observed within this space. Later, as the endoparasite thallus expanded within the compartment, the two membranes became closely appressed. As the endoparasite thallus continued to enlarge, the interface developed into three membrane layers. Thus, host plasma membrane surrounded the parasite protoplast initially without the parasite having to pierce the host plasma membrane for entry. Significantly, host-derived membrane was at the interface throughout development.
Collapse
Affiliation(s)
- Martha J Powell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA.
| | - Peter M Letcher
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA.
| |
Collapse
|
67
|
Lange L, Pilgaard B, Herbst FA, Busk PK, Gleason F, Pedersen AG. Origin of fungal biomass degrading enzymes: Evolution, diversity and function of enzymes of early lineage fungi. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
68
|
Nie Y, Wang L, Cai Y, Tao W, Zhang YJ, Huang B. Mitochondrial genome of the entomophthoroid fungus Conidiobolus heterosporus provides insights into evolution of basal fungi. Appl Microbiol Biotechnol 2018; 103:1379-1391. [PMID: 30569217 DOI: 10.1007/s00253-018-9549-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/02/2023]
Abstract
Entomophthoroid fungi represent an ecologically important group of fungal pathogens on insects. Here, the whole mitogenome of Conidiobolus heterosporus, one of the entomophthoroid fungi, was described and compared to those early branching fungi with available mitogenomes. The 53,364-bp circular mitogenome of C. heterosporus contained two rRNA genes, 14 standard protein-coding genes, 26 tRNA genes, and three free-standing ORFs. Thirty introns interrupted nine mitochondrial genes. Phylogenetic analysis based on mitochondrion-encoded proteins revealed that C. heterosporus was most close to Zancudomyces culisetae in the Zoopagomycota of basal fungi. Comparison on mitogenomes of 23 basal fungi revealed great variabilities in terms of mitogenome conformation (circular or linear), genetic code (codes 1, 4, or 16), AT contents (53.3-85.5%), etc. These mitogenomes varied from 12.0 to 97.3 kb in sizes, mainly due to different numbers of genes and introns. They showed frequent DNA rearrangement events and a high variability of gene order, although high synteny and conserved gene order were also present between closely related species. By reporting the first mitogenome in Entomophthoromycotina and the second in Zoopagomycota, this study greatly enhanced our understanding on evolution of basal fungi.
Collapse
Affiliation(s)
- Yong Nie
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.,School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243002, China
| | - Lin Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Yue Cai
- Department of Biological and Environmental Engineering, Hefei University, Hefei, 230601, China
| | - Wei Tao
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yong-Jie Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
69
|
Torruella G, Grau-Bové X, Moreira D, Karpov SA, Burns JA, Sebé-Pedrós A, Völcker E, López-García P. Global transcriptome analysis of the aphelid Paraphelidium tribonemae supports the phagotrophic origin of fungi. Commun Biol 2018; 1:231. [PMID: 30588510 PMCID: PMC6299283 DOI: 10.1038/s42003-018-0235-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Aphelids are little-known phagotrophic parasites of algae whose life cycle and morphology resemble those of the parasitic rozellids (Cryptomycota, Rozellomycota). In previous phylogenetic analyses of RNA polymerase and rRNA genes, aphelids, rozellids and Microsporidia (parasites of animals) formed a clade, named Opisthosporidia, which appeared as the sister group to Fungi. However, the statistical support for the Opisthosporidia was always moderate. Here, we generated full life-cycle transcriptome data for the aphelid species Paraphelidium tribonemae. In-depth multi-gene phylogenomic analyses using several protein datasets place this aphelid as the closest relative of fungi to the exclusion of rozellids and Microsporidia. In contrast with the comparatively reduced Rozella allomycis genome, we infer a rich, free-living-like aphelid proteome, with a metabolism similar to fungi, including cellulases likely involved in algal cell-wall penetration and enzymes involved in chitin biosynthesis. Our results suggest that fungi evolved from complex aphelid-like ancestors that lost phagotrophy and became osmotrophic.
Collapse
Affiliation(s)
- Guifré Torruella
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003 Barcelona, Catalonia Spain
| | - David Moreira
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Sergey A. Karpov
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
- Zoological Institute, Russian Academy of Sciences and St. Petersburg State University, St. Petersburg, Russian Federation 199134
| | - John A. Burns
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, 10024-5192 NY USA
| | | | | | - Purificación López-García
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
70
|
Letcher PM, Powell MJ. A taxonomic summary and revision of Rozella ( Cryptomycota). IMA Fungus 2018; 9:383-399. [PMID: 30622888 PMCID: PMC6317583 DOI: 10.5598/imafungus.2018.09.02.09] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/08/2018] [Indexed: 11/02/2022] Open
Abstract
Rozella is a genus of endoparasites of a broad range of hosts. Most species are known by their morphology and host specificity, while only three have been examined ultrastructurally and had portions of their genome sequenced. Determined in molecular phylogenies to be the earliest diverging lineage in kingdom Fungi, Rozella currently nests among an abundance of environmental sequences in phylum Cryptomycota, superphylum Opisthosporidia. Here we briefly summarize a history of Rozella, provide descriptions of all species, and include a key to the species of Rozella.
