51
|
Nguyen KD, Vanichsarn C, Nadeau KC. Increased cytotoxicity of CD4+ invariant NKT cells against CD4+CD25hiCD127lo/- regulatory T cells in allergic asthma. Eur J Immunol 2008; 38:2034-45. [PMID: 18581330 DOI: 10.1002/eji.200738082] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CD4+CD25(hi)CD127(lo/-) regulatory T cells (Treg) have been implicated in the resolution of asthma-associated inflammation while the opposite role of CD4+ invariant NKT (iNKT) cells has been the subject of recent investigations. Studies here focused on mechanisms of interaction between CD4+ iNKT cells and Treg to further explore their roles in allergic asthma (AA). Flow cytometry analysis revealed a significant increase in the expression of the natural cytotoxicity receptors NKp30 and NKp46 by CD4+ iNKT cells in AA subjects compared to healthy controls (HC) and non-allergic asthmatics (NA). Subsequent intracellular staining showed that CD4+ iNKT cells also expressed higher levels of granzyme B and perforin in AA than HC. In in vitro killing assays, AA CD4+ iNKT cells selectively killed autologous Treg, but not CD4+CD25- T cells, more potently than HC and NA counterparts. This increased cytotoxicity positively correlated with asthma severity and granzyme B/perforin expression of CD4+ iNKT cells. Furthermore, it could be abrogated by either inhibition of the granzyme B-/perforin-dependent cell death pathway or oral corticosteroid administration. Altogether, these findings suggest that increased cytotoxicity of CD4+ iNKT cells against Treg might contribute to dysfunctional cellular interactions in AA.
Collapse
Affiliation(s)
- Khoa D Nguyen
- Department of Pediatrics, Pulmonary Center of Excellence, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
52
|
Masson MJ, Carpenter LD, Graf ML, Pohl LR. Pathogenic role of natural killer T and natural killer cells in acetaminophen-induced liver injury in mice is dependent on the presence of dimethyl sulfoxide. Hepatology 2008; 48:889-97. [PMID: 18712839 PMCID: PMC2570186 DOI: 10.1002/hep.22400] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED Dimethyl sulfoxide (DMSO) is commonly used in biological studies to dissolve drugs and enzyme inhibitors with low solubility. Although DMSO is generally thought of as being relatively inert, it can induce biological effects that are often overlooked. An example that highlights this potential problem is found in a recent report demonstrating a pathogenic role for natural killer T (NKT) and natural killer (NK) cells in acetaminophen-induced liver injury (AILI) in C57Bl/6 mice in which DMSO was used to facilitate acetaminophen (APAP) dissolution. We report that NKT and NK cells do not play a pathologic role in AILI in C57Bl/6 mice in the absence of DMSO. Although AILI was significantly attenuated in mice depleted of NKT and NK cells prior to APAP treatment in the presence of DMSO, no such effect was observed when APAP was dissolved in saline. Because of this unexpected finding, the effects of DMSO on hepatic NKT and NK cells were subsequently investigated. When given alone, DMSO activated hepatic NKT and NK cells in vivo as evidenced by increased NKT cell numbers and higher intracellular levels of the cytotoxic effector molecules interferon-gamma (IFN-gamma) and granzyme B in both cell types. Similarly, when used as a solvent for APAP, DMSO again increased NKT cell numbers and induced IFN-gamma and granzyme B expression in both cell types. CONCLUSION These data demonstrate a previously unappreciated effect of DMSO on hepatic NKT and NK cells, suggesting that DMSO should be used cautiously in experiments involving these cells.
Collapse
Affiliation(s)
- Mary Jane Masson
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leah D. Carpenter
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary L. Graf
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lance R. Pohl
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
53
|
Kim HR, Kim K, Lee KH, Kim SJ, Kim J. Inhibition of casein kinase 2 enhances the death ligand- and natural kiler cell-induced hepatocellular carcinoma cell death. Clin Exp Immunol 2008; 152:336-44. [PMID: 18336591 DOI: 10.1111/j.1365-2249.2008.03622.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent studies have shown that the inhibition of casein kinase 2 (CK2) sensitizes many cancer cells to Fas ligand- and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. However, it has not been demonstrated directly whether CK2 inhibition can also enhance the cytotoxicity of natural killer (NK) cells, which actually use the death ligands to kill cancer cells in vivo. To address whether NK cell-mediated cancer cell death is affected by the inhibition of CK2, we first checked whether the death ligand-induced apoptosis of hepatocellular carcinoma cells (HCCs) and HeLa were affected by CK2 inhibition. We then investigated the effect of CK2 inhibition on NK cytotoxicity against HCCs and HeLa cells and its mechanistic features. Inhibition of CK2 by emodin increased the apoptotic cell death of HepG2, Hep3B and HeLa when the cancer cell lines were treated with a soluble form of recombinant TRAIL or an agonistic antibody of Fas. This phenomenon appeared to be correlated with the expression level of death receptors on the cancer cell surface. More interestingly, the inhibition of CK2 also greatly increased the NK cell-mediated cancer cell killing. The NK cytotoxicity against the cancer cells increased about twofold when the target cells were pretreated with a specific CK2 inhibitor, emodin or 4,5,6,7-tetrabromobenzotriazole. Furthermore, the increase of the NK cytotoxicity against cancer cells by CK2 inhibition was granule-independent and mediated possibly by the death ligands on the NK cell surface. This suggests that CK2 inhibitors could be used to enhance the cytotoxicity of NK cells and consequently increase host tumour immunity.
Collapse
Affiliation(s)
- H-R Kim
- Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
54
|
|
55
|
Hou Q, Zhao T, Zhang H, Lu H, Zhang Q, Sun L, Fan Z. Granzyme H induces apoptosis of target tumor cells characterized by DNA fragmentation and Bid-dependent mitochondrial damage. Mol Immunol 2007; 45:1044-55. [PMID: 17765974 DOI: 10.1016/j.molimm.2007.07.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cells are the effectors of innate immunity to act as the first line of defense against viruses and tumors. Granzyme H (GzmH) is predicted to evolve from GzmB and constitutively expressed at a high level in human NK cells. It indicates GzmH plays a pivotal role in NK cell mediated cytolysis. However GzmH is defined as an orphan granzyme and its function has less been defined. Here we demonstrate GzmH can induce rapid apoptosis of target cells, which is dependent on caspase activation and mitochondrial damage. GzmH-induced death is characterized by phophatidylserine externalization, nuclear condensation, DNA fragmentation, caspase activation and cytochrome c release that are hallmarks of typical apoptosis. GzmH can directly cleave ICAD to unleash CAD for DNA fragmentation. Moreover, GzmH directly processes Bid to produce the active form tBid leading to cytochrome c release. Therefore, GzmH may play an essential role in caspase-dependent pathogen clearance in the innate immunity that may complement the proapoptotic function of GzmB in human NK cells.
Collapse
Affiliation(s)
- Qiang Hou
- National Laboratory of Biomacromolecules, Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
56
|
O'Connell AR, Stenson-Cox C. A more serine way to die: defining the characteristics of serine protease-mediated cell death cascades. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1491-9. [PMID: 17888529 DOI: 10.1016/j.bbamcr.2007.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 07/11/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
The morphological features observed by Kerr, Wylie and Currie in 1972 define apoptosis, necrosis and autophagy. An appreciable number of alternative systems do not fall neatly under these categories, warranting a review of alternative proteolytic machinery and its contribution to cell death. This review aims to pinpoint key molecular features of serine protease-mediated pro-apoptotic signalling. The profile created will contribute to a standard set of biochemical criteria that can serve in differentiating within cell death subtypes.
Collapse
Affiliation(s)
- A R O'Connell
- National Centre for Biomedical and Engineering Science, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
57
|
Zhao T, Zhang H, Guo Y, Fan Z. Granzyme K Directly Processes Bid to Release Cytochrome c and Endonuclease G Leading to Mitochondria-dependent Cell Death. J Biol Chem 2007; 282:12104-11. [PMID: 17308307 DOI: 10.1074/jbc.m611006200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granule-mediated cytolysis is the major pathway for killer lymphocytes to kill pathogens and tumor cells. Little is known about how granzyme K functions in killer lymphocyte-mediated cytolysis. We previously showed that human GzmK triggers rapid cell death independently of caspase activation with single-stranded DNA nicks, similar to GzmA. In this study we found that GzmK can induce rapid reactive oxygen species generation and collapse of mitochondrial inner membrane potential (DeltaPsim). Blockade of reactive oxygen species production by antioxidant N-acetylcysteine or superoxide scavenger Tiron inhibits GzmK-induced cell death. Moreover GzmK targets mitochondria by cleaving Bid to generate its active form tBid, which disrupts the outer mitochondrial membrane leading to the release of cytochrome c and endonuclease G. Thus, we showed herein that GzmK-induced caspase-independent death occurs through Bid-dependent mitochondrial damage that is different from GzmA.