Collapse
Affiliation(s)
- Peter M Letcher
- Department of Biological Sciences, The University of Alabama, 1332 SEC, Box 870344, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Martha J Powell
- Department of Biological Sciences, The University of Alabama, 1332 SEC, Box 870344, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| |
Collapse
|
71
|
Luévano-Martínez LA, Caldeira da Silva CC, Nicastro GG, Schumacher RI, Kowaltowski AJ, Gomes SL. Mitochondrial alternative oxidase is determinant for growth and sporulation in the early diverging fungus Blastocladiella emersonii. Fungal Biol 2018; 123:59-65. [PMID: 30654958 DOI: 10.1016/j.funbio.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Blastocladiella emersonii is an early diverging fungus of the phylum Blastocladiomycota. During the life cycle of the fungus, mitochondrial morphology changes significantly, from a fragmented form in sessile vegetative cells to a fused network in motile zoospores. In this study, we visualize these morphological changes using a mitochondrial fluorescent probe and show that the respiratory capacity in zoospores is much higher than in vegetative cells, suggesting that mitochondrial morphology could be related to the differences in oxygen consumption. While studying the respiratory chain of the fungus, we observed an antimycin A and cyanide-insensitive, salicylhydroxamic (SHAM)-sensitive respiratory activity, indicative of a mitochondrial alternative oxidase (AOX) activity. The presence of AOX was confirmed by the finding of a B. emersonii cDNA encoding a putative AOX, and by detection of AOX protein in immunoblots. Inhibition of AOX activity by SHAM was found to significantly alter the capacity of the fungus to grow and sporulate, indicating that AOX participates in life cycle control in B. emersonii.
Collapse
Affiliation(s)
- Luis Alberto Luévano-Martínez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil; Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gianlucca G Nicastro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Robert I Schumacher
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Suely L Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
72
|
|
73
|
Zopfochytrium is a new genus in the Chytridiales with distinct zoospore ultrastructure. Fungal Biol 2018; 122:1041-1049. [DOI: 10.1016/j.funbio.2018.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 11/18/2022]
|
74
|
Letcher PM, Powell MJ, Davis WJ. Morphology, zoospore ultrastructure, and molecular position of taxa in the Asterophlyctis lineage (Chytridiales, Chytridiomycota). Fungal Biol 2018; 122:1109-1123. [DOI: 10.1016/j.funbio.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 11/29/2022]
|
75
|
Ahrendt SR, Quandt CA, Ciobanu D, Clum A, Salamov A, Andreopoulos B, Cheng JF, Woyke T, Pelin A, Henrissat B, Reynolds NK, Benny GL, Smith ME, James TY, Grigoriev IV. Leveraging single-cell genomics to expand the fungal tree of life. Nat Microbiol 2018; 3:1417-1428. [PMID: 30297742 PMCID: PMC6784888 DOI: 10.1038/s41564-018-0261-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022]
Abstract
Environmental DNA surveys reveal that most fungal diversity represents uncultured species. We sequenced the genomes of eight uncultured species across the fungal tree of life using a new single-cell genomics pipeline. We show that, despite a large variation in genome and gene space recovery from each single amplified genome (SAG), ≥90% can be recovered by combining multiple SAGs. SAGs provide robust placement for early-diverging lineages and infer a diploid ancestor of fungi. Early-diverging fungi share metabolic deficiencies and show unique gene expansions correlated with parasitism and unculturability. Single-cell genomics holds great promise in exploring fungal diversity, life cycles and metabolic potential.
Collapse
Affiliation(s)
- Steven R Ahrendt
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - C Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Doina Ciobanu
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Adrian Pelin
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR 7857 CNRS, Aix-Marseille University, Marseille, France.,Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicole K Reynolds
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Gerald L Benny
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA. .,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
76
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
77
|
van de Vossenberg BTLH, Brankovics B, Nguyen HDT, van Gent-Pelzer MPE, Smith D, Dadej K, Przetakiewicz J, Kreuze JF, Boerma M, van Leeuwen GCM, André Lévesque C, van der Lee TAJ. The linear mitochondrial genome of the quarantine chytrid Synchytrium endobioticum; insights into the evolution and recent history of an obligate biotrophic plant pathogen. BMC Evol Biol 2018; 18:136. [PMID: 30200892 PMCID: PMC6131824 DOI: 10.1186/s12862-018-1246-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chytridiomycota species (chytrids) belong to a basal lineage in the fungal kingdom. Inhabiting terrestrial and aquatic environments, most are free-living saprophytes but several species cause important diseases: e.g. Batrachochytrium dendrobatidis, responsible for worldwide amphibian decline; and Synchytrium endobioticum, causing potato wart disease. S. endobioticum has an obligate biotrophic lifestyle and isolates can be further characterized as pathotypes based on their virulence on a differential set of potato cultivars. Quarantine measures have been implemented globally to control the disease and prevent its spread. We used a comparative approach using chytrid mitogenomes to determine taxonomical relationships and to gain insights into the evolution and recent history of introductions of this plant pathogen. RESULTS We assembled and annotated the complete mitochondrial genome of 30 S. endobioticum isolates and generated mitochondrial genomes for five additional chytrid species. The mitochondrial genome of S. endobioticum is linear with terminal inverted repeats which was validated by tailing and PCR amplifying the telomeric ends. Surprisingly, no conservation in organisation and orientation of mitochondrial genes was observed among the Chytridiomycota except for S. endobioticum and its sister species Synchytrium microbalum. However, the mitochondrial genome of S. microbalum is circular and comprises only a third of the 72.9 Kbp found for S. endobioticum suggesting recent linearization and expansion. Four mitochondrial lineages were identified in the S. endobioticum mitochondrial genomes. Several pathotypes occur in different lineages, suggesting that these have emerged independently. In addition, variations for polymorphic sites in the mitochondrial genome of individual isolates were observed demonstrating that S. endobioticum isolates represent a community of different genotypes. Such communities were shown to be complex and stable over time, but we also demonstrate that the use of semi-resistant potato cultivars triggers a rapid shift in the mitochondrial haplotype associated with increased virulence. CONCLUSIONS Mitochondrial genomic variation shows that S. endobioticum has been introduced into Europe multiple times, that several pathotypes emerged multiple times, and that isolates represent communities of different genotypes. Our study represents the most comprehensive dataset of chytrid mitogenomes, which provides new insights into the extraordinary dynamics and evolution of mitochondrial genomes involving linearization, expansion and reshuffling.
Collapse
Affiliation(s)
- Bart T. L. H. van de Vossenberg
- Wageningen UR, Droevendaalsesteeg 1, Biointeractions and Plant Health & Plant Breeding, 6708 PB Wageningen, The Netherlands
- Dutch National Plant Protection Organization, National Reference Centre, Geertjesweg 15, 6706EA Wageningen, The Netherlands
| | - Balázs Brankovics
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 Utrecht, CT Netherlands
| | - Hai D. T. Nguyen
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Marga P. E. van Gent-Pelzer
- Wageningen UR, Droevendaalsesteeg 1, Biointeractions and Plant Health & Plant Breeding, 6708 PB Wageningen, The Netherlands
| | - Donna Smith
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, Canada
| | - Kasia Dadej
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Jarosław Przetakiewicz
- Plant Breeding and Acclimatization Institute, National Research Institute, 05-870 Blonie, Radzikow, Warsaw, Poland
| | - Jan F. Kreuze
- International Potato Centre, Avenida La Molina, 1895 Lima, Peru
| | - Margriet Boerma
- Hilbrands Laboratorium BV, Kampsweg 27, 9418 PD Wijster, Wijster, The Netherlands
| | - Gerard C. M. van Leeuwen
- Dutch National Plant Protection Organization, National Reference Centre, Geertjesweg 15, 6706EA Wageningen, The Netherlands
| | - C. André Lévesque
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Theo A. J. van der Lee
- Wageningen UR, Droevendaalsesteeg 1, Biointeractions and Plant Health & Plant Breeding, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
78
|
Abstract
Screening of 1,000-years old ice layers from the perennial ice block of Scărișoara Ice Cave (NW Romania) revealed the presence of fungal communities. Using culture-dependent methods and molecular techniques based on DGGE fingerprinting of 18S rRNA gene fragments and sequencing, we identified 50 cultured and 14 uncultured fungi in presently-forming, 400 and 900 years old ice layers, corresponding to 28 distinct operational taxonomic units (OTUs). The dominant ice-contained fungal OTUs were related to Ascomycota, Basidiomycota and Cryptomycota phyla. Representatives of Mucoromycota and Chytridiomycota were also isolated from recent and 400 years old ice samples. The cryophilic Mrakia stokesii was the most abundant fungal species found in the cave ice samples of all prospected ages, alongside other cryophilic fungi also identified in various glacial environments. Ice deposits formed during the Little Ice Age (dated between AD 1,250 and 1,850) appeared to have a higher fungal diversity than the ice layer formed during the Medieval Warm Period (prior to AD 1,250). A more complex fungal community adapted to low temperatures was obtained from all analyzed ice layers when cultivated at 4 °C as compared to 15 °C, suggesting the dominance of cold-adapted fungi in this glacial habitat. The fungal distribution in the analyzed cave ice layers revealed the presence of unique OTUs in different aged-formed ice deposits, as a first hint for putative further identification of fungal biomarkers for climate variations in this icy habitat. This is the first report on fungi from a rock-hosted cave ice block.
Collapse
|
79
|
Chen KH, Liao HL, Arnold AE, Bonito G, Lutzoni F. RNA-based analyses reveal fungal communities structured by a senescence gradient in the moss Dicranum scoparium and the presence of putative multi-trophic fungi. THE NEW PHYTOLOGIST 2018; 218:1597-1611. [PMID: 29604236 DOI: 10.1111/nph.15092] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/07/2018] [Indexed: 05/15/2023]
Abstract
Diverse plant-associated fungi are thought to have symbiotrophic and saprotrophic states because they can be isolated from both dead and living plant tissues. However, such tissues often are separated in time and space, and fungal activity at various stages of plant senescence is rarely assessed directly in fungal community studies. We used fungal ribosomal RNA metatranscriptomics to detect active fungal communities across a natural senescence gradient within wild-collected gametophytes of Dicranum scoparium (Bryophyta) to understand the distribution of active fungal communities in adjacent living, senescing and dead tissues. Ascomycota were active in all tissues across the senescence gradient. By contrast, Basidiomycota were prevalent and active in senescing and dead tissues. Several fungi were detected as active in living and dead tissues, suggesting their capacity for multi-trophy. Differences in community assembly detected by metatranscriptomics were echoed by amplicon sequencing of cDNA and compared to culture-based inferences and observation of fungal fruit bodies in the field. The combination of amplicon sequencing of cDNA and metatranscriptomics is promising for studying symbiotic systems with complex microbial diversity, allowing for the simultaneous detection of their presence and activity.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Hui-Ling Liao
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Soil and Water Sciences Department, North Florida Research and Education Center, University of Florida, Quincy, FL, 32351, USA
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
80
|
|
81
|
Taxonomy and pathogenicity of Olpidium brassicae and its allied species. Fungal Biol 2018; 122:837-846. [PMID: 30115317 DOI: 10.1016/j.funbio.2018.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 02/05/2023]
Abstract
The classification and physiology of the zoosporic plant-pathogen Olpidium brassicae and its relationships with the closely-related species are often confusing. This review focuses on these species and intends to differentiate them based on the literatures published since the discovery and establishment of the species by Woronin in 1878 under the name of Chytridium brassicae to current molecular era. The goal of this review is to help researchers better understand the taxonomy, the host range, and the potential role in plant health of O. brassicae-related species. To reach the goal, we reviewed the rationales behind the creation or reduction in synonymy of the different names for O. brassicae and its allied species in order to elucidate the evolution of the species concept on them based on the traditional morphological studies. Furthermore, the studies by molecular biology methods improve our knowledge and perspectives on O. brassicae and its host specificity. In particular, we clarify the differences between O. brassicae and Olpidium virulentus, and propose potential new research avenues. We therefore hope that this review will give a better perspective on Olpidium spp. and their potential role in the root microbiome of plants in natural environments and in agricultural settings.