Collapse
Affiliation(s)
- Tongbiao Zhao
- National Laboratory of Biomacromolecules and Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | |
Collapse
|
58
|
Mileo AM, Piombino E, Severino A, Tritarelli A, Paggi MG, Lombardi D. Multiple interference of the human papillomavirus-16 E7 oncoprotein with the functional role of the metastasis suppressor Nm23-H1 protein. J Bioenerg Biomembr 2007; 38:215-25. [PMID: 17103045 DOI: 10.1007/s10863-006-9037-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
High-risk human papillomaviruses (HPV) are linked to human cervical and other ano-genital cancers. Integration of the viral genome in the transformed epithelial cells is restricted to the coding regions for the E6 and E7 oncoproteins. Nevertheless, E7 plays the major role in cell transformation. We report a novel interaction between HPV-16 E7 and the Nm23-H1 and Nm23-H2 proteins identified in yeast by the two-hybrid system and confirmed by co-immunoprecipitation in the human keratinocyte HaCaT cell line. Expression of the E7 oncoprotein in HaCaT cells induces modified keratinocyte proliferation and differentiation patterns, and leads to down-modulation and functional inactivation of the metastasis suppressor Nm23-H1 protein. Both transcriptional down-regulation and protein degradation contribute to reduce Nm23-H1 intracellular content. Besides metastasis suppression, Nm23-H1 displays multiple functions in cell cycle regulation and differentiation, development, DNA regulation and caspase-independent apoptosis. As a consequence of Nm23-H1 inhibition, HPV-16 E7 expressing HaCaT cells, acquire invasiveness capabilities and resistance to granzyme A-induced apoptosis. We propose that impairment of the multifunctional role of Nm23-H1 is an important feature consistent with the complex strategy carried out by HPV-16 E7 to promote cell transformation and tumor progression.
Collapse
Affiliation(s)
- Anna Maria Mileo
- Department for the Development of Therapeutic Programs, Laboratory C, Regina Elena Cancer Institute, Centre for Experimental Research, Via delle Messi d'Oro 156, 00158, Rome, Italy
| | | | | | | | | | | |
Collapse
|
59
|
Sutton VR, Waterhouse NJ, Browne KA, Sedelies K, Ciccone A, Anthony D, Koskinen A, Mullbacher A, Trapani JA. Residual active granzyme B in cathepsin C-null lymphocytes is sufficient for perforin-dependent target cell apoptosis. ACTA ACUST UNITED AC 2007; 176:425-33. [PMID: 17283185 PMCID: PMC2063978 DOI: 10.1083/jcb.200609077] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cathepsin C activates serine proteases expressed in hematopoietic cells by cleaving an N-terminal dipeptide from the proenzyme upon granule packaging. The lymphocytes of cathepsin C–null mice are therefore proposed to totally lack granzyme B activity and perforin-dependent cytotoxicity. Surprisingly, we show, using live cell microscopy and other methodologies, that cells targeted by allogenic CD8+ cytotoxic T lymphocyte (CTL) raised in cathepsin C–null mice die through perforin-dependent apoptosis indistinguishable from that induced by wild-type CTL. The cathepsin C–null CTL expressed reduced but still appreciable granzyme B activity, but minimal granzyme A activity. Also, in contrast to mice with inactivation of both their granzyme A/B genes, cathepsin C deficiency did not confer susceptibility to ectromelia virus infection in vivo. Overall, our results indicate that although cathepsin C clearly generates the majority of granzyme B activity, some is still generated in its absence, pointing to alternative mechanisms for granzyme B processing and activation. Cathepsin C deficiency also results in considerably milder immune deficiency than perforin or granzyme A/B deficiency.
Collapse
Affiliation(s)
- Vivien R Sutton
- Cancer Immunology Program, Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Sipione S, Simmen KC, Lord SJ, Motyka B, Ewen C, Shostak I, Rayat GR, Dufour JM, Korbutt GS, Rajotte RV, Bleackley RC. Identification of a Novel Human Granzyme B Inhibitor Secreted by Cultured Sertoli Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:5051-8. [PMID: 17015688 DOI: 10.4049/jimmunol.177.8.5051] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sertoli cells have long since been recognized for their ability to suppress the immune system and protect themselves as well as other cell types from harmful immune reaction. However, the exact mechanism or product produced by Sertoli cells that affords this immunoprotection has never been fully elucidated. We examined the effect of mouse Sertoli cell-conditioned medium on human granzyme B-mediated killing and found that there was an inhibitory effect. We subsequently found that a factor secreted by Sertoli cells inhibited killing through the inhibition of granzyme B enzymatic activity. SDS-PAGE analysis revealed that this factor formed an SDS-insoluble complex with granzyme B. Immunoprecipitation and mass spectroscopic analysis of the complex identified a proteinase inhibitor, serpina3n, as a novel inhibitor of human granzyme B. We cloned serpina3n cDNA, expressed it in Jurkat cells, and confirmed its inhibitory action on granzyme B activity. Our studies have led to the discovery of a new inhibitor of granzyme B and have uncovered a new mechanism used by Sertoli cells for immunoprotection.
Collapse
Affiliation(s)
- Simonetta Sipione
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Hodge DL, Subleski JJ, Reynolds DA, Buschman MD, Schill WB, Burkett MW, Malyguine AM, Young HA. The Proinflammatory Cytokine Interleukin-18 Alters Multiple Signaling Pathways to Inhibit Natural Killer Cell Death. J Interferon Cytokine Res 2006; 26:706-18. [PMID: 17032165 DOI: 10.1089/jir.2006.26.706] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The proinflammatory cytokine, interleukin-18 (IL-18), is a natural killer (NK) cell activator that induces NK cell cytotoxicity and interferon-gamma (IFN-gamma) expression. In this report, we define a novel role for IL-18 as an NK cell protective agent. Specifically, IL-18 prevents NK cell death initiated by different and distinct stress mechanisms. IL-18 reduces NK cell self-destruction during NK-targeted cell killing, and in the presence of staurosporin, a potent apoptotic inducer, IL-18 reduces caspase-3 activity. The critical regulatory step in this process is downstream of the mitochondrion and involves reduced cleavage and activation of caspase-9 and caspase-3. The ability of IL-18 to regulate cell survival is not limited to a caspase death pathway in that IL-18 augments tumor necrosis factor (TNF) signaling, resulting in increased and prolonged mRNA expression of c-apoptosis inhibitor 2 (cIAP2), a prosurvival factor and caspase-3 inhibitor, and TNF receptor-associated factor 1 (TRAF1), a prosurvival protein. The cumulative effects of IL-18 define a novel role for this cytokine as a molecular survival switch that functions to both decrease cell death through inhibition of the mitochondrial apoptotic pathway and enhance TNF induction of prosurvival factors.
Collapse
Affiliation(s)
- Deborah L Hodge
- Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Liu Y, Zhang W, Niu T, Cheung LH, Munshi A, Meyn RE, Rosenblum MG. Targeted apoptosis activation with GrB/scFvMEL modulates melanoma growth, metastatic spread, chemosensitivity, and radiosensitivity. Neoplasia 2006; 8:125-35. [PMID: 16611405 PMCID: PMC1578517 DOI: 10.1593/neo.05556] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GrB/scFvMEL, a fusion protein composed of human granzyme B (GrB) and the single-chain antibody scFvMEL, targets melanoma gp240 antigen and exerts impressive cytotoxic effects by inducing apoptosis. We evaluated the effects of GrB/scFvMEL on chemotherapy, radiation therapy, metastasis in vitro, and the growth of human melanoma A375 xenograft tumors in nude mice. GrB/scFvMEL showed synergistic cytotoxicity when coadministered with doxorubicin, vincristine or cisplatin, and additive effects, in combination with etoposide or cytarabine. Optimal cytotoxic effects were obtained when cells were treated first with GrB/scFvMEL followed by exposure to the agent (rather than the reverse). Pretreatment of A375 cells with GrB/scFvMEL significantly sensitized melanoma cells to ionizing radiation assessed using a clonogenic survival assay. Subtoxic doses of GrB/scFvMEL inhibited the invasion of A375 cells into Matrigel. GrB/scFvMEL (37.5 mg/kg) was administered intravenously to nude mice bearing A375 tumors. Saline-treated tumors increased 24-fold, whereas tumors treated with GrB/scFvMEL showed a significant tumor growth delay increasing four-fold. Tumor tissue displayed an increase in apoptotic nuclei compared to control. Thus, the targeted delivery of GrB to tumors may have a significant potential for cancer treatment. Targeted therapeutic agents specifically designed to impact cellular apoptotic pathways may represent a novel class of therapeutic agents.
Collapse
Affiliation(s)
- Yuying Liu
- Immunopharmacology and Targeted Therapy Section, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
NK cell-based immunotherapies against tumors. Open Med (Wars) 2006. [DOI: 10.2478/s11536-006-0023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNatural killer (NK) cells provide the first line of defence against pathogens and tumors. Their activation status is regulated by pro-inflammatory cytokines and by ligands that either target inhibitory or activating cell surface receptors belonging to the immunoglobulin-like, C-type lectin or natural cytotoxicity receptor families. Apart from non-classical HLA-E, membrane-bound heat shock protein 70 (Hsp70) has been identified as a tumor-specific recognition structure for NK cells expressing high amounts of the C-type lectin receptor CD94, acting as one component of an activating heterodimeric receptor complex. Full-length Hsp70 protein (Hsp70) or the 14-mer Hsp70 peptide T-K-D-N-N-L-L-G-R-F-E-L-S-G (TKD) in combination with pro-inflammatory cytokines enhances the cytolytic activity of NK cells towards Hsp70 membrane-positive tumors. Based on these findings cytokine/TKD-activated NK cells were adoptively transferred in tumor patients. These findings were compared to results of clinical trials using cytokine-activated NK cells.
Collapse
|
64
|
Estella E, McKenzie MD, Catterall T, Sutton VR, Bird PI, Trapani JA, Kay TW, Thomas HE. Granzyme B-mediated death of pancreatic beta-cells requires the proapoptotic BH3-only molecule bid. Diabetes 2006; 55:2212-9. [PMID: 16873683 DOI: 10.2337/db06-0129] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Perforin-deficient NOD mice are protected from diabetes, suggesting that cytotoxic granule contents of CD8(+) T-cells have a significant role in killing beta-cells. Despite this, cytotoxic granule effects on human or mouse pancreatic islets have not been reported. We tested the susceptibility of human and mouse islet cells to purified recombinant perforin and granzyme B and measured apoptotic death using a number of assays. Perforin and granzyme B impaired insulin secretion from islet cells, and this was accompanied by cytochrome c release, caspase activation, and DNA fragmentation. Granzyme B-mediated apoptotic changes only occurred in the presence of perforin. When compared with hemopoietic cells, traditionally used as targets to measure cytotoxic T-cell function in vitro, islet cells were relatively resistant to perforin and granzyme B. Inhibition of caspases prevented DNA fragmentation but not cytochrome c release, indicating that mitochondrial disruption due to granzyme B is independent of caspase activation. Consistent with this, islet cells from mice deficient in the BH3-only protein Bid were resistant to cytochrome c release and were protected from apoptosis after exposure to perforin/granzyme B. Our data suggest that Bid cleavage by granzyme B precedes mitochondrial disruption and apoptosis in pancreatic islets.
Collapse
Affiliation(s)
- Eugene Estella
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, Victoria, 3065, Australia
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Goping IS, Sawchuk T, Underhill DA, Bleackley RC. Identification of {alpha}-tubulin as a granzyme B substrate during CTL-mediated apoptosis. J Cell Sci 2006; 119:858-65. [PMID: 16495481 DOI: 10.1242/jcs.02791] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytotoxic lymphocytes induce target cell apoptosis via two major pathways: Fas/FasL and granule exocytosis. The latter pathway has largely been defined by the roles of the pore-forming protein perforin and by the serine proteinases granzymes A and B. Upon entry into target cells, the granzymes cleave substrates that ultimately result in cell death. To gain further insight into granzyme B function, we have identified novel substrates. SDS-PAGE analysis of S100 cell lysates identified a 51 kDa protein that was cleaved by granzyme B. Mass spectrometry analysis revealed that this fragment was the microtubule protein, alpha-tubulin, which was confirmed by western blotting. In addition, two-dimensional gel analysis showed that the truncated form of alpha-tubulin had a more basic isoelectric point than the full-length molecule, suggesting that granzyme B removed the acidic C-terminus. Site-directed mutagenesis within this region of alpha-tubulin revealed the granzyme B recognition site, which is conserved in a subset of alpha-tubulin isoforms. Significantly, we showed that alpha-tubulin was cleaved in target cells undergoing apoptosis as induced by cytotoxic T lymphocytes. Therefore, in addition to its role in the activation of mitochondria during apoptosis, these results suggest a role for granzyme B in the dismantling of the cytoskeleton.
Collapse
Affiliation(s)
- Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | | | | | | |
Collapse
|
66
|
Lu H, Hou Q, Zhao T, Zhang H, Zhang Q, Wu L, Fan Z. Granzyme M Directly Cleaves Inhibitor of Caspase-Activated DNase (CAD) to Unleash CAD Leading to DNA Fragmentation. THE JOURNAL OF IMMUNOLOGY 2006; 177:1171-8. [PMID: 16818775 DOI: 10.4049/jimmunol.177.2.1171] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Granzyme (Gzm)M is constitutively highly expressed in NK cells that may play a critical role in NK cell-mediated cytolysis. However, the function of GzmM has been less defined. Just one report showed GzmM induces a caspase-independent death pathway. In this study, we demonstrate a protein transfection reagent Pro-Ject can efficiently transport GzmM into target cells. GzmM initiates caspase-dependent apoptosis with typical apoptotic nuclear morphology. GzmM induces DNA fragmentation, not DNA nicking. GzmM can directly degrade inhibitor of caspase-activated DNase to release the nuclease activity of caspase-activated DNase for damaging DNA. Furthermore, GzmM cleaves the DNA damage sensor enzyme poly(ADP-ribose) polymerase to prevent cellular DNA repair and force apoptosis.
Collapse
Affiliation(s)
- Hongxia Lu
- National Laboratory of Biomacromolecules and Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
67
|
Chowdhury D, Beresford PJ, Zhu P, Zhang D, Sung JS, Demple B, Perrino FW, Lieberman J. The Exonuclease TREX1 Is in the SET Complex and Acts in Concert with NM23-H1 to Degrade DNA during Granzyme A-Mediated Cell Death. Mol Cell 2006; 23:133-42. [PMID: 16818237 DOI: 10.1016/j.molcel.2006.06.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/27/2006] [Accepted: 06/12/2006] [Indexed: 12/11/2022]
Abstract
Granzyme A (GzmA) activates a caspase-independent cell death pathway with morphological features of apoptosis. Single-stranded DNA damage is initiated when the endonuclease NM23-H1 becomes activated to nick DNA after granzyme A cleaves its inhibitor, SET. SET and NM23-H1 reside in an endoplasmic reticulum-associated complex (the SET complex) that translocates to the nucleus in response to superoxide generation by granzyme A. We now find the 3'-to-5' exonuclease TREX1, but not its close homolog TREX2, in the SET complex. TREX1 binds to SET and colocalizes and translocates with the SET complex. NM23-H1 and TREX1 work in concert to degrade DNA. Silencing NM23-H1 or TREX1 inhibits DNA damage and death of cells treated with perforin (PFN) and granzyme A, but not of cells treated with perforin and granzyme B (GzmB). After granzyme A activates NM23-H1 to make single-stranded nicks, TREX1 removes nucleotides from the nicked 3' end to reduce the possibility of repair by rejoining the nicked ends.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- CBR Institute for Biomedical Research, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Waterhouse NJ, Sutton VR, Sedelies KA, Ciccone A, Jenkins M, Turner SJ, Bird PI, Trapani JA. Cytotoxic T lymphocyte-induced killing in the absence of granzymes A and B is unique and distinct from both apoptosis and perforin-dependent lysis. ACTA ACUST UNITED AC 2006; 173:133-44. [PMID: 16606695 PMCID: PMC2063797 DOI: 10.1083/jcb.200510072] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytotoxic T lymphocyte (CTL)–induced death triggered by the granule exocytosis pathway involves the perforin-dependent delivery of granzymes to the target cell. Gene targeting has shown that perforin is essential for this process; however, CTL deficient in the key granzymes A and B maintain the ability to kill their targets by granule exocytosis. It is not clear how granzyme AB−/− CTLs kill their targets, although it has been proposed that this occurs through perforin-induced lysis. We found that purified granzyme B or CTLs from wild-type mice induced classic apoptotic cell death. Perforin-induced lysis was far more rapid and involved the formation of large plasma membrane protrusions. Cell death induced by granzyme AB−/− CTLs shared similar kinetics and morphological characteristics to apoptosis but followed a distinct series of molecular events. Therefore, CTLs from granzyme AB−/− mice induce target cell death by a unique mechanism that is distinct from both perforin lysis and apoptosis.
Collapse
Affiliation(s)
- Nigel J Waterhouse
- Cancer Cell Death Laboratory, Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL. The continuing challenges of leprosy. Clin Microbiol Rev 2006; 19:338-81. [PMID: 16614253 PMCID: PMC1471987 DOI: 10.1128/cmr.19.2.338-381.2006] [Citation(s) in RCA: 523] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leprosy is best understood as two conjoined diseases. The first is a chronic mycobacterial infection that elicits an extraordinary range of cellular immune responses in humans. The second is a peripheral neuropathy that is initiated by the infection and the accompanying immunological events. The infection is curable but not preventable, and leprosy remains a major global health problem, especially in the developing world, publicity to the contrary notwithstanding. Mycobacterium leprae remains noncultivable, and for over a century leprosy has presented major challenges in the fields of microbiology, pathology, immunology, and genetics; it continues to do so today. This review focuses on recent advances in our understanding of M. leprae and the host response to it, especially concerning molecular identification of M. leprae, knowledge of its genome, transcriptome, and proteome, its mechanisms of microbial resistance, and recognition of strains by variable-number tandem repeat analysis. Advances in experimental models include studies in gene knockout mice and the development of molecular techniques to explore the armadillo model. In clinical studies, notable progress has been made concerning the immunology and immunopathology of leprosy, the genetics of human resistance, mechanisms of nerve injury, and chemotherapy. In nearly all of these areas, however, leprosy remains poorly understood compared to other major bacterial diseases.