Collapse
|
82
|
Strullu-Derrien C, Spencer ART, Goral T, Dee J, Honegger R, Kenrick P, Longcore JE, Berbee ML. New insights into the evolutionary history of Fungi from a 407 Ma Blastocladiomycota fossil showing a complex hyphal thallus. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160502. [PMID: 29254966 PMCID: PMC5745337 DOI: 10.1098/rstb.2016.0502] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 01/15/2023] Open
Abstract
Zoosporic fungi are key saprotrophs and parasites of plants, animals and other fungi, playing important roles in ecosystems. They comprise at least three phyla, of which two, Chytridiomycota and Blastocladiomycota, developed a range of thallus morphologies including branching hyphae. Here we describe Retesporangicus lyonii gen. et sp. nov., an exceptionally well preserved fossil, which is the earliest known to produce multiple sporangia on an expanded hyphal network. To better characterize the fungus we develop a new method to render surfaces from image stacks generated by confocal laser scanning microscopy. Here, the method helps to reveal thallus structure. Comparisons with cultures of living species and character state reconstructions analysed against recent molecular phylogenies of 24 modern zoosporic fungi indicate an affinity with Blastocladiomycota. We argue that in zoosporic fungi, kinds of filaments such as hyphae, rhizoids and rhizomycelium are developmentally similar structures adapted for varied functions including nutrient absorption and anchorage. The fossil is the earliest known type to develop hyphae which likely served as a saprotrophic adaptation to patchy resource availability. Evidence from the Rhynie chert provides our earliest insights into the biology of fungi and their roles in the environment. It demonstrates that zoosporic fungi were already diverse in 407 million-year-old terrestrial ecosystems.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
| | - Alan R T Spencer
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Tomasz Goral
- Imaging and Analysis Centre, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jaclyn Dee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Rosmarie Honegger
- Institute of Plant and Microbiology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME, USA
| | - Mary L Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
83
|
Karpov SA, López-García P, Mamkaeva MA, Klimov VI, Vishnyakov AE, Tcvetkova VS, Moreira D. The Chytrid-like Parasites of Algae Amoeboradix gromovi gen. et sp. nov. and Sanchytrium tribonematis Belong to a New Fungal Lineage. Protist 2018; 169:122-140. [PMID: 29477669 PMCID: PMC6688895 DOI: 10.1016/j.protis.2017.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 11/26/2022]
Abstract
Fungi encompass, in addition to classically well-studied lineages, an ever-expanding diversity of poorly known lineages including zoosporic chytrid-like parasites. Here, we formally describe Amoeboradix gromovi gen. et sp. nov. comprising a set of closely related strains of chytrid-like parasites of the yellow-green alga Tribonema gayanum unusually endowed with amoeboid zoospores. Morphological and ultrastructural features of A. gromovi observed by light and transmission electron microscopy recall previous descriptions of Rhizophydium anatropum. A. gromovi exhibits one of the longest kinetosomes known in eukaryotes, composed of microtubular singlets or doublets. To carry out molecular phylogenetic analysis and validate the identification of different life cycle stages, we amplified 18S rRNA genes from three A. gromovi strains infecting T. gayanum cultures, single sporangia and single zoospores. Molecular phylogenetic analyses of 18S+28S rRNA concatenated genes of the type strain revealed that A. gromovi is closely related to the recently described species Sanchytrium tribonematis, another parasite of Tribonema that had been tentatively classified within Monoblepharidomycetes. However, our phylogenetic analysis with an extended taxon sampling did not show any particular affinity of Amoeboradix and Sanchytrium with described fungal taxa. Therefore, Amoeboradix gromovi and Sanchytrium tribonematis likely represent a new divergent taxon that remains incertae sedis within Fungi.
Collapse
Affiliation(s)
- Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russian Federation; St. Petersburg State University, St. Petersburg 199034, Russian Federation.
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France.
| | - Maria A Mamkaeva
- St. Petersburg State University, St. Petersburg 199034, Russian Federation
| | - Vladimir I Klimov
- St. Petersburg State University, St. Petersburg 199034, Russian Federation
| | | | | | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
84
|
Zhao B, Xing P, Wu QL. Microbes participated in macrophyte leaf litters decomposition in freshwater habitat. FEMS Microbiol Ecol 2018; 93:4103542. [PMID: 28961908 DOI: 10.1093/femsec/fix108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/01/2017] [Indexed: 11/14/2022] Open
Abstract
Knowledge of aquatic microbes involved in macrophyte leaf litter decomposition is still scarce in freshwater lakes. In situ experiments (150 days) were conducted to study the decomposition processes of macrophyte leaf litters: Zizania latifolia (Zl), Hydrilla verticillata (Hv) and Nymphoides peltata (Np). The decomposition of Np leaf litter was fastest, whereas Zl was slowest. The alpha diversity of both bacterial and fungal communities significantly increased, and their community structures showed significant variations over time. For bacteria, the relative abundance of Gammaproteobacteria decreased, whereas that of Firmicutes, Betaproteobacteria, Deltaproteobacteria and Alphaproteobacteria increased. The dominant fungal phylum Cryptomycota increased significantly in all of the three macrophytes. Both bacteria and fungi were significantly correlated with the dynamics of total phosphorous in the water and the carbon content of the leaf litters. The dynamics of nitrogen content, phosphorous content and N/P ratio of the leaf litters have more influences on fungal communities than on bacteria. In addition, cellulase and xylanase activities were significantly correlated with bacterial and fungal communities, respectively, thereby reflecting the niches differentiation and cooperation between bacteria and fungi on litter decomposition. This work contributes to the understanding of microbially involved carbon and nutrient cycling in macrophyte-dominated freshwater ecosystems.