Collapse
Affiliation(s)
- D M Scollard
- Laboratory Research Branch, National Hansen's Disease Programs, LSU-SVM, Skip Bertman Dr., Baton Rouge, LA 70803, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Zhang M, Park SM, Wang Y, Shah R, Liu N, Murmann AE, Wang CR, Peter ME, Ashton-Rickardt PG. Serine protease inhibitor 6 protects cytotoxic T cells from self-inflicted injury by ensuring the integrity of cytotoxic granules. Immunity 2006; 24:451-61. [PMID: 16618603 DOI: 10.1016/j.immuni.2006.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 02/01/2006] [Accepted: 02/03/2006] [Indexed: 10/24/2022]
Abstract
How cytotoxic T lymphocytes (CTLs) kill intracellular pathogens without killing themselves has been a recurring question ever since their discovery. By using mice deficient in Serine Protease Inhibitor 6 (Spi6), we show that by inhibiting granzyme B (GrB), Spi6 protects CTLs from self-inflicted injury. Infection with either Lymphocytic Choriomeningitis virus (LCMV) or Listeria monocytogenes (LM) revealed increased apoptosis and diminished survival of Spi6 knockout (KO) CTLs, which was cell autonomous and could be corrected by GrB deficiency. Spi6 KO mice in turn were impaired in their ability to clear LCMV infection. Spi6 KO CTLs revealed a breakdown in the integrity of cytotoxic granules, increased cytoplasmic GrB, and ensuing apoptosis. We conclude that Spi6 protects CTLs from suicide caused by GrB-mediated breakdown of cytotoxic granules.
Collapse
Affiliation(s)
- Manling Zhang
- Department of Pathology, The University of Chicago, 924 East 57th Street, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Choi SL, Choi YS, Kim YK, Sung ND, Kho CW, Park BC, Kim EM, Lee JH, Kim KM, Kim MY, Myung PK. Proteomic analysis and the antimetastatic effect ofN-(4-methyl)phenyl-O-(4-methoxy) phenyl-thionocarbamate-induced apoptosis in human melanoma SK-MEL-28 cells. Arch Pharm Res 2006; 29:224-34. [PMID: 16596996 DOI: 10.1007/bf02969398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed human SK-MEL-28 cells as a model system to identify cellular proteins that accompany N-(4-methyl)phenyl-O-(4-methoxy)phenyl-thionocarbamate (MMTC)-induced apoptosis based on a proteomic approach. Cell viability tests revealed that SK-MEL-28 skin cancer cells underwent more cell death than normal HaCaT cells in a dose-dependent manner after treatment with MMTC. Two-dimensional electrophoresis in conjunction with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis or computer matching with a protein database further revealed that the MMTC-induced apoptosis is accompanied by increased levels of caspase-1, checkpoint suppressor-1, caspase-4, NF-kappaB inhibitor, AP-2, c-Jun-N-terminal kinase, melanoma inhibitor, granzyme K, G1/S specific cyclin D3, cystein rich protein, Ras-related protein Rab-37 or Ras-related protein Rab-13, and reduced levels of EMS (oncogene), ATP synthase, tyrosine-phosphatase, Cdc25c, 14-3-3 protein or specific structure of nuclear receptor. The migration suppressing effect of MMTC on SK-MEL-28 cell was tested. MMTC suppressed the metastasis of SK-MEL-8 cells. It was also identified that MMTC had little angiogenic effect because it did not suppress the proliferation of HUVEC cell line. These results suggest that MMTC is a novel chemotherapeutic and metastatic agents against the SK-MEL-28 human melanoma cell line.
Collapse
Affiliation(s)
- Su-La Choi
- Clinical Biochemistry Lab, Department of Pharmacy, College of Pharmacy, Chungnam National University, Daejon, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T, Lieberman J. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 2005; 23:249-62. [PMID: 16169498 DOI: 10.1016/j.immuni.2005.08.001] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 07/08/2005] [Accepted: 07/19/2005] [Indexed: 11/26/2022]
Abstract
Perforin delivers granzymes to induce target-cell apoptosis. At high concentrations, perforin multimerizes in the plasma membrane to form pores. However, whether granzymes enter target cells via membrane pores is uncertain. Here we find that perforin at physiologically relevant concentrations and during cell-mediated lysis creates pores in the target-cell membrane, transiently allowing Ca(2+) and small dyes into the cell. The Ca(2+) flux triggers a wounded membrane-repair response in which internal vesicles, including lysosomes and endosomes, donate their membranes to reseal the damaged membrane. Perforin also triggers the rapid endocytosis of granzymes into large EEA-1-staining vesicles. The restoration of target-cell membrane integrity by triggering the repair response is necessary for target cells subjected to cytotoxic T lymphocyte attack to avoid necrosis and undergo the slower process of programmed cell death. Thus, the target cell actively participates in determining its own fate during cell-mediated death.
Collapse
Affiliation(s)
- Dennis Keefe
- The CBR Institute for Biomedical Research, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Martinvalet D, Zhu P, Lieberman J. Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 2005; 22:355-70. [PMID: 15780992 DOI: 10.1016/j.immuni.2005.02.004] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 01/19/2005] [Accepted: 02/02/2005] [Indexed: 11/19/2022]
Abstract
Granzyme A (GzmA) triggers cell death with apoptotic features by targeting the endoplasmic reticulum-associated SET complex, which contains the GzmA-activated DNase NM23-H1, its inhibitor SET, and Ape1. The SET complex was postulated to translocate to the nucleus in response to oxidative stress and participate in its repair. Because mitochondrial damage is important in apoptosis, we investigated whether GzmA damages mitochondria. GzmA induces a rapid increase in reactive oxygen species and mitochondrial transmembrane potential loss, but does not cleave bid or cause apoptogenic factor release. The mitochondrial effect is direct, does not require cytosol, and is insensitive to bcl-2 and caspase inhibition. SET complex nuclear translocation, which occurs within minutes of peroxide or GzmA treatment, is dependent on superoxide generation since superoxide scavengers block it. Superoxide scavengers also block apoptosis by CTLs expressing GzmA and/or GzmB. Therefore, mitochondrial damage is an essential first step in killer cell granule-mediated pathways of apoptosis.
Collapse
Affiliation(s)
- Denis Martinvalet
- The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
74
|
Shi L, Keefe D, Durand E, Feng H, Zhang D, Lieberman J. Granzyme B Binds to Target Cells Mostly by Charge and Must Be Added at the Same Time as Perforin to Trigger Apoptosis. THE JOURNAL OF IMMUNOLOGY 2005; 174:5456-61. [PMID: 15843543 DOI: 10.4049/jimmunol.174.9.5456] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Perforin (PFN) delivery of granzymes (Gzm) into the target cell at the immunological synapse is the major pathway for inducing apoptosis of virus-infected cells and tumors. A validated model for how PFN delivers Gzm into the cytosol is still lacking. PFN was originally thought to work by forming pores in the target cell plasma membrane that allow Gzm entry. This model was questioned when it was shown that GzmB is endocytosed without PFN. Moreover, apoptosis could be triggered by adding PFN to washed cells that have previously endocytosed GzmB. In this study, we show that GzmB binds to the plasma membrane mostly via nonspecific charge interactions. Washing in saline does not remove bound Gzm. However, if externally bound GzmB is completely removed, subsequent addition of PFN does not release previously endocytosed GzmB and does not trigger apoptosis. Therefore, PFN must be coendocytosed with GzmB to deliver it into the cytosol.
Collapse
Affiliation(s)
- Lianfa Shi
- CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
75
|
Rong J, Xu X, Ewen C, Bleackley RC, Kane KP. Isolation and characterization of novel single-chain Fv specific for human granzyme B. ACTA ACUST UNITED AC 2005; 23:219-31. [PMID: 15319069 DOI: 10.1089/1536859041651349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Granzyme B, a neutral serine protease, has been demonstrated to be a pivotal molecule for protective immunity against viral infection and cellular malignant transformation. To facilitate monitoring of granzyme B levels, we have recently applied phage display technology to produce single-chain Fv antibodies specific for granzyme B, as versatile alternatives and complementary reagents to currently available monoclonal antibodies. Through four rounds of panning on purified human granzyme B-coated on solid phase, three unique clones were isolated. Expressed soluble scFv antibodies demonstrated specific immunological applications including ELISA, Western blotting, immunoprecipitation and intracellular staining. Based on sequence analyses and structural modeling, one scFv, Fv17, may have overlapping antigen binding specificity with monoclonal antibodies 2C5/F5 and GB11. Owing to the availability of its DNA sequence and large scale production capability, Fv17 should be a superior reagent for monitoring granzyme B expression in natural killer cells and antigen specific CD8+ T cell immunity.
Collapse
Affiliation(s)
- Jianhui Rong
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
76
|
Abstract
Perforin is critical for cytotoxicity mediated by granules present in natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Perforin-deficient mice have impaired cytotoxicity by NK cells and CTLs, resulting in failure to control infections with certain viruses or bacteria. Infection of perforin-deficient mice with lymphocytic choriomeningitis virus results in haemophagocytic lymphohistiocytosis and elevated levels of pro-inflammatory cytokines. Mutations throughout the perforin gene have been identified in patients with familial haemophagocytic lymphohistiocytosis (FHL) type 2. These patients present with fever, hepatosplenomegaly, pancytopenia, have marked elevations of T-helper type 1 and type 2 cytokines, and have impaired NK cell and CTL cytotoxicity. A number of infectious pathogens have been implicated as triggering the onset of disease. Identification of mutations in perforin as the cause of FHL should allow prenatal diagnosis of the disorder. While stem cell transplantation is curative, gene therapy might be effective in the future.
Collapse
Affiliation(s)
- Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | | |
Collapse
|
77
|
Syafriadi M, Cheng J, Jen KY, Ida-Yonemochi H, Suzuki M, Saku T. Two-phase appearance of oral epithelial dysplasia resulting from focal proliferation of parabasal cells and apoptosis of prickle cells. J Oral Pathol Med 2005; 34:140-9. [PMID: 15689227 DOI: 10.1111/j.1600-0714.2004.00283.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND One of the histologic characteristics of epithelial dysplasias of the oral mucosa is droplet-shaped rete processes resulting from a solid proliferation of basaloid cells. These basaloid cells are suddenly changed into an overlay of parakeratotic cells. However, it is unknown how this characteristic two-phase appearance is generated. METHODS Formalin-fixed paraffin sections of the oral mucosal specimens with normal, hyperplastic, dysplastic epithelia and squamous cell carcinomas were examined for apoptosis by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) method and for lymphoid cells by immunohistochemistry. RESULTS Apoptotic cells were only located in the keratinized layer of normal/hyperplastic epithelia. However, in epithelial dysplasias, apoptotic cells were scattered in the middle or even in the lower parts of the epithelial layer with frequent vacuolation changes of epithelial cells. Within the epithelial layer of dysplasias, there were increased number of lymphocytes, which were immunopositive for CD45RO, CD8, and CD57- and CD68-immunopositive (+), S-100 protein-positive and major histocompatibility complex (MHC) class II-positive monocytic lineages. They increased in number with the severity of dysplastic degrees, and they were often located in the vicinity of apoptotic epithelial cells, but decreased in carcinomas in situ and invasive carcinomas, which contained fewer numbers of apoptotic figures. CONCLUSION The findings indicate that intraepithelial infiltrations of both cytotoxic T cells and natural killer cells are closely related to the apoptotic phenomena of prickle cells, which may result in the characteristic 'two-phase appearance' of epithelial dysplasia.
Collapse
Affiliation(s)
- Mei Syafriadi
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
78
|
Jansen CA, Piriou E, Bronke C, Vingerhoed J, Kostense S, van Baarle D, Miedema F. Characterization of virus-specific CD8(+) effector T cells in the course of HIV-1 infection: longitudinal analyses in slow and rapid progressors. Clin Immunol 2004; 113:299-309. [PMID: 15507395 DOI: 10.1016/j.clim.2004.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 08/02/2004] [Indexed: 10/26/2022]
Abstract
Studies in humans have provided evidence that CD8(+) T cells exhibit distinct phenotypical and functional properties dependent on virus specificity. It is not known how these T-cell phenotypes develop over the course of infection. Dynamics and properties of T cells specific for human immunodeficiency virus (HIV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) in HIV infection were investigated in relation to viral load. In rapid progressors, HIV-specific CD8(+) T cells were less differentiated early in infection and did not develop a more differentiated phenotype. In slow progressors, perforin expression of HIV-specific CD8(+) T cells slightly increased over time. HIV and EBV loads were detectable in all individuals, while CMV load could not be detected. Thus, in individuals with progressive HIV infection, HIV-specific T cells are less differentiated already early in infection. This apparent block in differentiation may be partly caused by chronic viremia or lack of CD4(+) T-cell help.
Collapse
Affiliation(s)
- Christine A Jansen
- Department of Clinical Viro-Immunology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
79
|
Rode M, Balkow S, Sobek V, Brehm R, Martin P, Kersten A, Dumrese T, Stehle T, Müllbacher A, Wallich R, Simon MM. Perforin and Fas act together in the induction of apoptosis, and both are critical in the clearance of lymphocytic choriomeningitis virus infection. J Virol 2004; 78:12395-405. [PMID: 15507626 PMCID: PMC525048 DOI: 10.1128/jvi.78.22.12395-12405.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report we questioned the current view that the two principal cytotoxic pathways, the exocytosis and the Fas ligand (FasL)/Fas-mediated pathway, have largely nonoverlapping biological roles. For this purpose we have analyzed the response of mice that lack Fas as well as granzyme A (gzmA) and gzmB (FasxgzmAxB(-/-)) to infection with lymphocytic choriomeningitis virus (LCMV). We show that FasxgzmAxB(-/-) mice, in contrast to B6, Fas(-/-), and gzmAxB(-/-) mice, do not recover from a primary infection with LCMV, in spite of the expression of comparable numbers of LCMV-immune and gamma interferon-producing cytotoxic T lymphocytes (CTL) in all mouse strains tested. Ex vivo-derived FasxgzmAxB(-/-) CTL lacked nucleolytic activity and expressed reduced cytolytic activity compared to B6 and Fas(-/-) CTL. Furthermore, virus-immune CTL with functional FasL and perforin (gzmAxB(-/-)) are more potent in causing target cell apoptosis in vitro than those expressing FasL alone (perfxgzmAxB(-/-)). This synergistic effect of perforin on Fas-mediated nucleolysis of target cells is indicated by the fact that, compared to perfxgzmAxB(-/-) CTL, gzmAxB(-/-) CTL induced (i) an accelerated decrease in mitochondrial transmembrane potential, (ii) increased generation of reactive oxygen species, and (iii) accelerated phosphatidylserine exposure on plasma membranes. We conclude that perforin does not mediate recovery from LCMV by itself but plays a vital role in both gzmA/B and FasL/Fas-mediated CTL activities, including apoptosis and control of viral infections.
Collapse
Affiliation(s)
- Miriam Rode
- Max-Planck-Institut für Immunbiologie, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Dokur M, Boyadjieva NI, Advis JP, Sarkar DK. Modulation of Hypothalamic ??-Endorphin???Regulated Expression of Natural Killer Cell Cytolytic Activity Regulatory Factors by Ethanol in Male Fischer-344 Rats. Alcohol Clin Exp Res 2004; 28:1180-6. [PMID: 15318116 DOI: 10.1097/01.alc.0000134222.20309.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We have previously shown that ethanol administration suppresses natural killer (NK) cell cytolytic activity, partly by decreasing the action of hypothalamic beta-endorphin (beta-EP) on the spleens of male Fischer-344 rats. This study was conducted to examine the effects of ethanol and central administration of beta-EP on perforin, granzyme B, and the cytokine interferon (IFN)-gamma--factors that modulate NK cell cytolytic activity--to understand the mechanism involved in ethanol's suppression of NK cell activity. METHODS A group of male Fischer-344 rats were fed an ethanol-containing diet (8.7% v/v), and a control group was pair-fed an isocaloric diet. At the end of 2 weeks, both groups were infused with beta-EP 100 ng/hr into the paraventricular nucleus of the hypothalamus for 18 hr, and spleen tissues were immediately removed for analysis of perforin, granzyme B, and IFN-gamma messenger RNA (mRNA) and protein levels. The mRNA levels of perforin, granzyme B, and IFN-gamma were evaluated by quantitative real-time polymerase chain reaction, and the protein levels of perforin and granzyme B were analyzed by Western blot. RESULTS Paraventricular nucleus administration of beta-EP increased the mRNA and protein expression of granzyme B and mRNA expression of IFN-gamma in pair-fed animals. Ethanol significantly reduced both basal and beta-EP-induced levels of granzyme B and IFN-gamma. CONCLUSIONS These data suggest that chronic ethanol consumption suppresses beta-EP-induced NK cytolytic activity, granzyme B, and IFN-gamma in male Fischer-344 rats.
Collapse
Affiliation(s)
- Madhavi Dokur
- Endocrinology Program, Center of Alcohol Studies and Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8525, USA
| | | | | | | |
Collapse
|
81
|
Gruen M, Bommert K, Bargou RC. T-cell-mediated lysis of B cells induced by a CD19xCD3 bispecific single-chain antibody is perforin dependent and death receptor independent. Cancer Immunol Immunother 2004; 53:625-32. [PMID: 15175907 PMCID: PMC11034197 DOI: 10.1007/s00262-003-0496-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
A recently developed bispecific antibody construct, directed against CD19 and CD3 (bscCD19xCD3), induces T-cell-mediated lysis of allogeneic and autologous B cells in a specific and highly efficient manner. Since knowledge of the molecular mechanisms underlying this lysis is limited, a study on bscCD19xCD3-activated T-cell-effector pathways was performed. BscCD19xCD3-induced lysis of target B-cell lines Nalm-6, Daudi, and Raji and of autologous primary B cells is caused by the perforin-dependent granule-exocytosis pathway but not by the death ligands FasL, TRAIL, or TNF-alpha. When activated by bscCD19xCD3 and Raji cells, T cells express FasL mRNA, but incubation of Raji cells with cell-free supernatants from cytotoxicity experiments caused an upregulation of c-Flipl, possibly accounting for the cells' insensitivity toward death-receptor-mediated lysis. In addition to granule exocytosis, Raji cells are lysed by at least one mechanism independent of perforin, which requires transport through the T cell's Golgi apparatus.