Collapse
Affiliation(s)
- Biying Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.,University of Chinese Academy of Sciences, Beijing 100039, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
85
|
Seto K, Degawa Y. Pendulichytrium sphaericum gen. et sp. nov. (Chytridiales, Chytriomycetaceae), a new chytrid parasitic on the diatom, Aulacoseira granulata. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
86
|
Capitulocladosporium clinodiplosidis gen. et sp. nov., a hyphomyceteous ustilaginomycete from midge. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1352-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
87
|
Dornburg A, Townsend JP, Wang Z. Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. ADVANCES IN GENETICS 2017; 100:1-47. [PMID: 29153398 DOI: 10.1016/bs.adgen.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its original inception over 150 years ago by Darwin, we have made tremendous progress toward the reconstruction of the Tree of Life. In particular, the transition from analyzing datasets comprised of small numbers of loci to those comprised of hundreds of loci, if not entire genomes, has aided in resolving some of the most vexing of evolutionary problems while giving us a new perspective on biodiversity. Correspondingly, phylogenetic trees have taken a central role in fields that span ecology, conservation, and medicine. However, the rise of big data has also presented phylogenomicists with a new set of challenges to experimental design, quantitative analyses, and computation. The sequencing of a number of very first genomes presented significant challenges to phylogenetic inference, leading fungal phylogenomicists to begin addressing pitfalls and postulating solutions to the issues that arise from genome-scale analyses relevant to any lineage across the Tree of Life. Here we highlight insights from fungal phylogenomics for topics including systematics and species delimitation, ecological and phenotypic diversification, and biogeography while providing an overview of progress made on the reconstruction of the fungal Tree of Life. Finally, we provide a review of considerations to phylogenomic experimental design for robust tree inference. We hope that this special issue of Advances in Genetics not only excites the continued progress of fungal evolutionary biology but also motivates the interdisciplinary development of new theory and methods designed to maximize the power of genomic scale data in phylogenetic analyses.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, United States
| | | | - Zheng Wang
- Yale University, New Haven, CT, United States.
| |
Collapse
|
88
|
Kirker GT, Bishell AB, Jusino MA, Palmer JM, Hickey WJ, Lindner DL. Amplicon-Based Sequencing of Soil Fungi from Wood Preservative Test Sites. Front Microbiol 2017; 8:1997. [PMID: 29093702 PMCID: PMC5651271 DOI: 10.3389/fmicb.2017.01997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
Soil samples were collected from field sites in two AWPA (American Wood Protection Association) wood decay hazard zones in North America. Two field plots at each site were exposed to differing preservative chemistries via in-ground installations of treated wood stakes for approximately 50 years. The purpose of this study is to characterize soil fungal species and to determine if long term exposure to various wood preservatives impacts soil fungal community composition. Soil fungal communities were compared using amplicon-based DNA sequencing of the internal transcribed spacer 1 (ITS1) region of the rDNA array. Data show that soil fungal community composition differs significantly between the two sites and that long-term exposure to different preservative chemistries is correlated with different species composition of soil fungi. However, chemical analyses using ICP-OES found levels of select residual preservative actives (copper, chromium and arsenic) to be similar to naturally occurring levels in unexposed areas. A list of indicator species was compiled for each treatment-site combination; functional guild analyses indicate that long-term exposure to wood preservatives may have both detrimental and stimulatory effects on soil fungal species composition. Fungi with demonstrated capacity to degrade industrial pollutants were found to be highly correlated with areas that experienced long-term exposure to preservative testing.
Collapse
Affiliation(s)
- Grant T. Kirker
- FPL, United States Department of Agriculture-Forest Service (USDA-FS), Durability and Wood Protection, Madison, WI, United States
| | - Amy B. Bishell
- FPL, United States Department of Agriculture-Forest Service (USDA-FS), Durability and Wood Protection, Madison, WI, United States
| | - Michelle A. Jusino
- NRS, United States Department of Agriculture-Forest Service (USDA-FS), Center for Forest Mycology Research, Madison, WI, United States
| | - Jonathan M. Palmer
- NRS, United States Department of Agriculture-Forest Service (USDA-FS), Center for Forest Mycology Research, Madison, WI, United States
| | - William J. Hickey
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel L. Lindner
- NRS, United States Department of Agriculture-Forest Service (USDA-FS), Center for Forest Mycology Research, Madison, WI, United States
| |
Collapse
|
89
|
Berbee ML, James TY, Strullu-Derrien C. Early Diverging Fungi: Diversity and Impact at the Dawn of Terrestrial Life. Annu Rev Microbiol 2017; 71:41-60. [DOI: 10.1146/annurev-micro-030117-020324] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mary L. Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
90
|
Letcher PM, Longcore JE, James TY, Leite DS, Simmons DR, Powell MJ. Morphology, Ultrastructure, and Molecular Phylogeny of
Rozella multimorpha
, a New Species in Cryptomycota. J Eukaryot Microbiol 2017; 65:180-190. [DOI: 10.1111/jeu.12452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Peter M. Letcher
- Department of Biological Sciences The University of Alabama Tuscaloosa Alabama 35487 USA
| | - Joyce E. Longcore
- School of Biology and Ecology University of Maine Orono Maine 04469 USA
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109 USA
| | - Domingos S. Leite
- Departamento de Genética, Evolução e Bioagentes Universidade Estadual de Campinas Campinas SP 13082‐862 Brazil
| | - David Rabern Simmons
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109 USA
| | - Martha J. Powell
- Department of Biological Sciences The University of Alabama Tuscaloosa Alabama 35487 USA
| |
Collapse
|
91
|
Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart HP, Gsell AS, Ibelings BW, Kagami M, Küpper FC, Letcher PM, Loyau A, Miki T, Nejstgaard JC, Rasconi S, Reñé A, Rohrlack T, Rojas-Jimenez K, Schmeller DS, Scholz B, Seto K, Sime-Ngando T, Sukenik A, Van de Waal DB, Van den Wyngaert S, Van Donk E, Wolinska J, Wurzbacher C, Agha R. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ Microbiol 2017; 19:3802-3822. [DOI: 10.1111/1462-2920.13827] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Thijs Frenken