Collapse
Affiliation(s)
- Michael Gruen
- Department of Hematology, Oncology and Tumorimmunology, Robert Rössle Clinic, Charité, Humboldt University of Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Present Address: Research Unit Molecular Cell Biology, University of Jena, Jena, Germany
| | - Kurt Bommert
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Ralf C. Bargou
- Department of Hematology, Oncology and Tumorimmunology, Robert Rössle Clinic, Charité, Humboldt University of Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Helios Klinikum Berlin-Buch, Berlin, Germany
| |
Collapse
|
82
|
Veugelers K, Motyka B, Frantz C, Shostak I, Sawchuk T, Bleackley RC. The granzyme B–serglycin complex from cytotoxic granules requires dynamin for endocytosis. Blood 2004; 103:3845-53. [PMID: 14739229 DOI: 10.1182/blood-2003-06-2156] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Cytotoxic T lymphocytes and natural killer cells destroy target cells via the directed exocytosis of lytic effector molecules such as perforin and granzymes. The mechanism by which these proteins enter targets is uncertain. There is ongoing debate over whether the most important endocytic mechanism is nonspecific or is dependent on the cation-independent mannose 6-phosphate receptor. This study tested whether granzyme B endocytosis is facilitated by dynamin, a key factor in many endocytic pathways. Uptake of and killing by the purified granzyme B molecule occurred by both dynamin-dependent and -independent mechanisms. However most importantly, serglycin-bound granzyme B in high-molecular-weight degranulate material from cytotoxic T lymphocytes predominantly followed a dynamin-dependent pathway to kill target cells. Similarly, killing by live cytotoxic T lymphocytes was attenuated by a defect in the dynamin endocytic pathway, and in particular, the pathways characteristically activated by granzyme B were affected. We therefore propose a model where degranulated serglycin-bound granzymes require dynamin for uptake.
Collapse
Affiliation(s)
- Kirstin Veugelers
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
83
|
Kim HR, Park HJ, Park JH, Kim SJ, Kim K, Kim J. Characteristics of the killing mechanism of human natural killer cells against hepatocellular carcinoma cell lines HepG2 and Hep3B. Cancer Immunol Immunother 2004; 53:461-70. [PMID: 14648068 PMCID: PMC11034283 DOI: 10.1007/s00262-003-0461-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 09/26/2003] [Indexed: 11/28/2022]
Abstract
PURPOSE Unlike normal hepatocytes, most hepatocellular carcinomas (HCCs) are quite resistant to death receptor-mediated apoptosis when the cell surface death receptor is cross linked with either agonistic antibodies or soluble death ligand proteins in vitro. The resistance might play an essential role in the escape from the host immune surveillance; however, it has not been directly demonstrated that HCCs are actually resistant to natural killer (NK) cell-mediated death. Therefore, this study investigated the molecular mechanism of NK cell-mediated cytotoxicity against the HCCs, HepG2, and Hep3B, using two distinct cytotoxic assays: a 4-h (51)Cr-release assay and a 2-h [(3)H] thymidine release assay which selectively measures the extent of necrotic and apoptotic target cell death, respectively. METHODS Most of the target cells exhibited marked morphologic changes when they were co-incubated with the NK cells, and the NK cytotoxicity against these HCCs was comparable to that against K562, a NK-sensitive leukemia cell line, when the cytotoxicity was assessed by a 4-h (51)Cr release assay. RESULTS The NK cells also induced significant apoptotic cell death in the Hep3B targets, but not in the HepG2 targets, when the cytotoxicity was assessed by a 2-h [(3)H]-thymidine release assay. In agreement with these results, procaspase-3 was activated in the Hep3B targets, but not in the HepG2 targets. Interestingly, mildly fixed NK cells had no detectable activity in the 4-h (51)Cr release assay against both HepG2 and Hep3B targets, while they were similarly effective as the untreated NK cells in the 2-h [(3)H]-thymidine release assay, suggesting that the level of apoptotic cell death of the Hep3B targets is granule independent and might be primarily mediated by the death ligands of the NK cells. CONCLUSION This study found that a tumor necrosis factor (TNF)-related apoptosis-inducing ligand TRAIL)/TRAIL receptor interaction is involved in the NK cell-mediated apoptotic death of the Hep3B targets, but a Fas/Fas ligand (FasL) interaction is not.
Collapse
Affiliation(s)
- Hyoung-Ran Kim
- Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, 120-752 Seoul, Korea
| | - Hyun-Joo Park
- Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, 120-752 Seoul, Korea
| | - Jeon Han Park
- Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, 120-752 Seoul, Korea
| | - Se Jong Kim
- Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, 120-752 Seoul, Korea
| | - Kunhong Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Jongsun Kim
- Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, 120-752 Seoul, Korea
| |
Collapse
|
84
|
Rukamp BJ, Kam CM, Natarajan S, Bolton BW, Smyth MJ, Kelly JM, Powers JC. Subsite specificities of granzyme M: a study of inhibitors and newly synthesized thiobenzyl ester substrates. Arch Biochem Biophys 2004; 422:9-22. [PMID: 14725853 DOI: 10.1016/j.abb.2003.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Granzyme M is a member of a family of granule serine proteases that participate in target cell death initiated by cytotoxic lymphocytes. The enzyme is almost exclusively expressed in NK cell types. Granzyme M cleaves at the carboxy side of amino acids with long, hydrophobic side chains like Met, Leu, and Nle. To further study the substrate specificity of the enzyme, a series of peptide thiobenzyl esters was synthesized. The hydrolysis of the substrates with murine and human recombinant forms of granzyme M was observed. The results show that the enzyme has a strong preference for Pro at the P2 position and Ala, Ser, or Asp at the P3 position. These results suggest that the protein residues of the S2 and S3 subsites form important binding interactions that aid in the selection of specific natural substrates for granzyme M. A series of inhibitors was also tested with granzyme M. None of the inhibitors were effective inactivators of granzyme M, including the general serine protease inhibitor, 3,4-dichloroisocoumarin, which is usually a potent inactivator of serine proteases. This suggests that inhibition of granzyme M may be difficult. Also reported for the first time is the method utilized to isolate granzyme M used in this and previous publications. The observations in this paper will be valuable in development of new potent inhibitors for granzyme M as well as assist in determining the biological function of the enzyme.
Collapse
Affiliation(s)
- Brian J Rukamp
- The School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Sun J, Bird CH, Thia KY, Matthews AY, Trapani JA, Bird PI. Granzyme B encoded by the commonly occurring human RAH allele retains pro-apoptotic activity. J Biol Chem 2004; 279:16907-11. [PMID: 14752093 DOI: 10.1074/jbc.m400563200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A key function of human granzyme B (GrB) is to induce apoptosis of target cells in conjunction with perforin. The RAH allele is the first documented variant of the human GrB gene, occurs at a frequency of 25-30%, and encodes three amino acid substitutions (Q48R, P88A, and Y245H). It was initially reported that RAH GrB is incapable of inducing apoptosis, but here we show that it has essentially identical proteolytic and cytotoxic properties to wild type GrB. Recombinant RAH and wild type GrB cleave peptide substrates with similar kinetics, are both capable of cleaving Bid and procaspase 3, and are equally inhibited by proteinase inhibitor 9, an endogenous regulator of GrB. Furthermore, cytotoxic lymphocytes from RAH heterozygotes and homozygotes have no defect in target cell killing, and in vitro RAH GrB and wild type GrB kill cells equally well in the presence of perforin. We conclude that the RAH allele represents a neutral polymorphism in the GrB gene.
Collapse
Affiliation(s)
- Jiuru Sun
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
Granzyme B (GrB) is a serine protease that is released by cytotoxic lymphocytes to kill virus-infected and tumor cells. Recent advances in the understanding of GrB have stressed the importance of reassessing the mechanisms by which GrB accomplishes its death functions. These include the uptake and trafficking of GrB within target cells, pathways used to trigger cell death, and the mechanism(s) controlling its killing activity. In addition, the role that GrB plays in human pathologies is still to be defined. The purpose of this review is to discuss recent insights into the biology of GrB and to evaluate its functional significance in health and disease.
Collapse
Affiliation(s)
- Felipe Andrade
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición 'Salvador Zubirán', Mexico City, Mexico
| | | | | |
Collapse
|
87
|
Kanno T, Yorimitsu M, Muranaka S, Sato EF, Nagano M, Inoue A, Inoue M, Utsumi K. Role of α-Tocopherol in the Regulation of Mitochondrial Membrane Permeability Transition. J Clin Biochem Nutr 2004. [DOI: 10.3164/jcbn.35.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tomoko Kanno
- Institute of Medical Science, Kurashiki Medical Center
| | | | | | - Eisuke F. Sato
- Department of Biochemistry and Molecular Pathology, Osaka City University Medical School
| | - Makoto Nagano
- Institute of Medical Science, Kurashiki Medical Center
| | - Akiko Inoue
- Department of Pediatrics, Osaka Medical College
| | - Masayasu Inoue
- Department of Biochemistry and Molecular Pathology, Osaka City University Medical School
| | - Kozo Utsumi
- Institute of Medical Science, Kurashiki Medical Center
| |
Collapse
|
88
|
Medina J, Picarles V, Greiner B, Elsaesser C, Kolopp M, Mahl A, Roman D, Vogel B, Nussbaumer P, Winiski A, Meingassner J, Fraissinette ADBD. LAV694, a new antiproliferative agent showing improved skin tolerability vs. clinical standards for the treatment of actinic keratosis. Biochem Pharmacol 2003; 66:1885-95. [PMID: 14599546 DOI: 10.1016/s0006-2952(03)00369-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The skin tolerability of the tubulin polymerisation inhibitor LAV694 was compared to that of 5% 5-fluorouracil (5-FU) and 0.5% podophyllotoxin in vitro using a human reconstructed epidermis (HRE), and in vivo using minipigs. Topical treatment of HRE for 1 or 3 days with a 0.2, 0.6 or 1% LAV694 cream or the placebo showed no signs of irritation in terms of morphology, cell viability (lactate dehydrogenase leakage) or interleukin-8 mRNA expression and release. 5-FU increased interleukin-8 production and induced morphological signs of irritation. The substances were also applied under occlusion to the back of two minipigs, twice daily, for 9 days to allow intraindividual comparison of skin effects and tolerability. Skin reactions were monitored by visual scoring, chromometry, pro-inflammatory activity, cell cycle and apoptosis by RT-PCR, laser scanning cytometry and histopathological examination of biopsies. Application of podophyllotoxin and 5-FU had to be stopped on days 4 and 8, respectively, due to severe skin lesions. LAV694 (1%) induced only moderate skin reddening after 9 days. 5-FU and podophyllotoxin, but not LAV694, increased mRNA expression of pro-inflammatory cytokines. LAV694 arrested keratinocytes in the M phase of the cell cycle and apoptosis was detected histologically in the basal layer. LAV694 increased the expression of pro-apoptotic genes in both experimental models. In conclusion, LAV694 selectively induced apoptosis, rather than necrosis, of growth-arrested keratinocytes, thus avoiding the occurrence of extensive inflammation. This resulted in an improved skin tolerability in comparison with 5-FU and podophyllotoxin.
Collapse
Affiliation(s)
- Jesús Medina
- Preclinical Safety Department, Novartis Pharma AG, WSH.2881.P03, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Granzyme A, a serine protease in the cytotoxic granules of natural killer cells and cytotoxic T lymphocytes, induces caspase-independent cell death when introduced into target cells by perforin. Granzyme A induces single-stranded DNA damage as well as rapid loss of cell membrane integrity and mitochondrial transmembrane potential through unknown mechanisms. Granzyme A destroys the nuclear envelope by targeting lamins and opens up DNA for degradation by targeting histones. A special target of the granzyme A cell death pathway is an endoplasmic reticulum-associated complex, called the SET complex, which contains three granzyme A substrates, the nucleosome assembly protein SET, the DNA bending protein HMG-2, and the base excision repair endonuclease Ape1. The SET complex also contains the tumor suppressor protein pp32 and the granzyme A-activated DNase NM23-H1, which is inhibited by SET. Granzyme A cleavage of SET releases the inhibition and unleashes NM23-H1. Cleavage of Ape1 by granzyme A interferes with the ability of the target cell to repair itself. The novel cell death pathway initiated by granzyme A provides a parallel pathway for apoptosis, important in destroying targets that overexpress bcl-2 or are otherwise invulnerable to the caspases.
Collapse
Affiliation(s)
- Judy Lieberman
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, 800 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
90
|
Affiliation(s)
- Pere Santamaria
- Department of Microbiology and Infectious Diseases and Julia McFarlane Diabetes Research Centre, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary T2N 4N1, Canada.
| |
Collapse
|
91
|
Saito S, Iida A, Sekine A, Kawauchi S, Higuchi S, Ogawa C, Nakamura Y. Catalog of 680 variations among eight cytochrome p450 ( CYP) genes, nine esterase genes, and two other genes in the Japanese population. J Hum Genet 2003; 48:249-270. [PMID: 12721789 DOI: 10.1007/s10038-003-0021-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 03/06/2003] [Indexed: 11/25/2022]
Abstract
We screened DNAs from 48 Japanese individuals for single-nucleotide polymorphisms (SNPs) in eight cytochrome p450 ( CYP) genes, nine esterase genes, and two other genes by directly sequencing the relevant genomic regions in their entirety except for repetitive elements. This approach identified 607 SNPs and 73 insertion/deletion polymorphisms among the 19 genes examined. Of the 607 SNPs, 284 were identified in CYP genes, 302 in esterase genes, and 21 in the other two genes ( GGT1, and TGM1); overall, 37 SNPs were located in 5' flanking regions, 496 in introns, 55 in exons, and 19 in 3' flanking regions. These variants should contribute to studies designed to investigate possible correlations between genotypes and phenotypes of disease susceptibility or responsiveness to drug therapy.
Collapse
Affiliation(s)
- Susumu Saito
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Aritoshi Iida
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Akihiro Sekine
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Saori Kawauchi
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shoko Higuchi
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chie Ogawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Nakamura
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
92
|
Sasson R, Dantes A, Tajima K, Amsterdam A. Novel genes modulated by FSH in normal and immortalized FSH-responsive cells: new insights into the mechanism of FSH action. FASEB J 2003; 17:1256-66. [PMID: 12832290 DOI: 10.1096/fj.02-0740com] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Follicle-stimulating hormone (FSH) controls the development of follicle-enclosed oocytes in the mammalian ovary by interacting with specific receptors located exclusively on granulosa cells. Its biological activity involves stimulation of intercellular communication, intracellular signaling, and up-regulation of steroidogenesis; the entire spectrum of genes regulated by FSH is not yet fully characterized. We have established monoclonal rat FSH-responsive granulosa cell lines that express FSH receptors at 20-fold higher rates than with primary cells, and thus increased the probability of yielding a distinct spectrum of genes modulated by FSH. Using Affymetrix DNA microarrays, we discovered 11 genes not reported earlier to be up-regulated by FSH and 9 genes not reported earlier to be down-regulated by FSH. Modulation of signal transduction associated with G-protein signaling, phosphorylation of proteins, and intracellular-extracellular ion balance was suggested by up-regulation of decay accelerating factor GPI-form precursor (DAF), membrane interacting protein RGS16, protein tyrosine phosphatase (PTPase), oxidative stress-inducible protein tyrosine phosphatase (OSIPTPase), and down-regulation of rat prostatic acid phosphatase (rPAP), Na+, K+-ATPase, and protein phosphatase 1beta. Elevation in granzyme-like proteins 1 and 3, and natural killer (NK) cell protease 1 (NKP-1) along with reduction in carboxypeptidase E indicates possible FSH-mediated preparation of the cells for apoptosis. Up-regulation of vascular endothelial growth factors indicates the ability of FSH to produce angiogenic factors upon their maturation; whereas, reduction in insulin-like growth factor binding protein (IGFBP3) indicates its increased potential to promote p53-induced apoptosis. Striking similarities in FSH modulation of gene expression were found in primary cultures of human granulosa cells obtained from IVF patients although these cells expressed only 1% of FSH receptor compared with immortalized rat cells, as indicated by microarray technique, which probably is in the normal range of expression of this receptor in nontransformed cells. These findings should increase our understanding of the mechanism of FSH action in stimulating development of the ovarian follicular cells, of intracellular and intercellular communication, and of increasing the potential of ovarian follicular cells to undergo apoptosis during the process of selection of the dominant follicle.
Collapse
Affiliation(s)
- Ravid Sasson
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
93
|
Abstract
A main pathway used by cytotoxic T lymphocytes (CTLs) and natural killer cells to eliminate pathogenic cells is via exocytosis of granule components in the direction of the target cell, delivering a lethal hit of cytolytic molecules. Amongst these, granzyme B and perforin have been shown to induce CTL-mediated target cell DNA fragmentation and apoptosis. Once released from the CTL, granzyme B binds its receptor, the mannose-6-phosphate/insulin-like growth factor II receptor, and is endocytosed but remains arrested in endocytic vesicles until released by perforin. Once in the cytosol, granzyme B targets caspase-3 directly or indirectly through the mitochondria, initiating the caspase cascade to DNA fragmentation and apoptosis. Caspase activity is required for apoptosis to occur; however, in the absence of caspase activity, granzyme B can still initiate mitochondrial events via the cleavage of Bid. Recent work shows that granzyme B-mediated release of apoptotic factors from the mitochondria is essential for the full activation of caspase-3. Thus, granzyme B acts at multiple points to initiate the death of the offending cell. Studies of the granzyme B death receptor and internal signaling pathways may lead to critical advances in cell transplantation and cancer therapy.