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
| | - Elisabet Alacid
- Departament de Biologia Marina i Oceanografia; Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49; Barcelona 08003 Spain
| | - Stella A. Berger
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
| | - Elizabeth C. Bourne
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straβe 6-8; Berlin D-14195 Germany
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
| | - Mélanie Gerphagnon
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
| | - Hans-Peter Grossart
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
- Institute for Biochemistry and Biology, Potsdam University, Maulbeerallee 2; Potsdam D-14476 Germany
| | - Alena S. Gsell
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
| | - Bas W. Ibelings
- Department F.-A. Forel for Environmental and Aquatic Sciences & Institute for Environmental Sciences; University of Geneva, 66 Boulevard Carl Vogt; Geneva 4 CH 1211 Switzerland
| | - Maiko Kagami
- Department of Environmental Sciences, Faculty of Science; Toho University, 2-2-1, Miyama; Funabashi Chiba 274-8510 Japan
| | - Frithjof C. Küpper
- Oceanlab, University of Aberdeen, Main Street; Newburgh Scotland AB41 6AA UK
| | - Peter M. Letcher
- Department of Biological Sciences; The University of Alabama, 300 Hackberry Lane; Tuscaloosa AL 35487 USA
| | - Adeline Loyau
- Department of System Ecotoxicology; Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15; 04318 Leipzig Germany
- Department of Conservation Biology; Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15; Leipzig 04318 Germany
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | - Takeshi Miki
- Institute of Oceanography; National Taiwan University, No.1 Section 4, Roosevelt Road; Taipei 10617 Taiwan
- Research Center for Environmental Changes; Academia Sinica, No.128 Section 2, Academia Road, Nankang; Taipei 11529 Taiwan
| | - Jens C. Nejstgaard
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
| | - Serena Rasconi
- WasserCluster Lunz - Biological Station; Inter-University Centre for Aquatic Ecosystem Research, A-3293 Lunz am See; Austria
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia; Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49; Barcelona 08003 Spain
| | - Thomas Rohrlack
- Faculty of Environmental Sciences and Natural Resource Management; Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås; Norway
| | - Keilor Rojas-Jimenez
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
- Universidad Latina de Costa Rica, Campus San Pedro, Apdo; San Jose 10138-1000 Costa Rica
| | - Dirk S. Schmeller
- Department of Conservation Biology; Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15; Leipzig 04318 Germany
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | - Bettina Scholz
- BioPol ehf, Einbúastig 2, Skagaströnd 545; Iceland
- Faculty of Natural Resource Sciences; University of Akureyri, Borgir v. Nordurslod; Akureyri IS 600 Iceland
| | - Kensuke Seto
- Department of Environmental Sciences, Faculty of Science; Toho University, 2-2-1, Miyama; Funabashi Chiba 274-8510 Japan
- Sugadaira Montane Research Center; University of Tsukuba, 1278-294, Sugadaira-Kogen; Ueda, Nagano, 386-2204 Japan
| | - Télesphore Sime-Ngando
- Université Clermont Auvergne, UMR CNRS 6023 LMGE, Laboratoire Microorganismes: Génome et Environnement (LMGE); Campus Universitaire des Cézeaux, Impasse Amélie Murat 1, CS 60026, Aubière, 63178 France
| | - Assaf Sukenik
- Kinneret Limnological Laboratory; Israel Oceanographic & Limnological Research, P.O.Box 447; Migdal, 14950 Israel
| | - Dedmer B. Van de Waal
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
| | - Silke Van den Wyngaert
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
| | - Ellen Van Donk
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
- Department of Biology; University of Utrecht, Padualaan 8; Utrecht TB 3508 The Netherlands
| | - Justyna Wolinska
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straβe 1-3; Berlin, 14195 Germany
| | - Christian Wurzbacher
- Department of Biological and Environmental Sciences; University of Gothenburg, Box 461; Göteborg, 405 30 Sweden
- Gothenburg Global Biodiversity Centre, Box 461; Göteborg, SE-405 30 Sweden
| | - Ramsy Agha
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
| |
Collapse
|
92
|
Radek R, Wurzbacher C, Gisder S, Nilsson RH, Owerfeldt A, Genersch E, Kirk PM, Voigt K. Morphologic and molecular data help adopting the insect-pathogenic nephridiophagids (Nephridiophagidae) among the early diverging fungal lineages, close to the Chytridiomycota. MycoKeys 2017. [DOI: 10.3897/mycokeys.25.12446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nephridiophagids are poorly known unicellular eukaryotes, previously of uncertain systematic position, that parasitize the Malpighian tubules of insects. Their life cycle includes merogony with multinucleate plasmodia and sporogony leading to small, uninucleate spores. We examined the phylogenetic affiliations of three species of Nephridiophaga, including one new species, Nephridiophaga maderae, from the Madeira cockroach (Leucophaea maderae). In addition to the specific host, the new species differs from those already known by the size of the spores and by the number of spores within the sporogenic plasmodium. The inferred phylogenetic analyses strongly support a placement of the nephridiophagids in the fungal kingdom near its root and with a close, but unresolved, relationship to the chytids (Chytridiomycota). We found evidence for the nephridiophagidean speciation as being strongly coupled to host speciation.
Collapse
|
93
|
Stajich JE. Fungal Genomes and Insights into the Evolution of the Kingdom. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0055-2016. [PMID: 28820125 PMCID: PMC6078396 DOI: 10.1128/microbiolspec.funk-0055-2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 12/23/2022] Open
Abstract
The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both free-living and symbiotic unicellular and multicellular organisms with diverse morphologies. The genomes of fungi encode genes that enable them to thrive in diverse environments, invade plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. The continuously expanding databases of fungal genome sequences have been generated by individual and large-scale efforts such as Génolevures, Broad Institute's Fungal Genome Initiative, and the 1000 Fungal Genomes Project (http://1000.fungalgenomes.org). These efforts have produced a catalog of fungal genes and genomic organization. The genomic datasets can be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. Large datasets of fungal genomic and transcriptomic data have enabled the use of novel methodologies and improved the study of fungal evolution from a molecular sequence perspective. Combined with microscopes, petri dishes, and woodland forays, genome sequencing supports bioinformatics and comparative genomics approaches as important tools in the study of the biology and evolution of fungi.