Collapse
Affiliation(s)
- Sarah J Lord
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
94
|
Liu C, Zhu H, Tu Z, Xu YL, Nelson DR. CD8+ T-cell interaction with HCV replicon cells: evidence for both cytokine- and cell-mediated antiviral activity. Hepatology 2003; 37:1335-42. [PMID: 12774012 DOI: 10.1053/jhep.2003.50207] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interaction between the host immune response and infected hepatocytes plays a central role in the pathogenesis of hepatitis C virus (HCV). The lack of a suitable animal or in vitro model has hindered our understanding of the host T-cell/HCV interaction. Our aim was to develop an in vitro model to study the mechanisms of HCV-specific T-cell-mediated antiviral and cytolytic function. The HCV replicon was HLA typed and lymphocytes were obtained from an HLA class I-matched subject. CD8(+) T cells were expanded with 2 HCV-specific/HLA-restricted peptides for NS3. Lymphocyte preparations were cocultured with HCV replicon (FCA1) and control (Huh7) cells labeled with (51)Cr. After a 48-hour incubation, the cells were harvested for RNA extraction. Standard blocking assays were performed in the presence of anti-interferon gamma (IFN-gamma), anti-tumor necrosis factor alpha (TNF-alpha), and anti-FasL. Cytolytic activity was measured by (51)Cr release. HCV replicon cells express homozygous HLA-A11 alleles and present HCV nonstructural proteins. HCV-specific expansion of CD8(+) cells led to a 10-fold decrease in HCV replication by Northern blot analysis and 21% specific lysis of FCA1 cells (compared with 2% of control Huh7 cells). Twenty percent of this antiviral activity was independent of T-cell binding, suggesting cytokine-mediated antiviral activity. The CD8(+) antiviral effect was markedly reduced by blocking either IFN-gamma or FasL but was unaffected by blocking TNF-alpha. In conclusion, HCV-specific CD8(+) cells inhibit viral RNA replication by cytokine-mediated and direct cytolytic effects. This T-cell/HCV subgenomic replicon system represents a model for the investigation of CD8 cell interaction with HCV-infected hepatocytes.
Collapse
Affiliation(s)
- Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
95
|
Davis JE, Sutton VR, Browne KA, Trapani JA. Purification of natural killer cell cytotoxic granules for assaying target cell apoptosis. J Immunol Methods 2003; 276:59-68. [PMID: 12738359 DOI: 10.1016/s0022-1759(03)00077-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We compared two methods originally devised to purify cytoplasmic granules from granulocytes for their capacity to produce cytotoxic granules from natural killer cell lines, suitable for use in target cell apoptosis assays. Both methods utilised nitrogen cavitation to efficiently lyse cells, followed by density gradient fractionation on Percoll to separate the granules from other organelles and granule debris. The first method, originally described by Millard and colleagues, employed DNase I to reduce the viscosity of the initial cell lysate, but the resulting granule fractions were found to contain residual nuclease activity that made them unsuitable for use in apoptosis assays that measure DNA fragmentation. An alternative method described by Borregaard and colleagues utilised a cell relaxation buffer without DNase I. Cytotoxic granules isolated from the NK tumor cell line YT by this protocol were localised predominantly to the densest Percoll fractions, with a density of approximately 1.13 g/ml. These granule fractions were rich in perforin and enzymatically active granzyme B, and induced potent Ca(2+)-dependent lysis and DNA fragmentation of Jurkat cells. Corresponding fractions from non-cytolytic cells, or YT granule extracts incubated with EGTA were unable to mediate significant target cell damage. Cytotoxic granule extracts purified through the Borregaard method were therefore free of nonspecific nuclease activity, and most suitable for studying the mechanism of target cell death induced through the perforin/Ca(2+)-dependent granule pathway.
Collapse
Affiliation(s)
- Joanne E Davis
- The Cancer Immunology Research Laboratory, The Peter MacCallum Cancer Institute, Victoria, Melbourne, Australia.
| | | | | | | |
Collapse
|
96
|
Abstract
Granule exocytosis is the main pathway for the immune elimination of virus-infected cells and tumour cells by cytotoxic T lymphocytes and natural killer cells. After target-cell recognition, release of the cytotoxic granule contents into the immunological synapse formed between the killer cell and its target induces apoptosis. The granules contain two membrane-perturbing proteins, perforin and granulysin, and a family of serine proteases known as granzymes, complexed with the proteoglycan serglycin. In this review, I discuss recent insights into the mechanisms of granule-mediated cytotoxicity, focusing on how granzymes A, B and C and granulysin activate cell death through caspase-independent pathways.
Collapse
Affiliation(s)
- Judy Lieberman
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
97
|
Abstract
Cytotoxic T lymphocytes and natural killer cells kill their targets by secreting specialized granules that contain potent cytotoxic molecules. Through the study of rare immunodeficiency diseases in which this granule pathway of killing is impaired, proteins such as Rab27a have been identified as components of the secretory machinery of these killer cells. Recent evidence suggests that the destruction of activated lymphocytes through granule-mediated killing may be an important mechanism of immunological homeostasis. Although the process by which this occurs is not yet known, it is possible that events taking place at the immunological synapse may render the killer cell susceptible to fratricidal attack by other killer cells.
Collapse
|
98
|
Amsterdam A. Novel genes regulated by gonadotropins in granulosa cells: new perspectives on their physiological functions. Mol Cell Endocrinol 2003; 202:133-7. [PMID: 12770742 DOI: 10.1016/s0303-7207(03)00074-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Follicular stimulating hormone (FSH) is a key hormone secreted from the pituitary, which controls the development of the follicle-enclosed oocytes in the mammalian ovary by interacting with specific receptors located exclusively on granulosa cells. Its biological activity involves stimulation of intercellular communication and upregulation of steroidogenesis, yet the entire spectrum of genes which are regulated by FSH are not fully characterized. We have established rat and human FSH responsive granulosa cell lines, which express FSH receptors at 20-times higher rates compared to primary cells. Since the lines are monoclonal, they are expected to have a homogeneous composition of RNA among the entire cell population, which increases the probability of yielding a distinct view of genes modulated by FSH eliminating the possibility of other cell types contamination. Using Affymetrix DNA microarrays to uncover novel FSH-regulated genes, we discovered genes not reported earlier to be regulated by FSH. These include genes coding for (1) proteases; (2) growth factors and cytokines; (3) proteins involved in intercellular communication and connection with the nervous system; (4) protein phosphatases and kinases; (5) anti oxidants and anti-toxicants; (6) G-coupled proteins. These findings can deepen our understanding in the mechanism of FSH action in stimulation of the development of the ovarian follicular cells, in the modulation of ovarian intracellular and intercellular communication and in the process of selection of the dominant follicle. When human granulosa cells, obtained from in vitro fertilization patients were exposed to either hLH- or hFSH stimulation and mRNAs of these cells were analyzed by DNA microarrays, novel genes, similar to those found modulated by FSH in FSH responsive cell lines, were discovered in the human primary cells. This suggests that the immortalized cell systems established in our laboratory could serve as a useful system expanding the spectrum of authentic genes modulated by gonadotropin stimulation in normal ovarian function and in ovarian malfunction.
Collapse
Affiliation(s)
- A Amsterdam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
99
|
Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 2003; 112:659-72. [PMID: 12628186 DOI: 10.1016/s0092-8674(03)00150-8] [Citation(s) in RCA: 424] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Granzyme A (GzmA) induces a caspase-independent cell death pathway characterized by single-stranded DNA nicks and other features of apoptosis. A GzmA-activated DNase (GAAD) is in an ER associated complex containing pp32 and the GzmA substrates SET, HMG-2, and Ape1. We show that GAAD is NM23-H1, a nucleoside diphosphate kinase implicated in suppression of tumor metastasis, and its specific inhibitor (IGAAD) is SET. NM23-H1 binds to SET and is released from inhibition by GzmA cleavage of SET. After GzmA loading or CTL attack, SET and NM23-H1 translocate to the nucleus and SET is degraded, allowing NM23-H1 to nick chromosomal DNA. GzmA-treated cells with silenced NM23-H1 expression are resistant to GzmA-mediated DNA damage and cytolysis, while cells overexpressing NM23-H1 are more sensitive.
Collapse
Affiliation(s)
- Zusen Fan
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
100
|
Fan Z, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A, Pommier Y, Lieberman J. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat Immunol 2003; 4:145-53. [PMID: 12524539 DOI: 10.1038/ni885] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 11/01/2002] [Indexed: 12/20/2022]
Abstract
The cytolytic T lymphocyte protease granzyme A (GzmA) initiates a caspase-independent cell death pathway. Here we report that the rate-limiting enzyme of DNA base excision repair, apurinic endonuclease-1 (Ape1), which is also known as redox factor-1 (Ref-1), binds to GzmA and is contained in the SET complex, a macromolecular complex of 270-420 kDa that is associated with the endoplasmic reticulum and is targeted by GzmA during cell-mediated death. GzmA cleaves Ape1 after Lys31 and destroys its known oxidative repair functions. In so doing, GzmA may block cellular repair and force apoptosis. In support of this, cells with silenced Ape1 expression are more sensitive, whereas cells overexpressing noncleavable Ape1 are more resistant, to GzmA-mediated death.
Collapse
Affiliation(s)
- Zusen Fan
- Center for Blood Research, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|