Collapse
Affiliation(s)
- Jason E Stajich
- Department of Plant Pathology and Microbiology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
94
|
|
95
|
Richards TA, Leonard G, Wideman JG. What Defines the "Kingdom" Fungi? Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0044-2017. [PMID: 28643626 PMCID: PMC11687502 DOI: 10.1128/microbiolspec.funk-0044-2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 12/30/2022] Open
Abstract
The application of environmental DNA techniques and increased genome sequencing of microbial diversity, combined with detailed study of cellular characters, has consistently led to the reexamination of our understanding of the tree of life. This has challenged many of the definitions of taxonomic groups, especially higher taxonomic ranks such as eukaryotic kingdoms. The Fungi is an example of a kingdom which, together with the features that define it and the taxa that are grouped within it, has been in a continual state of flux. In this article we aim to summarize multiple lines of data pertinent to understanding the early evolution and definition of the Fungi. These include ongoing cellular and genomic comparisons that, we will argue, have generally undermined all attempts to identify a synapomorphic trait that defines the Fungi. This article will also summarize ongoing work focusing on taxon discovery, combined with phylogenomic analysis, which has identified novel groups that lie proximate/adjacent to the fungal clade-wherever the boundary that defines the Fungi may be. Our hope is that, by summarizing these data in the form of a discussion, we can illustrate the ongoing efforts to understand what drove the evolutionary diversification of fungi.
Collapse
Affiliation(s)
- Thomas A Richards
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| | - Guy Leonard
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jeremy G Wideman
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
96
|
Köhler JR, Hube B, Puccia R, Casadevall A, Perfect JR. Fungi that Infect Humans. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0014-2016. [PMID: 28597822 PMCID: PMC11687496 DOI: 10.1128/microbiolspec.funk-0014-2016] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients-Candida, Pneumocystis, and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Collapse
Affiliation(s)
- Julia R Köhler
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Rosana Puccia
- Disciplina de Biologia Celular, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - John R Perfect
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
97
|
Karpov SA, Mamanazarova KS, Popova OV, Aleoshin VV, James TY, Mamkaeva MA, Tcvetkova VS, Vishnyakov AE, Longcore JE. Monoblepharidomycetes diversity includes new parasitic and saprotrophic species with highly intronized rDNA. Fungal Biol 2017; 121:729-741. [PMID: 28705399 DOI: 10.1016/j.funbio.2017.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/27/2017] [Accepted: 05/07/2017] [Indexed: 11/24/2022]
Abstract
The Monoblepharidomycetes is the sister class to the Chytridiomycetes in the phylum Chytridiomycota. The six known genera have thalli that are either monocentric and without rhizoids or produce hyphae with an independent evolutionary origin from the hyphae of higher fungi. On the basis of morphological characters and phylogenetic evidence from the small and large subunits of nuclear ribosomal RNA, we established two new genera, Sanchytrium and Telasphaerula, each with a single species. We re-analyzed intergeneric relationships within the monoblephs, and established two new families. The new genera significantly expand the known morphological and ecological diversity of the Monoblepharidomycetes by adding a monocentric, epibiotic, algal parasitic species and a rhizomycelial, saprotrophic species. Based on the presence of environmental sequences related to Sanchytrium strains, the Monoblepharidomycetes contain previously unsuspected diversity. The ribosomal DNA of the new genera contains an unusually high density of group I introns. We found 20 intron insertion positions including six that are new for rRNA genes (S1053, L803, L829, L961, L1844, and L2281).
Collapse
Affiliation(s)
- Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russian Federation; St. Petersburg State University, St. Petersburg 199034, Russian Federation.
| | - Karomat S Mamanazarova
- Institute of Gene Pool of Plants and Animals, Uzbek Academy of Sciences, 32 Durmon-yuli Str., Tashkent 100125, Uzbekistan.
| | - Olga V Popova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Vladimir V Aleoshin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Maria A Mamkaeva
- St. Petersburg State University, St. Petersburg 199034, Russian Federation.
| | | | | | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME, 04469-5722, USA.
| |
Collapse
|
98
|
Pérez-Izquierdo L, Morin E, Maurice JP, Martin F, Rincón A, Buée M. A new promising phylogenetic marker to study the diversity of fungal communities: The Glycoside Hydrolase 63 gene. Mol Ecol Resour 2017; 17:e1-e11. [PMID: 28382652 DOI: 10.1111/1755-0998.12678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/27/2022]
Abstract
In molecular ecology, the development of efficient molecular markers for fungi remains an important research domain. Nuclear ribosomal internal transcribed spacer (ITS) region was proposed as universal DNA barcode marker for fungi, but this marker was criticized for Indel-induced alignment problems and its potential lack of phylogenetic resolution. Our main aim was to develop a new phylogenetic gene and a putative functional marker, from single-copy gene, to describe fungal diversity. Thus, we developed a series of primers to amplify a polymorphic region of the Glycoside Hydrolase GH63 gene, encoding exo-acting α-glucosidases, in basidiomycetes. These primers were validated on 125 different fungal genomic DNAs, and GH63 amplification yield was compared with that of already published functional markers targeting genes coding for laccases, N-acetylhexosaminidases, cellobiohydrolases and class II peroxidases. Specific amplicons were recovered for 95% of the fungal species tested, and GH63 amplification success was strikingly higher than rates obtained with other functional genes. We downloaded the GH63 sequences from 483 fungal genomes publicly available at the JGI mycocosm database. GH63 was present in 461 fungal genomes belonging to all phyla, except Microsporidia and Neocallimastigomycota divisions. Moreover, the phylogenetic trees built with both GH63 and Rpb1 protein sequences revealed that GH63 is also a promising phylogenetic marker. Finally, a very high proportion of GH63 proteins was predicted to be secreted. This molecular tool could be a new phylogenetic marker of fungal species as well as potential indicator of functional diversity of basidiomycetes fungal communities in term of secretory capacities.
Collapse
Affiliation(s)
- L Pérez-Izquierdo
- Institut of Agronomic Sciences ICA-CSIC, Madrid, Spain.,UMR INRA-UL Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA Nancy-Lorraine, Champenoux, France
| | - E Morin
- UMR INRA-UL Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA Nancy-Lorraine, Champenoux, France
| | - J P Maurice
- Groupe Mycologique Vosgien, Neufchâteau, France
| | - F Martin
- UMR INRA-UL Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA Nancy-Lorraine, Champenoux, France
| | - A Rincón
- Institut of Agronomic Sciences ICA-CSIC, Madrid, Spain
| | - M Buée
- UMR INRA-UL Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA Nancy-Lorraine, Champenoux, France
| |
Collapse
|
99
|
Hanafy RA, Elshahed MS, Liggenstoffer AS, Griffith GW, Youssef NH. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia 2017; 109:231-243. [PMID: 28494211 DOI: 10.1080/00275514.2017.1317190] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anaerobic gut fungi (AGF) inhabit the rumen and alimentary tracts of multiple ruminant and nonruminant herbivores, belong to a distinct phylum-level lineage (Neocallimastigomycota), and play an important role in plant biomass degradation in many herbivores. As part of a wider effort to obtain AGF with high lignocellulolytic capacities, we isolated and characterized four different AGF strains from the feces of cattle and sheep. Microscopically, isolates produced monocentric thalli and monoflagellated zoospores. Phylogenetic analysis revealed that all isolates formed a monophyletic cluster with strong bootstrap support as a sister clade to the genus Orpinomyces and close to Neocallimastix, an unexpected result because these two genera of AGF form polyflagellated zoospores. Isolates displayed a smooth biofilm-like growth in liquid medium and formed small (0.5-1 mm) pinpoint circular colonies on agar roll tubes. Both endogenous and exogenous sporangia were observed with variable shapes and sizes. Zoospores were mainly spherical, with diameters ranging between 3.8 and 12.5 µm, and mostly a single flagellum. All strains exhibited similar substrate utilization patterns and comparable cellulolytic and xylanolytic activities. Similar ITS1 sequences falling within the same distinctive clade were found on GenBank, with all environmental samples obtained from diverse ruminant and pseudoruminant hosts from three continents, but not from any hindgut-fermenting hosts. Given the high level of sequence divergence between our strains and closest cultured representatives and their distinct microscopic/macroscopic features, we propose a new genus, Pecoramyces, from the name of the taxonomic infraorder Pecora ("horned ruminants" or "higher ruminants"; derived from the Latin word for horned livestock), and a new species, P. ruminantium (since occurrence seems to be specific to ruminant/pseudoruminant foregut, but not hindgut-fermenting mammals).
Collapse
Affiliation(s)
- Radwa A Hanafy
- a Department of Microbiology and Molecular Genetics , Oklahoma State University , 1110 S Innovation Way, Stillwater , Oklahoma 74074
| | - Mostafa S Elshahed
- a Department of Microbiology and Molecular Genetics , Oklahoma State University , 1110 S Innovation Way, Stillwater , Oklahoma 74074
| | - Audra S Liggenstoffer
- a Department of Microbiology and Molecular Genetics , Oklahoma State University , 1110 S Innovation Way, Stillwater , Oklahoma 74074
| | - Gareth W Griffith
- b Institute of Biological, Environmental, and Rural Sciences (IBERS) , Aberystwyth University , Aberystwyth , Wales , UK
| | - Noha H Youssef
- a Department of Microbiology and Molecular Genetics , Oklahoma State University , 1110 S Innovation Way, Stillwater , Oklahoma 74074
| |
Collapse
|
100
|
Powell MJ, Letcher PM, James TY. Ultrastructural characterization of the host-parasite interface between Allomyces anomalus (Blastocladiomycota) and Rozella allomycis (Cryptomycota). Fungal Biol 2017; 121:561-572. [PMID: 28606351 DOI: 10.1016/j.funbio.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022]
Abstract
Rozella allomycis is an obligate endoparasite of the water mold Allomyces and a member of a clade (= Opisthosporidia) sister to the traditional Fungi. Gaining insights into Rozella's development as a phylogenetically pivotal endoparasite can aid our understanding of structural adaptations and evolution of the Opisthosporidia clade, especially within the context of genomic information. The purpose of this study is to characterize the interface between R. allomycis and Allomyces anomalus. Electron microscopy of developing plasmodia of R. allomycis in host hyphae shows that the interface consists of three-membrane layers, interpreted as the parasite's plasma membrane (inner one layer) and a host cisterna (outer two layers). As sporangial and resting spore plasmodia develop, host mitochondria typically cluster at the surface of the parasite and eventually align parallel to the three-membrane layered interface. The parasite's mitochondria have only a few cristae and the mitochondrial matrix is sparse, clearly distinguishing parasite mitochondria from those of the host. Consistent with the expected organellar topology if the parasite plasmodia phagocytize host cytoplasm, phagocytic vacuoles are at first bounded by three-membrane layers with host-type mitochondria lining the inner membrane. Thus, Rozella's nutrition, at least in part, is phagotrophic in contrast to osmotrophic nutrition of traditional fungi.
Collapse
Affiliation(s)
- Martha J Powell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Peter M Letcher
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|